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Highlights

• The first study of energy-stable ODE discretization and the energy-
stable fully discrete scheme by the SPH method for two-phase problems

• The scheme ensures the inheritance of momentum conservation and the
energy dissipation law from the PDE level to the ODE level, and then
to the fully discrete level.

• This novel method based on NSCH model enjoys the physical consis-
tency, and the detailed mathematical proof is also provided.

• The scheme helps increase the stability of the numerical method, which
allows much larger time step sizes than the traditional ISPH method.

• This energy-stable scheme not only alleviates tensile instability, but it
also captures the behavior of the interface and energy variation well.
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Abstract

Varieties of energy-stable numerical methods have been developed for incom-
pressible two-phase flows based on the Navier-Stokes–Cahn–Hilliard (NSCH)
model in the Eulerian framework, while few investigations have been made
in the Lagrangian framework. Smoothed particle hydrodynamics (SPH) is a
popular mesh-free Lagrangian method for solving complex fluid flows. In this
paper, we present a pioneering study on the energy-stable SPH discretization
of the NSCH model for incompressible two-phase flows. We prove that this
SPH method inherits mass and momentum conservation and the energy dis-
sipation properties at the fully discrete level. With the projection procedure
to decouple the momentum and continuity equations, the numerical scheme
meets the divergence-free condition. Some numerical experiments are carried
out to show the performance of the proposed energy-stable SPH method for
solving the two-phase NSCH model. The inheritance of mass and momentum
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conservation and the energy dissipation properties are verified numerically.

Keywords: Smoothed Particle Hydrodynamics, Energy stability,
Two-phase Flow, Navier-Stokes-Cahn-Hilliard model

1. Introduction

Initially proposed [1, 2] for astrophysical problems, the smoothed particle
hydrodynamics (SPH) approach has become one of the most popular mesh-
free particle methods and it is now widely used in various applications, such as
multi-phase flow [3], flow in porous media [4], fracture and crack propagation
[5], lava flow [6], magneto-hydrodynamics [7], the evolution of planets and
stars [8], and even movie special effects [9]. Unlike the nodes in other mesh-
free methods [10], the SPH particles can be regarded not only mathematically
as interpolation points but also physically as material components, just like
the “embedded atoms" in molecular dynamics (MD) simulation [11].

SPH possesses many well-known appealing features. First of all, com-
pared to well-studied grid-based Eulerian numerical methods, SPH naturally
takes advantage of the Lagrangian framework, and it treats the convection
term effectively and stably. Free surfaces, material interfaces, and moving
boundaries can all be traced naturally through this method without tracking
or reconstructing. This mesh-free feature facilitates applications like multi-
phase flow and high-energy events like explosions, high-speed collisions, and
penetrations. Local mass conservation is automatically retained in SPH since
the mass is carried by each particle as a unique property of the particle. By
using the unique “color” property of each particle, it is much easier to describe
complex multi-component or multi-material phenomena, such as the hydro-
carbon components in oil and gas reservoirs. In addition, the SPH method
can handle large deformations and complicated geometry without causing
mesh distortion. With the progress of neighbor searching schemes and par-
allel computing strategies [12], SPH enjoys even greater computational per-
formance and potential. Some review literature for the SPH method can be
referred to [13, 14].

In this paper, we consider incompressible two-phase flows based on the
Navier-Stokes–Cahn–Hilliard (NSCH) model. Even though possessing a lot
of the appealing features mentioned above, SPH still faces a number of open
problems and challenges. First of all, the energy-stability and physical con-
sistency of SPH for the NS equation have not yet been rigorously studied.
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Second, the treatment of incompressibility in SPH remains tricky and chal-
lenging; in fact, most incompressibility treatments in the literature are not
energy stable. Third, to the best of our knowledge, there is not an energy-
stable SPH method for the NSCH system proposed in the literature.

Two common perspectives for the stability analysis of the SPH method
include: (1) tensile instability caused by disordered distributions of particles;
(2) the maximum time step that keeps the simulation stable. For the former,
a novel technique called “particle shifting” has been employed to alleviate
particle gathering [15]. For the second, to date, several attempts have been
made to study the energy variation of the SPH methods, which reveal that the
entropy-increasing (energy dissipation) methods possess better stability [7].
In many approaches, the energy dissipation was explicitly added by an artifi-
cial viscosity term, but the artificial viscosity term can introduce additional
numerical errors (commonly known as numerical diffusion). For the treat-
ment of the incompressibility of the fluid, two common approaches are used:
(1) approximately simulating incompressible flows with small compressibility,
known as Weakly Compressible SPH (WCSPH); (2) simulating incompress-
ible flows by enforcing the incompressibility, known as Incompressible SPH
(ISPH)[16]. However, energy stable treatment of incompressibility has not
fully been addressed in the literature. Recently, Sun and Zhu [17] proposed
an energy-stable SPH method for incompressible single-phase flow that does
not use artificial viscosity terms, and it serves as the basis and inspiration
for this paper.

The interface, as a critical element of the two-phase fluid system, can
be modeled either as a sharp interface [18, 19, 20] or as a diffuse interface
[21]. The NSCH model belongs to the diffuse interface approach, and it
obeys thermodynamically consistent energy dissipation laws. The same en-
ergy law is also desired to be retained in the discretized equations. Some tech-
niques, like convex-concave splitting [22, 23] and the stabilizing approach, are
used to construct energy-stable schemes. Several advances in energy-stable
schemes include the scalar auxiliary variable method (SAV), the invariant
energy quadratization method (IEQ) [24], the exponential time differencing
method (ETD) [25], and the linear energy-factorization method (EF) [26, 27].
The diffuse interface model based on the EoS is also proposed for modeling
complex two-phase and multi-component mixtures [28, 29, 30]. However, the
above studies are all based on a mesh and the Euler framework. Most of the
SPH two-phase methods are based on the sharp interface model [31]. Re-
searchers rarely looked into how to combine the SPH method and the diffuse
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interface model together [32] and how to design an energy-stable scheme for
the system.

The rest of this paper is organized as follows. In Section 2, we review
the NSCH system and give a brief proof of energy law at the PDE level. In
Section 3, some basics of the SPH method are given and an energy-stable
ODE model is proposed based on the SPH framework. In Section 4, an
energy-stable fully discrete scheme is well developed. We provide the detailed
proof and derivation of the ODE system and fully discrete scheme. In Section
5, three numerical examples are presented to validate the scheme. Finally,
some concluding remarks are given in Section 6.

