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ABSTRACT

This paper investigates the shape reconstructions of sub-wavelength objects from near-field mea-
surements in transverse electromagnetic scattering. This geometric inverse problem is notoriously
ill-posed and challenging. We develop a novel reconstruction scheme using plasmon resonances with
significantly enhanced sensitivity and resolution. First, by spectral analysis, we establish a sharp
quantitative relationship between the sensitivity of the reconstruction and the plasmon resonance.
It shows that the sensitivity functional blows up when plasmon resonance occurs. Hence, the signal-
to-noise ratio is significantly improved and the robustness and effectiveness of the reconstruction
are ensured. Second, a variational regularization method is proposed to overcome the ill-posedness,
and an alternating iteration method is introduced to automatically select the regularization param-
eters. Third, we use the Laplace approximation method to capture the statistical information of the
target scattering object. Both rigorous theoretical analysis and extensive numerical experiments
are conducted to validate the promising features of our method.

keywords: shape reconstruction; plasmon resonance; sensitivity analysis; alternating iteration;
Laplace approximation

1 Introduction

Surface plasmon resonance is the resonant oscillation of conducting electrons at the interface be-
tween negative and positive permittivity materials excited by proper incident waves. Plasmon
technology is revolutionizing many industrial applications including biosensing, disease diagnosis,
catalysis and molecular dynamics research [7, 8, 32, 35]; super-focusing and high-resolution imag-
ing [17, 18, 24]; and invisibility cloaking [3, 10, 11, 27, 28, 31]. In recent years, the mathematical
understanding of plasmon resonances has also attracted considerable attention with much progress,
in particular, their intriguing connection to the spectral theory of Neumann-Poincaré-type opera-
tors; see e.g. [2, 3, 6, 9, 15,21,29] and the references cited therein.

In this paper, we study the utilization of plasmon resonances to the reconstruction of the shape
of an anomalous nano-size inclusion by the associated near-field electromagnetic measurement. This
geometric inverse shape problem arises in a variety of applications, especially bio-medical imaging.
We shall be mainly concerned with the time-harmonic transverse magnetic (TM) scattering, though
the study can be readily extended to the transverse electric (TE) case. Let D ⊂ R2 be a bounded
and simply connected domain of class C1,α for some 0 < α < 1, which signifies the support of
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an anomalous inclusion. The medium property of the inclusion D is characterised by the electric
permittivity εc ∈ R+ and the magnetic permeability µc, while the homogeneous matrix medium in
R2\D is characterized by εm ∈ R+ and µm ∈ R+, respectively. In what follows, we set

εD = εmχ(R2\D) + εcχ(D), µD = µmχ(R2\D) + µcχ(D), (1.1)

where χ signifies the characteristic function. The medium parameter µc varies according to the
operating frequency ω ∈ R+ of the incident wave, which is described by the Drude model. We shall
write µc(ω) to indicate such dependence and the details shall be supplemented in what follows.
In principle, we shall make critical use of the result that for proper selection of the operating
frequencies, one has <µc < 0,=µc > 0, which is known as the negative material [36–38]. Define

km := ω
√
εmµm, kc := ω

√
εcµc.

Now, we let ui(x) = eikmd·x, i :=
√
−1, be a time-harmonic incident plane wave with d ∈ S1

signifying the impinging direction. The TM scattering induced by the interaction between the
incident wave ui and the medium inclusion (D; εc, µc) is governed by the following PDE system:

∇ · 1

µD
∇u+ ω2εDu = 0 in R2\∂D,

u+ = u− on ∂D,

1

µm

∂u

∂ν

∣∣∣∣
+

=
1

µc

∂u

∂ν

∣∣∣∣
−

on ∂D,

us := u− ui satisfies the Sommerfeld radiation condition,

(1.2)

where the last condition signifies that

∂us

∂|x|
− ikmu

s = O(|x|−
3
2 ) as |x| → +∞,

which holds uniformly in the angular variable x̂ = x/|x| ∈ S1. The well-posedness of the forward
scattering problem (1.2) shall be implied in our subsequent study of the associated inverse problem
and there exists a unique solution u ∈ H1

loc(R2). Associated with (1.2), we introduce the following
measurement operator ΛD:

ΛD(ui) = us|∂Ω ∈ L2(∂Ω),

where us is the scattering field to (1.2) and Ω is a smooth domain containing D. Without loss
of generality, we assume that Ω is a central ball of radius R0 ∈ R+ throughout the rest of the
paper. In this paper, we are mainly concerned with the geometric inverse problem of recovering
D by knowledge of ΛD(ui) associated with a single incident wave ui. By introducing an abstract
operator F defined by (1.2) which sends the inclusion D to the measurement data, the inverse
problem can be recast as the following operator equation:

F(D) = ΛD(ui) with a fixed ui. (1.3)

Two remarks are in order regarding the inverse problem (1.3). First, it can be readily verified
that the inverse problem (1.3) is nonlinear. Moreover, we are mainly interested in the case that
ω · diam(D) � 1 (it is actually km · diam(D) � 1 since we shall normalize εm and µm in what
follows), i.e. the size of the anomalous inclusion D is much smaller compared to the operating
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wavelength 2π/ω. This is known as the sub-wavelength scale or the quasi-static regime. The
scattering information in the quasi-static regime is very weak, and in the presence of measurement
noise, the signal-to-noise ratio is low [1, 4]. This makes the inverse problem (1.3) notoriously ill-
posed. Moreover, due to the diffraction limit, the fine detail information ofD carried in the scattered
field is restricted to the vicinity of the inclusion, resulting in usually low-resolution reconstructions of
(1.3). Our current study is motivated by addressing those challenges by using plasmon resonances.
Second, in (1.3) we assume that εc and µc(ω) are a-priori known. In the practical setup, this
corresponds to that we know the material property of the medium inclusion D, but we do not know
its location and shape and intend to reconstruct them by the scattering method. In principle, our
method can be extended to dealing with the case of simultaneously recovering D and its medium
content by properly augmenting the optimization functional in Section 4. However, the focus of
the current study is to theoretically and numerically verify that by using plasmon resonances, one
can have a much more stable and high-resolution scheme of reconstructing D. In order to have a
focusing theme, we choose to study the simultaneous recovery problem in a forthcoming paper.

