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Abstract

This paper proposes a fast time-domain boundary element method (TDBEM) to solve three-dimensional transient

electromagnetic scattering problems regarding perfectly electric conductors in the classical marching-on-in-time

manner. The algorithm of the fast TDBEM is a time-domain variant of the interpolation-based fast multipole method

(IFMM), which is similar to the time-domain IFMM for acoustic scattering problems investigated in the author’s

previous studies. The principle of the present IFMM is to interpolate the kernel functions of the electric and magnetic

field integral equations (EFIE and MFIE, respectively) so that every kernel function is expressed in a form of

separation of variables in terms of both the spatial and temporal variables. Such an expression enables to construct

a fast method to evaluate the scalar and vector potentials in the EFIE and MFIE with using so-called multipole-

moments and local-coefficients associated with a space-time hierarchy. As opposed to O(N2
s Nt) of the conventional

TDBEM, the computational complexity of the fast TDBEM is estimated as O(N1+δ
s Nt), where Ns and Nt stand for

the spatial and temporal degrees of freedom, respectively, and δ is typically 1/2 or 1/3. The numerical examples

presented the advantages of the proposed fast TDBEM over the conventional TDBEM when solving large-scale

problems.

Keywords: Electromagnetic scattering, Time domain, Combined field integral equation, Marching-on-in-time

scheme, Boundary element method, Fast multipole method, Interpolation

1. Introduction

Full-wave electromagnetic (EM) simulators are strong driving forces to produce scientific and industrial achieve-

ments nowadays, e.g. [1] and the references therein. To deal with not only transient response but also frequency re-

sponse (with the help of Fourier analysis), time-domain methods are useful. As such a method, the most widespread

tool is presumably the finite-difference time-domain (FDTD) method [2]. On the other hand, the time-domain in-

tegral equation (IE) methods or, equivalently, the time-domain boundary element methods (TDBEMs) are rigorous

and historical methods [3, 4, 5, 6, 7], but their high computational cost as well as high memory consumption is often

a severe problem in practical situations [8].

To overcome the problem, the plane-wave time-domain (PWTD) algorithm was proposed as the fast algorithm

for marching-on-in-time (MOT) based IE solvers firstly for acoustics by Ergin et al [9, 10, 11] and then extended to

electromagnetics by Shanker et al [12, 13]. The PWTD can be esteemed as a time-domain version of the fast multi-

pole method (FMM) [14, 15, 16, 17]. This is because the PWTD relies on (i) a far-field approximation with the help

of the plane-wave expansion, which is utilised to represent the integral kernel (i.e. the fundamental solution for the

wave equation) in a form of the separation of variables, and (ii) a hierarchical structure of computing domain, which

is used to define far- and neighbour-fields in space-time. While the computational complexity of the conventional

algorithm of the TDBEM is O
(

N2
s Nt

)

(where Ns and Nt stand for the spacial and temporal degrees of freedom, re-

spectively), the PWTD realises a lower complexity of O
(

N1.5
s (log Ns)Nt

)

for the two-level approach [12] and further
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O
(

Ns(log2 Ns)Nt

)

for the multi-level approach [13]. It is worth mentioning that the PWTD-accelerated time-domain

IE solvers were parallelised to solve very large-scale problems of Ns ∼ 106 and Nt ∼ 103 on a memory-distributed

computing system recently [18].

Following the studies on the PWTD [9, 10, 11, 12, 13, 19], the present author proposed another fast algorithm

for the TDBEM for 3D acoustics [20]. The algorithm is similar to the PWTD, but the starting point is not the

aforementioned plane-wave expansion but interpolation with respect to both spatial and temporal variables of the

fundamental solution. The interpolated fundamental solution is in a form of separation of variables and, thus, allows

to construct an FMM-like algorithm. This kind of FMM is termed the interpolation-based FMM (IFMM) whether

it is for time domain [21, 22] or not [23]. Further, the recent work [24] enhanced the formulation of [20] so that

it can handle the B-spline function of not only the first order but also any order d (≥ 0) as the temporal basis.

The considerable difference from [20] is in the scheme of multipole-to-local (M2L) translation. The complexity of

the IFMM-accelerated TDBEM for acoustics [20, 24] is calculated as O
(

N1+δ
s Nt

)

, where δ is 1/3 when boundary

elements (to discretise the surface of sound scatterers) are arranged uniformly in a computational domain and 1/2

when they are lying on a plane. As explained below, this computational complexity of the acoustic case is directly

succeeded to the present EM case. Accordingly, the IFMM that the present study develops is semi-fast in comparison

with the (multi-level) PWTD [13]. However, it should be emphasised that the numerical implementation of the

IFMM is relatively facile because of its mathematical conciseness.

Only the PWTD [12, 13] and the IFMM are not the accelerating methods to solve the IEs for electromagnet-

ics. The other methods include the hierarchical FFT algorithm (HIL-FFT) [25], the time-domain adaptive integral

method (TD-AIM) [26], the two-level nonuniform grid time domain (NGTD) algorithm [27] and its multi-level algo-

rithm [18], the time-domain UV method [28], the fast dipole method [29], and potentially the accelerated Cartesian

expansions (ACE) for evaluating general pairwise interactions [30, 31]. The methodological and highest similarity

of the proposed IFMM to ACE [30] is to utilise the Taylor expansion fundamentally when both methods formulate

their FMMs; precisely speaking, the proposed method exploits an interpolation of the kernel function to realise its

separation of variables and then the Taylor expansion to construct a fast M2L operation, which is described in Algo-

rithm 4 in [24]. However, extending the basic FMM operations presented in [30, Theorems 2.3–2.5] from the case

of a single target time-step to that of multiple target time-steps is not obvious. Hence, although the proposed method

has a higher computational complexity of O(N1+δ
s Nt) (where δ = 1/3 or 1/2) than O(NsNt) of ACE, the proposed

IFMM is more general in the sense that it can deal with multiple target time-steps by way of the space-time hier-

archy (see Eq. (27)). Further, the present paper highlights a construction of the IFMM for electromagnetic integral

equations rather than the particle simulations that ACE handles.

The purpose of this study is to progressively extend the IFMM for acoustic scattering problems [20, 24] to EM

scattering problems regarding perfectly electric conductors (PECs) in 3D. The acoustic case handles scalar fields,

while the EM case does vector fields. This difference makes it attractive and challenging to construct the IFMM

for the EM case. However, the overall algorithm remains almost the same as the acoustic case. Therefore, the

prime focus of this article is on the formulation of the series of the basic operations necessary for building an FMM-

like algorithm, i.e. (I) creation of multipole-moments (MMs), (II) translation of MMs to local-coefficients (LCs),

and (III) evaluation of potentials by using LCs. In what follows, these operations are called P2M, M2L, and L2P,

respectively, in accordance with the usual terminology of the FMM.

Selecting an IE to be solved is important. To eliminate the nonphysical resonance solution, it has been usual to

use the combined field integral equation (CFIE) since Shanker et al [32] established the CFIE, which was defined

as a linear combination of the electrical field integral equation (EFIE) and the magnetic field integral equation

(MFIE), upon the earlier works by Rynne et al [33] and Vechinski et al [34]. However, as indicated by Shanker

et al [32], even the CFIE can be inaccurate owing to the employing numerical schemes (such as the explicit MOT

scheme used in [34]) from the perspective of perturbations of the poles, which no longer correspond to those of the

cavity resonance modes but those of the exterior problem in concern, of integral operators in Laplace-transformed

domain [3]. Consequently, in the present case of the exterior scattering problems regarding PECs with using the

implicit MOT scheme, three types of the CFIE have been used under a variety of numerical schemes in the literature.

The first type is the original one [32], i.e. a linear combination of the EFIE and the MFIE, and used in some

works [12, 28, 35]. The second type is a combination of the temporal-derivatives of EFIE and that of MFIE, which

are denoted by ∂tEFIE and ∂tMFIE, respectively, hereafter. In particular, this type was selected to construct the
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multi-level PWTD [13]. The third type relies on the ∂tEFIE and the MFIE [36].

Dissimilarly to the above three types of CFIE, the present study employs another CFIE that comprises of ∂tEFIE,

∂tMFIE, and MFIE. This unconventional CFIE can indeed work properly under the presented numerical settings,

i.e. the Rao–Wilton–Glisson (RWG) [37, 38] basis for space and the quadratic B-spline basis for time, as seen in the

numerical test in Section 4. In particular, the numerical result indicates that combining the three IEs is inevitable

when the IFMM is used, in other words, when additional approximations are introduced.

It should be noted that using ∂tEFIE instead of the EFIE is necessary from the viewpoint of the computational

cost. The naive EFIE contains the temporal integral in its scalar potential. Hence, unless the temporal integral

is erased by the temporal differentiation, the cost to solve the EFIE (even combined with MFIE and/or ∂tMFIE)

scales as O(N2
s N2

t ) in the conventional algorithm. It is possible to construct an IFMM for the EFIE, but the resulting

TDBEM would be slower than an IFMM based on ∂tEFIE. This is because the cancellation of the successive

discretised potentials (see (9)) does not hold for the scalar potential in the EFIE. However, using the Hertz vector P

such that ∂t P = J can avoid the temporal differentiation of the EFIE [36, 39] and enables to construct an IFMM in

the same way as the case of ∂tEFIE.

The remainder of this article is organised as follows: Section 2 shows the formulation of the TDBEM based on

the aforementioned CFIE and the discretisation scheme. Section 3 constructs the IFMM to speed up the TDBEM in

the previous section. The emphasis is on the formulation of the aforementioned operations (I)–(III) by deriving the

expression of the scalar/vector potentials with the MMs and LCs in a general space-time configuration. Section 4

assesses the proposed fast TDBEM numerically with regard to the accuracy, performance, memory usage, and

applicability. Section 5 concludes the present study.