2. PDE model and its energy law

We now study a mixture of two immiscible, incompressible fluids in a
confined domain Ω ⊂ Rd(d = 2, 3) and the NSCH model is introduced. To
identify the regions occupied by the two fluids, we introduce a phase function
φ, such that

φ(x, t) =

{
1 fluid 1
−1 fluid 2

According to the idea of the diffuse interface and gradient flow theory, one of
the most popular thermodynamic theories for inhomogeneous fluids, the total
mixing energy has two contributions: Fb(φ) from the homogeneous part of the
fluid and F∇(φ) from the inhomogeneity of the fluid. The thermodynamic
behavior of the entire two-phase system is governed by the mixing energy
functional F (φ,∇φ),

F (φ,∇φ) =

∫
Ω

f(φ,∇φ)dx = Fb(φ) + F∇(φ) =

∫
Ω

fb(φ)dx +

∫
Ω

f∇(φ)dx

=

∫
Ω

{
fb(φ) +

λ

2
‖∇φ‖2

}
dx,

(2.1)

where f represents the energy density, and λ denotes the characteristic
strength of the phase mixing energy with respect to φ. λ has a relation
with the surface tension coefficient σ at the equilibrium state: λ = 3σ

2
√

2
ε,

where ε is the capillary width of the interface thickness. The energy density
function from homogeneity, fb(φ), only depends on φ locally and fb(φ) =
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λ (φ2 − 1)
2
/ (4ε2). The equilibrium process of a two-phase system mini-

mizes the total mixing energy (2.1). Through the variational derivative of
the energy functional F with respect to φ, we obtain the chemical poten-
tial µ and µ = µb + µ∇. By setting the coefficient λb = λ/ε2, we have

µb :=
δFb
δφ

= f ′b (φ) = λb(φ
3 − φ), and µ∇ :=

δF∇
δφ

= −λ∆φ.

The dynamics of the phase function φ can be determined by anH−1 gradi-
ent flow of (2.1), which leads to the following Cahn-Hilliard (CH) equations:

Dφ

Dt
=
∂φ

∂t
+ (v · ∇)φ = ∇ · (M∇µ), (2.2a)

µ = λb(φ
3 − φ)− λ∆φ. (2.2b)

Here,M is a mobility parameter related to the relaxation time scale, and v is
the velocity of the fluids. When it turns to the Navier-Stokes (NS) part, for
the two-phase system, the momentum equation takes the usual form below.

ρ
Dv

Dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p+∇ · (ηD(v))− λ∇ · (∇φ⊗∇φ),

where ρ denotes the density, p is the pressure, and the shear viscosity is
denoted by η. −λ∇φ ⊗ ∇φ represents the extra elastic stress induced by
the interfacial tension. With the aid of modified pressure and the divergence
theorem, we arrive at the mathematical formula for the matched density and
viscosity case:

ρ
Dv

Dt
= −∇p+ η∆v + µ∇φ. (2.3)

with the continuity equation characterizing the mass conservation:

Dρ

Dt
=
∂ρ

∂t
+∇ · (ρv) = 0. (2.4)

For incompressible flows, (2.4) can be converted into the divergence-free con-
dition:

∇ · v = 0. (2.5)

The periodic boundary condition is applied here:

Φ(x) = Φ(x+ nL), n ∈ Z, (2.6)
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where Φ denotes a general variable, and it can be φ, p, v, ρ and so on. L is a
period of function. This periodic boundary condition makes

∮
∂Ω

Φ(x) ·nds =
0 hold.

We now derive the energy law at the PDE level for the NSCH system in-
cludes (2.2a) , (2.2b), (2.3), (2.5) and (2.6). Here and after, for any functions
f, g ∈ L2(Ω), we use (f, g) to denote

∫
Ω
fg dx and ‖f‖2 = (f, f).

Proposition 1. The NSCH system satisfies the following energy dissipation
law:

dEtotal

dt
=
dEk
dt

+
dF

dt
= −η‖∇v‖2 −M‖∇µ‖2 ≤ 0, (2.7)

where the kinetic energy Ek :=
ρ

2
‖v‖2 and the total energy Etotal = Ek + F .

Proof By taking the inner product of equation (2.3) with v and applying
the divergence-free condition (2.5), we get

dEk
dt

=
d(1

2
ρ‖v‖2)

dt
= (ρ

Dv

Dt
,v) = (−∇p,v) + (η∆v,v) + (µ∇φ,v).

Combining the inner product of equation (2.2a) with µ and the inner product
of equation (2.2b) with ∂φ

∂t
, we have

dF

dt
=

d

dt

{
(Fb(φ), 1) +

λ

2
‖∇φ‖2

}
= −(v · ∇φ, µ)−M‖∇µ‖2. (2.8)

Based on the divergence theorem and the boundary condition, the inner
product of the interfacial term (µ∇φ,v) in the NS system and the inner
product of the convection term (v · ∇φ, µ) in the CH system is equal. These
two terms characterize the energies transfer between the kinetic energy Ek
and the free energy F . We define transferF−EK :=

∫
Ω

(µ∇φ,v)dx as the
energy quantity transferred from the free energy to the kinetic energy per
unit time. The subscript F− EK means the energy transfer from F to Ek
and vice versa. In the system, we have the relation

transferF−EK = −transferEK−F.

For the NS system, we have (−∇p,v) =

∫
∂Ω

pv · nds +

∫
Ω

p∇ · vdx = 0.

The energy conservation laws for the CH system and the NS system can be
concluded, respectively, as follows,

dF

dt
= transferEK−F−M‖∇µ‖2,

dEk
dt

= transferF−EK−η‖∇v‖2.

Consequently, the desired energy law (2.7) for the NSCH system is obtained.
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3. SPH discretization and the NSCH ODE system

In this section, some basics of the SPH method will be given first. Then
a physical consistent NSCH ODE system will be derived based on the SPH
discretization in space.

There are two main steps to the SPH method: the integral representa-
tion and the particle approximation. At the integral representation step, a
physical field function f(x) is converted into its integral representation based
on the convolution of variables through a smoothed and weighted function,
which gives

〈f(x)〉h =

∫
Ω

f (x′)W (x− x′, h) dx′. (3.1)

Here, Ω is the supporting domain, and with a smoothing length h, a smooth-
ing kernel functionW (x− x′, h) is used to approximate the δ function in the
convolution. The SPH approximation is represented by the symbol 〈〉h, or by
the subscript h, as in fh(x). The expression specifies the contribution to any
field variable at position x by a particle at x′ that lies within the compact
support of the kernel function. The kernel function becomes a Dirac delta
function when h→ 0, namely limh→0W (x− x′, h) = δ (x− x′), and it must
satisfy the unity condition:∫

Ω

W (x− x′, h) dx′ = 1.

Particle approximation: it is achieved by replacing the integral represen-
tation of the field function with the sum of all particle values. It also means
that these material particles interact with each other, and the kernel func-
tion controls the range of their effects. Function values at any position in the
domain can be approximated through

fh(x) =
∑
j

f (xj)W (x− xj, h)Vj =
∑
j

mj

ρj
f (xj)W (x− xj, h) , (3.2)

where Vj is the volume element of one particle j at xj, and it has been
replaced by the ratio between the mass and density: Vj = mj/ρj. If we
consider the location of one particle i:

fh(xi) =
∑
j

mj

ρj
f (xj)W (xi − xj, h) . (3.3)
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Here, i and j are particle indexes, and particle j is one of neighboring par-
ticles for i. The physical variable f (xi) can be approximated using the in-
terpolation formula with the corresponding physical variables of neighboring
particles f (xj). We also use xij and rij to replace xi − xj and ‖xi − xj‖ re-
spectively in the following content. It must be noted that the kernel function
applied in this paper is the Quintic Spline SPH kernel.

