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Abstract

Most research on preconditioners for time-dependent PDEs has focused on im-

plicit multi-step or diagonally-implicit multi-stage temporal discretizations. In

this paper, we consider monolithic multigrid preconditioners for fully-implicit

multi-stage Runge–Kutta (RK) time integration methods. These temporal dis-

cretizations have very attractive accuracy and stability properties, but they

couple the spatial degrees of freedom across multiple time levels, requiring the

solution of very large linear systems. We extend the classical Vanka relaxation

scheme to implicit RK discretizations of saddle point problems. We present

numerical results for the incompressible Stokes, Navier–Stokes, and resistive

magnetohydrodynamics equations, in two and three dimensions, confirming that

these relaxation schemes lead to robust and scalable monolithic multigrid meth-

ods for a challenging range of incompressible fluid-flow models.
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1. Introduction

Among the many applications of advanced computer simulation, models of

fluid flow have been a persistent and common driving force in research and prac-

tice. The history of spatial discretization of fluid problems dates back at least to

the 1960’s (e.g., the MAC-scheme discretization of the Navier–Stokes equations

[1–3]), but continues to this day with investigation of higher-order mixed finite-

element discretizations for both Newtonian and complex fluids [4–11]. Along-

side this thrust to higher-order spatial discretizations comes a need for stable

higher-order temporal discretizations, for which implicit Runge-Kutta methods

are a natural choice. In this paper, we investigate the development of efficient

Newton–Krylov–multigrid strategies for implicit Runge–Kutta discretizations of

incompressible fluid-flow problems.

Effective solver strategies for both stationary problems and time-dependent

flow models discretized via either multi-step schemes or diagonally implicit

Runge-Kutta (DIRK) schemes have been studied for many years. For time-

dependent Newtonian flows, both fully and semi-implicit pressure-correction

schemes (e.g., [2, 3, 12–14]) have been proposed, based primarily on multigrid

solution of the pressure-Poisson equation, but the construction and analysis

of general high-order schemes is non-trivial [15]. Monolithic multigrid schemes

(both linear and nonlinear) have also been broadly considered, first arising in the

late 1970’s and early 1980’s [16, 17]. More approaches have been proposed since

these early works, including techniques for Newtonian flows based on Vanka [18]

and Braess–Sarazin [19] relaxation, and generalizations of these techniques to

more complex flow settings and discretizations [20–22]. Simultaneously, block

preconditioning strategies have also been developed, for a variety of discretiza-

tions and flow settings [23–28]. Despite this substantial body of work on multi-

step methods, there are (to our knowledge) few comparable publications on

solution strategies for multi-stage implicit Runge–Kutta (IRK) discretizations

of flow models [29, 30].

A small body of work exists on solvers for IRK discretizations for parabolic
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PDEs [30–38]. Much of this work focuses on block-structured preconditioners for

the tensor-product systems generated by IRK discretization [34–37] where, for

example, standard multigrid methods can be used to solve the diagonal blocks.

The recent method of Southworth et al. [30, 38] appears to be very effective,

again leveraging standard preconditioners for linear systems corresponding to

BDF-type discretizations. On the other hand, the work of Vandewalle and

others [31–33] applies monolithic multigrid methods to these discretizations,

using block-Gauss–Seidel type relaxation for parabolic equations and a block-

extension of the Hiptmair relaxation [39] for the eddy-current form of the curl-

curl equation. Similar block-Jacobi relaxation was used for both the heat and

Gross–Pitaevskii equations in [40]. Here, we investigate extensions of Vanka

relaxation for IRK discretizations of fluid flow problems.

In this paper, we consider standard mixed finite-element (spatial) discretiza-

tions of Stokes, Navier–Stokes, and magnetohydrodynamic (MHD) flows, cou-

pled with IRK discretizations in time. We focus on the development of mono-

lithic geometric multigrid preconditioners for the coupled systems of equations

to be solved at each timestep. For nonlinear problems, we use these precondi-

tioners in a standard Newton–Krylov–multigrid setting, using Newton’s method

to linearize the coupled nonlinear systems at each timestep. We expect the same

techniques would apply to the various simplifications of Newton’s method that

are applicable in the IRK context [41, 42]. Numerical results are presented for

standard benchmarks in two and three spatial dimensions, showing that this

solution approach is equally effective for IRK discretizations as it is for BDF

discretizations.

The remainder of this paper is organized as follows. In Section 2, we review

the Runge–Kutta discretization approach for systems of ODEs. For fluid-flow

models, this is typically used in a method-of-lines approach with some spatial

discretization, and Section 3 reviews mixed finite-element discretization of the

Stokes, Navier–Stokes, and MHD models considered here. In Section 4, we

present the constituent parts of the monolithic multigrid algorithm that we

propose for solution of the resulting linear(ized) systems of equations. Numerical
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results that confirm the effectiveness of this approach are given in Section 5.

Finally, conclusions and directions for future work are given in Section 6.

2. Runge–Kutta temporal discretizations

While BDF (and other linear multi-step) schemes can achieve higher-order

convergence, they do so at a cost to their stability, with the widely known

result that no linear multi-step scheme with order greater than two can be A-

stable (the so-called Second Dahlquist Barrier) [43]. Because of this (and other

reasons), Runge–Kutta integrators are widely used when we seek higher-order

time integration methods. In contrast to multi-step schemes (where solutions

at past time-steps are used in the approximation), Runge–Kutta methods are

multi-stage schemes, where a number of intermediate stage values are used to

achieve the approximation. In general, an r-stage Runge–Kutta method applied

to the system of ordinary differential equations u′(t) = f(u(t), t) is given by

ki = f

un + ∆t

r∑
j=1

aijkj , t
n + ci∆t

 , for i = 1, 2, . . . , r,

un+1 = un + ∆t

r∑
j=1

bjkj .

(1)

The coefficients in the scheme are the stage times (or nodes) ci, the weights

bj , and the Runge–Kutta matrix A = [aij ]. Taken together, these form the

Butcher tableau for a given scheme [41, 44]. For consistency, we require that∑r
j=1 bj = 1 and

∑r
j=1 aij = ci, for all i = 1, 2, . . . , r. The r stage values are

represented by the set {ki}ri=1 and the approximation at time tn = t0 + n∆t is

denoted by un.

Runge–Kutta methods are generally classified by the non-zero pattern of

the matrix A. Methods can be explicit, with aij = 0 ∀j ≥ i, or implicit,

when ∃j ≥ i with aij 6= 0. The implicit methods can further be classified into

diagonally implicit, with aij = 0 ∀j > i, or fully implicit, when ∃j > i such

that aij 6= 0. Further specialization is also possible, such as singly diagonally

implicit Runge–Kutta (SDIRK) methods, which are diagonally implicit (DIRK)
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methods with the added property that aii = ajj for all i and j, and explicit

singly diagonally implicit (ESDIRK) methods, which have an all-zero first row

of A, followed by SDIRK structure on lower rows (of which the Crank–Nicolson

scheme is a well-known example).

There are three main points to consider when choosing a Runge–Kutta

method, regarding its stability, accuracy, and computational cost. For any

scheme, we define the function r(z) as the map produced when applying the

scheme to the (scalar, linear) Dahlquist test problem, u′ = λu for λ ∈ C, with

un+1 = r(λ∆t)un. The domain of stability of the scheme is defined as the re-

gion in the complex plane where |r(z)| < 1. RK methods are said to be A-stable

if their domain of stability includes the entire left-half of the complex plane.

If, additionally, we have that limz→−∞ |r(z)| = 0, we say that the scheme is

L-stable. For many applications, L-stability is the preferred property, since an

L-stable scheme generally damps non-physical high-frequency oscillations that

may pollute a numerical solution. As is typical, explicit Runge–Kutta (ERK)

methods have finite regions of stability, and only implicit Runge–Kutta (IRK)

schemes can be A- or L-stable.

The local truncation error of an RK scheme is defined as the error made in a

single step of the scheme, starting with the analytical solution of the differential

equation as un, compared to u(tn+1), while the global error is the accumulated

error in the approximate solution over the timesteps needed to reach a fixed

time. We typically discuss such errors by their order, meaning that we bound

the error by a constant (depending on f(u, t) and the analytical solution, u(t))

times (∆t)p to establish that a scheme has order p. Typically (e.g., when f(u, t)

is continuous in t and Lipschitz continuous in u), the global error is one order

less than the local truncation error. A well-known result is that the order of

global error of an ERK method cannot be greater than its number of stages

(and, to achieve order p > 5, an ERK scheme must have at least p + 1 stages)

[45, Section 324]. In contrast, the maximum order of global error for an IRK

discretization can be as much as twice the number of stages in the scheme.