2. TDBEM for EM scattering problems

This section describes the conventional TDBEM based on the aforementioned CFIE, which consists of ∂tEFIE,

∂tMFIE, and MFIE, regarding PECs irradiated by an incident EM wave. The CFIE is discretised with the RWG

basis [37] for space and the B-spline basis for time. As usual, the Galerkin method is used for space, which helps to

reduce the singularity of the scalar potential of the ∂tEFIE. Last, the discretised CFIE is solved in a standard MOT

scheme.

2.1. Problem statement and CFIE

As illustrated in Figure 1, let PECs exist in a domain V in the infinite (free) space IR3, where the permittivity and

permeability are given by ǫ and µ, respectively; then, the wave speed c and the wave impedance η are determined

as (ǫµ)−1/2 and (µ/ǫ)1/2, respectively. The surface or boundary ∂V is denoted by S . The unit normal vector n to

S is supposed to be directed to the inside of V , following the usual manner in the field of the BEM for exterior

problems. When incident EM fields, denoted by EI and HI, are given, the problem is to solve the induced surface

current density J := n× H, which is supposed to be zero when the time t ≤ 0, from the following CFIE:

L̇(J)(x, t) + θη
(

K̇(J)(x, t) + ζK(J)(x, t)
)

= n(x) × n(x) × ĖI(x, t) + θηn(x) ×
(

ḢI(x, t) + ζHI(x, t)
)

x ∈ S , t > 0, (1)

where θ (> 0) and ζ (> 0) denote predefined coupling parameters, the dot ˙( ) denotes the temporal differentiation ∂t,

and the operators L and K correspond to those of the standard EFIE and MFIE, respectively, i.e.

L̇(J)(x, t) := −n(x) × n(x) ×
(

Ä(x, t) + ∇xφ̇(x, t)
)

, (2)

K(J)(x, t) := n(x) × P(x, t). (3)
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Here, the scalar potential φ and the vector potentials A and P are defined as follows:

A(x, t) :=
µ

4π

∫

S

J(y, t − r/c)

r
dS y,

φ(x, t) := − 1

4πε

∫

S

∫ (t−r/c)+

0

∇y · J(y, s)

r
dsdS y,

P(x, t) :=
1

4π

∫

S

∇x ×
J(y, t − r/c)

r
dS y

and consequently

Ä(x, t) =
µ

4π

∫

S

J̈(y, t − r/c)

r
dS y, (5a)

φ̇(x, t) = − 1

4πε

∫

S

∇y · J(y, t − r/c)

r
dS y, (5b)

Ṗ(x, t) + ζP(x, t) =
1

4π

∫

S

∇x ×
J̇(y, t − r/c) + ζJ(y, t − r/c)

r
dS y. (5c)

In these, r denotes the distance between two points x and y, i.e. r := |x − y|, and (·)+ denotes the truncated power

function (of degree one), i.e. (x)+ = 0 if x < 0 and (x)+ = x if x ≥ 0.

H I

E I

k I

o
x2

x1

x3

n

H
E

Incident EM wave

Total EM wave

Free space
ε, µ

J

Surface 
current
density

SSurface

Unit normal to S
VPEC

Figure 1: EM scattering problems. The vector kI denotes the propagating direction of the incident EM wave.

2.2. Approximation of J

The surface S is discretised with Ns planar triangular elements, denoted by S 1, . . . , S Ns
. In addition, equidistant

time-steps are introduced, i.e. tβ := β∆t (β = 0, 1, 2...) denotes the βth time-step and ∆t denotes the prescribed

time-step length. Then, the surface current density J in (1) is approximated as follows:

J(x, t) ≈
Ne∑

j=1

∑

β≥0

J
β

j
f j(x)Nβ,d(t) x ∈ S , t > 0, (6)

where Ne stands for the number of edges, denoted by e1, . . . , eNe
, of all the triangles and f j represents e j’s RWG

basis function [37] defined by

f j(x) :=






±l j

2A±
j

(x − o±
j
) if x ∈ S ±

j

0 otherwise
.
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Here, S +
j

(respectively, S −
j
), whose area is A+

j
(A−

j
), stands for the triangles in the positive (negative) side of e j,

whose length is l j; see Figure 2. In addition, o±
j

denotes S ±
j
’s vertex that is not on e j. Also, Nβ,d denotes the d-th

order B-spline basis for time and can be split to d + 2 truncated power functions of degree d as follows [24]:

Nβ,d(t) =

d+1∑

κ=0

wκ,d
(

t − tβ+κ

∆t

)d

+

β = 0, 1, 2, . . . .

Here, the weight wκ,d is given as

wκ,d =
d + 1

Π
d+1
i=0;i,κ

(i − κ)
κ = 0, . . . , d + 1.

S j
-

oj
+

oj
-

j th edgeS j
+ e j

Figure 2: Notations for the jth RWG basis function f j .

In the previous study on the construction of the IFMM for transient acoustic scattering problems [24], the

Burton–Miller integral equation (BMIE) is targeted. The BMIE, which corresponds to the CFIE in (1), consists of

the single- and double-layer potentials and their normal derivatives, which are scalar-valued functions. In addition,

to approximate the boundary variables (i.e. sound pressure and its normal derivative) in the BMIE, the spatial

basis is chosen as the piece-wise constant basis differently from the RWG basis, while the temporal basis is the

aforementioned B-spline basis. From these, the discretisation of the scalar/vector potentials in (5) (and also the

formulation of the IFMM investigated in the next section) is relatively complicated, but the way of thinking is the

same as the acoustic case.

Further, the BMIE employs the collocation method, while the CFIE does the Galerkin method. However, the

role of the IFMM is to evaluate potentials at certain points x ∈ S . Hence, the integral with respect to x ∈ S , which

appears after the testing procedure of the CFIE, does not matter when the IFMM is constructed for the EM case.

2.3. Discretisation of the the potentials in the CFIE

Using the approximation in (6), the scalar and vector potentials in (5) can be discretised at t = tα (where

α = 1, . . . ,Nt − 1) as follows:

Ä(x, tα) =

Ne∑

j=1

α−1∑

β=0

d+1∑

κ=0

wκ,d
µ

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

Üd(x, y, tα, tβ+κ)(y − oσj )dS y

︸                                                              ︷︷                                                              ︸

=: Ä
(α−β−κ)
j (x)

J
β

j
, (7a)

φ̇(x, tα) =

Ne∑

j=1

α−1∑

β=0

d+1∑

κ=0

wκ,d
−1

4πε

∑

σ=±

σl j

Aσ
j
(c∆t)d

∫

S σ
j

Ud(x, y, tα, tβ+κ)dS y

︸                                                   ︷︷                                                   ︸

=: φ̇
(α−β−κ)
j

(x)

J
β

j
, (7b)

Ṗ(x, tα) + ζP(x, tα)

=

Ne∑

j=1

α−1∑

β=0

d+1∑

κ=0

wκ,d
1

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

(y − oσj ) × ∇y

(

U̇d(x, y, tα, tβ+κ) + ζU
d(x, y, tα, tβ+κ)

)

dS y

︸                                                                                                    ︷︷                                                                                                    ︸

=: Ṗ
(α−β−κ)
j (x) + ζP

(α−β−κ)
j

(x)

J
β

j
, (7c)
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where the summation overσ considers the positive and negative sides of the edge e j. In addition, the kernel function

Ud is defined as follows:

Ud(x, y, t, s) :=
(c(t − s) − |x − y|)d

+

|x − y| , (8)

which is exactly the same as the kernel function used for the acoustic case [24, Eq. (10)].

It should be noted that the coefficients of J
β

j
in the RHSs of (7) are determined by the difference of α and β + κ

because of the definition of Ud in (8) and the assumption of the equidistant time-steps. To emphasise this, the

difference is written inside brackets.

Similarly to the acoustic case [24, Remark 4], because the support of Nβ,d is finite, i.e. [tβ, tβ+d+1], it can be

proven that

d+1∑

κ=0

wκ,dχ
(γ−κ)
i j

(x) ≡ 0 if γ > γ∗, (9)

where

γ∗ :=
maxx,y∈S |x − y|

c∆t

+ d + 1 (10)

is a constant determined by the geometry of S , ∆t, and d. Also, χ
(γ)

i j
is the representative of A

(γ)

i j
, Ȧ

(γ)

i j , Ä
(γ)

i j , φ̇
(γ)

i j
,

P
(γ)

i j
, and Ṗ

(γ)

i j . It should be noted that φ
(γ)

i j
cannot have the vanishing property in (9) because of its temporal integral;

from this reason, the present study does not utilise the EFIE but ∂tEFIE.

Using (9), one can replace
∑α−1
β=0 in (7) with

∑α−1
β=β∗ , where β∗ := α − γ∗. As a result, the following expressions

are obtained:

Ä(x, tα) =

Ne∑

j=1

α−1∑

β=β∗

d+1∑

κ=0

wκ,d Ä
(α−β−κ)
j (x)J

β

j
, (11a)

φ̇(x, tα) =

Ne∑

j=1

α−1∑

β=β∗

d+1∑

κ=0

wκ,dφ̇
(α−β−κ)
j

(x)J
β

j
, (11b)

Ṗ(x, tα) + ζP(x, tα) =

Ne∑

j=1

α−1∑

β=β∗

d+1∑

κ=0

wκ,d
(

Ṗ
(α−β−κ)
j (x) + ζP

(α−β−κ)
j

(x)
)

J
β

j
. (11c)

It should be remarked that every summation over β considers at most γ∗ − 1 terms.