W (xij, h) = σd


(3− q)5 − 6(2− q)5 + 15(1− q)5, 0 ≤ q < 1,

(3− q)5 − 6(2− q)5, 1 ≤ q < 2,

(3− q)5, 2 ≤ q < 3,

0, 3 ≤ q.

If we set the support radius of the domain of influence to be h, we have
ĥ = h/3 and q = ‖xij‖ /ĥ. σd is the dimensional normalization factor, where
σ1 = 1/120ĥ, σ2 = 7/478πĥ2 and σ3 = 3/359πĥ3 in 1D, 2D and 3D domains
respectively.

Table 1: Some common SPH operators for discretizing PDE formulas

Divergence ∇ ·A(xi) ∇h ·A(xi) = −
∑

j
mj
ρi

(Ai −Aj) · ∇iWij

Gradient ∇f(xi) ∇hf (xi) = −
∑

j
mj
ρi

(fi − fj)∇iWij

Gradient (symmetric) ∇f
ρ
|x=xi ∇h

f
ρ
|x=xi =

∑
jmj

(
fi
ρ2i

+
fj
ρ2j

)
∇iWij

Laplace (scalar/vector) ∇2f(xi) ∇2
hf(xi) = 2

∑
j
mj
ρj

f(xi)−f(xj)

‖xij‖2
(xij · ∇iWij)

Laplace (vector) ∇2A(xi) ∇2
hA(xi) = 2(d+ 2)

∑
j
mj
ρj

(Ai−Aj)·xij
‖xij‖2

∇iWij

It is essential to discretize the PDE equations through appropriate SPH
operators to maintain the inheritance of physical properties like mass conser-
vation, momentum conservation and energy dissipation law at the ODE and
fully discrete level. Some common SPH operators are introduced in Table
1. W (xij, h) is denoted by Wij as well and ∇iWij is used to represent the
gradient of the kernel functionW at the position of particle i. Therefore, the
anti-symmetric property of gradient can be obtained:

∇jWij = −∇iWij. (3.4)
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The number of dimensions is denoted by d in the SPH Laplace operator. In
the following, we will explain why the symmetric or anti-symmetric properties
of the SPH operators or the SPH mathematical expression with physical
consistency are vital. In order to avoid singularities, a minor term of 0.01h2

is added to the denominator of the SPH Laplace operator, where ‖xij‖2 may
vanish when i is equal to j as follows:

∇2
hf(xi) = 2

∑
j

mj

ρj

f(xi)− f(xj)

‖xij‖2 + 0.01h2
(xij · ∇iWij) .

Based on the anti-symmetric property of gradient as (3.4), the important
negative property of the kernel function can be deduced:

∇iWij = xijω (rij) , (3.5)

where ω is a scalar function and ω ≤ 0 always. This negative property can
be easily seen from the Figure 1 as well.

(a)

∂W/∂x 

(b)

-3 -2 -1 0 1 2 3
x

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

W

(c)

1D quintic kernel function
first derivative of kernel function

    W 
(∂W/∂x )

(c)

Figure 1: (a) Contour graph for Quintic kernel in 2D; (b) First derivative of kernel function;
(c) Plot of Quintic kernel function and its first derivative in 1D

9



From (3.4) and (3.5), we can derive the following lemma. We omit the
proof and leave it to the interested readers.

Lemma 3.1. Assume the SPH operator σij is symmetric (σij = σji), we
obtain ∑

i

∑
j

mimjσij∇iWij = 0, (3.6)

and if σij ≥ 0, we have{ ∑
i

∑
jmimjσij (xij · ∇iWij) ≤ 0,∑

i

∑
jmimjσij (vij · xij)vi · ∇iWij ≤ 0.

(3.7)

3.1. The NSCH ODE system
Firstly, we review the NSCH PDE system in Lagrangian form. Using

the identity ∇ · (∇φ ⊗ ∇φ) = ∆φ∇φ + 1
2
∇‖∇φ‖2, the PDE system can be

rewritten as
Dφ

Dt
= ∇ · (M∇µ), (3.8a)

µ = λb
(
φ3 − φ

)
− λ∆φ, (3.8b)

Dv

Dt
= −∇p

ρ
+
η

ρ
∆v +

µ∇∇φ
ρ

, (3.8c)

∇ · v = 0. (3.8d)

The design of ODE expression starts from the definition of free energy at the
ODE level. The homogenous and non-homogenous parts of total free energy
are 

F b
h = F b

h (φ1, φ2, . . . , φn) ,
F∇h = F∇h (φ1, φ2, . . . , φn,x1,x2, . . . ,xn) ,
Fh = F b

h + F∇h .

To keep the local and non-local properties respectively, the energy at the
ODE level can be defined through the summation of particles one by one as
follows: {

F b
h :=

∑
i
mi
ρi
fb (φi) ,

F∇h :=
∑

i
mi
ρi

λ
2

(∇hφi) · (∇hφi) .
(3.9)

Then, the free energy change with time in the ODE form is given as

dFh
dt

=
dF b

h

dt
+
dF∇h
dt

=
∑
i

mi

ρi

∂fb (φi)

∂φi

dφi
dt

+
∑
i

∂F∇h
∂φi

dφi
dt

+
∑
i

∂F∇h
∂xi

∂xi
∂t

.

(3.10)
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The term
∑

i

∂F∇
h

∂xi

∂xi
∂t

is responsible for energy transferred from kinetic energy
Ek to free energy F at the ODE level, which gives

〈transferEK−F〉h =
∑
i

∂F∇h
∂xi

∂xi
∂t

. (3.11)

The energy-transfer term is originated from the inhomogeneity (the interface
region) and other two terms control the energy dissipation coming from the
diffusive effect of the CH equation. Since the chemical potential µbi locally
depends on φi as µbi := ∂fb(φi)

∂φi
and µ∇i is a non-local function given by µ∇i :=

ρi
mi

∂F∇
h

∂φi
, µ is defined at the ODE level as follows:

µi =
∂fb (φi)

∂φi
+
ρi
mi

∂F∇h
∂φi

. (3.12)

When we turn to the momentum equation of the NS system, in order to keep
the physical consistency of energy transfer between the CH system and the
NS system, the interfacial force should be defined as

T i :=
∂F∇h
∂xi

. (3.13)

This NSCH ODE system guarantees these physical properties and it is final-
ized as

dφi
dt

= 2M
∑
j

mj

ρj

µi − µj
‖xij‖2 (xij · ∇iWij) , (3.14a)

µi =
ρi
mi

∂F∇h
∂φi

+ f ′b (φi) , (3.14b)

ρi =
∑
j

mjWij, (3.14c)

dvi
dt

=− T i

mi

−
∑
j

mj

(
pi
ρ2
i

+
pj
ρ2
j

)
∇iWij + (d+ 2)

∑
j

mj

ρiρj

(ηi + ηj) (vij · xij)
‖xij‖2 ∇iWij,

(3.14d)

− 1

ρi

∑
j

mj (vi − vj) · ∇iWij = 0. (3.14e)

Here and after, the notation vij is equivalent to vi − vj. The appearance of
the negative sign of the interfacial term −T i

mi
in the ODE system is consistent
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with the variational derivative of PDE in H−1 space. The viscosity is chosen
an average to ensure the symmetric form.