As mentioned earlier, we shall make use of plasmon resonances for tackling the inverse problem
(1.3). In the practical setup, one observes a significant enhancement of the scattering field (say e.g.
in terms of the scattering amplitude) for certain specific operating frequencies, which corresponds
to the occurrence of plasmon resonances. In fact, a mathematical framework of applying plasmon
resonances for shape reconstructions was initiated in a recent article [18]. Next, we highlight several
significant novelties and technical developments of the current study compared to that in the afore-
mentioned article. First, the article [18] addresses the shape reconstructions in electrostatics, i.e.
the limiting case with zero frequency, whereas we consider the wave scattering in the quasi-static
regime. It turns out that the presence of the frequency leads to tremendous technical difficulties
in the relevant asymptotic analysis of sharply quantifying the relationship between the shape sen-
sitivity and the plasmon resonance; see Section 3.2. Moreover, we derive a much more thorough
understanding of the shape sensitivity, especially the connections between the size and curvature
of the anomalous inclusion, which were not considered in [18]. Second, there is a particular point
worth special emphasis. It is known that the plasmon resonance is connected to the spectrum of
the Neumann-Poincaré (NP) operator; see also Section 2.2 in what follows. For a generic non-radial
domain, 0 belongs to the essential spectrum of the underlying NP operator. The analysis in [18]
was mainly conducted around an NP eigenvalue, i.e. the discrete spectrum of the NP operator,
and the case around 0 was not considered due to significant technical difficulties. In this paper,
we present a subtle analysis of the shape sensitivity around 0 in the radial case. Our result shows
that in such a case one can have much enhanced sensitivity of the reconstruction compared to the
non-zero case. Though 0 is an NP eigenvalue for a radial domain, our result in this aspect provides
unobjectionable implications that using the plasmon resonance associated with the essential spec-
trum of the underlying NP operator may yield enhanced reconstructions. Third, in the numerical
implementation, we combine the variational regularization method with the Laplace approxima-
tion (LA) method to solve the inverse problem. This hybrid method can efficiently calculate the
minimization point (MAP point) as well as effectively capture the uncertainty information of the
solution. Compared with the reconstruction scheme in [18], an alternating iterative approach is
developed based on a hierarchical Bayesian framework. This leads to an automatic selection of the
regularization parameters, and thus makes the reconstruction scheme practically more appealing.

The rest of the paper is organized as follows. In Section 2, we introduce some preliminary and
auxiliary results on layer potential theory and plasmon resonances which shall be needed for the
subsequent analysis. In Section 3, we derive spectral expansions of the shape sensitivity functionals
and perform sensitivity analysis for perturbed domains. Section 4 is devoted to the hierarchical
Bayesian model, alternating iteration method as well as the LA method. In Section 5, we conduct
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extensive numerical experiments to validate the theoretical findings. The paper is concluded in
Section 6 with some relevant discussions.

2 Preliminary and auxiliary results

2.1 Layer potential theory

We introduce some preliminary knowledge on the layer potential operators by following the treat-
ment in [5, 14] which shall be needed in our subsequent analysis. The fundamental solution G to
the Helmholtz operator ∆ + k2 in R2 is given by

G(x, y, k) = − i

4
H

(1)
0 (k|x− y|), x 6= y,

where H
(1)
0 is the Hankel function of the first kind and order 0. Let SkD and DkD be the single- and

double-layer potentials defined by

SkD[ψ](x) =

∫
∂D

G(x, y, k)ψ(y)dσ(y), x ∈ R2,

DkD[ψ](x) =

∫
∂D

∂G(x, y, k)

∂ν(y)
ψ(y)dσ(y), x ∈ R2\∂D

for some surface density ψ ∈ L2(∂D). The following jump relations hold for these operators across
the boundary ∂D:

∂SkD[ψ]

∂ν

∣∣∣∣
±

(x) =

(
± 1

2
Id+ (KkD)∗

)
[ψ](x), DkD[ψ]

∣∣∣∣
±

(x) =

(
∓ 1

2
Id+KkD

)
[ψ](x),

where Id indicates the identity operator, ± signifies the limits taken from the inside and outside of
D, respectively, and KkD is the adjoint operator of the Neumann-Poincaré operator (KkD)∗:

(KkD)∗[ψ](x) =

∫
∂D

∂G(x, y, k)

∂ν(x)
ψ(y)dσ(y), x ∈ ∂D.

In the sequel, we set S0
D = SD, D0

D = DD and (K0
D)∗ = K∗D.

In R2, the operator SD : H−1/2(∂D) → H1/2(∂D) is not invertible. We define the following
substitute for SD to avoid the non-invertibility:

S̃D[ψ] =

{
SD[ψ], if 〈ψ, χ(∂D)〉− 1

2
, 1
2

= 0,

−χ(∂D), if ψ = ϕ0,

where ϕ0 is the unique eigenfunction of K∗D of eigenvalue 1/2 such that 〈ϕ0, χ(∂D)〉− 1
2
, 1
2

= 1.

Furthermore, by using the Calderón identity: KDS̃D = S̃DK∗D, we can define a new inner product

〈u, v〉H∗ = −〈u, S̃D[v]〉− 1
2
, 1
2
, (2.4)

where 〈·, ·〉− 1
2
, 1
2

is the duality pairing between H−1/2(∂D) and H1/2(∂D), and H∗ is equivalent to

H−1/2(∂D).
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For the fundamental solution G, we shall need the following behavior of the Hankel function
near 0:

− i

4
H

(1)
0 (k|x− y|) =

1

2π
log(|x− y|) + τk +

∞∑
j=1

(bj log(k|x− y|) + cj)(k|x− y|)2j , (2.5)

where

τk =
1

2π
(log k + γ − log 2)− i

4
, bj =

(−1)j

2π

1

22j(j!)2
, cj = −bj

(
γ − log 2− iπ

2
−

j∑
n=1

1

n

)
, (2.6)

with γ being the Euler constant. Using (2.5) and (2.6), one can readily derive that the single-layer
potential operator has the following asymptotic expansion which converges in L(H∗(∂D),H(∂D)):

SkD = ŜkD +
∞∑
j=1

(k2j log k)S(1)
D,j +

∞∑
j=1

k2jS(2)
D,j , x ∈ ∂D, (2.7)

where

ŜkD[ψ](x) = S̃D[ψ](x) + Υk[ψ](x); Υk[ψ] = (ψ,ϕ0)H∗(SD[ϕ0] + χ(∂D) + τk), (2.8)

S(1)
D,j [ψ](x) =

∫
∂D

bj |x− y|2jψ(y)dσ(y), (2.9)

S(2)
D,j [ψ](x) =

∫
∂D
|x− y|2j(bj log |x− y|+ cj)ψ(y)dσ(y). (2.10)

Similarly, we have the following asymptotic expansion for the boundary integral integral operator
(KkD)∗:

(KkD)∗ = K∗D +
∞∑
j=1

(k2j log k)K(1)
D,j +

∞∑
j=1

k2jK(2)
D,j , (2.11)

where

K(1)
D,j =

∫
∂D

bj
∂|x− y|2j

∂ν(x)
ψ(y)dσ(y), K(2)

D,j =

∫
∂D

∂(|x− y|2j(bj log |x− y|+ cj))

∂ν(x)
ψ(y)dσ(y).

The series (2.11) is convergent in L(H∗(∂D),H∗(∂D)).
The following lemma summarizes some results about the Neumann-Poincaré operator K∗D which

can be conveniently found in [5, 14].

Lemma 2.1. (i) The operator K∗D is compact and self-adjoint in the Hilbert space H∗(∂D) with
the inner product (2.4).
(ii) Let (λj , ϕj), j = 0, 1, 2, ... be the eigenvalue and normalized eigenfunction pair of K∗D in H∗(∂D),
then λj ∈ (−1

2 ,
1
2 ] and λj → 0 as j →∞;

(iii) For any ψ ∈ H−1/2(∂D), we have K∗D[ψ] =
∑∞

j=0 λj〈ψ,ϕj〉H∗(∂D)ϕj.
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2.2 Plasmon resonances

We introduce the mathematical framework of plasmon resonances. First, via the layer potential
theory, the solution of (1.2) can be represented as

u(x) =

u
i(x) + SkmD [ψ](x), x ∈ R2\D,

SkcD [φ](x), x ∈ D,

where (ψ, φ) ∈ H−
1
2 (∂D)×H−

1
2 (∂D) satisfy the following integral system

SkmD [ψ]− SkcD [φ] = −ui on ∂D,

1

µm

(
1

2
Id+ (KkmD )∗

)
[ψ] +

1

µc

(
1

2
Id− (KkcD )∗

)
[φ] = − 1

µm

∂ui

∂ν
on ∂D.