While higher-order global error is attractive, for both stiff DEs and systems of
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differential-algebraic equations (DAEs), the so-called stage order of a Runge–

Kutta method is more important [45, Section 362]. Here, in addition to the

truncation error, the accuracy of a scheme is determined by also bounding the

approximation of stage i to u(tn+ci∆t) by some constant (depending on f(u, t)

and u(t)) times (∆t)q+1, thus defining the stage order as min{q, p}. For index-2

DAEs (as are considered here), the order of accuracy of a scheme is limited by

its stage order, due to perturbation bounds on the solution of the constrained

system [43, Section VII.4]. This greatly limits our choice of schemes that allow

higher-order accuracy. While DIRK methods can have reasonable global order,

their stage order is typically limited to 1. We note that ESDIRK methods are

an exception to this, with stage order limited to 2, due to the structure of their

Butcher tableau. In contrast, the stage order of fully IRK schemes can be as

large as the number of stages, making these the preferred schemes for integrating

DAEs.

The downside of IRK schemes is their computational cost. ERK methods

can be implemented at the cost of one evaluation of f(u, t) for each stage in the

method. In contrast, IRK methods require solution of a system of equations

for each timestep (that may be large when u represents a spatially discretized

approximation to the solution of a PDE). Herein lies the attraction of DIRK,

SDIRK, and ESDIRK schemes. In these approaches, rather than having to solve

for the stages in a coupled manner, each stage can be solved for sequentially,

allowing the reuse of standard linear and nonlinear solvers from backward-Euler

type schemes. SDIRK and ESDIRK afford even more of an advantage, particu-

larly in the linear case, as the same solver architecture can be directly reused in

the solution process for each stage. General IRK methods, in contrast, do not

allow this simplification. While block-preconditioning strategies can be used to

again leverage existing solver architectures from the multistep case [30, 34–38],

these theoretical results tend to be limited to simple cases, excluding (for exam-

ple) nonlinear systems of DAEs, as arise in standard models of computational

fluid dynamics.

In this paper, we consider a standard Newton–Krylov–multigrid framework
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for the solution of the nonlinear systems of equations that arise from using

general IRK discretizations for the Navier–Stokes equations and the equations of

magnetohydrodynamics. Because the details of these solvers depend directly on

the spatial discretization, we next discuss the mixed finite-element discretization

of these models.

3. Discretization of fluid models

In this section, we consider the interplay of mixed finite-element spatial dis-

cretization for incompressible models of fluid flow with temporal discretization

by IRK methods. We consider three models: the linear Stokes model, the (non-

linear) Navier–Stokes equations, and the equations of single-fluid visco-resistive

incompressible magnetohydrodynamics (MHD). In Section 4, we will focus on

the development of a monolithic multigrid methodology for the linearized sys-

tems that result from applying Newton’s method to the nonlinear problems.

Both here and in that exposition, we will focus on the details of the algorithm

for the simplest case of the linear Stokes model.

3.1. Time-dependent Stokes equations

In the viscous limit of incompressible flow, inertial forces in the model can

be neglected, leading to the time-steady Stokes equations. We consider here

the time-dependent analogue of the Stokes equations on a bounded Lipschitz

domain Ω ⊂ Rd, d ∈ {2, 3}:

ρut − µ∆u +∇p = f in Ω× (0, Tf ) (2a)

−∇ · u = 0 in Ω× (0, Tf ), (2b)

u = 0 on ∂Ω× (0, Tf ), (2c)

u(x, 0) = g(x) on Ω× {t = 0}, (2d)

where u(x, t) is the velocity, p(x, t) is the pressure, and f(x, t) is a suitably

smooth forcing term. Here, ρ denotes the fluid density and µ denotes the fluid

viscosity; we set both to 1 for simplicity. The final time is denoted by Tf . Since
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no time derivative of the pressure appears in the system, it is a DAE. The index

of a DAE is defined as the number of analytical differentiations needed (along

with algebraic manipulations) to convert the DAE into an explicit system of

ODEs [43, Section VII.1]. Here, since the constraint equation is of the form

−∇·u = 0, this is an index-two DAE, since one differentiation of the constraint

(and applying the divergence to (2a)) allows us to explicitly solve for p in terms

of u, and a second gives an ODE for p. For index-two DAEs, the order of

accuracy of a Runge–Kutta time-discretization is limited to the stage order of

the scheme.

For the spatial discretization of (2), we use the mixed finite-element frame-

work, considering the stable Taylor–Hood discretization on simplices [24]. Let

V = H1
0(Ω), where H1

0(Ω) = {v ∈ H1(Ω) : u = 0 on ∂Ω}, and W = L2
0(Ω)

(the space of zero-mean functions in L2(Ω)), and consider a weak solution of

(2) that is (at least) once continuously differentiable in time and such that for

every t ∈ (0, Tf ), u(·, t) ∈ V and p(·, t) ∈ W. Multiplying the time-dependent

equation by v ∈ V and the divergence constraint by q ∈ W and integrating by

parts, we get the weak form

〈ut,v〉+ 〈∇u,∇v〉 − 〈p,∇ · v〉 = 〈f,v〉, ∀v ∈ V,

−〈q,∇ · u〉 = 0, ∀q ∈ W,

where the inner-product notation, 〈·, ·〉, denotes integration in space but not

time. The finite-element discretization is realized by constructing a triangula-

tion, τh, of Ω, and approximating u and p in piecewise polynomial spaces de-

fined over τh. Here, we use standard continuous Lagrange finite-element spaces,

defining

Pk(Ω, τh) =
{
u ∈ C0(Ω) : ∀T ∈ τh, u|T (x) is a polynomial of degree no more than k

}
.

We consider the standard stable Taylor–Hood discretization, with Vh = (P2(Ω, τh))
d∩

V and Wh = P1(Ω, τh) ∩ W [24, 46]. This leads to the semi-discretized weak
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form of finding (u(·, t), p(·, t)) ∈ Vh ×Wh such that

〈ut,v〉+ 〈∇u,∇v〉 − 〈p,∇ · v〉 = 〈f,v〉, ∀v ∈ Vh,

−〈q,∇ · u〉 = 0, ∀q ∈ Wh.

Now writing ~u(t) and ~p (t) for the (time-dependent) coefficients of u(x, t) and

p(x, t) in the finite-element basis, we can write this as a coupled linear system

of DAEs, as M~ut

0

+

 K B

BT 0

~u
~p

 =

M~f
0

 ,
where ~f is the vector of coefficients of the interpolant of f in Vh. Here, M and

K are the (P2(Ω, τh))
d

mass and stiffness matrices, respectively, while B is the

weak gradient operator mapping from Wh into Vh.

It is this system of equations that we discretize using Runge–Kutta methods.

As the system is a set of DAEs, and not ODEs, we cannot directly apply (1),

but use its DAE analogue [43], writing

~uni = ~un + ∆t

r∑
j=1

aij~k
(u)
j , ~p ni = ~p n + ∆t

r∑
j=1

aij~k
(p)
j ,

M~k
(u)
i +K~uni +B~p ni = M~f ni , BT ~uni = 0,

~un+1 = ~un + ∆t

r∑
j=1

bj~k
(u)
j , ~p n+1 = ~p n + ∆t

r∑
j=1

bj~k
p
j ,

where ~f ni is the interpolant of f in Vh at time tn + ci∆t, ~u
n
i and ~p ni are the

approximations of ~u and ~p at time tn + ci∆t, and ~k
(u)
i and ~k

(p)
i are the RK

stages for which we solve. Rewriting the equations for ~k
(u)
i and ~k

(p)
i , we have

M~k
(u)
i +K

~un + ∆t

r∑
j=1

aij~k
(u)
j

+B

~p n + ∆t

r∑
j=1

aij~k
(p)
j

 = M~f ni

BT

~un + ∆t

r∑
j=1

aij~k
(u)
j

 = 0

9



or

M~k
(u)
i + ∆t

r∑
j=1

aij

(
K~k

(u)
j +B~k

(p)
j

)
= M~f ni −K~u

n −B~p n

∆t

r∑
j=1

aijB
T~k

(u)
j = −BT ~un

for 1 ≤ i ≤ r. The matrix on the left can easily be written in tensor-product

form, leading to a concise description of the scheme asIr ⊗

M 0

0 0

 + ∆tA⊗

 K B

BT 0

~k = ~F, (3)

where ~k is the vector of stages, ordered consecutively by stage index i, keeping

the ordering of (~k
(u)
i ,~k

(p)
i ) pairs together, and ~F is the corresponding vector of

right-hand sides (including terms from timestep n).