3.2. Energy dissipation law at the ODE level
The energy dissipation property of the given ODE system will be proved.

Similar to the verification of the PDE model’s energy dissipation law, the
inner product is utilized here.

Theorem 3.1. Assume that the NSCH ODE system based on SPH discretiza-
tion as (3.14a), (3.14b), (3.14c), (3.14d) and (3.14e) is employed, the energy
dissipation law at the ODE level can be maintained as follows:〈

dEtotal

dt

〉
h

=

〈
dEk
dt

〉
h

+

〈
dF

dt

〉
h

≤ 0. (3.15)

Proof Conservation of energy transfer: We have defined the interfa-
cial force as (3.13) and the chemical potential that comes from inhomogeneity
as (3.12). Then by taking the inner product of the time derivative term with
mivi, we get the change of kinetic energy Ek per time in the system:〈

dEk
dt

〉
h

=
∑
i

(
mivi,

dvi
dt

)
=
∑
i

d
(

1
2
mi ‖vi‖2)
dt

. (3.16)

The interfacial term −T i

mi
in the momentum equation governs the energy

transferred from free energy F and the kinetic energy Ek. By taking the
inner product of this term with mivi and adding up the total for all particles,
we obtain

〈transferF−EK〉h =
∑
i

(
−T i

mi

,mivi

)
= −

∑
i

∂F∇h
∂xi

∂xi
∂t

. (3.17)

Thus, we can conclude that

〈transferEK−F〉h = −〈transferF−EK〉h =
∑
i

∂F∇h
∂xi

∂xi
∂t

. (3.18)

The conservation of energy transfer between kinetic energy Ek and free energy
F is examined.

Conservation of energy in the CH system: If we take the inner
product of (3.14a) with µi and integrate it throughout the whole domain,
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taking into account the particle’s control volume mi
ρi
, the results turn out

easily by swapping the index i and j and taking advantage of the SPH neg-
ative property as (3.5).∑

i

mi

ρi

(
dφi
dt
, µi

)
=
∑
i

mi

ρi

(
2M

∑
j

mj

ρj

µi − µj
‖xij‖2 (xij · ∇iWij) , µi

)

= M
∑
i

∑
j

mimj

ρiρj

(µi − µj)2

‖xij‖2 (xij · ∇iWij)

= M
∑
i

∑
j

mimj

ρiρj
(µi − µj)2 ω (rij) ≤ 0.

(3.19)

Then, by taking the inner product of (3.14b) with dφi
dt

and summing for all
particles and based on the equation (3.10), we find∑

i

mi

ρi

(
µi,

dφi
dt

)
=
∑
i

mi

ρi

(
ρi
mi

∂F∇h
∂φi

,
dφi
dt

)
+
∑
i

mi

ρi

(
∂fb (φi)

∂φi
,
dφi
dt

)
=

〈
dFb
dt

〉
h

+

〈
dF∇
dt

〉
h

=

〈
dF

dt

〉
h

− 〈transferF−EK〉h.

(3.20)

Combining equations (3.19) and (3.20), it reaches the conclusion:〈
dF

dt

〉
h

= 〈transferEK−F〉h +M
∑
i

∑
i

mimj

ρiρj
(µi − µj)2 ω (rij) . (3.21)

Conservation of energy in the NS system: We take the inner prod-
uct of the momentum equation (3.14d) with mivi and do summation for all
particles. The change of kinetic energy Ek at the ODE level is given in (3.16).
The divergence free condition (3.14e) yields

−
∑
i

mi
pi
ρ2
i

∑
j

mj (vi − vj)·∇iWij = −
∑
i

∑
j

mimj
pi
ρ2
i

(vi − vj)·∇iWij = 0.

Let I1, I2 denote the pressure term
∑

i

(
mivi,−

∑
jmj

(
pi
ρ2i

+
pj
ρ2j

)
∇iWij

)
and

the viscosity term
∑

i

(
mivi,

ηi+ηj
2ρi
∇2
hvi

)
, respectively. Then we have

I1 = −1

2

∑
i

∑
j

mimj

(
pi
ρ2
i

+
pj
ρ2
j

)
(vi − vj) · ∇iWij = 0, (3.22)
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and

I2 =
(d+ 2)

2

∑
i

∑
j

mimj

ρiρj

(ηi + ηj)vij · xij
‖xij‖2 (vi − vj) · ∇iWij

=
(d+ 2)

2

∑
j

mimj

ρiρj

(ηi + ηj)

‖xij‖2 ‖vij · xij‖
2ω (rij) ≤ 0.

(3.23)

Combining (3.16), (3.17), (3.22) and (3.23), we obtain〈
dEk
dt

〉
h

= 〈transferF−EK〉h +
(d+ 2)

2

∑
j

mimj

ρiρj

(ηi + ηj)

‖xij‖2 ‖vij · xij‖
2ω (rij) .

(3.24)
Finally, combining (3.18), (3.21) and (3.24), we complete the proof.

3.3. Momentum conservation of the ODE system
Next, we turn to the proof of the momentum conservation holds as well

for the designed ODE system.

Theorem 3.2. The NSCH ODE system which consists of equations (3.14a),
(3.14b), (3.14c), (3.14d) and (3.14e) can maintain momentum conservation,
namely ∑

i

mi
dvi
dt

= 0. (3.25)

Proof In the first place, by taking the inner product of momentum equa-
tion (3.14d) with mi and doing summation for all particles, we have∑

i

mi
dvi
dt

=−
∑
i

∑
j

mimj

(
pi
ρ2
i

+
pj
ρ2
i

)
∇iWij

+ (d+ 2)
∑
i

∑
j

mimj

ρiρj

(ηi + ηj)vij · xij
‖xij‖2 ∇iWij −

∑
i

T i.

(3.26)

Two above SPH operators can be treated as a whole symmetric one (σij =

σji), like σij := −
(
pi
ρ2i

+
pj
ρ2j

)
+ (d+2)

ρiρj

(ηi+ηj)vij ·xij
‖xij‖2

. Then, based on the property
(3.6), we find ∑

i

∑
j

mimjσij∇iWij = 0. (3.27)
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By proving
∑

i Ti =
∑

i

∂F∇
h

∂xi
= 0, we can conclude momentum conservation.

It must be noted that the selected SPH gradient operator for φ is

∇hφi = −
∑
j

mj

ρi
(φi − φj)∇iWij.

Based on the definition of F∇h as (3.9), it becomes

F∇h =
∑
k

mk

ρk

λ

2
(∇hφk) · (∇hφk)

=
∑
k

mk

ρk

λ

2

[
−
∑
l

ml

ρl
(φk − φl)∇kWkl

]
·

[
−
∑
q

mq

ρq
(φk − φq)∇kWkq

]
.