(2.12)

When w is small enough, SkcD is invertible [16]. Therefore, from the first equation of (2.12), we

have φ = (SkcD )−1(SkmD [ψ] + ui). Then, by using the second equation of (2.12), we can obtain that
ψ satisfies the following equation

AD(ω)[ψ] = f, (2.13)

where

AD(ω) =
1

µm

(
1

2
Id+

(
KkmD

)∗)
+

1

µc

(
1

2
Id−

(
KkcD
)∗)(SkcD )−1SkmD ,

f = − 1

µm

∂ui

∂ν
+

1

µc

(
1

2
Id−

(
KkcD
)∗)(SkcD )−1

[−ui].

Clearly,

AD(0) = AD,0 =
1

µm

(
1

2
Id+K∗D

)
+

1

µc

(
1

2
Id−K∗D

)
=

(
1

2µm
+

1

2µc

)
Id−

(
1

µc
− 1

µm

)
K∗D.

(2.14)

From the spectral expansion of K∗D in Lemma 2.1, it can be seen that

AD,0[ψ] =

∞∑
j=0

τj(ψ,ϕj)H∗ϕj , τj =
1

2µm
+

1

2µc
− (

1

µc
− 1

µm
)λj .

In order to solve the equation (2.13), we first introduce the following definition of the index set
of resonance.

Definition 2.1. We call J ∈ N the index set of resonance if τj is close to zero when j ∈ J
and is bounded from below when j ∈ Jc. More precisely, we choose a threshold number η0 > 0
independent of ω such that |τj | ≥ η0 > 0, for j ∈ Jc.

It is worth noting that for j = 0, i.e., λ0 = 1/2, we can obtain τ0 = 1/µm = O(1). Thus, the
index set J excludes 0. Moreover, we impose the following three mild conditions throughout the
paper.

Condition 2.1. (i) We assume that ω and =µc are of order o(1).
(ii) For j ∈ J , the eigenvalue λj is a simple eigenvalue of the operator K∗D.
(iii) Suppose that µc 6= −µm.
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Next, we collect the following useful asymptotic expansion results with respect to small ω, the
details of which can be found in [5].

Lemma 2.2. For ω � 1, the following asymptotic expansion results hold.
(i) The operator SkD : H∗(∂D)→ H(∂D) is invertible, and

(SkD)−1 = LD + Uk − k2 log kLDS(1)
D,1LD +O(k2) (2.15)

with LD = PH∗0 S̃
−1
D , Uk = − 〈S̃

−1
D [·],ϕ0〉H∗
SD[ϕ0]+τk

ϕ0, and S(1)
D,1 given by (2.9). Here PH∗0 is the orthogonal

projection onto H∗0(∂D), and H∗0(∂D) is the zero mean subspace of H∗(∂D).
(ii) The operator AD(ω) can be expanded as follows:

AD(ω) = AD,0 + ω2(logω)AD,1 +O(ω2),

where AD,0 is given by (2.14), and

AD,1 = K(1)
D,1(εmId− εcPH∗0) +

1

µc

(
1

2
Id−K∗D

)
S̃−1
D S(1)

D,1(µmεmId− µcεcPH∗0). (2.16)

(iii) The asymptotic formulas for the eigenvalues τj(ω) and eigenfunctions ϕj(ω) of the AD(ω)
operator with respect to the ω are given by

τj(ω) = τj + (ω2 logω)τj,1 +O(ω2), ϕj(ω) = ϕj + (ω2 logω)ϕj,1 +O(ω2), (2.17)

where

τj,1 = 〈AD,1ϕj , ϕl〉H∗(∂D), ϕj,1 =
∑
j 6=l

〈AD,1ϕj , ϕl〉H∗(∂D)

( 1
µm
− 1

µc
)(λj − λl)

ϕl

with AD,1 defined in (2.16).
(iv) If Condition 2.1 is satisfied, then the scattering field us = u − ui admits the following repre-
sentation:

us = SkmD [ψ],

where

ψ =
∑
j∈J

iω
√
εmµm〈d · ν, ϕj〉H∗ϕj +O(ω3 logω)

λ− λj +O(ω2 logω)
+O(ω) (2.18)

with λ = µm+µc
2(µm−µc) .

In this paper, we assume that µc of the nanoparticle varies with the frequency ω. Then µc(ω)
can be described by Drude model (cf. [33]),

µc(ω) = µ0

(
1− F ω2

ω2 − ω2
0 + iτ−1ω

)
,

where ω0 is the localized plasmon resonant frequency, τ ∈ R+ denotes the bulk electron relaxation
rate of the nanoparticle, and F is the filling factor. When

(1− F )(ω2 − ω2
0)2 − Fω2

0(ω2 − ω2
0) + τ−2ω2 < 0,

it can be deduced that <(µc(ω)) < 0. Next, we introduce the following definition.
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Definition 2.2. The quasi-static plasmon resonance is defined by ω such that

<(λ(ω)) = λj , for j ∈ J, (2.19)

where λj is an eigenvalue of the Neumann-Poincaré operator K∗D, and λ(ω) = µm+µc(ω)
2(µm−µc(ω)) .

Remark 2.1. From the results of the spectral expansion of ψ in (2.18), it is clear that ψ is amplified
when the plasmon resonance condition is reached, thereby the scattering field us exhibits resonant
behavior.

3 Shape sensitivity analysis

3.1 Sensitivity analysis for perturbed domains

In this subsection, we first discuss the asymptotic expansion of the single-layer potential and the
Neumann-Poincaré operator with respect to the boundary perturbation. Then we focus on the
sensitivity of the perturbation domain, i.e., the effect of changes in the domain on the near-field
measurement data.

Let X(t) : [a, b] → R2 be the arclength parametrization of ∂D. Then X ∈ C2[a, b] satisfies
|X ′(t)| = 1, and

∂D := {x = X(t), t ∈ [a, b]}

with X ′(t) = T (x) and X ′′(t) = τ(x)ν(x), where ν is the outward unit normal vector field on ∂D.
We denote the tangential derivative by d

dt . Letting φ ∈ C2[a, b], we have

d2

dt2
φ(x) =

∂2φ

∂T 2
(x) + τ

∂φ

∂ν
(x).

The Helmholtz operator on the neighborhood of ∂D can be denoted as follows:

∆ + k2 =
∂2

∂ν2
+

∂2

∂T 2
+ k2 =

∂2

∂ν2
− τ ∂

∂ν
+
d2

dt2
+ k2 on ∂D. (3.20)

For h ∈ C1(∂D) and a small ε, we let Dε be a deformation of D given by

∂Dε := {x̃ = x+ εh(x)ν(x) | x ∈ ∂D},

and set Ψε(x) = x+ εh(x)ν(x) be the diffeomorphism from ∂D to ∂Dε. The outward unit normal
ν̃(x̃) and line element dσ̃ of ∂Dε, can be expanded uniformly as [4]:

ν̃(x̃) = ν(x)− εh′(t)T (x) +O(ε2),

dσ̃(x̃) = dσ(x)− ετ(x)h(x)dσ(x) +O(ε2).

