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ABSTRACT

We propose a novel gray-box modeling algorithm for physical systems governed by stochastic dif-
ferential equations (SDE). The proposed approach, referred to as the Deep Physics Corrector (DPC),
blends approximate physics represented in terms of SDE with deep neural network (DNN). The pri-
mary idea here is to exploit DNN to model the missing physics. We hypothesize that combining
incomplete physics with data will make the model interpretable and allow better generalization. The
primary bottleneck associated with training surrogate models for stochastic simulators is often as-
sociated with selecting the suitable loss function. Among the different loss functions available in
the literature, we use the conditional maximum mean discrepancy (CMMD) loss function in DPC
because of its proven performance. Overall, physics-data fusion and CMMD allow DPC to learn
from sparse data. We illustrate the performance of the proposed DPC on four benchmark examples
from the literature. The results obtained are highly accurate, indicating its possible application as a
surrogate model for stochastic simulators.

Keywords physics-data fusion · stochastic simulator · generative network · conditional maximum mean discrepancy ·
surrogate

1 Introduction

Physical systems are governed by the laws of physics and are often represented using either ordinary differential
equations (ODE) or partial differential equations (PDE). Theoretically, we can easily obtain a system’s response by
solving the underlying differential equation(s); however, this is nontrivial in practice as exact analytical solutions
of differential equations are often not known. Under such circumstances, one often relies on simulators where the
governing physics is solved using numerical techniques such as finite element [1, 2, 3, 4] and finite volume methods
[5]. Unfortunately, such an approach has two major limitations. First, the governing differential equations used are
often based on certain assumptions and approximations [6]. For example, boundary conditions, material properties,
and loading conditions are often simplified. Therefore, the results obtained from simulators are often not representative
of the actual reality. Secondly, simulators are often computationally expensive and hence, not applicable in real-time.
Physics-informed neural networks (PINN) [7, 8, 9, 10], an alternative to classical solution techniques, also exists in
the literature. PINN is computationally efficient and hence, addresses the second issue highlighted above. However,
PINN also relies on exact knowledge of physics, which often is not available. Therefore, it is the call of the hour to
develop techniques that can address the two limitations highlighted above.
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With the rapid development in the field of artificial intelligence and machine learning, data-driven approaches have
emerged as a viable alternative in recent times. The idea here is to develop a machine learning model by using data
from physics of the system. The most prominent developments in this domain are perhaps the ones based on neural
operators [11]. Neural operators enable solving a family of differential equations by learning the mapping between
two functional spaces. Popular neural operators existing in the literature include deep operator network [12], Fourier
neural operator [13], graph neural operator [14], and wavelet neural operator [15, 16] to name a few. However, neural
operators are data hungry and hence, require a large amount of data. Other popular data driven approaches include
neural ODE [17] and graph attention differential equation [14], etc. However, the limitations associated with operator
learning algorithms hold for these methods as well.

All physical systems have inherent associated randomness [18, 19] and ignoring these during the design stage can
result in an unsafe design. Therefore, it is of utter importance to incorporate uncertainty and investigate its effect on the
underlying system. To that end, the governing physics is often represented in terms of a stochastic differential equation
(SDE). Use of SDE to model physical phenomenon is common in various domains, including finance, economy,
biology, astronomy and engineering to name a few. There exist a rich literature on numerical techniques for solving
SDEs; however, the limitations associated with ODEs and PDEs also holds for SDEs as well. Researchers have also
investigated the possibilities of exploiting machine learning and deep learning approaches in the past. For example,
Chakraborty and Chowdhury developed the stochastic Galerkin approach for solving stochastic heat [20] and stochastic
flow [21] equations. Thakur and Chakraborty [16] recently developed a deep learning based surrogate model for
SDEs. However, data driven models for SDE lack generalization and out-of-distribution predictability, and hence,
need repeated retraining.

The limitations associated with both data-driven and physics-based approaches are evident from the discussion above.
A possible alternative here is to develop the hybrid model by data-model fusion. One of the first work in this work was
carried out by Chakraborty [9] where a transfer learning based multi-fidelity physics informed deep learning frame-
work was developed. Although the framework developed was efficient, it lacked interpretability. Garg et al. [22]
developed an alternative framework by augmenting a machine learning model with known physics. The overall frame-
work involves two stages, with stage 1 being duel Bayesian filtering and stage 2 being Gaussian process. However,
this framework is limited to deterministic systems only. Additionally, the two stages are sequential, and hence, the
training phase is computationally expensive. Other work on data-model fusion includes [22, 23].

The objective of this paper is to develop a novel framework for stochastic dynamical systems governed by SDEs. To
that end, we propose Deep Physics Corrector (DPC), a novel approach for solving stochastic dynamic problems. The
proposed DPC blends known physics in the form of SDE with deep neural networks (DNN). The primary idea here is
to use DNN to model the missing physics. The salient features of the proposed DPC are highlighted below:

• End-to-end training: The proposed DPC allows end-to-end training and hence, the training phase is com-
putationally efficient.

• Physics-data fusion: Unlike most data-based models, the proposed DPC advocates physics-data fusion.
This allows DPC to adopt advantages of both physics-based models and data based models. To be specific,
the proposed DPC is partially interpretable, generalizes to new environments, and alleviates the need for exact
physics.