(3.28)
We consider the compressible flow here. Hence, we can set: mi ≡ m and
ρi ≡ ρ and define fklq ≡ (φk − φl) (φk − φq)∇kWkl · ∇kWkq, then

F∇h =
λm3

2ρ3

∑
k

∑
l

∑
q

fklq. (3.29)

Correspondingly, we get∑
i

T i =
∑
i

∂F∇h
∂xi

=
λm3

2ρ3

∑
k

∑
l

∑
q

∑
i

∂fklq
∂xi

. (3.30)

Using the negative property of the kernel function, fklq can be expanded:
∂fklq
∂xi

= (φk − φl) (φk − φq)
{
∂ (xklω (rkl))

∂xi
xkqω (rkq) +

∂ (xkqω (rkq))

∂xi
xklω (rkl)

}
= (φk − φl) (φk − φq) (δki − δli) {ω (rkl) + rklω

′ (rkl)}ω (rkq)xkq

... + (φk − φl) (φk − φq) (δki − δqi) {ω (rkq) + rkqω
′ (rkq)}ω (rkl)xkl.

With the following equations of summation for the i index:{ ∑
i δki = 1,∑
i (δki − δli) = 0 and

∑
i (δki − δqi) = 0.

We reach
∑

i
∂fklq
∂xi,α

= 0. Finally, we get
∑

i T i = 0 and (3.25) holds naturally.

Remark 3.1. Through appropriate selections of SPH operators and the deriva-
tion based on the original energy and physical consistency, the proposed NSCH
ODE system inherits the physical consistency, including mass conservation,
momentum conservation, and the energy dissipation law. The spatial dis-
cretization has been completed based on the SPH framework.

15



4. Fully discrete scheme

Based on the energy-stable ODE system we proposed in the last section,
we now focus on the temporal scheme. In this section, we decouple the
CH system and the NS system and solve them separately. The projection
method is adopted for the solution of the NS system. Some techniques like the
convex-concave splitting approach, stabilizing term, and energy-factorization
method are also utilized to construct the energy-stable fully discrete scheme.

4.1. Temporal discretization
Now the fully discrete scheme of NSCH system reads as follows:

φk+1
i − φki

∆t
= 2M

∑
j

mj

ρj

µk+1
i − µk+1

j

‖xij‖2 (xij · ∇iWij) , (4.1a)

µk+1
i = µbi

(
φki , φ

k+1
i

)
+ µ∇i

(
φk+1

)
= f ′b

(
φki , φ

k+1
i

)
+
ρi
mi

∂F∇h
(
φk+1

)
∂φk+1

i

, (4.1b)

ρk+1
i =

∑
j

mjWij, (4.1c)

ṽk+1
i − vki

∆t
= −

〈
T i

(
x̃k+1,xk

)〉
h

mi

+ (d+ 2)
∑
j

mj

ρk+1
i ρk+1

j

(ηi + ηj)
(
ṽk+1
ij · xij

)
‖xij‖2 ∇iWij,

(4.1d)

vk+1
i − ṽk+1

i

∆t
= −

∑
j

mj

(
pk+1
i(

ρk+1
i

)2 +
pk+1
j(

ρk+1
j

)2

)
∇iWij, (4.1e)

∇h · vk+1
i = − 1

ρk+1
i

∑
j

mj

(
vk+1
i − vk+1

j

)
· ∇iWij = 0, (4.1f)

xk+1
i − xki = vk+1

i ∆t, (4.1g)

where φ represents the collection of phase function φi on each particle and x
represents the collection of position information xi on each particle.

Some terms in the fully discrete system require special treatment to ensure
energy stability. The details of them are presented here. A semi-implicit
scheme applied to term µbi

(
φki , φ

k+1
i

)
reads:

µbi
(
φki , φ

k+1
i

)
= f ′b

(
φki , φ

k+1
i

)
= λb

[(
ξ +

(
φki
)2
)
φk+1
i − (ξ + 1)φki

]
. (4.2)
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where ξ is the energy-factorization parameter in the EF method. It results in
a linear scheme for determining φ. Based on the expression of F∇h as (3.28),
a fully implicit scheme applied to term µ∇i (φk+1) reads:

µ∇i
(
φk+1

)
=

ρi
mi

∑
j

mj

ρj
λ

[∑
p

mp

pj
(δij − δip)∇jWjp

][∑
l

ml

ρj

(
φk+1
j − φk+1

l

)
∇jWjl

]
.

(4.3)
Then, we utilize the stabilizing method for the interfacial term

〈
T i

(
x̃k+1,xk

)〉
h
.

Based on the convex-concave splitting approach, we have〈
T i

(
x̃k+1,xk

)〉
h

=
2M
∆t

x̃k+1
i +T i

(
xk
)
−2M

∆t
xki = 2Mṽk+1

i +T i

(
xk
)
, (4.4)

whereM is a stabilization parameter.

4.2. Energy dissipation law at the fully discrete level
Now we set out to prove the energy dissipation law of this full discrete

system. Since the entire fully discrete scheme is decoupled into two steps, we
update the φ by solving the CH system in the first step. The free energy of
the system is changed as

Fh
(
φk+1

)
− Fh

(
φk
)

∆t
=
Fh
(
φk+1,xk

)
− Fh

(
φk,xk

)
∆t

.

Then, at the second step, particles are moved with the velocity we determined
form the NS system. Both the kinetic energy and the free energy are changed.

Ek,h
(
vk+1

)
− Ek,h

(
vk
)

∆t
+
F∇h
(
xk+1, φk+1

)
− F∇h

(
xk, φk+1

)
∆t

.

We give two lemmas to support the proof of the energy dissipation law at
the fully discrete level for the CH system and the NS system, respectively.

Lemma 4.1. Assume that the numerical schemes for the CH system are
(4.1a), (4.1b) and schemes as (4.2), (4.3) are used for chemical potential.
The free energy will dissipate with time as follows:

Fh
(
φk+1

)
− Fh

(
φk
)

∆t
≤M

∑
i

∑
j

mimj

ρiρj

(
µk+1
i − µk+1

j

)2
ω (rij) ≤ 0. (4.5)
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Proof For homogeneous part: By introducing an intermediate func-
tion c (φi) = 1

2
(ξ + 1− φ2

i ) as [26], we have energy density

fb (φi) = λb

(
c (φi)

2 +
1

2
ξφ2

i −
1

2
ξ − 1

4
ξ2

)
.

A sufficient large ξ > 0 ensures φi ∈ Iξ = [−
√
ξ + 1,

√
ξ + 1]. Obviously,

c (φi) is a non-negative concave function and the quadratic function φ2
i is

a convex function. We note that c̄ = c
(
φki
)

+ c′
(
φki
) (
φk+1
i − φki

)
and 0 ≤

c
(
φk+1
i

)
≤ c̄ for φki , φ

k+1
i ∈ Iξ. The energy density change can be estimated

by

fb
(
φk+1
i

)
− fb

(
φki
)

= λb

[
c
(
φk+1
i

)2 − c
(
φki
)2

+
1

2
ξ
((
φk+1
i

)2 −
(
φki
)2
)]

≤ λb

[
c̄2 − c

(
φki
)2

+ ξφk+1
i

(
φk+1
i − φki

)]
= λb

[(
c̄+ c

(
φki
))
c′
(
φki
)

+ ξφk+1
i

] (
φk+1
i − φki

)
.