For ui(x̃), ∂u
i(x̃)

∂ν̃(x̃) , by the Taylor expansion, we have

ui(x̃) = ui(x) + εh(x)
∂ui

∂ν
(x) +O(ε2), x ∈ ∂D, (3.21)

∂ui(x̃)

∂ν̃(x̃)
=
∂ui(x)

∂ν(x)
+ ε

(
h(x)

∂2ui(x)

∂ν2(x)
− h′(x)

∂ui(x)

∂T (x)

)
+O(ε2), x ∈ ∂D. (3.22)

In the following lemma, we give asymptotic expansion results for the layer potential operators
SkDε , (K

k
Dε

)∗ and the density functions φε, ψε with respect to ε. These results provide the basis for
the analysis of shape sensitivity.
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Lemma 3.1. [40] Let φ := φ̃ ◦ Ψε. There exists C depending only on N , ‖ X ‖C2, and ‖ h ‖C1
such that
(i) ‖ SkDε [φ̃] ◦Ψε − SkD[φ]− εS(1)

D,k[φ] ‖L2(∂D)≤ Cε2 ‖ φ ‖L2(∂D),

where the operator S(1)
D,k defined for any φ ∈ L2(∂D) by

S(1)
D,k[φ](x) = −SkD[τhφ](x) + h(KkD)∗[φ](x) +KkD[hφ](x),

= −SkD[τhφ](x) +

(
h
∂(SkD[φ])

∂ν
+DkD[hφ]

)∣∣∣∣
±

(x), x ∈ ∂D. (3.23)

(ii) ‖ ((KkDε)
∗[φ̃]) ◦Ψε − (KkD)∗[φ]− εK(1)

D,k[φ] ‖L2(∂D)≤ Cε2 ‖ φ ‖L2(∂D),

where

K(1)
D,k[φ](x) = τ(x)h(x)(KkD)∗[φ](x)− (KkD)∗[τhφ](x) +

∂(DkD[hφ])

∂ν
(x)

− d

dt

(
h
d(SkD[φ])

dt

)
(x)− k2h(x)SkD[φ](x),

=

(
τh
∂(SkD[φ])

∂ν
−
∂(SkD[τhφ])

∂ν

)∣∣∣∣
±

(x) +
∂(DkD[hφ])

∂ν
(x)

− d

dt

(
h
d(SkD[φ])

dt

)
(x)− k2h(x)SkD[φ](x), x ∈ ∂D. (3.24)

(iii) Let (φε, ψε) be the solution of (2.12) with Dε, then it satisfies

‖ φε ◦Ψε − φ− εnφ(1) ‖L2(∂D) + ‖ ψε ◦Ψε − ψ − εnψ(1) ‖L2(∂D)≤ Cε2,

where (ψ(1), φ(1)) as the solution to the following system on ∂D :
SkmD [ψ(1)]− SkcD [φ(1)] = −h∂u

i

∂ν
+ S(1)D,kc

[φ(0)]− S(1)D,km
[ψ(0)],

1

µm

(
∂(SkmD ψ(1))

∂ν

)∣∣∣∣
+

− 1

µc

(
∂(SkcD φ(1))

∂ν

)∣∣∣∣
−

= − 1

µm

(
h
∂2ui

∂ν2
− h′ ∂u

i

∂T

)
+

1

µc
K(1)
D,kc

[φ(0)]− 1

µm
K(1)
D,km

[ψ(0)]

(3.25)

with S(1)
D,k and K(1)

D,k are defined by (3.23) and (3.24), respectively.

When D is replaced by Dε in problem (1.2), we apply the filed expansion (FE) method (cf. [13])
to export asymptotic expansions of uε. Firstly, we expand uε with respect to ε of the form,

uε(x) = u0 + εu1(x) +O(ε2), x ∈ R2. (3.26)

Note that u0 = u, and u1 is well-defined in R2\∂D
(∆ + ω2εcµc)u1 = 0 in D,

(∆ + ω2εmµm)u1 = 0 in R2\D,

u1 satisfies the Sommerfeld radiation condition.

(3.27)
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According to the expansion form (3.26) and 1
µm

∂uε
∂ν

∣∣
+

= 1
µc

∂uε
∂ν

∣∣
− on ∂Dε, it follows that

1

µm

∂u0

∂ν

∣∣∣∣
+

− 1

µc

∂u0

∂ν

∣∣∣∣
−

= 0 on ∂D,

1

µm

∂u1

∂ν

∣∣∣∣
+

− 1

µc

∂u1

∂ν

∣∣∣∣
−

= h

(
1

µc

∂2u0

∂ν2

∣∣∣∣
−
− 1

µm

∂2u0

∂ν2

∣∣∣∣
+

)
+

(
1

µc
∇u0 · ν1

∣∣∣∣
−
− 1

µm
∇u0 · ν1

∣∣∣∣
+

)
=

(
1

µm
− 1

µc

)
d

dt

(
h
du0

dt

)
+ hω2(εm − εc)u0 on ∂D. (3.28)

The last equality in (3.28) is proved by using the representation of the Helmholtz operator in (3.20).
Similarly, since uε |+= uε |− on ∂Dε, we have

u0|+ − u0|− = 0 on ∂D,

u1|+ − u1|− = h

(
∂u0

∂ν

∣∣∣∣
−
− ∂u0

∂ν

∣∣∣∣
+

)
= h

(
1− µm

µc

)
∂u0

∂ν

∣∣∣∣
−

on ∂D. (3.29)

Then the following asymptotic expansion results can be obtained. It is emphasized that above
derivation is formal, and the asymptotic results will be proved strictly by layer potential techniques.

Theorem 3.2. The following asymptotic formula formally holds:

uε(x) = u(x) + εu1(x) +O(ε2),

where the remainder O(ε2) depends on N,D, kc, km, the C1-norm of h, and u1 is the unique solution
to 

(∆ + ω2εcµc)u1 = 0 in D,

(∆ + ω2εmµm)u1 = 0 in R2\D,

u1|+ − u1|− = h
(
1− µm

µc

)
∂u0
∂ν |− on ∂D,

1

µm

∂u1

∂ν

∣∣∣∣
+

− 1

µc

∂u1

∂ν

∣∣∣∣
−

=

(
1

µm
− 1

µc

)
d

dt

(
h
du0

dt

)
+ hω2(εm − εc)u0 on ∂D,

u1 satisfies the Sommerfeld radiation condition.