3.2. Navier–Stokes Equations

We next include the full inertial term, leading to the nonlinear incompressible

Navier–Stokes equations,

ρ (ut + u · ∇u)− µ∆u +∇p = f in Ω× (0, Tf ), (4a)

−∇ · u = 0 in Ω× (0, Tf ), (4b)

u = 0 on ∂Ω× (0, Tf ), (4c)

u(x, 0) = g(x) on Ω× {t = 0}. (4d)

We again take the density to be 1, but will allow the viscosity µ to be chosen

differently, to consider problems at different Reynolds numbers. The additional

term passes directly to the weak form, which we again discretize using a Taylor–

Hood mixed finite-element discretization. The semi-discretized weak variational

form of (4) is to find (u(·, t), p(·, t)) ∈ Vh ×Wh such that

〈ut,v〉+ 〈u · ∇u,v〉+ µ〈∇u,∇v〉 − 〈p,∇ · v〉 = 0,

−〈∇ · u, q〉 = 0,
(5)
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for all test functions (v, q) ∈ Vh × Wh. Again writing ~u(t) and ~p (t) for the

coefficients of u and p in the finite-element basis, this leads to a nonlinear

coupled system of DAEs, asM~ut

0

+

N(~u)

0

+

 K B

BT 0

~u
~p

 =

M~f
0

 ,
where N(~u) represents the discretization of 〈u · ∇u,v〉. As above, accounting

for this term in the RK stage equations leads to the nonlinear coupled system

M~k
(u)
i +N

~un + ∆t

r∑
j=1

aij~k
(u)
j

+ ∆t

r∑
j=1

aij

(
K~k

(u)
j +B~k

(p)
j

)
= M~f ni −K~u

n −B~p n,

∆t

r∑
j=1

aijB
T~k

(u)
j = −BT ~un,

for 1 ≤ i ≤ r. This system is solved using Newton’s method.

Denoting the nonlinear system as F
(
~k
n
)

= 0, a standard Newton approxi-

mation would be to solve

F
(
~k
n,`+1

)
≈ F

(
~k
n,`
)

+ J
(
~k
n,`
)
δ~k

n,`
= 0,

where J
(
~k
n,`
)

is the Jacobian of the system at the current approximation,

~k
n,`

and δ~k
n,`

:= ~k
n,`+1

− ~k
n,`

is the Newton search direction. Since we are

timestepping, we use the computed solution at the previous time-step, ~k
n−1

,

for the initial guess for the stage values at step n, ~k
n,0

. In this work, we use the

Eisenstat–Walker stopping criterion for the Krylov iteration to solve for δ~k
n,`

[47], requiring that∥∥∥F (~kn,`)+ J
(
~k
n,`
)
δ~k

n,`
∥∥∥ ≤ η` ∥∥∥F (~kn,`)∥∥∥ ,

for every step, `, where η` ∈ [0, 1) is updated for each nonlinear iteration based

on convergence of the method.

3.3. Magnetohydrodynamics

Finally, we consider the equations of single-fluid viscoresistive magnetohy-

drodynamics (MHD). In general, MHD models the flow of conducting fluids in
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the presence of an electromagnetic field. These models are nonlinear and contain

strong coupling between the fluid velocity and the electromagnetic variables. We

follow the MHD formulation presented in [22],

ut + (u · ∇)u−∇ · ( 2

Re
ε(u)) +∇p− (∇×B)×B = fu in Ω× (0, Tf ), (6a)

Bt +
1

Rem
∇×∇×B−∇× (u×B)−∇γ = fB in Ω× (0, Tf ), (6b)

−∇ · u = 0 in Ω× (0, Tf ), (6c)

∇ ·B = 0 in Ω× (0, Tf ), (6d)

u = 0 on ∂Ω× (0, Tf ), (6e)

B× n = 0 on ∂Ω× (0, Tf ), (6f)

u(x, 0) = gu(x) on Ω× {t = 0}, (6g)

B(x, 0) = gB(x) on Ω× {t = 0}, (6h)

where the four unknowns are the velocity vector, u, the pressure, p, the

magnetic field, B, and the Lagrange multiplier, γ. The Lagrange multiplier

is used to enforce the solenoidal condition (6d), while the pressure is used to

enforce the incompressibility condition (6c). The strain-rate tensor is ε(u) =

1
2 (∇u +∇uT ), and the two dimensionless constants, Re and Rem, are the hy-

drodynamic Reynolds number and magnetic Reynolds number, respectively. We

consider this equation in both two- and three-dimensional domains, Ω; in 2D,

the curl and cross-product are defined by the natural extensions from two-

dimensional vector fields to three-dimensional fields.

Here, for Ω ⊂ Rd, we take

(u(·, t),B(·, t), p(·, t), γ(·, t)) ∈ H1
0(Ω)×H0(curl,Ω)× L2

0(Ω)×H1
0 (Ω),
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where

H1
0(Ω) = {v ∈ H1(Ω) : u = 0 on ∂Ω},

H0(curl,Ω) = {c ∈ L2(Ω) : ∇× c ∈ L2(Ω),n× c = 0 on ∂Ω},

L2
0(Ω) = {q ∈ L2(Ω) :

∫
Ω

q dx = 0},

H1
0 (Ω) = {s ∈ H1(Ω) : s = 0 on ∂Ω},

and n is the outward unit normal vector on ∂Ω [22, 48]. We discretize the

fluid variables again with the Taylor–Hood discretization Vh ×Wh ⊂ H1
0(Ω)×

L2
0(Ω), and use lowest-order Nédélec elements for Ch ⊂ H0(curl,Ω) and Sh =

P1(Ω, τh) ∩ H1
0 (Ω) for the Lagrange multiplier. Well-posedness (under small-

data assumptions) of both the continuous and discrete formulations is shown in

[48].

Multiplying (6) by the test functions (v, c, q, s) ∈ Vh × Ch ×Wh × Sh and

integrating by parts, we get the semi-discretized weak variational form of finding

(u(·, t),B(·, t), p(·, t), γ(·, t)) ∈ Vh × Ch ×Wh × Sh such that∫
Ω

ut · v + ((u · ∇)u) · v− 2

Re
(ε(u) : ε(v))− p∇ · v− ((∇×B)×B) · v dx

=

∫
Ω

fu · v dx,∫
Ω

Bt · c +
1

Rem
(∇×B) · (∇× c)− (u×B) · (∇× c)− (∇γ) · c dx =

∫
Ω

fB · c dx,

−
∫

Ω

(∇ · u)q dx = 0,

−
∫

Ω

B · (∇s) dx = 0,

(7)

for all (v, c, q, s) ∈ Vh × Ch ×Wh × Sh. The corresponding IRK discretization

is derived from this semi-discretized form as described above, and solved in the

same Newton–Krylov–multigrid manner, using the Eisenstat–Walker stopping

criterion for the Krylov iteration. We note that linear solvers for this spatial

discretization using BDF2 in time was the subject of [22]; given the Dahlquist

barrier, and the driving need for L-stability, multistage schemes, such as IRK,

are needed to achieve higher-order time integration for this problem.
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4. Monolithic multigrid for fluid problems

As described above, we use a Newton–Krylov–multigrid framework for solv-

ing the non-linear systems of equations resulting from spatial and temporal

discretization of the models in Section 3 (noting that the Newton linearization

is trivial in the case of the linear Stokes equations). Since the systems are

nonsymmetric, we use FGMRES [49] as the Krylov method, and seek to effec-

tively precondition it. For IRK discretizations of scalar PDEs, such as the heat

equation, block-diagonal preconditioning of the stage-coupled linear systems is

known to be effective [34]. While block-diagonal preconditioning has also been

developed for fluid models discretized using BDF-like methods [24, 25], we leave

extension of this approach to IRK discretizations for future work. Instead, we

follow the approach of [18, 31], and develop a monolithic multigrid precondi-

tioner that makes use of an overlapping additive Schwarz relaxation that can

be viewed as the extension of Vanka relaxation to the IRK case. Compared

to the use of block-structured preconditioners, this offers the advantage of not

needing to explicitly approximate Schur complements in the stage-coupled IRK

linearizations (which may depend on properties of the specific IRK scheme cho-

sen, for example). We note that FGMRES and classical right-preconditioned

GMRES solve the same underlying optimization problem for the approximation

in the same Krylov space, but that the underlying algorithms have important

differences, with FGMRES requiring extra vector storage (to store both the

Arnoldi vectors and their preconditioned counterparts) but right-preconditioned

GMRES requiring an extra application of the preconditioner once the solution

to the underlying Hessenberg system has been found. Thus, we choose to use

FMGRES, instead of classical right-preconditioned GMRES, primarily because

the cost of application of our preconditioners is non-trivial, but we are not

memory-bound on the parallel machine used in the numerical results. Thus,

the extra vector storage of FGMRES is an attractive trade-off over the extra

preconditioner application required by standard right-preconditioned GMRES.

An auxiliary advantage is that FGMRES allows the use of GMRES inside inner
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iterations (such as the relaxation).

4.1. Coarse-grid correction and transfer operators

In the numerical results that follow, we consider hierarchies of grids gener-

ated by taking uniform refinements of a given coarsest grid. To map functions

from a coarse mesh to its refinement, we use canonical finite-element interpo-

lation operators for each field in the discretization. For the single-stage case,

for both the time-dependent Stokes and Navier–Stokes problems, interpolation

takes the form

P =

Pu

Pp

 ,
where Pu and Pp represent the interpolation operators for the P2 and P1 finite-

element spaces, respectively. In the MHD case, we introduce finite-element

interpolation operators PB for the lowest-order Nédélec space and Pγ for the

P1 space (with suitable boundary conditions for γ), following [22], making the

interpolation operator for the single-stage case

P =


Pu

PB

Pp

Pγ

 .