To simplify the above expressions, a new variable Ĵ j is defined as a weighted sum of J
β

j
, . . . , J

β−d−1

j
, i.e.

Ĵ
β

j
:=

min(d+1, β−β∗)∑

κ=0

wκ,d J
β−κ
j

β∗ ≤ β ≤ α − 1. (12)

Moreover,
∑α−1
β=β∗ is written to

∑α
β=β∗+1 by re-defining β + 1 as β. Then, as shown in Appendix A, the potentials in

(11) can be written as follows:

Ä(x, tα) =

Ne∑

j=1

α∑

β=β∗+1

Ä
(α−β+1)

j (x)Ĵ
β−1

j
, (13a)

φ̇(x, tα) =

Ne∑

j=1

α∑

β=β∗+1

φ̇
(α−β+1)

j
(x)Ĵ

β−1

j
, (13b)

Ṗ(x, tα) + ζP(x, tα) =

Ne∑

j=1

α∑

β=β∗+1

(

Ṗ
(α−β+1)

j (x) + ζP
(α−β+1)

j
(x)

)

Ĵ
β−1

j
. (13c)
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It is worth mentioning that the integrals in (13) as well as their spatial and temporal derivatives can be evaluated

analytically. To this end, the integrals are written as follows:

Ä
(γ)

j (x) =
µ

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

(

(x − oσj )Ïd(x, tγ) − Ïd(x, tγ)
)

,

φ̇
(γ)

j
(x) =

−1

4πε

∑

σ=±

σl j

Aσ
j
(c∆t)d

Id(x, tγ),

P
(γ)

j
(x) =

1

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

(x − oσj ) ×
(

−∇xId(x, tγ)
)

,

where the identity (y−oσ
j
)×r ≡ (x−oσ

j
)×r was used in the last expression and the following scalar- and vector-valued

integrals are defined:

Id(x, t) :=

∫

S σ
j

(ct − r)d
+

r
dS y, Id(x, t) :=

∫

S σ
j

(ct − r)d
+

r
(x − y) dS y ≡ −∇x

∫

S σ
j

(ct − r)d+1
+

d + 1
dS y.

The way of analytical evaluation of Id is the same as the acoustic case [24, Appendix B], while Id can be calculated

by performing the integral similarly to Id and then differentiating the result with respect to the evaluation point x.

However, the IFMM evaluates the integrals numerically. This is relatively inaccurate but acceptable because x

is sufficiently far from y by construction and, thus, those integrals are non-singular.

2.4. Testing procedure

The RWG basis f i, where i = 1, . . . ,Ne, is applied to the CFIE in (1) as the test function. Then, the tested terms

in the LHS of (1) can be written from (13) as follows:

∫

S

f i(x) ·
(

−n(x) × n(x) × Ä(x, tα)
)

dS x =

∫

S

f i(x) · Ä(x, tα)dS x =

Ne∑

j=1

α∑

β=β∗+1

Ä
(α−β+1)

i j
Ĵ
β−1

j
, (15a)

∫

S

f i(x) ·
(

−n(x) × n(x) × ∇S x
φ̇(x, tα)

)

dS x = −
∫

S

(∇S x
· f i(x)

)

φ̇(x, tα)dS x = −
Ne∑

j=1

α∑

β=β∗+1

φ̇
(α−β+1)

i j
Ĵ
β−1

j
,

(15b)
∫

S

f i(x) · n(x) ×
(

Ṗ(x, tα) + ζP(x, tα)
)

dS x =

Ne∑

j=1

α∑

β=β∗+1

(

Ṗ
(α−β+1)

i j
+ ζP

(α−β+1)

i j

)

Ĵ
β−1

j
, (15c)

where

Ä
(γ)

i j
:=

∑

ρ=±

∫

S
ρ

i

f i(x) · Ä
(γ)

j (x) dS x,

φ̇
(γ)

i j
:=

∑

ρ=±

∫

S
ρ

i

(∇S x
· f i(x)

)

φ̇
(γ)

j
(x) dS x,

Ṗ
(γ)

i j
+ ζP

(γ)

i j
:=

∑

ρ=±

∫

S
ρ

i

f i(x) · n(x) ×
(

Ṗ
(γ)

j (x) + ζP
(γ)

j
(x)

)

dS x.

Here, the domain of the integral over x is limited to S ±
i

because the support of f i is S +
i
∪ S −

i
.From (15), the CFIE in

(1) can be discretised as follows:

α∑

β=β∗+1

Z(α−β+1)Ĵβ−1
= Vα−1 α = 1, . . . ,Nt − 1, (16)
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where Z(γ) is the Ne × Ne-dimensional coefficient matrix regarding a time-step difference of γ (≥ 1) and its (i, j)th

element is defined by

Z
(γ)

i j
:= Ä

(γ)

i j
− φ̇(γ)

+ θη
(

Ṗ
(γ)

i j
+ ζP

(γ)

i j

)

(17)

for i, j = 1, . . . ,Ne. Also, Ĵα−1 is the Ne-dimensional vector whose jth element is Ĵα−1
j

. In addition, Vα−1 is also the

Ne-dimensional vector and its ith component Vα−1
i

is given by

Vα−1
i :=

∑

ρ=±

∫

S
ρ

i

f i(x) ·
[

−Ė
I
(x, tα) + θηn(x) ×

(

Ḣ
I
(x, tα) + ζH

I(x, tα)
)]

dS x. (18)

To evaluate each spatial integral on a triangle S
ρ

i
with respect to x in (17) and (18), the Gaussian quadrature

formula is applied with a predefined number of quadrature points. In the numerical experiments in Section 4, three

points formula is used.

2.5. Solving the discretised CFIE

To solve the unknown vector Jα−1 at the current αth time-step according to the MOT scheme, (16) is rewritten

as

w0,dZ(1)Jα−1
= Rα−1 α = 1, . . . ,Nt − 1, (19)

where the RHS vector is defined as

Rα−1 := Vα−1 −
α∑

β=β∗+1

Z(α−β+1)Ĵβ−1. (20)

Here, Ĵβ in (12) should be redefined so that it excludes the underlying unknown vector Jα−1, i.e.

Ĵβ :=






min(d+1, β−β∗)∑

κ=0

wκ,dJβ−κ if β∗ ≤ β ≤ α − 2

min(d+1, β−β∗)∑

κ=1

wκ,dJβ−κ if β = α − 1

.

2.6. Computational complexity

The estimation of the computational complexity of the above conventional TDBEM is made on the following

assumptions:

Assumption 1. The size of the boundary S is O(1), i.e. the size is independent of both Ns (∼ Ne) and Nt.

Assumption 2. The time-step size ∆t is O(1).

From these, γ∗ in (10) is O(1). Then, the computational cost to evaluate the RHS vector Rα−1 in (20), which is

comprised of matrix-vector products Z(α−β+1)Ĵβ−1, is O(γ∗N2
e ) = O(N2

s ) for each α because the matrix Z(γ) becomes

denser as γ becomes larger. On the other hand, Z(1) in the LHS of (19) is close to diagonal and, thus, the cost to

solve (19) with respect to Jα−1 can be assumed to be O(Ne) = O(Ns); the GMRES [40] is utilised as the solver

with using 10−8 as the relative drop tolerance in the numerical analyses in Section 4. Therefore, the computational

complexity over all the time steps is estimated as O(N2
s Nt), which can prohibit the conventional TDBEM from

solving large-scale problems.

The IFMM plays a role to approximately evaluate the summation of the matrix-vector products (except for the

spatially-near interactions) in the RHS vectors in (20) with a computational cost less than O(N2
s Nt).
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3. Interpolation-based FMM

This section presents the fast TDBEM to solve the discretised CFIE in (19). Sections 3.1–3.3 formulate the

fundamental three steps (I)–(III) mentioned in Section 1, i.e. P2M, M2L, and L2P, for the scalar and vector potentials

of the CFIE in (1). From these as well as the M2M and L2L formulae, the algorithm of the (multi-level) fast TDBEM

is constructed in Section 3.4. Successively, the computational complexity of the proposed fast method is estimated

in Section 3.5. Last, some notes on the numerical implementation are given in Section 3.6.

3.1. Configuration

The above three steps are formulated in a general configuration. Let O and S be cubic boxes (called cells

hereafter) with the edge length of 2hs in 3D (Figure 3). These cells are supposed to be separated. In addition, let I

and J be time-intervals with the duration 2ht on the time axis. Here, t ≥ s is assumed for any t ∈ I and s ∈ J. Two

pairs (O, I) and (S , J) are called observation and source clusters, respectively.

To take this configuration into account, the discretised scalar and vector potentials in (13) are adjusted. First

of all, the vanishing property in (9) is no longer valid for the present group-wise calculation. This is because the

value of γ∗ in (10) is point-wise and thus cannot be constant in a certain source time-interval. This situation is the

same as the acoustic case described in Remark 6 of [24], where the matrices U(γ) and W(γ) should be read as the

matrix consisting of χ
(γ)

i j
(for any i, j ∈ [1,Ne]) mentioned in (9). To remove the vanishing property from (13), β∗

is considered as zero, that is, the summation
∑α
β=β∗+1 is replaced with

∑α−1
β=0 , where the index β is shifted by one. In

addition, the resulting double-summations
∑Ne

j=1

∑α−1
β=0 is replaced with

∑

{ j | S j⊂S }
∑

{β | tβ∈J}, which will be simplified

to
∑

j

∑

β. Moreover, (x, tα) is supposed in (O, I). Therefore, the following potentials are targeted to derive the

fundamental three steps:

Ä(x, tα) =
∑

j

∑

β

µ

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

Üd(x, y, tα, tβ)(y − oσj ) dS y Ĵ
β

j
, (21a)

φ̇(x, tα) =
∑

j

∑

β

−1

4πε

∑

σ=±

σl j

Aσ
j
(c∆t)d

∫

S σ
j

Ud(x, y, tα, tβ) dS y Ĵ
β

j
, (21b)

Ṗ(x, tα) + ζP(x, tα) =
∑

j

∑

β

1

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

(y − oσj ) × ∇y

(

U̇d(x, y, tα, tβ+κ) + ζU
d(x, y, tα, tβ+κ)

)

dS y Ĵ
β

j
,

(21c)

where x ∈ O and tα ∈ I.

ht2

hs2S

O

x2

x1

x3 t
J Is ty

x

hs2 ht2
0

Figure 3: General configuration of two cells O and S in 3D (left) and two time-intervals I and J on the time-axis (right) in order to formulate the

fundamental operations of the IFMM.