(3.30)

Proof. According to (3.25) and the layer potential theory, one can show that

u1(x) =

 SkmD [ψ(1)](x)− SkmD [τhψ(0)](x) +DkmD [hψ(0)](x), x ∈ R2 \D,

SkcD [φ(1)](x)− SkcD [τhφ(0)](x) +DkcD [hφ(0)](x), x ∈ D,
(3.31)

satisfies (3.27), (3.28) and (3.29). In fact, by combining (3.23) and the first equation of (3.25), we
obtain

u1|− − u1|+ =h
∂ui

∂ν
+ S(1)

D,km
[ψ(0)]− S(1)

D,kc
[φ(0)] + SkmD [τhψ(0)]− SkcD [τhφ(0)]

+ (DkcD [hφ(0)])

∣∣∣∣
−
− (DkmD [hψ(0)])

∣∣∣∣
+

=h

(
∂ui

∂ν
+
∂(SkmD [ψ(0)])

∂ν

∣∣∣∣
+

)
− h

∂(SkcD [φ(0)])

∂ν

∣∣∣∣
−

=h

(
µm
µc
− 1

)
∂u0

∂ν

∣∣∣∣
−

on ∂D,
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Since the second equation of (3.25), we have

1

µc

∂u1

∂ν

∣∣∣∣
−
− 1

µm

∂u1

∂ν

∣∣∣∣
+

=
1

µm
(K(1)

D,km
[ψ(0)])

∣∣∣∣
+

− 1

µc
(K(1)

D,kc
[φ(0)])

∣∣∣∣
−

+
1

µm

(
h
∂2ui

∂ν2
− h′∂u

i

∂T

)
+

1

µm

∂(SkmD [τhψ(0)])

∂ν

∣∣∣∣
+

− 1

µc

∂(SkcD [τhφ(0)])

∂ν

∣∣∣∣
−

+
1

µc

∂(DkcD [hφ(0)])

∂ν

∣∣∣∣
−
− 1

µm

∂(DkmD [hψ(0)])

∂ν

∣∣∣∣
+

on ∂D,

owing to (∆ + k2
m)ui = 0 in R2, and combined with (3.20), we find

h
∂2ui

∂ν2
− h′∂u

i

∂T
= τh

∂ui

∂ν
− d

dt

(
h
dui

dt

)
− hk2

mu
i on ∂D.

It is evident from (3.24) that u1 satisfies (3.28). This completes the proof.

We introduce the following definition of a shape sensitivity functional, to study the variation in
measurements caused by changes in the shape of the inclusion D.

Definition 3.1. The shape sensitivity functional for the measurement us|∂Ω with respect to the
shape of ∂D is defined as

SSF (∂D) := lim
ε→0

usε |∂Ω − us|∂Ω

ε
.

Remark 3.1. From Definition 3.1, the shape sensitivity functional is actually the shape derivative
of the forward operator F(∂D) (cf. [4]). Furthermore, by using Theorem 3.2 and (3.31), the shape
sensitivity functional can be rewritten as

SSF (∂D)(x) = (SkmD [ψ(1)]− SkmD [τhψ0] +DkmD [hψ0])(x), x ∈ ∂Ω. (3.32)

3.2 Spectral representation of the shape sensitivity functional

In this subsection, we derive the spectral representation of the shape sensitivity functional. It
indicates that, when plasmon resonances occur, the shape sensitivity functional is amplified and
exhibits a prominent peak. Hence, the plasmon resonance can significantly increase the sensitivity of
the near-field measurement with respect to the shape of a domain. For simplicity, in the subsequent
spectral analysis, we always exclude the essential spectrum 0 from the spectrum set of the NP
operator.

Let d = dist(λ, σ(K∗D)) be the distance of λ to the spectrum set σ(K∗D). Next, we are ready to
state our main result in the following theorem.

Theorem 3.3. In the quasi-static regime, as d → 0, if ω2 logω = o(d), then the shape sensitivity
functional has the following spectral expansion:

SSF (∂D) =
µc

µm − µc

3∑
q=1

(−pc)q−1

(logω)q

∑
l∈J

(E2, ϕl)H∗ S̃D[ϕl]

λ− λl
+
∑
l∈J

∑
j∈J

ikm(d · ν, ϕj)H∗(E1, ϕm)H∗ S̃D[ϕm]

(λ− λj)(λ− λl)

+
∑
j∈J

ikm(d · ν, ϕj)H∗(−S̃D[τhϕj ] +DD[hϕj ])

λ− λj
+O

(
1

d(logω)3

)
+O

(
ω2(logω)2

d2

)

+O

(
ω3(logω)3

d3

)
+O

(
ω logω

)
, (3.33)
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where

E1 = τhλjϕj −K∗D[τhϕj ] +DD[hϕj ]−
d

dt

(
h
d(S̃Dϕj)

dt

)
,

E2 = 2π

(
∂DD[hϕ0]

dν
+

(
1

2
Id−K∗D

)
(S̃−1
D [hϕ0/2] + S̃−1

D KD[hϕ0])

)
with the constant pc = 2πSD[ϕ0] + log(

√
εcµc) + γ − log 2− iπ/2.

Proof. We reformulate the form of Υkm in (2.8) as follows

Υkm [·] =
1

2π
logω(·, ϕ0)H∗ +Am(·, ϕ0)H∗ ,

where the constant Am = SD[ϕ0] + χ(∂D) + 1
2π (log(

√
εmµm) + γ − log 2) − i

4 . Similarly, we give
the form of Υkc [·], where Ac pairs are used for the constants in Υkc [·]. The operator Ukc in (2.15)
also have the following asymptotic formula:

Ukc = −
(

2π(S̃−1
D [·], ϕ0)H∗ϕ0

logω
−

2πpc(S̃−1
D [·], ϕ0)H∗ϕ0

(logω)2
+

2πp2
c(S̃−1

D [·], ϕ0)H∗ϕ0

(logω)3
+O

(
1

(logω)4

))
.

Since ω2 logω = o(d), the expansion of ψ(0) in (2.18) can be obtained

ψ(0) =
∑
j∈J

ikm(d · ν, ϕj)H∗ϕj
λ− λj

+O(ω) +O

(
ω2

d

)
+O

(
ω3 logω

d2

)
:= ψ

(0)
1 +R, (3.34)

where R represents a higher order term.
As ω → 0, combined with (3.25), we have φ(1) = (SkcD )−1(SkmD [ψ(1)] −Q1), and Q1 = −h∂ui∂ν +

S(1)
D,kc

[φ(0)]− S(1)
D,km

[ψ(0)], whereas the following equation hold for ψ(1)

AD(ω)[ψ(1)] = g, (3.35)

where g = Q2+ 1
µc

(1
2Id−(KkcD )∗)(SkcD )−1[Q1], Q2 = − 1

µm
(h∂

2ui

∂ν2
−h′ ∂ui∂T )+ 1

µc
K(1)
D,kc

[φ(0)]− 1
µm
K(1)
D,km

[ψ(0)].

In order to calculate ψ(1) of the (3.35), we first calculate φ(0) = (SkcD )−1(SkmD [ψ(0)] + ui) of the

Q1. According to (3.34), (2.15) and the fact LD(χ(∂D)) = 0, (ψ
(0)
1 , ϕ0)H∗ = 0, by straightforward

calculation, we have

φ(0) = ψ
(0)
1 +

3∑
q=1

2πϕ0(−pc)q−1

(logω)q
+O

(
1

(logω)4

)
+R. (3.36)

Next, we can calculate the 1
µc

(
1
2Id− (KkcD )∗

)
(SkcD )−1[Q1] of g. Since(

1

2
Id−K∗D

)
Ukc = 0,

and according to (2.11) and (2.15), it is evident that

1

µc

(
1

2
Id− (KkcD )∗

)
(SkcD )−1 =

1

µc

(
1

2
Id−K∗D

)
S̃−1
D +O(ω2 logω). (3.37)
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Combining (2.15), (3.23), (3.37) and using the fact LDΥkc = 0, we deduce

1

µc

(
1

2
Id− (KkcD )∗

)
(SkcD )−1[Q1]

=
1

µc

(
1

2
Id−KkcD )∗

)
(SkcD )−1

(
− h∂u

i

∂ν
− SkcD [τhφ(0)] + h(KkcD )∗[φ(0)] +KkcD [hφ(0)]