For multistage IRK discretizations, the interpolation operator is defined as

Ir ⊗ P , creating a block-diagonal interpolation operator that applies the finite-

element interpolation in P to each stage independently. We use the transpose

of interpolation as the restriction operator.

We use rediscretization to define the coarse-grid operators, noting that this

is equivalent to Galerkin coarsening in the finite-element case (if compatible

quadrature rules are used to assemble on the fine and coarse grids). The

coarsest-grid systems are solved directly, using MUMPS [50].

4.2. Vanka Relaxation

Vanka relaxation was first introduced for the time-steady MAC-scheme dis-

cretization of the Navier–Stokes equations [51], but it has been extensively used
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in many more general settings in recent years [20–22, 52, 53]. Broadly de-

fined, Vanka relaxation schemes are overlapping Schwarz (domain decomposi-

tion) methods used as relaxation for a multigrid algorithm. In order to achieve

the expected cost of a multigrid relaxation scheme, the subdomain problems are

generally quite small, on the order of 10s-100s of DoFs. Historically, the most

common approaches were multiplicative in nature; however, we follow the recent

trend towards additive schemes [22, 52, 53] that are naturally parallelizable.

To specify the details of relaxation, we now describe how the Schwarz sub-

domains (commonly referred to as the Vanka “blocks” or “patches”) are con-

structed from the underlying mesh on any given level of the multigrid hierarchy.

In this work, we follow the topological construction described in [53]. In partic-

ular, we form a Vanka patch for each vertex in the mesh, which consists of all

degrees of freedom associated with the closure of the cells adjacent to the vertex.

As is typical in Vanka relaxation, we exclude all degrees of freedom associated

with P1 constraints (the pressure and Lagrange multiplier in our systems) from

the patch, except for those located at the vertex around which the patch is

formed. For the models considered here, this results in patches like those shown

in Figure 1 for regular two-dimensional grids, with a single pressure degree of

freedom and all velocity DoFs on all elements adjacent to the node. When used

in an IRK discretization, these patches include all stage degrees of freedom. For

MHD, we note that the patch shown at right of Figure 1 coincides topologi-

cally with the coupled Vanka approach for the BDF2 discretization considered

in [22], but the patches used here contain more degrees of freedom than those

used in [22], due to inclusion of all stages in the IRK discretization.

Denoting the set of DoFs in the ith Vanka patch by Si, we have (by con-

struction) that every degree of freedom in the domain is contained in at least

one patch: S =
⋃N
i=1 Si, where N is the total number of patches and S is the

complete set of DoFs for the problem. Denoting Ri as a “restriction” operator

that maps global DoFs to those in patch Si, we can write a single iteration of a
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velocity DoF (P2) magnetic field DoF (lowest-order Nédélec)

pressure DoF (P1) Lagrange multiplier DoF (P1)

Figure 1: Left: Vanka patch for the Stokes and Navier–Stokes equations, consisting of P2

velocity DoFs, and one P1 pressure DoF. Right: Vanka patch for the MHD equations, consist-

ing of P2 velocity DoFs, lowest-order Nédélec DoFs for the magnetic field, one P1 Lagrange

multiplier DoF and one P1 pressure DoF.

weighted stationary iteration as

~k← ~k + ω

N∑
i=1

RTi (RiJR
T
i )−1Ri(~F− J~k),

where J~k = ~F is the linear system to be solved, and RiJR
T
i is the restriction

of J to the DoFs in patch Si. In practice, we use several steps of a Vanka-

preconditioned Chebyshev or GMRES iteration as the relaxation scheme for our

problems, with the endpoints of the interval defining the associated Chebyshev

polynomials tuned by hand.

4.3. Implementation

The numerical results below are produced using Firedrake [54] for the spa-

tial finite-element discretization and Irksome [40] for the temporal discretization.

Linear and nonlinear solvers are implemented in PETSc [55], taking advantage

of the close integration between discretizations and solvers provided by this com-

bination [56]. The Vanka relaxation is implemented through PCPATCH [53].

For reproducibility, the codes used to generate the numerical results and the ma-

jor components of Firedrake, Irksome, and PETSc needed, have been archived
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on Zenodo [57]. We emphasize that all aspects of the discretization and solver

software are chosen to be naturally parallelizable. The coarsest mesh in each

hierarchy is distributed across the available parallel cores, and then refined in

parallel. For the two-dimensional problems below, after each refinement, the

mesh is redistributed to better balance parallel work, but this was not done

for the 3D example, due to software limitations. While not rebalancing the

meshes leads to a small load imbalance on the finer grids in the hierarchies, this

was not seen to lead to significant loss of performance in the weak scaling tests

reported below. To account for the need to compute residuals for each DoF

in each Vanka patch, a node-distance-2 halo is included in the parallel mesh

distribution, to allow the relaxation scheme to be performed in parallel without

additional communication [58].

5. Numerical Results

For the numerical results in this paper, we focus on 3 families of IRK meth-

ods: Gauss (also known as Gauss–Legendre), LobattoIIIC, and RadauIIA. We

note that LobattoIIIC and RadauIIA are both L-stable and A-stable, while

Gauss is A-stable, but not L-stable. All are fully implicit schemes, with stage

order equal to the number of stages. For an r-stage method, Gauss schemes

have order 2r, while RadauIIA have order 2r − 1 and LobattoIIIC have order

2r − 2. We consider both 2- and 3-stage schemes here, with standard Butcher

tableaux [43, 59].

We present results for four separate test cases: a simple two-dimensional

time-dependent Stokes model, two-dimensional Navier–Stokes flow past a cylin-

der, and two MHD examples, a two-dimensional island-coalescence problem and

a three-dimensional lid-driven cavity model. All results presented in this paper

were computed on the Compute Canada cluster, Niagara, consisting of 2,024

nodes, each with 40 2.4 GHz Intel Skylake cores and 202GB of RAM, connected

using a 100Gb/s EDR Dragonfly+ network.
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5.1. Two-dimensional time-dependent Stokes

We consider a method of manufactured solutions test case, solving (2) on the

two-dimensional unit square, Ω = (0, 1)2. The forcing function f and boundary

conditions are chosen so that the exact solution is

u =

 sin(πx) cos(πy)e−2tπ2

− cos(πx) sin(πy)e−2tπ2

 , and p = 0.

For this example, we construct a coarsest grid by creating a uniform 8 × 8

quadrilateral mesh of the unit square, then cut each quadrilateral cell into 4

triangles, adding a vertex at the center of the quadrilateral. This mesh is then

uniformly refined ` times; below, we present results for ` = 5, 6, 7, where the

Taylor–Hood discretization of the Stokes equations results in about 1.1 million

DoFs per stage for ` = 5 up to about 19 million DoFs per stage for ` = 7. The

initial condition is chosen by interpolating the exact solution into the finite-

element space at t = 0, and we integrate up to time Tf = 0.5, with timestep

∆t = Tf/N for N = 2`+3. To our knowledge, there are no rigorous stopping

tolerances that guarantee discretization-error level accuracy for these systems;

we use a hand-tuned stopping tolerance, where we require the absolute value of

the `2 norm of the residual of the system to be reduced below 10−2×N−3 at each

timestep, or a relative reduction in this norm by 10−8. Based on preliminary

experiments, we accelerate the relaxation process using Chebyshev polynomials

of the first kind on the interval [2, 8] and employ 2 pre- and post-relaxation

sweeps. Proper choice of the Chebyshev interval is critical to achieving scalable

performance. For two-dimensional problems with geometric coarsening by a

factor of two (as used here), a reasonable strategy is to estimate the largest

eigenvalue, λ, of the relaxation-preconditioned matrix (e.g., using Ritz values

from preconditioned GMRES) and choose the interval to be [λ/4, λ]. Here,

we started from similar estimates, but hand-tuned the intervals to optimize

performance.

Table 1 presents a weak scaling study for this problem, for both two- and

three-stage methods. For the two-stage methods, we use 10 cores on 1 node for
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` = 5, 40 cores on 1 node for ` = 6 and 160 cores on 4 nodes for ` = 7. For

the three-stage methods, we increase core counts by 50%, to account for the

increased number of degrees of freedom in the resulting linear systems, using

15 cores on 1 node for ` = 5, 60 cores on 2 nodes for ` = 6 and 240 cores on 6

nodes for ` = 7. We report the relative L2 error in the velocity and the absolute

L2 error in the pressure approximation at the final time, as well as the average

number of linear iterations to achieve convergence over all timesteps and the

total computational time needed in minutes. In the final column of Table 1, we

report the average wall-clock time per Krylov iteration (t/K) in seconds.