3.2. Interpolation of U

To realise the aforementioned operations (I)–(III), it is necessary to re-express the scalar/vector potentials in (21)

into a form of separation of variables. To this end, the IFMM interpolates the kernel function Ud(x, y, t, s) in (21),

which is defined by (8), with respect to all the eight arguments, i.e. x = (x1, x2, x3) ∈ O, y = (y1, y2, y3) ∈ S , t ∈ I,

and s ∈ J.
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Regarding the temporal variable s, for example, let {ℓi(·)}pt−1

n=0
be a set of pt interpolation functions (interpolants),

whose domain of definition is supposed to be [−1, 1] and {ωn}pt−1

n=0
be pt interpolation points on [−1, 1]. Then, Ud

can be interpolated with respect to s ∈ J as follows:

Ud(x, y, t, s) ≈
pt−1∑

n=0

Ud
(

x, y, t, J + htω
pt
n

)

ℓn





s − J

ht



 ,

where J denotes the centre of J; similarly, S , I, and J are defined. Further, by repeating such an interpolation for

the remaining seven variables (i.e. x1, x2, x3, y1, y2, y3, and t), Ud can be expressed as follows:

Ud(x, y, t, s) ≈
∑

a<ps

∑

b<ps

∑

m<pt

∑

n<pt

Ud
a,b,m,n(O, S , I, J)ℓa





x − O

hs



 ℓb





y − S

hs



 ℓm





t − I

ht



 ℓn





s − J

ht



 , (22)

where Ud
a,b,m,n

denotes the value of Ud at interpolation points, i.e.

Ud
a,b,m,n(O, S , I, J) := Ud(O + hsω

ps

a , S + hsω
ps

b
, I + htω

pt

m , J + htω
pt

n ).

Also, the notations

∑

a<ps

:=

ps−1∑

a1=0

ps−1∑

a2=0

ps−1∑

a3=0

, ℓa(ξ) := ℓa1
(ξ1)ℓa2

(ξ2)ℓa3
(ξ3), ω

ps
a :=

(

ω
ps
a1
, ω

ps
a2
, ω

ps
a3

)

are used for the spatial index a. Here, ξi is supposed to be in [−1, 1] that is the domain of definition of the interpolant

ℓai
. Similar notations are used for the index b.

It is found that the RHS of (22) is in a form of separation variables. The expression corresponds to the multipole-

expansion in the ordinary FMMs [14, 17] and the PWTD [9, 10, 11, 12, 13, 19].

Selecting the interpolant for each variable is not an evident task from the viewpoint of the resulting accuracy.

Following the previous study [20, 24], the present study exploits the cubic Hermite interpolation (CHI) with using

finite-difference approximated derivatives for both the spatial and temporal interpolations; see [20, Appendix B].

3.3. Formulation of P2M, M2L, and L2P for the CFIE

The underlying formulation can be obtained by substituting the interpolated Ud in (22) into the potentials in

(21). First, Ä in (21a) is written as follows:

Ä(x, tα) =

∑

j

∑

β

µ

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

∑

a

∑

b

∑

m

∑

n

U̇d
a,b,m,n(O, S , I, J)

ℓa





x − O

hs



 ℓb





y − S

hs



 ℓ̇m





tα − I

ht



 ℓn





tβ − J

ht



 (y − oσj )dS y Ĵ
β

j
.

To derive this, first, the substitution of t = tα is withdrawn in (21a). Second, one temporal-differentiation ∂t is

detached from Üd. Third, the first-order derivative U̇d (≡ cdUd−1; recall Eq.(8)) is interpolated in the same way as

(22). Fourth, the generated interpolant ℓm((t − I)/ht) is differentiated with the detached ∂t. Finally, tα is plugged

into t. On contrary, it is possible to apply ∂2
t to either Ud or ℓm, but separating two ∂ts seems the best; this will be

discussed in Section 4.3.

Next, arranging the order of the summations reduces the above expression to

Ä(x, tα) =

∑

a

∑

m

ℓa





x − O

hs



 ℓ̇m





tα − I

ht





∑

b

∑

n

U̇d
a,b,m,n(O, S , I, J)

∑

j

∑

β

µ

4π

∑

σ=±

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

ℓb





y − S

hs



 (y − oσj )dS yℓn





tβ − J

ht



 Ĵ
β

j

︸                                                                                    ︷︷                                                                                    ︸

=: Mb,n(S , J)

, (23)
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where Mb,n corresponds to the MM in the terminology of the FMM. The definition of the MM corresponds to the

P2M for Ä. It should be noted that Mb,n is a three-dimensional vector. Also, the integral over y in Mb,n (as well as

the following MMs) is evaluated with the Gaussian quadrature formula; this study uses three-point formula.

Successively, the corresponding local-coefficient La,m can be defined as follows:

Ä(x, tα) =
∑

a

∑

m

ℓa





x − O

hs



 ℓ̇m





tα − I

ht





∑

b

∑

n

U̇d
a,b,m,n(O, S , I, J)Mb,n(S , J)

︸                                         ︷︷                                         ︸

=: La,m(O, I)

. (24)

The above definition of La,m is nothing but the M2L formula. In addition, the above equation designates the L2P for

the vector potential Ä.

Second, similarly to Ä, one can derive the fundamental FMM-operations for the time-differentiated scalar po-

tential φ̇ from (21b) as follows:

φ̇(x, tα) =

∑

a

∑

m

ℓa





x − O

hs



 ℓm





tα − I

ht





∑

b

∑

n

Ud
a,b,m,n(O, S , I, J)

∑

j

∑

β

−1

4πε

∑

σ=±

σl j

Aσ
j
(c∆t)d

∫

S σ
j

ℓb





y − S

hs



 dS yℓn





tβ − J

ht



 Ĵ
β

j

︸                                                                         ︷︷                                                                         ︸

=: Mb,n(S , J)

=

∑

a

∑

m

ℓa





x − O

hs



 ℓm





tα − I

ht





∑

b

∑

n

Ud
a,b,m,n(O, S , I, J)Mb,n(S , J)

︸                                        ︷︷                                        ︸

=: La,m(O, I)

. (25)

In this case, both the MM Mb,n and the LC La,m are scalars.

Third and last, from (21c), the vector potential Ṗ + ζP can be represented as follows:

Ṗ(x, tα) + ζP(x, tα) =

∑

a

∑

m

ℓa





x − O

hs







ℓ̇m





tα − I

ht



 + ζℓm





tα − I

ht









∑

b

∑

n

Ud
a,b,m,n(O, S , I, J)

∑

j

∑

β

∑

σ=±

1

4π

σl j

2Aσ
j
(c∆t)d

∫

S σ
j

(y − oσj ) × ∇yℓb





y − S

hs



 dS yℓn





tβ − J

ht



 Ĵ
β

j

︸                                                                                          ︷︷                                                                                          ︸

=: M
mag

b,n
(S , J)

=

∑

a

∑

m

ℓa





x − O

hs







ℓ̇m





tα − I

ht



 + ζℓm





tα − I

ht









∑

b

∑

n

Ud
a,b,m,n(O, S , I, J)M

mag

b,n
(S , J)

︸                                          ︷︷                                          ︸

=: L
mag
a,m (O, I)

.

(26)

Here, another vectorial MM and LC, denoted by M
mag

b,n
and L

mag
a,m , respectively, are defined. Also, the temporal

differentiation of Ṗ is not applied to Ud but ℓm in (26). In this case, the number and type of MMs and LCs do

not change from those when using either the MFIE or ∂tMFIE. On the other hand, in the case that the temporal

differentiation is applied to Ud, another vectorial MM and LC associated with the first-order derivative U̇d are

necessary in addition to those associated with Ud. This case will not be considered to save the computation time

and memory in this study.

From (24), (25), and (26), the ∂tEFIE and ∂tMFIE + ζMFIE tested by the RWG function f i, whose centre is
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included in O, can be represented at t = tα as follows:
∫

S

f i(x) ·
[

−n(x) × n(x) ×
(

Ä(x, tα) + ∇S x
φ̇(x, tα)

)]

dS x

=

∑

ρ=±

∫

S
ρ

i

∑

a

∑

m

ℓa





x − O

hs







ℓ̇m





tα − I

ht



 f i(x) · La,m(O, I) + ℓm





tα − I

ht



 (∇S x
· f i(x))La,m(O, I)



 dS x, (27a)

∫

S

f i(x) ·
[

n(x) ×
(

Ṗ(x, tα) + ζP(x, tα)
)]

dS x

=

∑

ρ=±

∫

S
ρ

i

f i(x) ·


n(x) ×
∑

a

∑

m

ℓa





x − O

hs







ℓ̇m





tα − I

ht



 + ζℓm





tα − I

ht







 L
mag
a,m (O, I)



 dS x. (27b)

These expressions are used to compute the far-field components of
∑α
β=β∗+1 Z(α−β+1)Ĵβ−1 in (20). The far-field com-

putation is neither RWG basis-wise nor time-step-wise on contrary to the remaining computation i.e. the near-field

computation.