• Surrogate model for stochastic simulators: DPC can be used as a surrogate model for the stochastic simu-
lator. We note that developing a surrogate model for the stochastic simulator is non-trivial and the proposed
DPC provides a viable alternative in this regards.

Overall, the proposed DPC is the first of its kind and, to the best of our knowledge, no work on development of such
hybrid models for SDEs exists in the literature.

The remainder of the paper is organized as follows. The problem setup is formally described in Section 2. Details
on the proposed DPC along with the algorithm are provided in Section 3. Numerical experiments carried out are
presented in Section 4. Finally, Section 5 presents the concluding remarks.

2 Problem Statement

Consider (Ω,F , P ) as the probability space with Ω being the sample space, {Ft, 0 ≤ t ≤ T )} being the natural
filtration constructed from sub σ-algebras of F . With this setup, an m-dimensional n-factor stochastic differential
equation (SDE) driven by n-dimensional Brownian motion {Bj(t), j = 1, . . . n} is defined as,

dX = f (X,Ξ) dt+
n∑

j=1

gj (X,Ξ)dBj (t) ; X(t = t0) = X0; t ∈ [0, T ]. (1)

2



Deep Physics Corrector: A physics enhanced deep learning architecture for solving stochastic differential equationsA PREPRINT

Here X ∈ Rm represents the Ft-measurable state vector, f (X,Ξ) : Rm 7→ Rm, g (X,Ξ) : Rm 7→ Rm×n

and Bj (t) ∈ Rn are the drift vector, diffusion matrix and Brownian motion respectively. The white noises are
generalized derivative Brownian motion i.e. ζ(t) = Ḃ(t); this ensures that there exists a corresponding SDE of Eq.
(1). Ξ = {Ξ1,Ξ2, . . . ,Ξk} ∈ Rk represents the stochastic parameters associated with the system. In a compact matrix
notation, the SDEs can be expressed as,

dX = f (X,Ξ) dt+ g (X,Ξ) dB (t) ; X(t = t0) = X0; t ∈ [0, T ]. (2)

In the absence of the stochastic variables Ξ (i.e., when Ξ is deterministic), Eq. 2 can be solved by using stochastic
integration schemes such as Euler Maruyama, Milstein and Taylor’s 1.5 [19]. On the other hand, Eq. (2) in the
presence of Ξ can be solved by combining Monte Carlo simulation with stochastic integration. However, in practice,
the exact form of the governing SDEs are often not known. To that end, we rewrite Eq. (1) as follows:

dX =fk (X,Ξ) dt+ gk (X,Ξ) dB (t)︸ ︷︷ ︸
known

+fuk (X,Ξ) dt+ guk (X,Ξ) dB (t)︸ ︷︷ ︸
unknown

,
(3)

where fk (·) and fuk (·) represents the known and unknown portion of the drift vector, such that

f (·) = fk (·) + fuk (·) . (4)

Similarly,

g (·) = gk (·) + guk (·) . (5)

With this setup, the known (approximate) governing SDE can be represented as:

dX = fk (X,Ξ) dt+ gk (X,Ξ) dB (t) ; X(t = t0) = X0; t ∈ [0, T ] (6)

However, as the governing SDE in Eq. (6) is not exact, the results obtained are also approximate. The order of
approximation depends on fuk (·) and guk (·).

Consider that, we have access to high-fidelity data, D =

{
ξ(i),

{
X

(i)
j,1:Nt

}m

j=1

}N

i=1

, where ξ ∼ p(Ξ) is a realization

of Ξ. With this setup, it is possible to train a purely data-driven surrogate model [16]

WS :MΞ × Ω 7−→ R
(ξ, ω) 7−→ WS(x, ω)

(7)

where ξ ∈ MΞ is the input vector;MΞ is the input space and Ω ∈ P is the vector of random variables with P being
the probability space. However, such models often fail to generalize to unseen environments and hence, has limited
applicability. The objective of this paper is to develop a novel algorithm that addresses the challenges associated with
the physics-based and data-based approaches discussed above.

3 Deep physics corrector

In this section, we present the detailed formulation of the proposed framework, referred to as the deep physics cor-
rector (DPC). The basic premise here is to augment the known equation of motion with a deep learning model. We
hypothesize that combining known physics with a machine learning model will result in models that will generalize
better. We start this section by providing the details on the network architecture and loss function and conclude with
the overall framework.