By substituting values of c′
(
φki
)
and c

(
φki
)
, the semi-implicit scheme for µbi

becomes

µbi
(
φki , φ

k+1
i

)
= λb

[(
c̄+ c

(
φki
))
c′
(
φki
)

+ ξφk+1
i

]
= λb

[(
ξ +

(
φki
)2
)
φk+1
i − (ξ + 1)φki

]
.

It naturally yields

fb
(
φk+1
i

)
− fb

(
φki
)
≤ f ′b

(
φki , φ

k+1
i

) (
φk+1
i − φki

)
. (4.6)

Therefore, we conclude that there is always a sufficient large enough ξ > 0
to make inequality (4.6) hold. For the entire system

F b
h

(
φk+1

)
− F b

h

(
φk
)

∆t
≤
∑
i

mi

ρi

(
f ′b
(
φki , φ

k+1
i

)
,
φk+1
i − φki

∆t

)
. (4.7)

Remark 4.1. This kind of energy-factorization method finally results in a
linear energy-stable discrete scheme for µbi , which benefits the implementa-
tion. It must be noted that other well-known schemes like SAV and IEQ
can be applied to this part as well. Also, the numerical value of φi can be
bounded, which validates our conclusion. The relevant proof can be referred
to [33, 34, 35].
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For inhomogeneous part: We turn to the scheme of chemical potential
µ∇ caused by inhomogeneity. Since the corresponding energy F∇ is not a local
function, it depends not only on the φ value but also on the position x of
all particles. In the current step for solving the CH system, positions of the
particles will not change. An intermediate variable F∇i,h for a single particle
is defined for our proof as follows,

F∇i,h =
λ

2
(∇hφi) · (∇hφi) . (4.8)

The free energy caused by the inhomogeneity of systemF∇h =
∑

i
mi
ρi
F∇i,h.Since

F∇i,h is not a local function as well, the convex-concave property is related to
its Hessian matrix. Taking the first order derivative with respect to,

∂F∇i,h
∂φm

= λ
∑
j

mi

ρj
(δim − δjm)∇iWij

∑
k

mi

ρk
(φi − φk)∇iWik.

Then, taking the derivative with respect to φn, we have elements of its Hes-
sian matrix,

∂2F∇i,h
∂φmφn

= λ
∑
m

∑
j

mi

ρj
(δim − δjm)∇iWij

∑
n

∑
k

mi

ρk
(δin − δkn)∇iWik.

For any vector b 6= 0, we have

∑
m

∑
n

bm
∂2F∇i,h
∂φmφn

bn = λ

(∑
n

∑
k

bn
mi

ρk
(δin − δkn)∇iWik

)2

≥ 0. (4.9)

The Hessian matrix
∂2F∇

i,h

∂φm∂φn
is positive-definition. Thus, F∇i,h is convex with

respect to φ. If the chemical potential µ∇i is treated with a fully implicit
scheme as (4.3), it will make the energy inequality hold as

F∇h
(
φk+1

)
− F∇h

(
φk
)

∆t
≤
∑
i

mi

ρi

∑
j

(
∂F∇i,h

(
φk+1

)
∂φk+1

j

,
φk+1
j − φkj

∆t

)
. (4.10)

Since we consider the incompressible fluid, it yields the following identity:

∑
i

mi

ρi

(
ρi
mi

∂F∇h
(
φk+1

)
∂φk+1

i

,
φk+1
i − φki

∆t

)
=
∑
i

mi

ρi

∑
j

(
∂F∇i,h

(
φk+1

)
∂φk+1

j

,
φk+1
j − φkj

∆t

)
.
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Then we find the inequality

F∇h
(
φk+1

)
− F∇h

(
φk
)

∆t
≤
∑
i

mi

ρi

(
ρi
mi

∂F∇h
(
φk+1

)
∂φk+1

i

,
φk+1
i − φki

∆t

)
. (4.11)

Similarly, we use the inner product to get the energy dissipation law at the
fully discrete level. By taking the inner product of equation (4.1a) with µk+1

i

∑
i

mi

ρi

(
φk+1
i − φki

∆t
, µk+1

i

)
= M

∑
i

∑
j

mimj

ρiρj

(
µk+1
i − µk+1

j

)2
ω (rij) .

(4.12)
By taking the inner product of (4.1b) with φk+1

i −φki
∆t

, we have

∑
i

mi

ρi

(
µk+1
i ,

φk+1
i − φki

∆t

)
=
∑
i

mi

ρi

(
ρi
mi

∂F∇h
(
φk+1

)
∂φk+1

i

,
φk+1
i − φki

∆t

)

+
∑
i

mi

ρi

(
f ′b
(
φki , φ

k+1
i

)
,
φk+1
i − φki

∆t

)
.

(4.13)

Owing to Fh (φ) = F b
h (φ) + F∇h (φ), with the above equations (4.12), (4.13)

and energy inequalities (4.7), (4.11) derived from the homogeneous and in-
homogeneous parts, we get the energy dissipation law of the CH system as
(4.5)

Lemma 4.2. Assume the fully discrete scheme for NS system as (4.1d),
(4.1e), (4.1f), (4.1g) is used. Among them, a stabilizing semi-implicit scheme
is applied to the interfacial term as (4.4). Then a sufficient greatM always
makes the energy dissipation law of the NS system at the full discrete level
hold well.

Ek,h
(
vk+1

)
− Ek,h

(
vk
)

∆t
+
F∇h
(
xk+1, φk+1

)
− F∇h

(
xk, φk+1

)
∆t

≤ 0. (4.14)

Proof It has been mentioned that the change of energy F∇h is partially
caused by the change of the position of particles x. When the position of
particles is updated through (4.1g) and φ is unvarying, this part of energy
change characterizes the energy transfer from kinetic energy Ek to the free
energy F . This relationship is consistent with the definition in the ODE
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system. Using the symbol 〈〉temh to denote the fully discrete scheme, including
temporal discretization. Thus,

〈transferEK−F〉temh =
F∇h
(
xk+1, φk+1

)
− F∇h

(
xk, φk+1

)
∆t

. (4.15)

Correspondingly, the energy transferred from free energy F to kinetic energy
Ek is characterized by the inner product of interfacial term with miṽ

k+1
i .

〈transferF−EK〉tem
h = −

∑
i

(
miṽ

k+1
i ·

〈
Ti
(
ṽk+1,vk

)〉
h

mi

)

= −
∑
i

ṽk+1
i ·

〈
Ti
(
x̃k+1,xk

)〉
h
≈ −

∑
i

〈
∂F∇h
∂xi

∂xi
∂t

〉
h

.

(4.16)

Since the NS system is determined by projection methods, we split the entire
process into three steps: (1) solving the momentum equation; (2) solving
the Poisson equation; (3) particle movement. So the energy change can be
expressed as the summation of

[Ek,h(ṽk+1)−Ek,h(vk)]
∆t

,
[Ek,h(vk+1)−Ek,h(ṽk+1)]

∆t
, and [F∇

h (xk+1,φk+1)−F∇
h (xk,φk+1)]

∆t
.