3.4. Algorithm of the fast TDBEM

The overall algorithm of the fast TDBEM for electromagnetics are almost the same as those for acoustics [24].

Simply speaking, the EM case handles multiple and vectorial MMs and LCs, whereas the acoustic case does sin-

gle and scalar ones. Hence, an operation regarding the single and scalar MM/LC of the acoustic IFMM may be

performed seven times, i.e. one scalar MM/LC and six components of the two vectorial MMs/LCs.

3.4.1. Space-time hierarchy

A spatial hierarchy of Ne edges (or RWG bases) involved in the boundary S is generated in the following way.

First, S is surrounded by a cubic box, called the root cell at level 0. Next, the root cell is subdivided to eight sub-

cubes, called cells at level 1. Here, cells with no edge are discarded. Successively, a subdivision is repeated to every

cell, say C, at a certain level l to generate its child cells at level l+ 1 if C contains a predefined number Nleaf or more

number of edges. A cell with no child cell is called a leaf cell. As a result, an adaptive octree whose maximum level

is denoted by lmax is created. The size of cells at level l is denoted by d
(l)
s or 2h

(l)
s , where d

(l)
s ≡ 2h

(l)
s and h

(l)
s ≡ d

(l+1)
s

hold. Here and hereafter, the superscript ‘(l)’ of a symbol expresses that the symbol depends on the level l of the

octree, where l ∈ [0, lmax].

Then, according to the original FMM [14], the neighbour cells of C at a certain level are defined with at most 27

(= 33) cells that contact with C at the same level. The list of neighbour cells of C is denoted by N(C). On the other

hand, the interacting cells of C at a level is defined with at most 189 (= 63 − 33) cells that are (i) children of all the

neighbour cells of C’s parent and (ii) cells that do not touch C. The list of interacting cells, which is the so-called

interaction-list, is denoted by I(C).

The construction of the temporal hierarchy of time-steps, i.e. t0, . . . , tNt
, is associated with the levels of the above

octree. At each level l, the time-axis is split to time-intervals whose durations are the same and denoted by d
(l)
t or

2h
(l)
t , where l ∈ [0, lmax] and d

(l)
t ≡ 2h

(l)
t holds. Accordingly, the kth time-interval at level l is denoted by I

(l)

k
, where

k ≥ 0.

As seen in the previous section, the IFMM conveys an influence of a source cluster (S , J) to an observation one

(O, I), where it is assumed that S ∈ I(O) and I is in the future side of J. Hence, if the duration d
(l)
t is determined

as the minimum of the travelling time from O to S , i.e. d
(l)
t := d

(l)
s /c, the source information of S generated during

J transmits to O after the end of J. Hence, when a source time-interval J is I
(l)

k
, then I can be I

(l)

k+1
, I

(l)

k+2
, . . .. More

precisely, the number of time-steps in each time-interval at the maximum level lmax is first determined by

M
(lmax)
t := ceil





d
(lmax)
s

c∆t



 . (28)

Then, the corresponding duration is determined by

d
(lmax)
t := M

(lmax )
t ∆t.
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The number of time-steps and duration at level l is recursively determined as follows:

M
(l)
t := 2M

(l+1)
t , d

(l)
t := 2d

(l+1)
t l = lmax − 1, . . . , 2.

By construction, the children of I
(l)

k
correspond to I

(l+1)

2k
and I

(l+1)

2k+1
.

Remark 1. When ∆t is large or d
(lmax)
s is small, the number M

(lmax )
t in (28) can become zero and, thus, the present

algorithm breaks down.

3.4.2. Description of the fast algorithm with pseudo programs

Program 1 is the main program to solve the discretised CFIE in (19) in the MOT scheme. After building the

aforementioned space-time hierarchy from a part of the inputs (i.e. mesh for S , ∆t, Nt, and Nleaf), all the RHS

vectors R0, . . . ,RNt−2 are initialised at Line 3. This is because the influence of the current time-interval is thrown

to some RHS vectors of future time-intervals at Line 8. In accordance with the principle of the FMM, the present

IFMM conceptually decomposes each coefficient matrix in (20), say Z(γ), to its near- and far-field components, say

Z
(γ)
near and Z

(γ)

far
, respectively. The former Z

(γ)
near consists of the interactions among RWG bases when they are close

to one another. The closeness is judged in the grain of cells: Two cells O and S at the same level are close to each

other if S ∈ N(O) (⇔ O ∈ N(S )). The matrix Z
(γ)
near thus computed is multiplied to a certain vector Ĵβ−1; in practise,

the matrix-vector product is performed on the fly without allocating the matrix Z
(γ)
near in computer memory. The

near-field contribution thus obtained is accumulated to the current RHS vector Rα−1; see Line 6. More details are

described in Program 2. The near-field computation is called P2P or direct computation in the FMM terminology.

Program 1 Main.

1: Input: mesh for S (consisting of Ns triangles), permittivity ǫ, permeability µ, incident fields EI and HI, coupling

parameters θ and ζ, number Nt of time-steps, time-step size ∆t, numbers ps and pt of interpolation pints, max-

imum number Nleaf of edges in a leaf cell (recall Section 3.4.1), number of Gaussian quadrature points (recall

Section 3.3), parameters for the GMRES (recall Section 2.5).

2: Build the space-time hierarchy according to Section 3.4.1.

3: Initialise all the RHS vectors Rα−1
= 0 for α = 1, . . . ,Nt − 1.

4: for time-step α = 1 to Nt − 1

5: Add the incident field Vα−1 to Rα−1.

6: Add the near-field contribution from the current time-step α to Rα−1 according to Program 2.

7: Solve (19) for the unknown vector Jα−1 with using the GMRES.

8: Add the far-field contribution from the current time-interval to Rβ regarding a finite number of future time-

intervals according to Programs 3 and 4.

In Program 2, the definition of the number γ∗(l) at Line 8 is similar to that of γ∗ in (10), but the domain of x and

y is limited to O’s neighbours, i.e.

γ∗(l) :=
maxx∈O, y∈N(O)|x − y|

c∆t

=
2
√

3d
(l)
s

c∆t

. (29)

From this, as the level l increases (that is, the spatial scale becomes smaller), the number of the passed time-steps,

which corresponds to the loop over β at Line 8, decreases and, thus, the amount of direct computation decreases.

Hence, the near-field computation is localised in both space and time.
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Program 2 Near-field computation (P2P).

1: The current time-step is α.

2: for level l = 2 to lmax

3: for cell O in level l

4: for cell S in the neighbour-listN(O)

5: if O or S is a leaf cell

6: for RWG basis f i in O

7: for RWG basis f j in S

8: for time-step β = α − γ∗(l) + 1 to α

9: Calculate and store the coefficient Z
(α−β+1)

i j
if it has not stored yet.

10: Add the product −Z
(α−β+1)

i j
Ĵ
β−1

j
to Rα−1

i
.

After solving (19) for the current unknown vector Jα−1 (Line 8 of Program 1), the far-field contribution are

computed at Line 8 of Program 1 through the upward and downward passes in Programs 3 and 4, respectively. These

passes are performed when the current time-step α coincides with the end of the current time-interval I
(l)

k
, where

k := α/M
(l)
t − 1, at level l. (This is called time-gating according to the PWTD.) Then, the far-field computation can

be explained with the M2L operation, by which the far-field contribution from a cluster (O, I
(l)

k
) is thrown to any

clusters (S , I
(l)

j
) such that the interacting cells S ∈ I(O) and the future time-intervals j = k+1, . . . , k+µ+1. Here, µ

is determined as 8 regardless of levels [24, Section 4.2]. As a result, the future RHS vectors (i.e. Rα,Rα+1, . . .) that

are related to the future µ + 2 time-intervals are updated at Line 8 of Program 1.

It should be noted that the M2L translation in Program 4 is not based on that in Code 4 of [20] but Algorithm 1

of [24]. This is because Algorithm 1 (or Formula 1) of [24] is the generalisation of Code 4 of [20] from d = 1 to

d ≥ 1, where d denotes the order of the B-spline temporal basis; recall the approximation of J in (6).

The present upward and downward passes are similar to those of the acoustic case, i.e. Codes 3 and 4 of [20],

but different in the following aspects:

• Each of the M2M (Line 9 of Program 3), M2L (Line 6 of Program 4), and L2L (Line 10 of Program 4) is

performed not once but seven times because the present EM case considers one scalar and two vectorial MMs

and LCs on contrary to one scalar MM and LC in the acoustic case.

• As shown in Line 8 of Program 4, the scalar and vector potentials are integrated on triangles according to

(27) in the EM case, while the layer-potential is evaluated at collocation points in the acoustic case. However,

since the integrals over x in (27) are evaluated by the Gaussian quadrature formula, the quadrature points

can be regarded as the collocation points of the acoustic case. Hence, the existence of the integrals over x is

irrelevant to the concept of the IFMM.

From these, the EM case actually requires more computation time and memory than the acoustic case, although

the computation complexity of the former is the same as that of the latter (see Section 3.5). Since the most of

computation time is spent for the M2L translation in the present multi-level algorithm, the computation time of the

EM case approximately increases by a factor of 7 × 3, where the number ‘7’ represents the ratio of the number of

MMs/LCs for the EM case to that for the acoustic case and ‘3’ represents the number of the Gaussian quadrature

points for the integrals over x.
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Program 3 Upward pass for the far-field computation.

1: The current time-step is α.