3.1 Architecture design

The proposed DPC aims to integrate known low-fidelity physics model with sensor data. Accordingly, the architecture
consists of two components: (a) the physics module and (b) the deep learning module. In DPC, we augment the two
moduli such that the deep learning module is responsible for modeling the missing physics. In this context, we note
that the missing physics can either be in the drift part of in the diffusion part. Without any loss of generality, we present
the proposed approach by assuming the missing physics to be in the drift. Therefore, we rewrite Eq. (3) as follows:

dX =fk (X,Ξ) dt+ gk (X,Ξ) dB (t)︸ ︷︷ ︸
known

+fuk (X,Ξ) dt︸ ︷︷ ︸
unknown

.
(8)

3
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Note that in Eq. (8), the unknown portion only consist of the drift component. We rearrange Eq. (8) and place a neural
network prior on the unknown physics. Accordingly,

dX = fk (X,Ξ) +NN (X,Ξ,Z;θ)︸ ︷︷ ︸
drift

+ gk (X,Ξ) dB (t)︸ ︷︷ ︸
diffusion

, (9)

where NN (X,Ξ,Z;θ) represents neural network parameter, parameterized by θ. Note that a generative neural
network is used in Eq. (9) and hence, additional variables Z are introduced. Generative neural network allows the
model to track the uncertainty due to limited data. Additionally, it also helps in avoiding overfitting. Following the
usual norm, we model Z ∼ N (0, I) as standard normal variable [16].

For designing the neural network architecture, we use stochastic integration scheme to express Eq. (9) in discretized
form. This yields

Xt+1 = Xt + {fk (Xt,Ξ) +NN (Xt,Ξ,Z;θ)} ·∆t+ {gk (Xt,Ξ)} ·∆Bt, (10)

where ∆t represents the time-step and ∆Bt ∼ N
(
0,
√

∆t · I
)

is a normal distributed variable. Xt+1 is the response
at time-step t + 1. Using Eq. (10), we can start with a given initial condition and time-march to obtain the response
at any time. The neural network architecture used in this study is designed by following Eq. (10). A schematic
representation of the neural network architecture is shown in Fig. 1.

(a) DPC cell

(b) Overall architecture

Figure 1: Network architecture of the proposed DPC. (a) one unit cell of DPC (the blue box) and (b) the overall
architecture developed using DPC cell. The DPC cell in the overall architecture is shown in red.

Remark 1: Although Euler Maruyama scheme has been used to develop the proposed DPC algorithm, it can be
trivially extended to incorporate higher order stochastic integration scheme (e.g., Taylor’s 1.5 scheme for example).
However, this might result in added computational cost.

3.2 Loss function

For training the proposed DPC, selecting a suitable loss function is essential. Two of the most popular loss functions
existing in the literature are perhaps the mean squared and cross entropy loss functions. While the former is often
used in regression, the latter is used while solving classification problems. Unfortunately, neither of these can be
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used in conjunction with the proposed DPC because the DPC is developed for systems governed by SDE; hence, the
output is probabilistic and represented using the probability density function. Therefore, a suitable loss function is one
that attempts to minimize distance between two distributions. A rich literature on distance metric also exists in the
literature with Kullback-Liebler (KL) divergence [24] and maximum mean discrepancy (MMD) [25] being two of the
popular choice. This study, uses a modified version of MMD loss function, referred to as the conditional maximum
mean discrepancy (CMMD) [26]. Details on CMMD and its utilization in training DPC is provided next.

3.2.1 RKHS and MMD

The concept of CMMD is rooted in Reproducing Kernel Hilbert Space (RKHS) and kernel embedding. Therefore, we
start our discussion with the same. A Hilbert space is defined as the space of inner products, which is complete and
separable with respect to the norm defined by the inner products. A kernel, k(·, ·), is said to be a reproducing kernel
in a Hilbert space H, if ∀f ∈ H, f(x) = 〈k(x, ·), f(·)〉. An RKHS is a Hilbert space H with a reproducing kernel
spanned within H , alternatively, it is the space of functions with all evaluation functions bounded and linear [27].
MMD is a kernel- based method to compare distance between two distributions. Assuming Y t =

{
tti
}N
i=1
∼ PY t and

Y p =
{
ypj
}M
j=1
∼ PY p , MMD is represented as

MMD[F , PY t , PY p ] = sup
f ∈F

(
EY t

[
f(Y t)

]
− EY p [f(Y p)]

)
, (11)

where F is a class of functions. [25] showed that Eq. (11) can be solved in the closed form if F is specified to be an
RKHS K and hence,

MMD(F , p, q) = ‖µp − µq‖2K , (12)
where µp, µq ∈ K. However, instead of Eq. (12), we use squared difference between the kernel mean embeddings,

L̂2
MMD =

∥∥∥∥∥∥ 1

N

N∑
i=1

φ
(
yti
)
− 1

M

M∑
j=1

φ (ypi )

∥∥∥∥∥∥
2

K

. (13)

With suitable choice of φ in Eq. (13), it is possible to match higher order moments [25]. Using kernel trick, Eq. (13)
can further be simplified as

L̂2
MMD = E [k (X,X ′)− 2k(X,Y ) + k (Y ,Y ′)] (14)

3.2.2 CMMD

CMMD is a natural extension of MMD and is used when dealing with conditional distributions. Training DPC involves
matching the conditional distribution of the predicted response with the target response and hence, CMMD becomes a
natural choice.