+ SkmD [τhψ(0)]− h(KkmD )∗[ψ(0)]−KkcD [hψ(0)]

)
=

1

µc

(
1

2
Id−K∗D

)
S̃−1
D

(
− (S̃D + Υkc)

(
τhψ

(0)
1 +

3∑
q=1

2πτhϕ0(−pc)q−1

(logω)q

)
+ hK∗D[ψ

(0)
1 ]

+
3∑
q=1

2π(−pc)q−1hK∗D[ϕ0]

(logω)q
+KD[hψ

(0)
1 ] +

3∑
q=1

2π(−pc)q−1KD[hϕ0]

(logω)q
+ (S̃D + Υkm)[τhψ

(0)
1 ]

− hK∗D[ψ
(0)
1 ]−KD[hψ

(0)
1 ]

)
+O

(
1

(logω)4

)
+R

=
2π

µc

(
1

2
Id−K∗D

)( 3∑
q=1

(−pc)q−1τhϕ0 + S̃−1
D [hϕ0/2] + S̃−1

D KD[hϕ0])

(logω)q

)
+O

(
1

(logω)4

)
+R.

(3.38)

Then we need to calculate the asymptotic expansion of Q2. First for item d
dt

(
h
d(SkcD [φ(0)])

dt

)
, from

(3.36) and (2.7), we deduce

d

dt

(
h
d(SkcD [φ(0)])

dt

)
=

d

dt

(
h
d(S̃D[ψ

(0)
1 ])

dt

)
+R. (3.39)

Similarly, we compute

d

dt

(
h
d(SkmD [ψ(0)])

dt

)
=

d

dt

(
h
d(S̃D[ψ

(0)
1 ])

dt

)
+R logω, (3.40)

combining formula (3.24), (3.39) and (3.40), we ascertain

Q2 =− 1

µm

(
h
∂2ui

∂ν2
− h′∂u

i

∂T

)
+

1

µc
K(1)
D,kc

[φ(0)]− 1

µm
K(1)
D,km

[ψ(0)]

=− 1

µm

(
h
∂2ui

∂ν2
− h′∂u

i

∂T

)
+

1

µc

(
τh(KkcD )∗[φ(0)]− (KkcD )∗[τhφ(0)] +

∂(DkcD [hφ(0)])

∂ν

− d

dt

(
h
d(SkcD [φ(0)])

dt

)
− k2

chSkcD [φ(0)]

)
− 1

µm

(
τh(KkcD )∗[ψ(0)]− (KkcD )∗[τhψ(0)]

+
∂(DkcD [hψ(0)])

∂ν
− d

dt

(
h
d(SkcD [ψ(0)])

dt

)
− k2

mhSkcD [ψ(0)]

)

=
(µm − µc)√

µmµc

∑
j∈J

ikm(d · ν, ϕj)H∗(τhλjϕj −K∗D[τhϕj ] +DD[hϕj ]− d
dt

(
h
d(S̃D[ϕj ])

dt

)
)

λ− λj

+
2π

µc

3∑
q=1

(−pc)q−1

(logω)q

(
τhϕ0/2−K∗D[τhϕ0] +

∂(DD[hϕ0])

∂ν

)
+O

(
1

(logω)4

)
(3.41)
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+R+ logωR.

Furthermore, owing to (3.38), (3.41), we find

f =Q2 +
1

µc

(
1

2
Id− (KkcD )∗

)
(SkcD )−1[Q1]

=
(µm − µc)√

µmµc

∑
j∈J

iω
√
εm(d · ν, ϕj)H∗(τhλjϕj −K∗D[τhϕj ] +DD[hϕj ]− d

dt

(
h
d(S̃D[ϕj ])

dt

)
)

λ− λj

+
2π

µc

(
∂(DD[hϕ0])

∂ν
+

3∑
q=1

(−pc)q−1

(logω)q

(
1

2
Id−K∗D

)
(S̃−1
D [hϕ0/2] + S̃−1

D KD[hϕ0])

+O

(
1

(logω)4

)
+O

(
ω logω

d

)
+O

(
ω3(logω)2

d2

)
:=

(µm − µc)√
µmµc

∑
j∈J

iω
√
εm(d · ν, ϕj)H∗E1

λ− λj
+
E2

µc

( 3∑
q=1

(−pc)q−1

(logω)q

)
+O

(
1

(logω)4

)
(3.42)

+O

(
ω logω

d

)
+O

(
ω3(logω)2

d2

)
.

Recalling (3.35), and combined with (3.42), (2.17), we deduce

ψ(1) =A−1
D (ω)[f ]

=
∑
j∈J

(f, ϕ̃j)H∗ϕ̃j
τj(ω)

+A−1
D (ω)[PJc [f ]]

=
µm

µm − µc

( 3∑
q=1

(−pc)q−1

(logω)q

∑
l∈J

(E2, ϕl)H∗ϕl
λ− λl

)
+
∑
l∈J

∑
j∈J

ikm(d · ν, ϕj)H∗(E1, ϕl)H∗ϕl
(λ− λj)(λ− λl)

(3.43)

+O

(
1

d(logω)4

)
+O

(
ω2 logω

d2

)
+O

(
ω3(logω)2

d3

)
+O(ω),

where the norm ‖ A−1
D (ω)[PJc(ω)[f ]] ‖L(H∗(∂D),H∗(∂D)) is uniformly bounded in ω (see [5]). Here,

PJ is a projection operator with PJ [ϕj ] = ϕj for j ∈ J , and PJc [ϕj ] = 0 for j ∈ Jc. Thus we have
A−1
D (ω)[PJc(ω)[f ]] = O(ω).

Since SkmD = S̃D + Υkm + O(ω2 logω), DkmD = DD + O(ω2 logω) and combining (3.43), (3.34)
and (3.32), a direct calculation shows that the theorem immediately follows.

Remark 3.2. From Theorem 3.3, it is clear that the l-th mode in the expansion formula contains both

O
(

1
λ−λl

)
, O
(

1
(λ−λl)(λ−λj)

)
and O

(
1

(λ−λl)2

)
. Therefore, for the sufficiently small loss (=(µc)→ 0),

the l-th mode will exhibit a large peak if the plasmon resonance condition (2.19) is satisfied.

Remark 3.3. Since the logarithmic singularity log |x − y| (as x → y) and log k (as k → 0) in 2-D
fundamental solution of Helmholtz equation, the logarithmic singularity are also inherited to the
spectral expansion of shape sensitivity functional (3.33). It is very different from the 3-D case and
static electric field case [18].

According to Theorem 3.3, the upper bound estimate of the sensitivity functional can be derived
easily, and we state the following corollary.
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Corollary 3.4. If the assumptions of Theorem 3.3 are satisfied, and the mapping SSF : H1(∂D)→
H2(∂Ω), then the shape sensitivity functional satisfies

‖SSF (∂D)‖H2(∂Ω) ≤ C
( 3∑
q=1

1

(logω)q

∑
l∈J

1

λ− λl
+ km

∑
l∈J

∑
j∈J

|∂D|
1
2 (‖τ‖C(∂D) + 1)

(λ− λl)(λ− λj)
)

+ km
∑
j∈J

|∂D|
1
2 (‖τ‖C(∂D) + 1)

λ− λj

)
+O

(
1

d(logω)3

)
+O

(
ω2(logω)2

d2

)

+O

(
ω3(logω)3

d3

)
+O(ω logω).