2: for level l = lmax to 2

3: if α is divisible by M
(l)
t

4: The current time-interval is I
(l)

k
, where k := α

M
(l)
t

− 1.

5: for cell S in level l

6: if S is a leaf cell

7: Perform the P2M operation according to (23), (25), and (26).

8: else

9: Perform the M2M operation; compute each of the seven MMs of (S , I
(l)

k
) from those of (S ′, I(l+1)

2k
) and

(S ′, I(l+1)

2k+1
) for every S ’s child cell S ′ according to the M2M formula in (16) of [20].

Program 4 Downward pass for the far-field computation.

1: The current time-step is α.

2: for level l = 2 to lmax

3: if α is divisible by M
(l)
t

4: The current time-interval is I
(l)

k
, where k := α

M
(l)
t

− 1.

5: for cell O in level l

6: Perform the M2L operation for each of seven pairs of MM and LC in (24), (25), and (26). Specifically,

Algorithm 4 in [24] is applied to every pair.

7: if O is a leaf cell

8: Compute the integrals for any f i ∈ O and tβ ∈ I
(l)

k+1
with the LCs of (O, I

(l)

k+1
) according to (27), where I

and tα read I
(l)

k+1
and tβ, respectively.

9: else

10: Perform the L2L operation; compute each of the seven LCs of (O′, I(l+1)

2(k+1)
) and (O′, I(l+1)

2(k+1)+1
) from that

of (O, I
(l)

k+1
) for every O’s child O′ according to (17) of [20].

3.5. Complexity

In addition to Assumptions 1 and 2, the following assumptions are considered in order to compute the complexity

of the fast TDBEM:

Assumption 3. The parameters Nleaf , ps, and pt of the IFMM are independent of Ns and Nt, i.e. Nleaf = O(1),

ps = O(1), and pt = O(1).

Assumption 4. The Ne edges (or RWG bases) are distributed uniformly in the cubic domain (or root cell) so that

each non-leaf cell can have fully eight children. Moreover, every leaf cell exists at level lmax. Then, it follows that

Nleaf · 8lmax = Ne ⇐⇒ 2lmax =

(

Ne

Nleaf

)1/3

∼ O(N1/3
s ). (30a)

Alternatively, Ne edges are distributed on a plane in the cubic domain so that each non-leaf cell can have four

children. Moreover, every leaf cell exists at level lmax. These lead to

Nleaf · 4lmax = Ne ⇐⇒ 2lmax =

(

Ne

Nleaf

)1/2

∼ O(N1/2
s ). (30b)

Remark 2. The computational complexity of the proposed fast TDBEM is estimated as O(N
4/3
s Nt) (respectively,

O(N
3/2
s Nt)) under the assumptions in Assumptions 1, 2, 3, and (30a) (respectively, (30b)) of Assumption 4.
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For clarity, the computational complexity in the uniform-distribution case of (30a) is described similarly to [20,

Appendix A]. To this end, the following relationships are available:

∆t, Nleaf , ps, pt ∼ O(1), ∆
(l)
s ∼ 2−l, γ∗(l) ∼ ∆

(l)
s

∆t

∼ 2−l · ∆−1
t , 2lmax ∼ N1/3

s , M
(l)
t ∼

∆
(l)
s

∆t

∼ 2−l · ∆−1
t .

Here and in what follows, a constant ∆t is not dropped in order to consider another scenario of the computational

complexity, which will be mentioned in Remark 3. From these, the floating-operation counts (flops) of major

operations in the IFMM are calculated as follows:

1. P2P at Line 6 in Program 1:

(flops per leaf and time-step) × (# of leaves at level lmax) × (# of time-steps)

∼ Nleaf · 27Nleaf · γ∗(lmax ) × 8lmax × Nt

∼ 27N2
leaf · 2−lmax · ∆−1

t ×
Ns

Nleaf

× Nt ∼ N2/3
s Nt∆

−1
t

2. P2M at Line 7 in Program 3:

(flops per leaf and time-interval) × (# of leaves at level lmax) × (# of time-intervals)

∼ Nleaf M
(lmax )
t ps

3 pt × 8lmax × Nt

M
(lmax )
t

∼ NsNt

3. M2M at Line 9 in Program 3:

lmax−1∑

l=2

(flops per cell and time-interval) × (# of cells) × (# of time-intervals)

∼
lmax−1∑

l=2

ps
6 pt

2 · 8 × 8l × Nt

M
(l)
t

∼
lmax−1∑

l=2

16lNt∆t ∼ 16lmax Nt∆t ∼ N4/3
s Nt∆t

4. M2L at Line 6 in Program 4:

As noted in Section 3.4.2, the M2L formula of [24, Formula 1] is applied to each pair of MM and LC for

the EM case. Then, not only computing the LCs according to (24), (25), and (26) but also computing the

derivatives of LCs as well as the associated LCs are necessary. However, the most expensive computation is

the computation of the LCs. The corresponding flops are estimated as follows:

lmax∑

l=2

(flops per cell and time-interval) × (# of cells) × (# of time-intervals)

∼
lmax∑

l=2

ps
3 pt(log ps + log pt) · 189 · 9 × 8l × Nt

M
(l)
t

∼
lmax∑

l=2

16lNt∆t ∼ 16lmax Nt∆t ∼ N4/3
s Nt∆t

Here, the factor ‘9’ in the second line denotes the number of future time-intervals to be considered; this was

mentioned as ‘µ + 1’ in Section 3.4 and will be mentioned in Section 3.6.1.

5. L2L at Line 10 in Program 4:

Since this is almost the same operation as the M2M translation, the flops count scales as N
4/3
s Nt∆t.
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6. L2P at Line 8 in Program 4:

(flops per leaf and time-interval) × (# of leaves at level lmax) × (# of time-intervals)

∼ Nleaf M
(lmax )
t ps

3 pt × 8lmax × Nt

M
(lmax )
t

∼ NsNt

From these counts, the computational complexity is indeed estimated as O(N
4/3
s Nt) under the assumption of the

uniform distribution in (30a).

Remark 3. Instead of letting ∆t be a constant as in Assumption 2, another scenario is to fix the final time T , i.e.

T := (Nt − 1)∆t ∼ Nt∆t. In this case, ∆t scales as O(N−1
t ). Therefore, the complexities of the operations in the fast

TDBEM are calculated as

P2P ∼ N2/3
s N2

t , P2M, L2P ∼ NsNt, M2M, M2L, L2L ∼ N4/3
s

on the assumption of (30a) and

P2P ∼ N1/2
s N2

t , P2M, L2P ∼ NsNt, M2M, M2L, L2L ∼ N3/2
s

on the alternative assumption of (30b). Further, if both Ns and Nt vary in proportional to a certain parameter n,

i.e. Ns,Nt ∼ O(n), the computational complexity of the fast TDBEM is calculated as O(n8/3) or O(n5/2) for (30a)

and (30b), respectively. On the other hand, because γ∗ in (10) scales as O(∆t) = O(N−1
t ), the complexity of the

conventional TDBEM is estimated as O(N2
s N2

t ) = O(n4).

In the numerical validation of the previous work for acoustics [20, Section 5.2], a series of problems were

analysed in the case of ∆t = O(N−1
t ) and Ns, Nt ∼ O(n) as in Remark 3. However, the actual computation times of

the conventional and fast TDBEMs for acoustics were discussed in comparison with the computational complexities

in case that ∆t is fixed, which correspond to those in Section 2.6 and Remark 2, respectively. In this regard, the

discussion is incomplete, but it is true that the fast TDBEM was essentially faster than the conventional one.

3.6. Notes

Before closing this section, some notes are made with regard to the numerical implementation of the fast

TDBEM.

3.6.1. Numerical treatment of the MMs, LCs, and the M2L operations

Each of the seven MMs and LCs (as scalars) for a certain cell and time-interval can be treated as a ps
3 pt-

dimensional algebraic vector by concatenating all the components. For example, the scalar Mb,n(S , J) in (25) can be

represented as an algebraic vector m(S , J) by defining

m((b1 ps+b2)ps+b3)pt+n+1(S , J) := Mb1,b2,b3,n(S , J)

for any b1, b2, b3 ∈ [0, ps) and n ∈ [0, pt). Similarly, the LC La,m(O, I) can be expressed with l(O, I). Then, the M2L

formula in (25) can be written as a ps
3 pt-dimensional matrix-vector product, i.e.

l(O, I) = Ud(O, S , I, J)m(S , J), (31)

where the M2L operator (matrix) Ud can be computed as

Ud
((a1 ps+a2)ps+a3)pt+m+1,((b1 ps+b2)ps+b3)pt+n+1 := Ud

a1,a2,a3,b1,b2,b3,m,n
(O, S , I, J)

for any a1, a2, a3, b1, b2, b3 ∈ [0, ps) and m, n ∈ [0, pt).

The M2L operator Ud(O, S , I, J) in (31) is precomputed for all the possible O, S , I, and J. Because the function

Ud in (8) has a property of the transnational invariance with respect to space and time, the number of pairs of O
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and S is limited to a fixed number 316 (= 73 − 33). On the other hand, the number of pairs of I and J increases as

Nt increases. However, only 9 pairs are enough by utilising the recurrence formulae, i.e. [24, Formula 1]) in terms

of the LC. Once 316 × 9 M2L operators are computed and stored for a certain level, those for other levels can be

obtained by a certain scaling because the cell size d
(l)
s and the duration d

(l)
t of level l is halved (respectively, doubled)

when l increases (respectively, decreases) by one (recall Section 3.4.1).

In addition, it should be noted that the matrix-vector product in (31) can be computed efficiently with the 4D

fast Fourier transform (FFT), as mentioned in [20, Section 4.5].