Table 2 summarizes rates of convergence for the results shown in Table 1. We

observe at least second-order convergence in the velocity error for all three IRK

schemes; however, we notice much larger errors for the Gauss results than for the

other two schemes. We note that the stopping tolerance decreases by a factor

of 8 with each refinement, so that the slight increase in averaged iterations to

convergence is not overly surprising, and seems to remain bounded at reasonable

levels. Nonetheless, the factor four increase in the number of cores with each

refinement is insufficient to lead to ideal time scaling (which would be to double

with each refinement, due to the doubling of the number of time-steps).

There are several contributing factors to the less-than-perfect scaling, be-

yond the simple increase in total number of Krylov iterations with refinement.

When going from ` = 5 to ` = 6 with the two-stage schemes, we increase the

number of cores used for the calculation, but those cores remain on one physical

node, leading to a saturation of the memory bandwidth available. The same

limitation occurs when going from ` = 6 to ` = 7 with the three-stage schemes,

where we go from using 30 cores on each of 2 nodes to all 40 cores on 6 nodes.

While this could be avoided by using the same number of cores on more nodes of

the parallel machine, such usage is impractical when a single node has sufficient

memory for the ` = 6 problem with 2 IRK stages. Furthermore, when going

from ` = 6 to ` = 7, the (direct) coarsest-grid solve goes from being dominated

by its computation to being dominated by its communication. Here, we clearly

see another increase in the cost per linear iteration, especially in the three-stage
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` velocity error pressure error iterations time t/K

Gauss(2)

5 1.786× 10−2 2.328× 10−2 9.85 57.47 1.401

6 3.155× 10−3 1.162× 10−2 13.39 202.98 1.779

7 5.575× 10−4 6.271× 10−3 19.14 725.02 2.285

RadauIIA(2)

5 3.380× 10−6 6.327× 10−9 8.70 56.13 1.570

6 4.297× 10−7 2.795× 10−9 10.99 171.08 1.837

7 4.971× 10−8 1.028× 10−9 14.22 575.77 2.391

LobattoIIIC(2)

5 9.823× 10−4 4.594× 10−7 9.23 54.13 1.912

6 2.495× 10−4 1.479× 10−7 11.71 181.88 1.833

7 6.289× 10−5 4.823× 10−8 15.25 618.77 2.393

Gauss(3)

5 9.098× 10−5 1.481× 10−4 13.38 109.39 1.929

6 1.839× 10−5 6.802× 10−4 24.51 483.75 2.323

7 3.293× 10−6 3.235× 10−4 25.97 1332.40 3.249

RadauIIA(3)

5 6.151× 10−7 1.298× 10−9 9.32 82.29 2.083

6 1.122× 10−7 1.310× 10−9 12.40 267.78 2.566

7 1.300× 10−8 1.718× 10−10 13.91 877.99 3.786

LobattoIIIC(3)

5 6.019× 10−7 2.728× 10−9 9.61 85.25 2.120

6 1.083× 10−7 1.966× 10−9 12.91 248.95 2.293

7 1.271× 10−8 3.797× 10−10 14.91 938.06 3.770

Table 1: Numerical results for two-dimensional Stokes model problem with two- and three-

stage IRK schemes. Relative L2 errors in velocity and absolute L2 errors for pressure are

reported, along with average number of linear solver iterations per time-step, total wall-clock

time-to-solution in minutes, and time per Krylov iteration in seconds, for refinement levels

` = 5, 6, 7.
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Gauss RadauIIA LobattoIIIC

u p u p u p

two-stage
log2 e5/e6 2.5 1.0 3.0 1.2 2.0 1.6

log2 e6/e7 2.5 0.9 3.1 1.4 2.0 1.6

three-stage
log2 e5/e6 2.4 -2.3 2.5 0.0 2.5 0.5

log2 e6/e7 2.5 1.1 3.1 2.9 3.1 2.4

Table 2: Rates of convergence in velocity and pressure for data in Table 1 with two- and

three-stage IRK schemes for refinement levels ` = 5, 6, 7. Here, e` denotes the error in a

quantity on refinement level `.

methods where the time required increases by about 50% for ` = 7. Improved

performance would almost certainly be seen by duplicating the coarse-grid solve

on each node, as considered in [60–62]. We leave these performance enhance-

ments for future work.

The experiment in Table 1 highlights convergence as we change both the

spatial and temporal discretizations. Here, however, we note that the temporal

discretizations are higher order than the spatial, particularly for the 3-stage

discretizations. Thus, for comparison with this data, Table 3 presents results

with the same setup as Table 1, but using a fixed timestep of ∆t = 0.5/28, to

match results with ` = 5 (noting that these results were run independently, so

small differences in timings for ` = 5 naturally arise). We see that while quite

reasonable convergence is observed in Table 1, we observe significant stagnation

in convergence here. Thus, even though the temporal discretizations are higher

order, we still see substantial benefits to varying the timestep simultaneously

with refinement of the spatial mesh.

Finally, Table 4 presents comparison results for diagonal IRK schemes. Here,

we consider the two-stage second-order Pareschi-Russo (with parameter 1 −
√

2/2) [63] and three-stage third-order Alexander [64] integrators, which are

both L-stable. While these results show some outperformance of the theoretical
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` velocity error pressure error iterations time t/K

RadauIIA(2)

5 3.380× 10−6 6.327× 10−9 8.70 56.37 1.560

6 3.119× 10−6 1.896× 10−9 12.18 96.77 0.940

7 3.101× 10−6 2.793× 10−9 18.04 165.42 0.540

RadauIIA(3)

5 6.151× 10−7 1.298× 10−9 9.32 82.07 2.087

6 3.677× 10−8 3.288× 10−9 14.22 116.27 0.964

7 3.566× 10−8 8.063× 10−10 17.30 238.18 0.809

LobattoIIIC(3)

5 6.019× 10−7 2.728× 10−9 9.61 75.87 1.850

6 6.066× 10−8 3.076× 10−9 14.60 107.87 0.866

7 5.611× 10−8 1.136× 10−9 17.47 239.03 0.805

Table 3: Results analogous to Table 1, but with ∆t = 0.5/28. Relative L2 errors in velocity

and absolute L2 errors for pressure are reported, along with average number of linear solver

iterations per time-step, total wall-clock time-to-solution in minutes, and time per Krylov

iteration in seconds, for refinement levels ` = 5, 6, 7.

guarantees given by their stage order of one, they are also quite poor in compar-

ison to the RadauIIA integrators of the same number of stages. In particular,

comparing with the results in Table 1, we see that the errors achieved using

DIRK(3) with ` = 6 are comparable to those achieved when using RadauIIA(2)

with ` = 5, but that the latter calculation was achieved in about 60% of the wall-

clock time and on one-eighth of the number of cores (10 for RadauIIA(2) with

` = 5 vs. 80 for DIRK(3) with ` = 6). Similarly, the errors for DIRK(3) with

` = 7 are slightly better than those achieved with RadauIIA(2) and ` = 6, and

slightly worse than those achieved with RadauIIA(3) and ` = 6. The two-stage

Radau results, however, are achieved in just over 40% of the wall-clock time, and

on one-sixth the cores, while the three-stage Radau results are achieved in about

two-thirds the wall-clock time, on one-fourth the cores. These results highlight

the added accuracy that can be gained using fully implicit RK methods over

DIRK methods, and the added efficiency possible when using state-of-the-art

23



` velocity error pressure error iterations time t/K

DIRK(2)

5 2.480× 10−5 9.266× 10−8 6.42 35.20 1.312

6 6.198× 10−5 3.254× 10−8 8.23 110.43 1.590

7 1.546× 10−5 1.173× 10−8 10.07 213.76 1.835

DIRK(3)

5 1.106× 10−5 4.161× 10−8 6.99 35.28 1.240

6 2.325× 10−6 1.857× 10−9 9.51 94.98∗ 1.12

7 2.607× 10−7 4.578× 10−9 11.17 415.26 2.36

Table 4: Numerical results for two-dimensional Stokes model problem with two- and three-

stage DIRK schemes. Relative L2 errors in velocity and absolute L2 errors for pressure are

reported, along with average number of linear solver iterations per time-step, total wall-clock

time-to-solution in minutes, and time per Krylov iteration in seconds, for refinement levels

` = 5, 6, 7. Due to a change in the configuration of the machine, results for DIRK(3) at ` = 6

were run on 80 cores, instead of 60; all other results were run with same parallelism as in

Table 1.

linear solvers to achieve that accuracy. For this reason, we focus on only the

fully implicit RK schemes in the remainder of the paper.