Moreover, when d · ν = 0, then the following result holds

‖ SSF (∂D) ‖H2(∂Ω) ≤ C
( 3∑
q=1

1

(logω)q

∑
l∈J

1

λ− λl

)
+O

(
1

d(logω)3

)
+O

(
ω2(logω)2

d2

)

+O

(
ω3(logω)3

d3

)
+O(ω logω),

where C is a constant.

Remark 3.4. From Corollary 3.4, we can see that the H2-norm of shape sensitivity functional is
controlled by the curvature and size of ∂D. Especially if the incident direction and normal vector
are perpendiculars, i.e., d · ν = 0, the upper bound of shape sensitivity functional is independent
of the curvature and size of ∂D.

3.3 Spectral expansion of a circle

For the special case when the domain D is a disk, we have that σ(K∗D) = {0, 1
2}. In the previous

analysis, we remove 0 and 1
2 in our hypothesis. In this subsection, we focus on the spectral expansion

of the shape sensitivity functional when D is a disk. Assuming that D is a disk of radius r0 located
at the origin, the perturbation boundary ∂Dε is given by

∂Dε = (r0 + εh(t))

(
cos t
sin t

)
, t ∈ [0, 2π]}.

From the Theorem 3.2, we have uε = u0(x)+εu1(x)+O(ε2), where u0, u1 fulfill (1.2) and (3.31),
respectively. We can obtain the explicit solution of (1.2) and (3.31) as follows

u0(r, t) =


∑
n∈Z

ein(π
2
−td)Jn(kmr)e

int + anH
(1)
n (kmr)e

int, r > r0,∑
n∈Z

bnJn(kcr)e
int, r ≤ r0,

and

u1(r, t) =


∑
n∈Z

cnH
(1)
n (kmr)e

int, r > r0,∑
n∈Z

dnJn(kcr)e
int, r ≤ r0,
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where Jn, H
(1)
n are the Bessel function of order n ∈ N , the incidence direction d = (cos(td), sin(td))

and the plane wave has the following expansion

eikx·d =
∑
n∈Z

ein(π
2
−td)Jn(kr)eint.

Then the constant an and bn are given by

an =

ein(π
2
−td)

(
km
µm
J ′n(kmr0)Jn(kcr0)− kc

µc
J ′n(kcr0)Jn(kmr0)

)
kc
µc
J ′n(kcr0)H

(1)
n (kmr0)− km

µm
Jn(kcr0)H

(1)′
n (kmr0)

, (3.44)

bn =

ein(π
2
−td) km

µm

(
J ′n(kmr0)H

(1)
n (kmr0)− Jn(kmr0)H

(1)′
n (kmr0)

)
kc
µc
J ′n(kcr0)H

(1)
n (kmr0)− km

µm
Jn(kcr0)H

(1)′
n (kmr0)

. (3.45)

Owing to the (3.44), (3.45) and (3.31), a direct calculation show that

cn =

ein(π
2
−td) km

µm

(
J ′n(kmr0)H

(1)
n (kmr0)− Jn(kmr0)H

(1)′
n (kmr0)

)
kc
µc
J ′n(kcr0)H

(1)
n (kmr0)− km

µm
Jn(kcr0)H

(1)′
n (kmr0)

×(
1
µc

(
1− µm

µc

)
h(t)k2

c [J
′
n(kcr0)]2 − (n(ih′(t)− nh)

(
1
µm
− 1

µc

)
− h(t)ω2(εm − εc))[Jn(kmr0)]2

)
kc
µc
J ′n(kcr0)H

(1)
n (kmr0)− km

µm
Jn(kcr0)H

(1)′
n (kmr0)

,

as ω → 0, according to the asymptotic expansion in [30] with respect to Jn(z), H
(1)
n (z) and its

derivative, cn can be obtained by a direct calculation,

c0 =

2
iπr0µm

·O(ω2)

−( 2
πr0µm

)2 +O(ω2 logω)
= O(ω2),

cn = ein(π
2
−td)

[
ω2n

( iπεnmµ
n+1
m µc

22n+1(µc−µm)
)

(
1
µc
h(t) 1

[(n−1)!]2
r2n−1

0 − 1
µm
n(ih′ − nh)r2n+1

0

)
λ2

+ ω2(n+1)

iπεnmµ
n+1
m µ2c(εm−εc)

22n+1(µm−µc)2 h(t)r2n+1
0 )

λ2

]
.

Finally, we are ready to state our main result in the subsection.

Theorem 3.5. Let domain D be a disk, then the shape sensitivity functional SSF (∂D) has the
following asymptotic expansion in the quasi-static regime:

SSF (∂D) =
∑
n≥1

ein(π/2−td+t)(n− 1)!ε
n
2
mµ

n
2

+1
m µc

4n(µc − µm)Rn0

(
ωn

hr2n−1
0

µc[(n−1)!]2
− 1

µm
n(ih′ − nh)r2n+1

0

λ2

+ ωn+1

µc(εm−εc)
µm−µc hr2n+1

0

λ2

)
+O(ω2(logω)).
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Moreover, the following estimation holds

‖ SSF (∂D) ‖C(∂Ω)≤
∑
n≥1

(
ωn
C̃n(r2n−1

0 + r2n+1
0 )

λ2
+ ωn+1 D̃nr

2n+1
0

λ2

)
+O(ω2(logω)), (3.46)

where C̃n, D̃n depend on n, εc, µc, εm, µm, R0, ‖ h ‖C1.

Remark 3.5. Notice that, from Condition 2.1, the essential spectrum of Neumann-Poincaré operator
for general smooth domain 0 is excluded. However, when D is a disk, the leading term of spectral
expansion of SSF is ω/λ2, which is quite distinct from the general case. When D is a general
domain (non-disk), the leader term is 1

(logω)·(λ−λl) (see Theorem 3.3).

4 Hierarchical Bayesian and Laplace approximation

In this section, we discuss the numerical issues for shape reconstruction. First, we suppose that
∂D is a starlike boundary curve for the origin, i.e. there exists q ∈ C2[0, 2π] such that

∂D = {~q(t) = q(t)

(
cos t
sin t

)
, t ∈ [0, 2π]}.

Note that without change of notation we rewrite F(q) = us|∂Ω of (1.3).
One way to overcome the ill-posedness of the inverse problem is to use the Tikhonov regular-

ization method, which proposes to augment the cost functional with a quadratic term, i.e.,

J [q] :=
1

2
‖ F(q)− us,δ ‖22 +

µ

2
‖ q ‖2L2[0,2π], (4.47)

where us,δ = (us,δ1 , us,δ2 , · · · , us,δn ) signifies the discrete measurement data on ∂Ω, ‖ · ‖2 denotes the
2-norm in Rn, and µ is the regularization parameter. Moreover, the measurement data us,δ and
the exact data us satisfies ‖us,δ − us‖2 ≤ δ.