Consider Dt =
(
ξ(i),X

(i)
t

)M
i=1

and Dp =
(
ξ(j),X

(j)
p

)N
j=1

to be target and predicted datasets. Since we are dealing

with SDE, the output samples Xt ∼ p(X|ξ∗) and Xp ∼ q(X|ξ∗) can be thought of as samples drawn from the
target conditional distribution p(X|ξ∗) and predicted conditional distribution q(X|ξ∗) respectively. Accordingly, the
CMMD loss function is represented as

L2
CMMD =

∥∥CY t|ξ − CY p|ξ
∥∥2
K⊗K , (15)

where CY t|ξ is the conditional embedding operator. In practice, we utilize the empirical estimate of conditional
embedding operators, with K̃ = K + λI, where K is the gram matrix, used to compute the discrepancy between the
two above given distributions, using the kernel trick. The empirical estimate is as follows:

L̂2
CMMD =

∥∥∥Φd (Kd + λI)
−1

Υ>d − Φs (Ks + λI)
−1

Υ>s

∥∥∥2
K⊗H

= Tr
(
KdK̃

−1
d LdK̃

′
d

)
+ Tr

(
KsK̃

−1
s LsK̃

−1
s

)
− 2 · Tr

(
KsdK̃

−1
d LdsK̃

−1
s

)
,

(16)

where γd and γs represents feature matrix for input variables, for data-sets of subscripts d and s respectively and
φd and φs represents feature matrix for output variables, for data-sets of subscripts d and s respectively. Further,
Ks = γs

T γs, Kd = γd
T γd are defined as the gram matrices for the input variables and Ls = φs

TφS , Ld = φd
Tφd

are defined as the gram matrices for the output variables, with Ksd = γs
T γd, Lds = φd

Tφd are defined to be the
gram matrices containing the dot product of feature matrices of the two distributions [16]. We utilize Eq. (16) as loss
function in the proposed DPC.

5
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3.3 Algorithm

Having discussed the network architecture and the loss function, we proceed with discussing the proposed algorithm.
The code accompanying the proposed approach is developed using PyTorch and Adam optimizer is used to train the
model. Details on the algorithm are discussed in Algorithm 1.

Algorithm 1: Algorithm for the proposed DPC

Input : Training data: D =

{
ξ(i),

{
X

(i)
j,1:Nt

}m

j=1

}N

i=1

, initial condition: X0, learning rate: η, time-step: ∆t,

and learning-rate scheduler
1 Initialize network parameters and hyper-parameters θ, λ, β.
2 for e = 1 to number of epochs do
3 for b = 1 to Nb do

4 Draw a mini-batch A =

{
ξ(i),

{
X

(i)
j,1:Nt

}m

j=1

}n

i=1

from D

5 for t = 0 to Nt do
6 Z ∼ N (0, I)
7 [fpseudo, gpseudo]←− NN (X,Ξ,Z;θ)
8 Xp(t+ 1) = Xp(t) + {fk (Xp,Ξ) + fpseudo} ·∆t+ {gk (Xp,Ξ) + gpseudo} ·∆Bt

9 AppendXp withXp(t+ 1) marching in time
10 end for

11 Compute the training loss, L̂2
CMMD by using ξ(i),

{
X

(i)
j,1:Nt

}m

j=1
and

{
X

(i)
p,j,1:Nt

}m

j=1
; . Eq. (16)

12 Calculate gradient ∂L̂2
CMMD

∂θp
and update θp = [θ, λ, β] using gradient based Adam optimizer

13 end for
14 end for

Output: Learnt the parameter θ, λ and β.

Once the network is trained, we can predict the response corresponding to a given input ξ∗ and initial conditionX∗0 by
using the training DPC network. In this paper, we use the proposed DPC as a surrogate model for stochastic simulators.

4 Numerical Examples

In this section, we present four examples to illustrate the efficacy of the proposed DPC. We select the example problems
from different fields i.e., finance(stock prices), physical sciences, medical (epidemiology), and advanced dynamics, to
illustrate the vast application domain of the proposed approach. For all the problems, the objective is to predict the
probability density function (PDF) of the response variables at a given time t. Results obtained using the proposed DPC
are benchmarked against results obtained using Monte Carlo simulation (MCS) results (ground truth), purely data-
driven deep learning framework and purely physics-driven approach with the known physics (Euler Maruyama). Case
studies involving (a) missing physics in drift and (b) missing physics in diffusion have been considered. Additional
case studies involving the performance of the proposed approach with an increase in the number of training samples
and missing physics in both drift and diffusion have also been carried out.

For training the proposed DPC, we selected a neural network architecture involving 5 hidden layers with 64, 256, 512,
256 and 64 nodes. The Exponential linear unit (ELU) activation function was used for all but the last layer. The final
layer has no activation function. The dimensionality of the intrinsic variable is ten, Z ∈ R10, and it is sampled from
standard Gaussian distribution. A Squared exponential kernel function has been used within the CMMD loss function.
For all the problems, we have tested the performance of the model for two cases:

• Case 1: We test the predictive capability on different values of ξ∗ but the prediction time t∗ is within the
training window. This is the setup used in most of the existing reliability engineering and uncertainty quan-
tification literature.

• Case 2: Here, the prediction t∗ outside the training window.

Other problem-specific details are provided with each example separately.