5.2. Two-dimensional Navier–Stokes

We next consider two-dimensional Navier–Stokes flow past a cylinder, fol-

lowing the example given in [40, 65, 66]. Here, we consider the spatial domain

Ω = (0, 2.2) × (0, 0.41) \ Br(0.2, 0.2), where Br(0.2, 0.2) is the disc of radius

r = 0.05 centred at (0.2, 0.2), shown in Figure 2. No-slip (zero-velocity) bound-

ary conditions are imposed on the top and bottom boundaries of the rectangle

and along the surface of the cylinder. Time-dependent inflow conditions are

given on the left edge, prescribing

u(0, y, t) =

 4U(t)y(0.41−y)
0.412

0

 ,
where U(t) = 1.5 sin

(
πt
8

)
is the mean inflow velocity. No-stress outflow is

prescribed on the right boundary. The viscosity is set as µ = 10−3, resulting
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no slip

inflow outflow

no slip
0.05

2.2

0.41

Figure 2: Domain for Navier–Stokes flow past a cylinder.

in a Reynolds number of 100. The time step for these experiments is fixed as

∆t = 1
400 , and we consider the final time Tf = 8. As above, we discretize using

Taylor–Hood elements in space and IRK in time.

For this problem, an unstructured coarsest grid with 972 triangular elements

is used, chosen to refine the representation around the included cylinder. Below,

we report results for 3 ≤ ` ≤ 6, with discrete problem sizes for the Taylor–Hood

discretization ranging from about 245 thousand DoFs per stage for ` = 3 to

about 15.5 million DoFs per stage for ` = 6. Details of the parallelization are

provided in Table 5, where we again note that we have increased the number

of cores for the 3-stage IRK methods by about 60% over those for the 2-stage

methods. For this problem, we use a nonlinear stopping tolerance requiring

the absolute `2 norm of the nonlinear residual be below 1/N3 with N = 2`+3,

and use an Eisenstat–Walker inexact Newton scheme to determine the linear

stopping tolerances for each nonlinear iteration. Here, again 2 pre- and post-

relaxation sweeps are used, with Chebyshev polynomials for relaxation taken

over the interval [1.5, 8].

As no analytical solution is available in this case, we instead record the

maximum drag and lift values computed over the simulations, for comparison

with reference data [40, 65]. Figure 3 presents time-histories of these quantities

for one simulation, showing excellent agreement with reference data. Results

for other simulations with both RadauIIA and LobattoIIIC are visually similar.

Table 6 presents these values for both of these integrators, along with the aver-

age wall-clock time in minutes per time-step, and average nonlinear and linear
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stages ` total DoFs nodes cores

2

3 489,656 1 6

4 1,948,144 1 25

5 7,771,616 4 100

6 31,044,544 10 400

3

3 734,484 1 10

4 2,922,216 1 40

5 11,657,424 4 160

6 46,566,816 16 640

Table 5: Total number of DoFs and number of nodes and cores used for the Navier–Stokes

test problem with two- and three-stage IRK discretizations.

Figure 3: Comparison of reference and drag (left) and lift (right) computed using LobattoI-

IIC(2) and ` = 6.

solver iterations per time-step. As before, we have decreasing solver tolerances

as ` increases, so the small increases in iterations counts with refinement are

expected.

Using both RadauIIA and LobattoIIIC IRK discretizations, with either two

or three stages, results in computed lift and drag values that are consistent

with those presented in [40, 65]. However, results computed with Gauss were

not. Figure 4 shows results using the three-stage Gauss method with ` = 3,

computed with a stricter stopping tolerance (absolute nonlinear residual norm
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nref drag max lift max time nonlinear its linear its

RadauIIA(2)

3 2.95 0.48 0.03 1.37 1.61

4 2.95 0.48 0.04 1.76 2.39

5 2.95 0.48 0.07 2.14 3.56

6 2.95 0.48 0.13 2.52 5.09

LobattoIIIC(2)

3 2.95 0.48 0.03 1.35 1.80

4 2.95 0.48 0.05 1.79 2.76

5 2.95 0.48 0.07 2.15 4.30

6 2.95 0.48 0.17 2.70 8.19

RadauIIA(3)

3 2.95 0.48 0.04 1.57 2.27

4 2.95 0.48 0.07 1.90 2.78

5 2.95 0.48 0.11 2.17 3.68

6 2.95 0.48 0.17 2.56 5.01

LobattoIIIC(3)

3 2.95 0.48 0.04 1.38 1.74

4 2.95 0.48 0.06 1.78 2.50

5 2.95 0.48 0.10 2.14 3.60

6 2.95 0.48 0.19 2.54 5.06

Table 6: Maximum drag and lift values, average wall-clock time per time-step (in minutes)

and average numbers of nonlinear and linear iterations per time step for 3 ≤ ` ≤ 6 for Navier–

Stokes flow past a cylinder.
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Figure 4: Drag and lift for ` = 4 using Gauss(3). The “thick lines” indicate that the solutions

are highly oscillatory in time, due to the lack of L-stability of the integrator.

below 1/N4) than used above for RadauIIA and LobattoIIIC methods1. The

appearance of “thick lines” in these plots reflects highly oscillatory numerical

solutions. We hypothesize that this is due to the lack of L-stability of the

integrator, where large negative eigenvalues of the linearized spatial operator

are not quickly damped but, rather, slowly decay and oscillate in time due

to a stability function value close to −1. Refinement in time for fixed spatial

grids should ameliorate the issue, but leads to increased computational costs to

achieve similar accuracy to that given by RadauIIA and LobattoIIIC with these

timesteps.

5.3. Two-Dimensional MHD Island Coalescence

We next consider a standard test model in MHD, of two-dimensional island

coalescence. This model mimics flow in a large aspect ratio tokamak, considering

a cross-section of flow of magnetically confined plasma. When a large external

magnetic field is imposed in the “toroidal” direction of the tokamak, essentially

two-dimensional dynamics result. This model geometry is then mapped and

rescaled to a square domain, Ω = (−1, 1)2, with periodic boundary conditions

on the left and right edges (see [22, 67, 68] for more details). In this geometry,

1Using the same stopping tolerance led to even more inconsistent data.
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an equilibrium solution to the MHD equations is given by

u0(x, y) = 0,

B0(x, y) =
1

cosh(2πy) + k cos(2πx)

sinh(2πy)

k sin(2πx)

 ,

p(x, y) =
1− k2

2

(
1 +

1

(cosh(2πy) + k cos(2πx))2

)
,

γ(x, y) = 0,

where k = 0.2, when forcing terms of

fu = 0,

fB =
−8π2(k2 − 1)

Rem(cosh(2πy) + k cos(2πx))3

sinh(2πy)

k sin(2πx)

 ,

are imposed on the differential equation. To initialize a dynamic problem, these

forcing terms are applied, but the initial condition is perturbed by adding

δB =
−0.01

π

− cos(πx) sin(πy2 )/2

cos(πy2 ) sin(πx)

 .

to the equilibrium solution at t = 0. The expected effect of this perturbation

is to create two initially separated “islands” of current density that break the

magnetic field lines, which then reconnect. At the reconnection point (or X -

point), a sudden sharp spike should be seen in the magnetic current density. At

higher Reynolds numbers, a “sloshing” effect should occur before the islands of

current density merge.

As above, no analytical solution is known for this problem. A key measure of

the physical fidelity is the time-history of the reconnection rate, computed as the

difference between the curl of B at the origin at the current time and its value

at the origin, scaled by 1/
√

Rem. We compute this using the same methodology

as in [22]. As Re and Rem increase, the peak value of the reconnection rate

should decrease, and the length of time for which this value is nonzero should

increase. In this section, we consider only the two-stage LobattoIIIC integrator,

and integrate until Tf = 20. Following [22], we “substep” for the first time-step,
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Figure 5: Reconnection rates recorded for the 2D MHD island coalescence model with varying

Reynolds numbers of Re = Rem = 5000, 10000 and 20000 on 3 different levels of refinement

using the LobattoIIIC(2) temporal discretization.

taking 10 substeps to initialize the simulation and avoid problems with nonlin-

ear convergence. We consider a coarsest spatial mesh of 20 × 20 quadrilateral

elements, again each cut into 4 triangles, and present results for ` = 4, 5, 6 re-

finements. For ` = 4, the resulting discretization has about 2.7 million DoFs

per stage, while it has about 42.7 million DoFs per stage for ` = 6. For ` = 4,

we use ∆t = 0.025, which is halved with each spatial refinement. We test for

3 different pairs of Reynolds numbers, Re = Rem: 5000, 1000 and 20000. Fig-

ure 5 shows the computed reconnection rates for these problems with varying

Re = Rem and `, properly reflecting the expected behaviour.

For this problem, we adjust the nonlinear and linear solver parameters as

follows. Taking N = 20 × 2` as a representative number of elements in one

dimension on refinement level `, we set both nonlinear and linear stopping tol-

erances to demand an absolute reduction of the `2 norm of the corresponding

residual below 1/N2. We now use 3 pre- and post-relaxation sweeps, with the

Chebyshev polynomials defining the relaxation taken over the interval [2, 10].