With the help of inner product operation to get the energy and based on
the inequality 1

2
‖a‖2 − 1

2
‖b‖2 ≤ a · (a − b), we can get the energy relations

for each step.
(1) momentum equation: By multiplyingmiṽ

k+1
i with the momentum

equation (4.1d), the left-hand side (LHS) becomes

Ek,h
(
ṽk+1

)
−Ek,h

(
vk
)

=
1

2

∑
i

mi

∥∥ṽk+1
i

∥∥2−1

2

∑
i

mi

∥∥vki ∥∥2 ≤
∑
i

miṽ
k+1
i ·

(
ṽk+1
i − vki

)
.

Then, combining (4.16), it can concluded that

Ek,h
(
ṽk+1

)
− Ek,h

(
vk
)

∆t
≤ (d+ 2)

2

∑
i

∑
j

mimj

ρk+1
i ρk+1

j

(ηi + ηj)
∥∥ṽk+1

ij · xkij
∥∥2∥∥xkij∥∥2 ω (rij)

+ 〈transferF−EK〉temh .

(4.17)
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(2) Poisson equation: By multiplying miv
k+1
i with the Poisson equa-

tion (4.1e), we deduce

∑
i

(
miv

k+1
i ,

vk+1
i − ṽk+1

i

∆t

)
=
∑
i

(
miv

k+1
i ,−

∑
j

mj

(
pk+1
i(

ρk+1
i

)2 +
pk+1
j(

ρk+1
j

)2

)
∇iW

n
ij

)
.

(4.18)
Based on the divergence-free condition at the discrete level, it naturally yields

−
∑
i

mi
pk+1
i(

ρk+1
i

)2

∑
j

mj

(
vk+1
i − vk+1

j

)
· ∇iWij = 0.

Then, we can conclude the right-hand side (RHS) of (4.18)

RHS = −1

2

∑
i

∑
i

mimj

(
pk+1
i(

ρk+1
i

)2 +
pk+1
j(

ρk+1
j

)2

)(
vk+1
i − vk+1

j

)
· ∇iWij = 0.

Finally, we get

Ek,h
(
vk+1

)
− Ek,h

(
ṽk+1
i

)
∆t

≤
∑
i

(
miv

k+1
i ,

vk+1
i − ṽk+1

i

∆t

)
= 0. (4.19)

(3) movement of particles: Based on the definition of interfacial force:
T i :=

∂F∇
h

∂xi
and the definition of F∇i,h, for xk+1

i , xki ∈ S and the open set
S ⊆ Rd(d = 2, 3), let xi = (1 − αi)x

k
i + αix

k+1
i , αi ∈ [0, 1], and x is the

collection of xi. If we consider the movement as a particle-wise process and
based on the mean value theorem for multivariable, we have

F∇h
(
xk+1, φk+1

)
− F∇h

(
xk, φk+1

)
=
∑
i

T i(x) ·
(
xk+1
i − xki

)
.

Through the convex-concave splitting, a semi-implicit scheme can make the
following inequality hold:

T i(x) ·
(
xk+1
i − xki

)
≤
〈
T i

(
xk+1,xk

)〉
h
·
(
xk+1
i − xki

)
.

namely,

〈transferEK−F〉temh =
F∇h
(
xk+1, φk+1

)
− F∇h

(
xk, φk+1

)
∆t

≤
∑
i

vk+1
i ·

〈
T i

(
xk+1,xk

)〉
h
.

(4.20)
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By employing a stabilizing term, the energy can be rewritten in a modified
form: F∇h = F∇h,e+F

∇
h,c, where subscript emeans convex and cmeans concave.

Then the original energy F∇h can be split into a convex part and a concave
part: {

F∇h,e = M
∆t

∑
i ‖xi‖

2 ,

F∇h,c = F∇h − M∆t
∑

i ‖xi‖
2 .

Their second order derivatives are
∂2F∇h,e
∂xi∂xj

=

{
2M

∆t
, i = j,

0 , i 6= j,
and

∂2F∇h,c
∂xi∂xj

=

{
−2M

∆t
+ ∂Ti

∂xi
, i = j,

∂Ti
∂xj

, i 6= j.

The Hessian matrix of F∇h,e is always positive-definite. Moreover, a sufficiently
large modified parameter M always exists to make the Hessian matrix of
F∇h,c negative-definite. Based on the convex-concave properties, this splitting
makes the following inequalities hold:{
F∇h,e

(
xk+1, φk+1

)
− F∇h,e

(
xk, φk+1

)
≤
∑

i 2Mxk+1
i ·

(
xk+1
i − xki

)
,

F∇h,c
(
xk+1, φk+1

)
− F∇h,c

(
xk, φk+1

)
≤
∑

i

(
Ti
(
xk
)
− 2Mxki

)
·
(
xk+1
i − xki

)
.

(4.21)
Combining these two inequalities (4.21), we find the appropriate semi-implicit
fully discrete scheme for interfacial force〈

T i

(
xk+1,xk

)〉
h

=
2M
∆t

xk+1
i + T i

(
xk
)
− 2M

∆t
xki = 2Mvk+1

i + T i

(
xk
)
.

(4.22)
The scheme for T i as (4.22) will ensure inequality (4.20). For the physical
consistency of the full discrete scheme, we apply the same scheme for the
term

〈
T i

(
x̃k+1,xk

)〉
h
with the intermediate velocity ṽk+1

i in the momentum
equation as (4.4). Thus,

〈transferF−EK〉temh = −
∑
i

ṽk+1
i ·

[
2M ṽk+1

i + T i

(
xk
)]
.

By recalling the inequality (4.19) derived from the pressure Poisson equation,
we can conclude that there is always a sufficiently large coefficientM to make

〈transferEK−F〉temh + 〈transferF−EK〉temh
≤
∑
i

vk+1
i ·

[
2Mvk+1

i + Ti
(
xk
)]
−
∑
i

ṽk+1
i ·

[
2Mṽk+1

i + Ti
(
xk
)]

= 2M
∑
i

[(
vk+1
i

)2 −
(
ṽk+1
i

)2
]

+
∑
i

(
vk+1
i − ṽk+1

i

)
Ti
(
xk
)
≤ 0.

(4.23)
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At last, combining the energy changes at three steps as a (4.17), (4.19), and
(4.23), we reach the conclusion of the lemma as (4.14).

Remark 4.2. We could consider the conservation of energy transfer still
maintained at the fully discrete level. But the energy inequality of (4.23)
is equivalent to adding a numerical dissipative term to help maintain the
energy decaying property. It comes from the numerical approximation of
energy transfer.

〈transferdiss〉tem
h = 2M

∑
i

[(
vk+1
i

)2 −
(
ṽk+1
i

)2
]
+
∑
i

(
vk+1
i − ṽk+1

i

)
Ti
(
xk
)
≤ 0.

(4.24)
The value of M is adjusted adaptively posteriori based on the solved vk+1

i .
If the above energy inequality (4.24) does not hold, the value of M can be
appropriately increased to maintain the energy decaying trend.

Finally, the theorem for the complete NSCH system at the fully discrete
level is proposed here.