6
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(a) t = 0.022 sec
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Figure 2: PDF comparison of output data-set at a specific time, computed from different models with that of the
ground truth, for the case where the drift term is imprecisely known a) PDF comparison within the trained regime b)
PDF comparison for extrapolated data-set (prediction) outside the training regime. The model is trained for the first
0.1 sec

4.1 Example 1: Black-Scholes

In this example, we consider the Black-Scholes equation [28]. This is a popular SDE and has applications in stock
prices and future contracts. The equation for the same looks like:

dSt = x1Stdt+ x2StdBt, (17)

where St represents the output response at any given time, x1 represents the expected output in time dt, x2 gives the
measure of volatility around that expected output x1, and Bt is the white noise that imparts the stochastic nature to the
process. We consider St, at any time t, as the quantity of interest (QoI). The values of input parameters x1 and x2 are
randomly sampled from the uniform distributions x1 ∼ U(0, 0.1) and x2 ∼ U(0, 0.4). The initial value of stock price
S0 is fixed at 1.

First, we consider the case where the known physics is of the following form:

dS = dt+ x2SdBt. (18)

This corresponds to incomplete/missing physics in the drift component of the SDE. To accommodate for the incom-

plete physics, we also have access to high-fidelity sensor data, D =

{
ξ(i),

{
S
(i)
j,1:Nt

}m

j=1

}N

i=1

with m being the

number of replication per training sample, N being the number of training samples, and Nt being the time-step until
which data is available. Here, ξ(i) =

[
x
(i)
1 , x

(i)
2

]
, m = 50, N = 40, and Nt = 100. We have considered a time-step

∆t = 0.001 sec and hence, we have data until t = 0.1 sec. The model is trained with a constant learning rate of 1e-5,
using gradient-based Adam optimizer. The objective here is to use the proposed DPC to solve the Black-Scholes SDE
by using Eq. (18) and the high-fidelity data D.

Fig. 2(a) shows the PDF of the QoI obtained using different methods at t = 0.022 sec. We observe that the PDF
obtained using the proposed DPC matches excellently with that of the ground truth. On the other hand, the data-only
approach, fails to capture the temporal evolution of the QoI as indicated by the mismatch in the PDF. The performance
of the physics-only model is better and it correctly captures the mean response. However, it overestimates the standard
deviation, as indicated by the flat PDF. This can be attributed to the fact that the drift is considered to be constant in
Eq. (18) and hence, the diffusion term starts dominating and results in a higher standard deviation.

Fig. 2(b) shows the response PDFs at t = 0.67 sec. Since the model was trained only up to t=0.1 sec, this prediction
is way ahead of the training window. We observe that the proposed DPC yields excellent results, with the PDF of QoI
matching almost exactly with the ground truth. This clearly indicates the generalization capability of the proposed
approach. On the other hand, the physics-only and data-only models, fail to capture the PDF of the QoI. The failure
of the data-driven approach is attributed to the lack of generalization of the data-only model. The physics-only model
fails because the effect of mis-specified physics becomes prominent with an increase in time.

7
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Figure 3: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the diffusion term is imprecisely known a) PDF comparison within the trained regime
b) PDF comparison for predicted data-sets (outside the training window). The model is trained for the first 0.1 sec
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Figure 4: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where both the drift and the diffusion terms are imprecisely known a) PDF comparison
within the trained regime b) PDF comparison for predicted data-sets (outside the training window. The model is
trained for first 0.1 sec

Next, we consider the case with mis-specified physics in the diffusion. The known physics in this case is represented
as

dS = x1Sdt+ dBt. (19)

Other setups including the training data size are kept unchanged.

Figs. 3(a) and 3(b) show the PDFs of QoI at t = 0.098 sec (within the training window) and t = 0.7 sec (outside the
training window). For both cases, the proposed DPC yields highly accurate results with the response PDF matching
exactly, with the ground truth. The physics-only model failed to capture the output distribution, with a slight offset
mean, and a completely flat curve. The shift in mean can be attributed to the accumulated error during time marching,
which is present due to incorrect diffusion term. The data-only model also fails to capture the PDF of QoI for both
cases. This indicates poor generalization of solely data-driven approaches. Lastly, we consider the case with mis-
specified drift and diffusion. Figs. 4(a) and 4(b) show the PDF of QoI obtained using the proposed DPC. We observe
that the results obtained using the proposed approach have an excellent match with the ground truth. This indicates
that the proposed approach can also be used when both drift and diffusion components are mis-specified.

One of the important factors governing the performance of the proposed approach is the number of training samples.
Therefore, we conclude this section by presenting a case study illustrating the performance of the proposed DPC with
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Figure 5: Time averaged Hellinger distance between computed PDF and ground truth PDF with decreasing number of
training samples. The computation is done for the case with incomplete drift term in the SDE

an increase in training samples. To that end, we use Hellinger distance to quantify the predictive error. Considering
P (y(t)) and Q(y(t)) to be two PDFs, Hellinger distance can be mathematically represented as:

H(P (y(t)), Q(y(t))) =
1√
2

∥∥∥√P (y(t))−
√
Q(y(t))

∥∥∥
2

(20)

We use normalized time-averaged Hellinger distance in this work,

εn =
ε

ε0
, (21)

where

ε = E [H(P (y(t)), Q(y(t)))] . (22)

E [·] here is the expectation operator and ε0 in Eq. (21) is the normalizing factor. Here we consider ε with 40 training
samples as ε0. This allows us to track the change in error with the increase in training samples.