Figures 6 and 7 present results from a weak scaling study, using 40 cores on

1 node for ` = 4, 160 cores on 4 nodes for ` = 5, and 640 cores on 16 nodes

for ` = 6. We note that these are larger core counts than those used for the
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Figure 6: Number of linear iterations per timestep for the 2D MHD island coalescence model

with varying Reynolds numbers of Re = Rem = 5000, 10000 and 20000 on 3 different levels

of refinements using the LobattoIIC(2) integrator.

same underlying meshes with a BDF2 discretization in [22]; however, this is

due to the larger number of DoFs in the system using a 2-stage discretization.

On average, our finest-grid problems have about 67 thousand DoFs per stage

per core, which is a reasonable range for weak scaling. We note that the ` = 4

problem takes about 2 hours of wall-clock time with these settings, with slightly

better than doubling of wall-clock with each refinement (due to the halving of

∆t with each refinement, but also improved solver performance).

Figure 6 shows the number of linear solver iterations recorded per timestep as

we vary Re = Rem and `. We note slight growth in iteration counts as Re = Rem

increases (and the problem becomes less diffusive in nature), but also improving

iteration counts at fixed values of Re = Rem as ` increases. Comparing with

iteration counts from [22], we see slightly higher iteration counts here, with

slightly worse dependence on Re = Rem, but still reasonable performance over-

all. Wall-clock times per timestep, shown in Figure 7, generally reflect the linear

iteration counts. In particular, we again see a general increase with Re = Rem,

and a general decrease with increasing `. The most expensive solves in the test

set are still achieved in under 1 minute per time-step, and the average time is

about 0.2 minutes per time-step.
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Figure 7: Wall-clock time (in minutes) for the nonlinear system solve at each time-step for

the 2D MHD island coalescence model with varying Reynolds numbers of Re = Rem = 5000,

10000 and 20000 on 3 different levels of refinements using the LobattoIIC(2) integrator.

To better understand the linear and nonlinear solver performance shown

above, we compute both the fluid and magnetic (Alfvén) CFL numbers for the

flow. At each timestep, for the given solutions for u and B, we approximate

the maximum magnitude of the vector fields (by projecting u ·u and B ·B into

the discontinuous piecewise-constant finite-element space on the finest mesh and

computing the maximum values of these projections), umax and Bmax, and then

computing the fluid CFL value, umax
∆t
h , and the Alfvén CFL value, Bmax

∆t
h ,

where h is a representative edge length for the spatial mesh. Figure 8 shows

both CFL values calculated at each timestep for the simulations considered,

showing identical results to those obtained in the BDF2 case in [22]. We note

that, aside from the initial substeps, the Alfvén CFL is roughly constant at a

value around 6, while the fluid CFL peaks at the same time as the reconnection

rate, and is above 1 for the largest values of Re = Rem considered.

5.4. Three-dimensional MHD lid-driven cavity

Finally, we present results for a three-dimensional lid-driven cavity MHD

model on the unit cube, Ω = (0, 1)3, following [69]. On the top face, z = 1,

the flow is driven by imposed velocity u = (1, 0, 0)T , while u = (0, 0, 0)T on

all other faces. The tangential components of the magnetic field are set to
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Figure 8: CFL values at each timestep for the 2D MHD island coalescence model with varying

Reynolds numbers of Re = Rem = 5000, 10000 and 20000 on 3 different levels of refinements

using the LobattoIIC(2) integrator. Solid lines represent fluid CFL, while dashed lines repre-

sent Alfvén CFL.

match those of B = (−1, 0, 0)T on all faces of the cube. We set γ = 0 on

all boundary faces and fix the pressure p = 0 at the origin. In this section,

we consider 3-grid methods, refining a given coarsest grid twice for each test.

This is driven by the consideration that, with increasing finest grid size, we

require more cores over which to parallelize the computation; however, there is

a software limitation within Firedrake that requires that the coarsest grid in the

simulation must have at least 1 cell per core. While satisfying this requirement

is not burdensome in 2D, it becomes problematic with increasing memory and

computational requirements of 3D simulations. In all cases, we construct the

coarsest grid by taking a uniform hexahedral mesh of the cube, then cutting

each hexahedral element into 6 tetrahedra in the usual way. We still use ` to

denote the levels of refinement, but now ` = 1 denotes the smallest grid, created

by refining a 2×2×2 grid twice, while ` = 2 denotes the grid created by refining

a 4× 4× 4 grid twice, and ` = 3 denotes the grid created by refining a 8× 8× 8

grid twice. With ` = 1, our discretization has about 20 thousand DoFs per

stage, increasing to about 1.1 million DoFs per stage for ` = 3.

We employ the same spatial discretization and again use the LobattoIIIC(2)

integrator. We integrate until Tf = 2.5. For ` = 1, we take ∆t = 0.125, and
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halve ∆t with each refinement. An all-zero initial condition is used. Table 7

presents average linear and nonlinear iterations per timestep, along with average

wall-clock time per nonlinear solve for the three grids above and Re = Rem =

10p for 1 ≤ p ≤ 3. For ` = 1, 10 cores on 1 node are used, increasing to

80 cores on 2 nodes for ` = 2 and 640 cores on 16 nodes for ` = 3. We use

3 pre- and post-relaxation sweeps, here accelerated using GMRES, as this was

observed to result in better overall iteration counts and computation times than

using Chebyshev acceleration, likely due to the convective nature of the problem

at high Reynolds numbers. The nonlinear solve at each timestep requires the

absolute value of the `2 norm of the residual to be reduced below 10−6, and the

same stopping criterion is used for the linear solves as well.

Several trends can be observed in these results. First, for fixed values of

Re = Rem, we generally observe improving solver performance as ` is increased,

as expected. Similarly, we typically observe degrading solver performance as

Re = Rem is increased for fixed `. Overall, the iteration counts are quite

reasonable, except for Re = Rem = 1000 with ` = 1, 2. Here, the problem is

quite severely under-resolved, with a finest-grid mesh spacing of h = 0.0625 with

` = 2, so it is not surprising that the solver suffers when the discretization is so

poor. For smaller Reynolds numbers, Re = Rem = 1 (not shown here), using

Chebyshev acceleration gave significantly better results than using GMRES-

accelerated relaxation, which failed to converge in some cases. Figure 9 presents

representative solutions for ` = 3 with Re = Rem = 10 (where the solutions

are well-resolved), showing streamlines of both the velocity field, u, and the

magnetic field, B, at the final time at refinement ` = 3.

6. Conclusion

In this paper, we have developed monolithic Vanka relaxation schemes for

fully-implicit Runge–Kutta discretizations of saddle point problems arising in

models of fluid flow. Within a Newton–Krylov–multigrid setting, our method is

shown to be effective for both Newtonian and magnetohydrodynamic flows, in
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` Re = 10 Re = 100 Re = 1000

1

linear its. 6.86 8.34 31.55

nonlinear its. 3.10 2.76 3.52

time 0.11 0.11 0.24

2

linear its 6.61 5.41 17.59

nonlinear its 3.18 2.43 3.02

time 0.21 0.17 0.30

3

linear its 5.76 4.20 6.08

nonlinear its 2.57 2.33 2.16

time 0.22 0.22 0.22

Table 7: Average number of linear and nonlinear iterations per time-step and wall-clock time

per nonlinear iteration (in minutes) for the 3D MHD lid-driven cavity problem with various

Reynolds numbers and grid refinements, using the LobattoIIIC(2) integrator.

Figure 9: Streamlines of velocity (left) and magnetic field (right) for ` = 3 with Re = Rem =

10.
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both two and three spatial dimensions. The algorithm is chosen with parallel

implementation in mind, and weak scaling results are shown up to 640 cores.

There are many possibilities for future work. We note primarily that the

current study uses relatively low-order spatial discretizations, based on classical

Taylor–Hood elements for velocity and pressure. A next step in this research is

to extend these solvers to more sophisticated finite-element discretizations that

preserve the incompressibility and solenoidality constraints exactly, as in [9, 28].

An important question for future work is the extension of these techniques to

higher-order discretizations, where the cost of classical sparse direct solvers for

the patch problems becomes prohibitive.
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[8] D. Schötzau, Mixed finite element methods for stationary incompressible

magneto-hydrodynamics, Numer. Math. 96 (4) (2004) 771–800. doi:10.

1007/s00211-003-0487-4.

[9] K. Hu, Y. Ma, J. Xu, Stable finite element methods preserving ∇ · B = 0

exactly for MHD models, Numer. Math. 135 (2) (2017) 371–396. doi:

10.1007/s00211-016-0803-4.

[10] K. Hu, J. Xu, Structure-preserving finite element methods for stationary

MHD models, Math. Comp. 88 (316) (2019) 553–581. doi:10.1090/mcom/

3341.

[11] K. Hu, W. Qiu, K. Shi, Convergence of a B-E based finite element method

for MHD models on Lipschitz domains, Journal of Computational and Ap-

plied Mathematics 368 (2020) 112477. doi:10.1016/j.cam.2019.112477.

[12] A. J. Chorin, On the convergence of discrete approximations to the Navier-

Stokes equations, Math. Comp. 23 (1969) 341–353.