Theorem 4.1. Assume the numerical scheme for the NSCH system based
on the SPH method includes (4.1a), (4.1b), (4.1c), (4.1d), (4.1e), (4.1f) and
(4.1g). The energy dissipation law holds at the fully discrete level.

Ek+1
total,h − Ek

total,h

∆t
=
Ek,h

(
vk+1

)
− Ek,h

(
vk
)

∆t
+
Fh
(
xk+1, φk+1

)
− Fh

(
xk, φk

)
∆t

≤ 0.

(4.25)

Proof This energy inequality for the NSCH system can be concluded
through adding these two inequalities, (4.5) and (4.14), from Lemmas 4.1
and 4.2 for the CH and NS systems, respectively.

5. Numerical examples

In this section, we present some numerical results to show the performance
of the proposed energy-stable SPH method for the NSCH two-phase system.
We consider the evolution of a droplets with the interfacial tension. In all of
the numerical cases, the spatial domain is taken as Ω = [−1, 1]2. The particles
are placed uniformly in the initial step, and there are 40× 40 particles in all
examples. The smoothing length is set as h.
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5.1. The dynamics of a square droplet
In the first numerical example, we consider the evolution process of a

square droplet in a domain. The parameters are chosen as: h = 0.05,∆t =
0.01, T = 10,M = 103, η = 1, λ = 1, ε = 0.02,Mobility = 0.002, ξ = 1. The
initial phase variables are chosen as φ = 1 inside the square droplet and
φ = −1 everywhere else.

In Fig.5.2, we observe that the droplet in a square shape deforms into a
round one under the interfacial tension. The distribution of particles in the
eventual steady state is totally different from the initial uniform distribution.
But generally, the spacing between particles remains uniform. So, we con-
clude that the SPH method can maintain the divergence-free condition well
and does not cause tensile instability. The symmetric velocity field and the
Fig.5.4(b) also imply momentum conservation at the ODE level and the dis-
crete level. We find the momentum oscillates a little bit numerically around
zero from the zoom window. Particles at the interface are also distributed
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Figure 5.2: The evolution of φ and spatial particle distribution with time in example 1
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Figure 5.3: The contour of φ interpolated by the SPH operator
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Figure 5.4: Total energy profile and momentum profile with time

one round layer by one round layer, which is caused by the interfacial force
defined by the gradient of φ. While in the bulk phase part, the particles
are located more randomly and messily, which makes sense because of the
homogeneity.

In order to show the diffuse characteristics of the NSCH model, an initial
condition with a sharp interface is set here. The results show the forming
of a diffuse interface with limited width as the numerical calculation process
progresses. Finally, the “color” of particles on the diffuse interface region also
obeys a gradual transition from −1 to 1. This phenomenon coincides with
the physical principles. Furthermore, the contour of φ at the continuous
domain interpolated by the SPH in Fig.5.3 shows that it agrees well with the
results of the traditional method based on the fine mesh.

Moreover, we observe the consistent decay of the total energy in the
Fig.5.4(a), which validates our design of ODE expression and the fully dis-
crete scheme. From the zoom window, we can see total energy is dissipating
with time, even at the end of the stage of numerical testing. Gradually, when
this droplet becomes one in a round shape, the system reaches a steady state
with the minimum energy.

5.2. The deformation and rotation of a droplet in the force field
We consider the case of a single droplet’s deformation and rotation phe-

nomena in the square domain. At the initial stage, a force field g(x, y, t) is
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enforced in this periodic domain to make this droplet rotate and deform,

g(x, y, t) =

{
10 sin(π(x+ 1)), 0 ≤ t ≤ 0.5,
0, otherwise.

The parameters are chosen as: h = 0.05, ∆t = 0.01, T = 20,M = 103, η =
1, λ = 1 , ε = 0.02, Mobility = 0.002, ξ = 1. Initially, the diffusive interface is
smoothed by φ0(x, y) = − tanh((x2 + y2 − 0.32)/0.02)
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Figure 5.5: The diagram of force field
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Figure 5.6: The evolution of φ and spatial particle distribution with time in example 2
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Figure 5.7: The evolution of velocity quiver plot
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Figure 5.8: Total energy profile and momentum profile with time

The diffuse interface we set up artificially as the initial conditional grad-
ually evolves into an interface with more physical transition layers. This ex-
ample shows the good adaptivity to the two-phase flow problems with high
deformation. The interface can be tracked naturally with the φ information
carried by the particles as Fig.5.6. The symmetric velocity quiver plots as
Fig.5.7 and Fig.5.8(b) indicate the maintenance of divergence-free conditions
and momentum conservation.

In Fig.5.8(a), the total energy of the system is increasing at the beginning,
in the time period 0˘0.5, due to the external work done by the force field. As
we expected, after cancelling this force field at time = 0.5, the total energy of
the system decays with time due to the viscous dissipation and the diffusive
effect of the CH system and the momentum conservation holds well even
facing relative high flow rate at the initial stage as well.

5.3. Droplets of different sizes merge into one
In this example, we consider the case of four circular droplets merging

with one large droplet in the computational domain. The parameters are
chosen as: h = 0.05,∆t = 0.01, T = 10,M = 103, η = 1, λ = 1, ε =
0.02,Mobility = 0.002, ξ = 1. The initial phase variable is chosen as:

φ0(x, y) = − tanh((x2 + y2 − 0.32)/0.01)∗
tanh(((x− 0.4)2 + y2 − 0.12)/0.01) ∗ tanh(((x− 0.2)2 + y2 − 0.12)/0.01)∗
tanh(((y − 0.2)2 + x2 − 0.12)/0.01) ∗ tanh(((y − 0.4)2 + x2 − 0.12)/0.01).
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The free energy contours in Fig.5.10 show that the maximum free energy
decreases from 1.5 to 0.3. At the initial stage, the interfaces of droplets with
different sizes connect with each other with very sharp angles. Since the free
mixing energy characterizes the surface intension, the sharp connection nat-
urally leads to a higher free energy in this region. The maximum value of the
free energy gradually decreases as the angle becomes round and smooth. The
homogenization of φ at the interface region also helps decrease the maximum
value of free energy. The energy dissipation and momentum conservation are
preserved well in example 3 as Fig.5.11.
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Figure 5.9: The evolution of φ and spatial particle distribution with time in example 3
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Figure 5.10: The evolution of free energy throughout the entire domain
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Figure 5.11: Total energy profile and momentum profile with time

6. Conclusion

In this work, we exploit the great potential of the Lagrangian particle
treatment in the SPH, which also fulfills the increasing demand for particle
modeling that allows more physical properties to be incorporated. To the best
of our knowledge, this is the first study of energy-stable ODE discretization
and the energy-stable fully discrete scheme by the SPH method for two-
phase problems. Our proposed scheme ensures the inheritance of momentum
conservation and the energy dissipation law from the PDE level to the ODE
level, and then to the fully discrete level. Consequently and desirably, it also
helps increase the stability of the numerical method. The time step size can
be much larger than that of the traditional ISPH methods. This energy-stable
SPH method also alleviates the tensile instability without using any particle-
shifting strategies, which may destroy the rigorous mathematical proof. The
numerical results also demonstrate that our method captures the interface
behavior and the energy variation process well.
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