Fig. 5 shows the variation of εn with the increase in training samples. We observe that the error metrics are similar at
N = 30 and N = 40, indicating that convergence has been achieved.

4.2 Example 2: Modified Ornstein–Uhlenbeck process

As the second example, we consider the modified Ornstein–Uhlenbeck process suggested in [29]. The equation for
the same is as follows:

dY = (x1 − Y )dt+ (νY + 1)x2dBt (23)

where Y (t) is the response at time t, x1 ∼ U(0.9, 2) and x2 ∼ U(0.1, 1) are the stochastic parameters and Bt

represents the white noise as before. We have taken ν = 0.2, for this problem The initial value is fixed at 1 and we
consider Y (t) as the QoI.

First, we consider the case where the known physics is of the following form:

dY = dt+ x2(νY + 1)dBt (24)

This corresponds to incomplete/missing physics in the drift component of the SDE. To accommodate for the missing

physics, we also have access to high-fidelity sensor data, D =

{
ξ(i),

{
Y

(i)
j,1:Nt

}m

j=1

}N

i=1

as before. Here, ξ(i) =[
x
(i)
1 , x

(i)
2

]
, m = 50, N = 40, and Nt = 100. We have considered a time-step ∆t = 0.001 sec and hence, we have

data until t = 0.1 sec. The model is trained with a learning rate of 1× 10−4, which decreases by a factor of 0.95 after
every 50 epochs. For training the model, ADAM optimizer. The objective here is to use the proposed DPC to solve
the governing SDE by using Eq. (24) and the high-fidelity data D.

9
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(a) t = 0.03 sec
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Figure 6: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the drift term is imprecisely known a) PDF comparison within the trained regime b)
PDF comparison for extrapolated data-sets (prediction) outside the training regime. The model is trained for first 0.1
sec

Fig. 6(a) shows the PDF of the QoI obtained using different methods at t = 0.03 sec. We observe that the PDF
obtained using the proposed DPC matches exactly with the ground truth. A data-only approach, on the other hand,
fails to capture the temporal evolution of the QoI as indicated by the mismatch in the PDF. The performance of the
physics-only model is better and it correctly captures the mean response. However, it overestimates the standard
deviation obtained as indicated by the flat PDF. This can be attributed to the fact that the drift is considered to be
constant in Eq. (24) and hence, the diffusion term starts dominating and results in a higher standard deviation.

Fig. 6(b) shows the response PDFs at t = 0.2 sec. Since the model was trained only up to t=0.1 secs, this prediction is
outside the training window. We observe that the proposed DPC yields excellent results with the PDF of QoI matching
almost exactly with the ground truth. This clearly indicates the generalization capability of the proposed approach. The
physics-only and data-only models, on the other hand, fail to capture the PDF of the QoI. The failure of the data-driven
approach is attributed to its lack of generalization. The physics-only model fails because the effect of mis-specified
physics becomes prominent with an increase in time.

Next, we consider the case with mis-specified physics in the diffusion. The known physics in this case is represented
as

dY = (x1 − Y )dt+ dBt (25)
Other setups, including training data size are kept unchanged.

Figs. 7(a) and 7(b) show the PDFs of QoI at t = 0.08 sec (within the training window) and t = 0.59 sec (outside the
training window). For both cases, the proposed DPC yields highly accurate results with the response PDF matching
exactly with the ground truth. The physics only model, failed to capture the output distribution, with slight offset
mean, and completely flat curve. The offset can be attributed to the accumulated error during time marching, which is
present due to incorrect diffusion term. The data-only model also fails to capture the PDF of QoI for both the cases.
This indicates poor generalization of purely data-driven approaches.

4.3 Example 3: SIR Stochastic model

In this example, we consider Susceptible-Infected-Recovered (SIR) epidemiological model. This model is commonly
used to estimate the number of people that are infected with a contagious disease like COVID -19, in a closed popula-
tion over time. The governing set of SDEs for this model takes the following form:

dS(t)/dt = −βS(t)I(t)

dI(t)/dt = βS(t)I(t)− γI(t) + σ(t, I(t))dBt

dR(t)/dt = γI(t)

(26)

where S(t), I(t) and R(t) denote the number of susceptible cases, infected cases and recovered cases, respectively at
any given time t. We consider α = 0.01, β = 0.5, γ = 0.5 and

σ(t, I(t)) = αI(t). (27)
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(a) t = 0.08 sec
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Figure 7: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the diffusion term is imprecisely known a) PDF comparison within the trained regime
b) PDF comparison for extrapolated data-sets (prediction) outside the training regime. The model is trained for first
0.1 sec

We consider, the total number of infected cases i.e., I(t) at any given time t, as the QoI for this example. The initial
conditions, S0 = S(t = 0) ∼ U(1200, 1800) and I0 = T (t = 0) ∼ U(20, 200) are considered to be stochastic.
Assuming N(t) to be the total population, we have

S(t) + I(t) +R(t) = N(t). (28)

We have considered N(t) = 2000.