[13] J. van Kan, A second-order accurate pressure-correction scheme for viscous

incompressible flow, SIAM J. Sci. Stat. Comput. 7 (3) (1986) 870–891.

doi:10.1137/0907059.

[14] J. B. Bell, P. Colella, H. M. Glaz, A second-order projection method for

the incompressible Navier-Stokes equations, J. Comput. Phys. 85 (2) (1989)

257–283.

[15] J. Guermond, P. Minev, J. Shen, An overview of projection methods for

incompressible flows, Computer Methods in Applied Mechanics and Engi-

neering 195 (44) (2006) 6011–6045. doi:10.1016/j.cma.2005.10.010.

37

https://doi.org/10.5802/smai-jcm.44
https://doi.org/10.1007/s00211-003-0487-4
https://doi.org/10.1007/s00211-003-0487-4
https://doi.org/10.1007/s00211-016-0803-4
https://doi.org/10.1007/s00211-016-0803-4
https://doi.org/10.1090/mcom/3341
https://doi.org/10.1090/mcom/3341
https://doi.org/10.1016/j.cam.2019.112477
https://doi.org/10.1137/0907059
https://doi.org/10.1016/j.cma.2005.10.010


[16] A. Brandt, N. Dinar, Multigrid solutions to elliptic flow problems, in:

S. Parter (Ed.), Numerical Methods for Partial Differential Equations, Aca-

demic Press, New York, 1979, pp. 53–147.

[17] A. Brandt, Multigrid techniques: 1984 guide with applications to fluid

dynamics, GMD–Studien Nr. 85, Gesellschaft für Mathematik und Daten-

verarbeitung, St. Augustin, 1984.

[18] S. P. Vanka, Block-implicit multigrid solution of Navier-Stokes equations in

primitive variables, Journal of Computational Physics 65 (1) (1986) 138–

158.

[19] D. Braess, R. Sarazin, An efficient smoother for the Stokes problem, Ap-

plied Numerical Mathematics 23 (1) (1997) 3–19.

[20] J. H. Adler, T. R. Benson, S. P. MacLachlan, Preconditioning a mass-

conserving discontinuous Galerkin discretization of the Stokes equations,

Numerical Linear Algebra with Applications 24 (3) (2017) e2047.

[21] J. H. Adler, T. R. Benson, E. C. Cyr, S. P. MacLachlan, R. S. Tuminaro,

Monolithic multigrid methods for two-dimensional resistive magnetohydro-

dynamics, SIAM Journal on Scientific Computing 38 (1) (2016) B1–B24.

[22] J. H. Adler, T. Benson, E. C. Cyr, P. E. Farrell, S. MacLachlan, R. Tumi-

naro, Monolithic multigrid for magnetohydrodynamics, SIAM J. Sci. Com-

put. 43 (5) (2021) S70–S91.

[23] D. Kay, D. Loghin, A. Wathen, A preconditioner for the steady-state

Navier–Stokes equations, SIAM Journal on Scientific Computing 24 (1)

(2002) 237–256. doi:10.1137/S106482759935808X.

[24] H. C. Elman, D. J. Silvester, A. J. Wathen, Finite elements and fast iter-

ative solvers: with applications in incompressible fluid dynamics, Oxford

University Press, USA, 2014.

38

https://doi.org/10.1137/S106482759935808X


[25] M. Wathen, C. Greif, D. Schötzau, Preconditioners for mixed finite element

discretizations of incompressible MHD equations, SIAM Journal on Scien-

tific Computing 39 (6) (2017) A2993–A3013. doi:10.1137/16M1098991.

[26] P. E. Farrell, L. Mitchell, F. Wechsung, An augmented Lagrangian pre-

conditioner for the 3D stationary incompressible Navier–Stokes equations

at high Reynolds number, SIAM Journal on Scientific Computing 41 (5)

(2019) A3073–A3096. doi:10.1137/18M1219370.

[27] P. E. Farrell, L. Mitchell, L. R. Scott, F. Wechsung, A Reynolds-robust pre-

conditioner for the Scott-Vogelius discretization of the stationary incom-

pressible Navier-Stokes equations, The SMAI Journal of Computational

Mathematics 7 (2021) 75–96. doi:10.5802/smai-jcm.72.

[28] F. Laakmann, P. E. Farrell, L. Mitchell, An augmented Lagrangian pre-

conditioner for the magnetohydrodynamics equations at high Reynolds and

coupling numbers (2021). arXiv:2104.14855.

[29] W. Pazner, P.-O. Persson, Stage-parallel fully implicit Runge–Kutta solvers

for discontinuous Galerkin fluid simulations, Journal of Computational

Physics 335 (2017) 700–717.

[30] B. S. Southworth, O. Krzysik, W. Pazner, H. D. Sterck, Fast parallel solu-

tion of fully implicit Runge-Kutta and discontinuous Galerkin in time for

numerical PDEs, Part I: the linear setting (2021). arXiv:2101.00512.

[31] J. Van Lent, S. Vandewalle, Multigrid methods for implicit Runge–Kutta

and boundary value method discretizations of parabolic PDEs, SIAM Jour-

nal on Scientific Computing 27 (1) (2005) 67–92.

[32] E. Rosseel, T. Boonen, S. Vandewalle, Algebraic multigrid for station-

ary and time-dependent partial differential equations with stochastic co-

efficients, Numer. Linear Algebra Appl. 15 (2-3) (2008) 141–163. doi:

10.1002/nla.568.

39

https://doi.org/10.1137/16M1098991
https://doi.org/10.1137/18M1219370
https://doi.org/10.5802/smai-jcm.72
http://arxiv.org/abs/2104.14855
http://arxiv.org/abs/2101.00512
https://doi.org/10.1002/nla.568
https://doi.org/10.1002/nla.568


[33] T. Boonen, J. Van lent, S. Vandewalle, An algebraic multigrid method for

high order time-discretizations of the div-grad and the curl-curl equations,

Applied Numerical Mathematics 59 (3) (2009) 507–521. doi:10.1016/j.

apnum.2008.03.004.

[34] K.-A. Mardal, T. K. Nilssen, G. A. Staff, Order-optimal preconditioners for

implicit Runge-Kutta schemes applied to parabolic PDEs, SIAM Journal

on Scientific Computing 29 (1) (2007) 361–375.

[35] L. O. Jay, Inexact simplified Newton iterations for implicit Runge-Kutta

methods, SIAM Journal on Numerical Analysis 38 (4) (2000) 1369–1388.

doi:10.1137/S0036142999360573.

[36] H. Chen, A splitting preconditioner for the iterative solution of implicit

Runge-Kutta and boundary value methods, BIT 54 (3) (2014) 607–621.

doi:10.1007/s10543-014-0467-3.

[37] M. M. Rana, V. E. Howle, K. Long, A. Meek, W. Milestone, A new block

preconditioner for implicit Runge-Kutta methods for parabolic PDE, SIAM

J. Sci. Comp. 43 (5) (2021) S475–S495.

[38] B. S. Southworth, O. Krzysik, W. Pazner, Fast parallel solution of fully

implicit Runge-Kutta and discontinuous Galerkin in time for numerical

PDEs, Part II: nonlinearities and DAEs (2021). arXiv:2101.01776.

[39] R. Hiptmair, Multigrid method for Maxwell’s equations, SIAM J. Numer.

Anal. 36 (1) (1999) 204–225.

[40] P. E. Farrell, R. C. Kirby, J. Marchena-Menéndez, Irksome: Automating

Runge–Kutta time-stepping for finite element methods, ACM Trans. Math.

Softw. 47 (4) (2021). doi:10.1145/3466168.

[41] J. C. Butcher, On the implementation of implicit Runge-Kutta methods,

BIT Numerical Mathematics 16 (3) (1976) 237–240.

40

https://doi.org/10.1016/j.apnum.2008.03.004
https://doi.org/10.1016/j.apnum.2008.03.004
https://doi.org/10.1137/S0036142999360573
https://doi.org/10.1007/s10543-014-0467-3
http://arxiv.org/abs/2101.01776
https://doi.org/10.1145/3466168


[42] T. A. Bickart, An efficient solution process for implicit Runge–Kutta meth-

ods, SIAM Journal on Numerical Analysis 14 (6) (1977) 1022–1027.

[43] G. Wanner, E. Hairer, Solving ordinary differential equations II, Vol. 375,

Springer Berlin Heidelberg, 1996.

[44] J. C. Butcher, General linear methods, Acta Numerica 15 (2006) 157–256.

doi:10.1017/S0962492906220014.

[45] J. C. Butcher, Numerical methods for ordinary differential equations, John

Wiley & Sons, 2016.

[46] C. Taylor, P. Hood, A numerical solution of the Navier-Stokes equations

using the finite element technique, Computers & Fluids 1 (1) (1973) 73–100.

[47] S. C. Eisenstat, H. F. Walker, Choosing the forcing terms in an inexact

Newton method, SIAM Journal on Scientific Computing 17 (1) (1996) 16–

32.
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