3.6.2. Parallelisation

In the actual program, a multi-threaded parallelisation is considered with the help of OpenMP similarly to the

acoustic program [20]. Specifically, the loops over O at Line 3 of Program 2, S at Line 5 of Program 3, and O at

Line 5 of Program 4 is annotated by the OpenMP directive ‘omp parallel for’. In addition, the same parallelisation

is applied to the stage of precomputations, e.g. the computation of the 316 × 9 M2L operators mentioned above.

3.6.3. Program of the conventional TDBEM

The pseudo program of the conventional TDBEM can be obtained by modifying that of the fast TDBEM. To

this end, the loop over levels at Line 2 of Program 2 is limited to only the root level, i.e. l = 0. Then, the cell O in

the next line is the root cell only and its neighbour-list N(O) consists of O only. Therefore, the modified program

can computes the interactions among all the Ne RWG bases. Then, the far-field computation at Line 8 of Program 1

is no longer necessary and thus removed.

4. Numerical examples

The proposed fast TDBEM was numerically checked through a test problem (Sections 4.1–4.3) and a demon-

stration (Section 4.4).

4.1. Test problem

Let us consider an EM scattering problem regarding a spherical PEC of radius a = 0.5 at the origin in the free

space of ǫ = µ = 1 (Figure. 4). A plane incident wave that propagates in the −x3-direction or kI := (0, 0,−1)T and

has the following electric and magnetic fields was considered:

EI(x, t) =

(

A Sin2

(

2π

Λ
(ct + x3 − a)

)

, 0, 0

)T

, HI(x, t) =
1

η
kI × EI(x, t),

where both the pulse length Λ and the amplitude A were given as 0.5. Here, the function Sin() is defined as

Sin(x) :=






sin(x) 0 ≤ x ≤ 2π

0 otherwise
.
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Figure 4: Configuration of the test problem.

The proposed fast TDBEM was compared with the conventional one. In both methods, the coupling parameters

θ and ζ of the CFIE in (1) were simply selected as one.

Seven cases of mesh or Ns (≡ 2Ne/3) were considered as in Table 1; Figure 5 shows the mesh for Case 3.

Since the size of the PEC is fixed, which is consistent to Assumption 1, edge lengths, denoted by ∆s, decrease as

Ns increases, as shown in the table. Further, the maximum level lmax of the octree varied from 2 to 5 by setting

Nleaf = 100. For all these cases, the time-step size ∆t was fixed in order to be consistent to Assumption 2 and

selected as 0.005. In this case, the breakdown of the IFMM, mentioned in Remark 1, never occurred. Actually, the

number M
(lmax )
t of time-steps per time-interval at level lmax was determined as in the table.

The present distribution of the edges (RWG bases) is close to the plane case in (30b) rather than the uniform one

in (30a) of Assumption 4. For an example of Case 5, where lmax is 5 when Nleaf = 100, the LHSs of (30a) and (30b)

are computed as Nleaf · 8lmax = 100 · 85
= 3276800 and Nleaf · 4lmax = 100 · 45

= 102400, respectively. Clearly, the

latter is closer to the actual number of edges, i.e. Ne ≡ 3Ns/2 = 122880, than the former.

Table 1: Seven cases for the test problem.

Case Ns ∆s lmax M
(lmax )
t

Min. Ave. Max.

1 1280 0.069 0.075 0.084 2 50

2 2880 0.046 0.050 0.056 2 50

3 5120 0.035 0.038 0.042 3 25

4 11520 0.023 0.025 0.028 4 12

5 20480 0.017 0.019 0.021 4 12

6 46080 0.012 0.013 0.014 5 6

7 81920 0.009 0.010 0.011 5 6
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Figure 5: Mesh for Case 3 (5120 triangles; 7680 edges). The red triangle is the element whose profile of the current density J is sampled in

Figure 7.

To see the trend of the accuracy and runtime of the fast TDBEM, three cases of ps and pt, which denote the

number of interpolation points (recall Section 3.2), were tested. Specifically, let both ps and pt take the value of

4, 6, or 8. According to these values, the fast TDBEM is referred to as FAST4, FAST6, and FAST8, while the

conventional TDBEM is referred to as CONV.

For the present problem, it is possible to calculate a reference solution, say J reference, semi-analytically. To this

end, one first calculates the exact solution in the Laplace transformed domain with the help of the solution in the

frequency or Fourier-transformed domain [41] and then applies a numerical inverse Laplace transform to the exact

solution.

To measure the accuracy of the both TDBEMs, their errors relative to J reference were calculated with the following

relative l2-error:

Relative l2-error :=

Ns∑

i=1

Nt−1∑

α=1

∣
∣
∣JTDBEM(S i, tα) − J reference(S i, tα)

∣
∣
∣
2

Ns∑

i=1

Nt−1∑

α=1

∣
∣
∣JTDBEM(S i, tα)

∣
∣
∣
2

, (32)

where S i denotes the centre of triangle S i and JTDBEM stands for the current density obtained from (6) by either the

conventional or fast TDBEM.

In all the computations, a workstation with Intel’s Xeon CPU (model: Gold 6250, clock rate: 3.90 GHz, number

of computing cores: 16) and 768 GB memory was used. The both TDBEM programs are parallelised by using the

OpenMP as mentioned in Section 3.6.2.

4.2. Results

The proposed fast TDBEM was assessed with regard to the accuracy, computation time, and memory consump-

tion. It should be noted that the conventional method could not solve Cases 4–7 because it ran out of memory on

the way of the computations.

Figure 6 compares the relative error of the both TDBEMs. The error of the conventional method decreased

monotonically as Ns increased. This can be interpreted as the decrease of the discretisation error. On the other

hand, for each precision level, the error of the fast method decreased and then saturated with Ns. This behaviour

is probably due to the approximation error associated with the choice of ps and pt. Further, the accuracy tends to

improve as ps and pt increase for every Ns.
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Figure 6: Relative l2-error for the test problem.

The relative errors were around 10−1 or 10% in Figure 6. To check how the corresponding current densities

J look, Figure 7 plots the three components of J at the centre of a randomly-selected element, which is coloured

in red in Figure 5, for Case 3. As observed, FAST4 is obviously inaccurate, while FAST6 and FAST8 are better

except the parts where the reference solution changes sharply. It should be noted that the relative l2-errors of the

underlying J were 5.70 × 10−2, 2.71 × 10−1, 1.08 × 10−1, and 7.23 × 10−2 for CONV, FAST4, FAST6, and FAST8,

respectively. These values are close to those in Figure 6 at Ns = 5120. So, the presented profiles can be considered

as the representatives of all the profiles.
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Figure 7: Profile of J = (J1 , J2 , J3)T at the centre of the triangle coloured in red in Figure 5.

Figure 8 shows the total computation time. First of all, the proposed method outperformed the conventional one

in Cases 1, 2, and 3, which would be true for the larger-size cases. From Figures 8 and 6, the trade-off between

computation time and error is observed for the fast method. Further, Figure 8 clearly shows that the present IFMM

can reduce the computational complexity from O(N2
s ) to O(N

3/2
s ), which is for the plane-like distribution of edges in
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Figure 8: Total computation time for the test problem.

Figure 9 plots the memory consumption of the both TDBEMs. For brevity, the peak memory size was measured.1

The conventional method stores the non-zero entries of the coefficient matrices Z(1), Z(2), and so on. On the other

hand, the fast method stores a part of the non-zero entries regarding the near-field computation (i.e. Z
(γ)
near), as

explained in Section 3.4.2. Instead, the far-field computation needs to store some quantities such as the MMs

and LCs for every cell as well as the M2L operators. However, for reasonable values of ps and pt, the far-field

computation uses less memory than computing Z
(γ)

far
(= Z(γ) − Z

(γ)
near) directly. As a result, the IFMM can save the

memory significantly.
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Figure 9: Memory consumption for the test problem.

Overall, the numerical results presented here are deemed satisfactory to validate the usefulness of the proposed

fast TDBEM.

1On a Linux system, the peak memory size or ‘peak resident set size’ of a process can be known by the entry ‘VmHWM’ in the status file for

the corresponding UNIX process.
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4.3. Discussions

4.3.1. Comparison with the conventional CFIEs

The present TDBEM indeed requires both the MFIE and ∂tMFIE. To see this, the following three types of CFIE

were compared for both the conventional and fast algorithms:

• CFIE1 = ∂tEFIE + ∂tMFIE +MFIE; this is exactly the CFIE in (1),

• CFIE2 = ∂tEFIE + ∂tMFIE,

• CFIE3 = ∂tEFIE +MFIE.

Figure 10 compares the six cases of the TDBEM in terms of the relative l2-error in (32). In the case of the

conventional algorithm, CFIE2 was almost the same as CFIE1 and CFIE3 was slightly worse than the others. This

tendency was basically true also for the fast algorithm, but its intrinsic approximation (owing to the separation of

variables by interpolation) seems to amplify the error of the corresponding conventional methods. In particular,

CFIE3 caused the late time instability. It is difficult to justify the necessity of CFIE1 mathematically, but this

comparison indicates that using the MFIE and ∂tMFIE simultaneously is optional for the conventional TDBEM but

indispensable for the fast TDBEM.

Moreover, the choices of the coupling parameters θ and ζ in the CFIE (1) can influence the error result. It would

be possible to seek the optimal values, but this study did not pursue them.
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Figure 10: Relative error for the three types of CFIE. The results of CFIE1-CONV and CFIE1-FAST6 are the same as those of CONV and

FAST6 in Figure 6, respectively. The error of CFIE3-FAST6 was significantly large at larger Nss and thus not plotted.