First, we consider the case where the known physics is of the following form:

dS(t)/dt = −βS(t)I(t)

dI(t)/dt = −γI(t) + αI(t)dBt

dR(t)/dt = γI(t)

(29)

This corresponds to incomplete/missing physics in the drift component of the SDE. To accommodate for the missing

physics, we also have access to high-fidelity sensor data, D =

{
ξ(i),

{
I
(i)
j,1:Nt

}m

j=1

}N

i=1

with m being the number of

replication per training sample, N being the number of training samples, and Nt being the time-step until which data
is available. Here, ξ(i) =

[
S
(i)
0 , I

(i)
0

]
, m = 50, N = 40, and Nt = 100. We have considered a time-step ∆t = 0.001

sec and hence, we have data until t = 0.1 sec. The model is trained with a learning rate of 1× 10−6, which decreases
by a factor of 0.9 after every 50 epochs. The objective here is to use the proposed DPC to solve the mis-specified
physics in Eq. (29) and the high-fidelity data D.

Fig. 8(a) shows the PDF of the QoI obtained using different methods at t = 0.01 sec.We observe that the proposed DPC
yields very good results, with the PDF of QoI matching almost exactly with that of the ground truth. This indicates the
robustness of the proposed approach and its capability in capturing multi-modal distributions.The physics-only and the
data-only models, on the other hand, fail to capture the response PDF. Fig. 8(b) shows the response PDFs at t = 0.13
sec. Since the model was trained, only up to t=0.1secs, this is a prediction, ahead of the training window.. The other
two models, however, fail to capture the response PDF. The failure of the purely data-driven and purely physics-driven
approaches is attributed to the lack of generalization effect of mis-specified physics, respectively.

Next, we consider the case with mis-specified physics in the diffusion. The known physics in this case is represented
as

dS(t)/dt = −βS(t)I(t)

dI(t)/dt = βS(t)I(t)− γI(t) + dBt

dR(t)/dt = γI(t)

(30)

Other setups, including training data size are kept unchanged.
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(a) t = 0.01 sec
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Figure 8: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the drift term is imprecisely known a) PDF comparison within the trained regime b)
PDF comparison for extrapolated data-sets (prediction) outside the training regime. The model is trained for first 0.1
sec

0 500 1000 1500 2000
QoI

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Pr
ob

ab
ilit

y 
de

ns
ity

 fu
nc

tio
n

40 20
0.00

0.05

Ground Truth
Proposed approach
Data only
Physics only

(a) t = 0.03 sec
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(b) t = 0.55 sec

Figure 9: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the diffusion term is imprecisely known a) PDF comparison within the trained regime
b) PDF comparison for extrapolated data-sets (prediction) outside the training regime. The model is trained for first
0.1 sec

Figs. 9(a) and 9(b) show the PDFs of QoI at t = 0.03 sec (within the training window) and t = 0.55 sec (outside the
training window). For both cases, the proposed DPC yields highly accurate results with the response PDF matching
exactly with the ground truth. The physics-only model, failed to capture the output distribution, with a offset in the
mean and a sharp peak in the PDF. The offset can be attributed to the accumulated error during time marching, which
is present due to incorrect diffusion term. The data-only model also fails to capture the PDF of QoI for both the cases.
This indicates poor generalization of purely data-driven approaches.

4.4 Example 4: Duffing-Van der Pol oscillator

As the last example, we consider stochastic Duffing-Van der Pol oscillator, which is a nonlinear oscillator and has
wide applications in the areas of physics, chemistry, biology, engineering and electronics to name a few. We have
considered the Duffing-Van der pol oscillator with parametric external excitation [30]. The governing SDE for the
same looks like:

dXt = Ytdt

dYt =
{
ξ1(1−X2

t )Yt + ξ2Xt − αX3
t

}
dt+ σXtdBt

(31)
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(b) t = 8.865 sec

Figure 10: PDF comparison of output data-sets at a specific time, computed from different models with that of the
ground truth, for the case where the the drift term is imprecisely known a) PDF comparison within the trained regime
b) PDF comparison for predicted data-sets (outside the training window). The model is trained for first 1 sec

where ξ1 = c
k ∼ U(0.1, 0.5) and ξ2 = k

m ∼ U(5, 50)are the two input parameters. We consider α = 100 and
σ = 104. The QoI for this example is taken as the magnitude of displacement x(t).

We first consider the case involving mis-specified drift. We have assumed the term ξ1x
2 · dxdt to be zero, thus the known

physics is of the following form:

dXt = Ytdt

dYt =
{
ξ1Yt + ξ2Xt − αX3

t

}
dt+ σXtdBt

(32)

To accommodate for the missing physics, we also have access to high-fidelity sensor data, D ={
ξ(i),

{
x
(i)
j,1:Nt

}m

j=1

}N

i=1

withm being the number of replication per training sample, N being the number of training

samples, and Nt being the time-step until which data is available. Here, ξ(i) =
[
ξ
(i)
1 , ξ

(i)
2

]
, m = 50, N = 40, and

Nt = 1000. We have considered a time-step ∆t = 0.001 sec and hence, we have data until t = 1 sec. The model is
trained with a learning rate of 1× 10−6, which decreases by a factor of 0.95 after every 50 epochs. Similar to the pre-
vious examples, we have used ADAM optimizer for training the model. The objective here is to use the proposed DPC
to solve the stochastic duffing Van der pol oscillator by utilizing mis-specified physics in Eq. (32) and the high-fidelity
data D.