4.3.2. Choice for temporal differentiation

It would be interesting to check other possibilities of the second-order temporal-differentiation ∂2
t acting on

the vector potential A in the ∂tEFIE. In the present case of (24), both the kernel Ud and the interpolant ℓm are

differentiated once. In this case, the interpolation of the derivative U̇d
(

≡ cdUd−1
)

is also necessary in addition to

that of Ud. This requires an additional computation time and memory at the stage of the precomputing, but they

are not significant. On the other hand, it is also possible to apply ∂2
t either Ud or ℓm. These two cases were tested

with maintaining d = 2 (i.e. the quadratic B-spline temporal basis) and the interpolant (i.e. the CHI using a finite

difference approximation) as well as ps = pt = 6 (i.e. FAST6).

The relative l2-error is shown in Figure 11, where ‘FAST6 (∂2
t Ud)’ and ‘FAST6 (∂2

t ℓm)’ are results for using

∂2
t Ud and ∂2

t ℓm, respectively. In the case of ∂2
t Ud, FAST6 resulted in a late time-instability in every Ns and thus

the corresponding error became significantly large. This is probably because the derivative ∂2Ud is discontinuous

owing to d = 2 and, therefore, the interpolated derivative is erroneous. The accuracy could be improved by using a
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larger d ≥ 3. However, using d ≥ 3 makes the algorithm unstable; even the conventional TDBEM is unstable with

d ≥ 3.

The result of FAST6 using ∂2
t ℓm was better than that of ∂2

t Ud but worse than the original FAST6, based on

∂tU
d and ∂tℓm, as observed in the same figure. In this case, the differentiated interpolant ∂2

t ℓm is piece-wise linear

because the ℓm is a cubic polynomial. However, the smoothness would be insufficient to express the true solution

that behaves smoothly and sharply as seen in Figure 7.
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Figure 11: Relative error for the three patterns of the temporal differentiations regarding the vector potential A. The vertical axis in the RHS is

only for ‘FAST6 (∂2
t Ud)’ and shows the exponent of the relative error in the logarithmic scale; e.g., ’20’ means the relative error of 1020. The

result of FAST6 is the same as that in Figure 6.

4.4. Demonstration

To see the applicability of the proposed fast TDBEM, a more complex and large-scale ‘bull’ model, which is

placed in [0.0, 1.0]⊗ [0.0, 0.7]⊗ [−0.2, 0.5], was considered. Figure 12 shows the mesh consisting of 139282 (= Ns)

boundary elements: the minimum and maximum length of the edges are 6.98 × 10−4 and 7.55 × 10−3, respectively.2

Also, ∆t = 0.0025, Nt = 1600, and FAST6 were selected. In addition, the incident wave was given as a Gaussian

plane pulse that propagates in −x3-direction, i.e. kI
= (0, 0,−1)T, and characterised with

EI(x, t) =

(

1
√

2πσ2
exp

(

− (t + (x3 − 0.5)/c − 6σ)2

2σ2

)

, 0, 0

)T

, HI(x, t) =
1

η
kI × EI(x, t),

where σ = 0.05 and ǫ = µ = 1 were assumed.

Figure 13 shows the magnitude of the surface current density J for selected time-steps. Moreover, Figure 14

shows the profile of J at the centre of the red triangle in Figure 12(bottom). From Figure 14, the peak of J is around

t = 0.5, which is consistent to the result in Figure 13.

The total computation time was 9.9 hour and the memory consumption was 277.3 GB with the same workstation

used in Section 4.1.

5. Conclusion

The present study proposed an IFMM to accelerate the TDBEM for EM scattering problems in 3D regarding

PECs. The targeted TDBEM is based on an unconventional CFIE as it considers both the MFIE and its temporal

2The original mesh (‘bull.off’) was obtained from the source code of the Computational Geometry Algorithm Li-

brary (CGAL) (https://www.cgal.org/index.html) and then refined with the mesh-processing software MeshLab

(https://www.meshlab.net/).
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Figure 12: Mesh for the ‘bull’ model consisting of 139282 triangles, that is, 208923 edges: (Top) Entire of the model. The incident EM wave

propagates in −x3-direction. (Bottom) Head of the model. At the centre of the red triangle on the nose, the profile of current density J is

calculated; see Figure 14.

differentiation in addition to the time-differentiated EFIE. The accuracy of the CFIE is numerically rationalised as

long as the surface current density is discretised with the RWG basis for space and the quadratic B-spline basis for

time. Formulating the IFMM for the CFIE can be done by following the previous studies on acoustics [20, 24]. The

major difference from the acoustic case is in the number of MMs and LCs, some of which are vectors rather than

scalars. Hence, they can increase the amount of computations to some extent. Nevertheless, the overall algorithm

for the EM case is essentially the same as that for the acoustic case. Accordingly, the IFMM-accelerated TDBEM

for electromagnetics possesses the complexity of O(N1+δ
s Nt), where δ is typically estimated as 1/2 or 1/3 under

Assumptions 1–4.

The numerical analyses in Section 4 investigated the proposed fast TDBEM with regard to its performance,

accuracy, memory usage, and feasibility to a large-scale problem such as Ns = 139282 and Nt = 1600. The results

are satisfactory and some additional computations discussed the validity for the formulation of the proposed method.

The future plans include a theoretical enhancement from PECs to penetrable bodies, an accuracy improvement

by exploring a more appropriate interpolant beyond the CHI using finite-difference-approximated derivatives, and

a massive parallelisation on a memory-distributed system towards solving extremely large-scale problems [42, 43,

44, 45].
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Figure 13: Distribution of |J | on the model for selected time-steps. The incident EM wave propagates from the front side to the back side of the

box.

Appendix A. Derivation of (13) from (11)

In the same way as [24, Appendix A], the discretised vector potential Ä in (13a) will be derived from that in (11a)

via the concatenated current Ĵ
β

in (12); the scalar and magnetic vector potentials in (13b) and (13c), respectively,

can be derived similarly.

First, after introducing a shifted index β′ := β+κ, the summation over β′ in (13a) is split to three parts as follows:

Ä(x, t) =

Ne∑

j=1

d+1∑

κ=0

α−1+κ∑

β′=β∗+κ

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j

=

Ne∑

j=1

d+1∑

κ=0





α−1∑

β′=β∗

−
β∗+κ−1∑

β′=β∗

+

α−1+κ∑

β′=α




wκ,d Ä

(α−β′)
j Ĵ

β′−κ
j
, (A.1)

where it is supposed that any summation
∑e

i=s is ignored if s > e. Then, the third summation
∑α−1+κ
β′=α disappears

from the following reasons:
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Figure 14: Profile of J = (J1 , J2 , J3)T at the centre of the red triangle in Figure 12(bottom).

• For κ = 0, the third summation becomes
∑β∗−1

β′=β∗ and, thus, vanishes in accordance with the above convention.

For this regard, the second summation also vanishes and the first one becomes exactly the original one.)

• For κ ≥ 1, the inequality α − β′ ≤ 0 is satisfied for any β′ ∈ [α, α − 1 + κ]. Then, because Ä
(α−β′)
j is zero from

the definition of U in (8), the third summation vanishes.

Therefore, (A.1) can be written as follows:

Ä(x, t) =

Ne∑

j=1





α−1∑

β′=β∗

d+1∑

κ=0

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j
−

d+1∑

κ=0

β∗+κ−1∑

β′=β∗

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j

︸                           ︷︷                           ︸

=: F





=

Ne∑

j=1









β∗+d∑

β′=β∗
︸︷︷︸

=: G

+

α−1∑

β′=β∗+d+1
︸   ︷︷   ︸

=: H





d+1∑

κ=0

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j
− F





, (A.2)

where the summation over β′ was split into G and H. Since
∑d+1
κ=0

∑β∗+κ−1

β′=β∗ is identical to
∑β∗+d

β′=β∗
∑d+1
κ=β′−β∗+1 in F, the

subtraction G − F in (A.2) can be computed as follows:

G − F =

β∗+d∑

β′=β∗

d+1∑

κ=0

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j
−
β∗+d∑

β′=β∗

d+1∑

κ=β′−β∗+1

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j

=

β∗+d∑

β′=β∗

Ä
(α−β′)
j





d+1∑

κ=0

wκ,d Ĵ
β′−κ
j
−

d+1∑

κ=β′−β∗+1

wκ,d Ĵ
β′−κ
j





=

β∗+d∑

β′=β∗

Ä
(α−β′)
j

β′−β∗∑

κ=0

wκ,d Ĵ
β′−κ
j
.

28



Meanwhile, H can be rewritten as follows:

H =

α−1∑

β′=β∗+d+1

d+1∑

κ=0

wκ,d Ä
(α−β′)
j Ĵ

β′−κ
j
=

α−1∑

β′=β∗+d+1

Ä
(α−β′)
j

d+1∑

κ=0

wκ,d Ĵ
β′−κ
j
.

The combination of G − F and H yields

Ä(x, t) =

Ne∑

j=1

[G − F + H] =

Ne∑

j=1





α−1∑

β=β∗

Ä
(α−β)
j Ĵ

β

j




, (A.3)

where the following boundary variable Ĵ
β

j
is defined:

Ĵ
β

j
:=






β−β∗∑

κ=0

wκ,d Ĵ
β−κ
j

for β∗ ≤ β ≤ β∗ + d

d+1∑

κ=0

wκ,d Ĵ
β−κ
j

for β∗ + d + 1 ≤ β ≤ α − 1

=

min(d+1,β−β∗)∑

κ=0

wκ,d Ĵ
β−κ
j

for β∗ ≤ β ≤ α − 1,

which is exactly the same as (12).

Finally, the index β in (A.3) is increased by one to yield the simplified expression in (13a).
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