Fig. 10(a) shows the PDF of the QoI obtained using different methods at t = 0.3 sec. The PDF predicted using the
proposed approach matches almost exactly with the ground truth. Methods relying only on physics and only of data,
on the other hand, fail to capture the response PDF correctly. In both cases, only a single mode of the response is
captured. Fig. 10(b) shows the response PDFs at t = 8.865 secs. Since the model was trained, only up to t = 1 sec,
this is a prediction, way ahead of the training window. In this case also, the proposed DPC yields excellent results;
this illustrates the excellent generalization of the proposed approach. The data-only model fails to capture the PDF of
the QoI with offset mean and high standard deviation. This is because the dynamic behavior of duffing Van Der pol is
adequately captured by only 1 sec of data. The physics only model performs satisfactorily in this case. This is because
the effect of the missing physics dissipates with time. Nonetheless, results obtained using the proposed approach is
best among the three.

Next, we consider the case with mis-specified diffusion. The known physics in this case is represented as

dXt = Ytdt

dYt =
{
ξ1Yt + ξ2Xt − αX3

t

}
dt+ dBt

(33)

Other setups, including training data size are kept unchanged. We considered a learning rate of 1 × 10−5, which
decreases by a factor of 0.95 after every 50 epochs.

Figs. 11(a) and 11(b) show the PDFs of QoI at t = 0.915 sec (within the training window) and t = 8.778 sec (outside
the training window). The proposed DPC yields excellent results in both the cases with response PDFs matching
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(a) t = 0.915 sec
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Figure 11: PDF comparison of output data-sets at specific time, computed from different models with that of the
ground truth, for the case where the diffusion term is imprecisely known a) PDF comparison within the trained regime
b) PDF comparison for predicted data-sets (outside the training window). The model is trained for first 1 sec

almost exactly with the ground truth. This physics based model, because of the mis-specified diffusion, fails to capture
the peaks of the response PDF. Also, the results obtained using physics based model deviates with time. The data only
model also captures the response PDF satisfactorily at t = 0.915 sec. However, it fails of capture the response PDF at
t = 8.778 sec. This again is attributed to the fact that the behavior of the Duffing-Van der Pol oscillator is significantly
different outside the training regime. Overall, based on the examples presented, it is safe to conclude that the proposed
approach is robust and can generalize to unseen environments. Finally, before concluding this section, we present a
summary of the results elaborated in this section in Table 1.

Table 1: Mean Hellinger distance averaged over time
Method BS$4.1 MOU$4.2 SIR$4.3 DVdp$4.4

Drift Diffusion Drift Diffusion Drift Diffusion Drift Diffusion
DPC 0.452 0.981 0.531 0.328 0.00482 9.86e-6 0.0428 0.0271

Data only 98.618 98.468 75.423 75.423 0.227 0.299 23.811 23.764
Physics only 66.428 61.763 58.141 45.564 0.277 0.296 1.277 1.296

5 Conclusion

In this work, we have proposed novel approach, referred to as the Deep Physics Corrector (DPC) for solving stochastic
differential equations (SDE). The proposed approach allows seamless integration of known physics and data and
hence, is robust and generalizes well to unseen environments. We solved four numerical examples using the proposed
approach. The primary observations and key features of the proposed approach are highlighted below:

• DPC yields highly accurate results on all the four benchmark example problems, that are carefully selected
from different domains, presenting different levels of complexities. This demonstrates the robustness, flexi-
bility and wide applicability of the proposed approach.

• DPC combines approximate physics in such a way so as to retain the advantages of both physics and data.
This is evident from the results where the proposed approach yields excellent results even when the test data
has significantly different characteristics as compared to the training regime (e.g., in case of Van der pol
oscillator).

• The proposed approach can be used even when the known physics is significantly different as compared to
the actual governing physics. For example, the proposed DPC correctly captured the response PDF for the
Black Scholes problem with mis-specified drift and diffusion.

• DPC is semi-interpretable in the sense that it incorporates interpretable physics within the network architec-
ture. This is a unique feature of the proposed approach.
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• The proposed DPC is data efficient. This is evident from the fact that the proposed DPC needed only 0.1
sec of data at a sampling frequency of 1000 Hz for the first three examples and 1 sec of data at sampling
frequency of 1000 Hz for the last example.

The Proposed approach has successfully demonstrated its capabilities to work as surrogate stochastic simulator, not
only with in the trained region but has also predicted accurate response distribution, way outside it. Having said that
the proposed approach has its own limitations. For example, in the current implementation, the number of training
samples and training window are selected based on ad hoc trial and error approach. A systematic procedure for
selecting the training samples is necessary to realize the complete potential of the proposed approach. Also, the
proposed framework uses Euler Maruyama scheme for time-integration. Using higher-order stochastic integration
scheme can further enhance the framework. In future studies, some of these limitations will be addressed.
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