In this paper, we apply the Levenberg-Marquardt method [20,22] to find the minimizer of J [q],
which is essentially a variant of the Gauss-Newton iteration. We suppose that q∗ is an approximation
of q, then the nonlinear mapping F in (4.47) can be replaced approximatively by its linearization
around q∗. Thus, minimizing (4.47) can be seen to minimize

J [q] :=
1

2
‖ F ′(q∗)δq − (us,δ −F(q∗)) ‖22 +

µ

2
‖ δq ‖2L2[0,2π],

where, δq = q − q∗.
We know that the regularization method is representative of deterministic inverse solution

techniques and can only get point estimates of the solution. To obtain a more statistical description
of all possible solutions, we also interpret the inverse problem from a Bayesian perspective. In the
classical Bayesian theory, the observation error ξ is assumed to be an independent and identically
distributed Gauss random vector with mean zero, the covariance matrix B = δ2I (I is the unit
matrix), the minimization functional (4.47) can be rewritten as follows

J [q] ∝ 1

2δ2
‖ F(q)− us,δ ‖22 +

µ

2δ2
‖ q ‖2L2[0,2π]

=
1

2
‖ F(q)− us,δ ‖2B +

η

2
‖ q ‖2L2[0,2π]

=: JB(q),
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where η = µ
δ2

, ‖ · ‖B is a covariance weighted norm given by ‖ · ‖B=‖ δ−1I· ‖2. Moreover, the
radial function q(t) of its unknown inner boundary curve ∂D is approximated by trigonometric
series

q(t) ≈
m∑
k=0

ak cos kt+
m∑
k=1

bk sin kt, 0 ≤ t ≤ 2π,

where m ∈ N and the vector q = (a0, ..., am, b1, ..., bm) ∈ R2m+1. The notation q is also used
to denote the vector (a0, ..., am, b1, ..., bm)T , while the minimizer of JB defines the maximum a
posteriori estimator

qMAP = arg min
q
JB(q). (4.48)

In almost all inverse problems, the selection of regularization parameters plays a crucial role.
The regularization method heavily depends on the choice of the regularization parameter. We
introduce the hierarchical Bayesian model in this paper [19,25,39], which provides an effective way
to achieve an automatic and flexible selection of the regularization parameter µ or η. The main
idea is to treat the regularization parameter as a random variable with its own priors, such as the
gamma distribution for η. Then the posterior density function can be written as

p(q, η|us,δ) ∝ exp

(
−1

2
‖ F(q)− us,δ ‖2B

)
η(2m+1)/2exp(−η

2
qT q)ηα0−1e−β0η, (4.49)

where (α0, β0) is the parameter pair of the Gamma distribution.
Then the maximum a posteriori estimator (MAP point) of the posterior density function (4.49)

is essentially derived as the minimizer of the functional

JB(q, η) =
1

2
‖ F(q)− us,δ ‖2B +

η

2
qT q + β0η − (

2m+ 1

2
+ α0 − 1)lnη. (4.50)

The functional JB(q, η) in (4.50) is called the augmented Tikhonov regularization. To find the min-
imizer of augmented Tikhonov regularization and achieve an automatic selection of regularization
parameters, we solve the minimizer of (4.50) by alternating iterative, i.e., fixed ηz (respectively, qz),
update the qz+1 (respectively, ηz+1), and iterate qz using Levenberg-Marquardt method for each
step.

Algorithm 1 alternating iteration method for solving the variational problem (4.50).

1: Choose q0, η0, α0, β0, and set z = 0;
2: Solve the direct problem (1.2) and determine the residual Fz = us,δ −F(qz);
3: Compute the Jacobian matrix G = F ′(qz);
4: Calculate δqz = (GTG+ ηδ2I)−1(GTFz);
5: Update the solution qz by qz+1 = qz + δqz,
6: Update the parameter ηz+1 by

λz+1 =
2m+1

2 + α0 − 1

qTz+1qz+1/2 + β0
;

7: Increase z by one and go to step 2, repeat the above procedure until a stopping criterion
is satisfied.

The essence of the Laplace approximation is to replace the complicated posterior with the normal
distribution located at the maximum posterior value qMAP. In fact, it is a linearization around the
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MAP point (cf. [34]). It consists of approximating the posterior measure (or distribution) by
ω ≈ N(qMAP, CMAP), where

CMAP = (J ′′B)−1 = (
µ

δ2
I +

1

δ2
GTG)−1, (4.51)

here G is the Jacobian matrix of the forward operator F at the point q. Notice that the covariance
formula (4.51) only uses the first order derivatives of F . The concrete implementation steps of
Laplace approximation [23] are given in algorithm 2.

Algorithm 2 Laplace approximation (LA) for sampling.

1: Compute qMAP from (4.48) by using Algorithm 1, and CMAP from (4.51), respectively;
2: Compute the Cholesky factor L of CMAP, i.e., CMAP = LLT ;
3: For j = {1, ..., Ne}, generate qj = qMAP + LTBj , where Bj ∼ N(0, I).

5 Numerical results and discussions

This section presents some numerical examples to illustrate the effectiveness and promising features
of the proposed reconstruction scheme.

In all of our numerical examples, the measurement boundary curve ∂Ω is given by the circle of
radius 1.5 and centered at the origin, that is ∂Ω = {1.5(cos t, sin t), 0 ≤ t ≤ 2π}. Set the incident
field ui = eikmx·d, where the direction d = (cos(π/3), sin(π/3)), and µm = εm = 1, εc = 2. We solve
the direct problem with Nyström method [26], and there are 2n = 50 grid points. In addition, to
avoid committing an inverse crime, the number of collocation points for obtaining the synthetic
data was chosen to be different from the number of collocation points within the inverse solver.

In the iterative process, we choose a circle of radius 1 and centered at the origin as the initial
guess. A finite difference method is used to calculate the Jacobian matrix G, and the maximum
number of iteration steps is set to 100. The number of samples Ne is 10000 in the algorithm 2, and
the following stopping rule is given

Ez =‖ qz − qz−1 ‖L2≤ 10−5.

The noisy measured data is generated by

us,δ = us(x) + δ
ξ

| ξ |
, x ∈ ∂Ω,

where us(x) is the exact data, δ indicates the noise level, and ξ is the Gaussian random vector with
a zero mean and unit standard deviation.

The approximate solution q̃Ne by LA algorithm compare to the exact solution q(x) by computing
the relative error

eγ =
‖ q̃Ne − q(x) ‖L2(∂D)

‖ q(x) ‖L2(∂D)
.

Example 5.1. In this example, we consider the reconstruction of a circle object with

q(t) = 0.8, 0 ≤ t ≤ 2π,

and we take α0=800, β0 = 0.01 and η0 = 10 as the initial values in the iterative algorithm 1.
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First, we investigate the variation of the mode of the scattering field with ω at a fixed position
x0 = (1.5, 0) for Example 5.1. It is well known that the eigenvalues of K∗D are {0, 1/2} for D is a
disk. If setting λ1 = 0, from Section 2.2, the quasi-static plasmon resonance is defined by ω such
that <(λ(ω)) = λ1. In Fig. 5.1 (a) is compared the magnitude of the scattering field |us(x0)| for
negative materials i.e., µc = −1+0.004i and λ = 0+10−3i with the magnitude of the scattered field
µc = 5 and λ = 0.75 for normal materials. It is clear that as ω tends to zero, the corresponding
scattering field becomes smaller. If ω is fixed, for negative materials µc = −1 + 0.004i, that is, the
scattering field is always larger than the scattering field for µc = 5 and λ = 0.75 when resonance
occurs. It is concluded that when the resonance occurs, it enhances the intensity of the field,
thus increasing the signal-to-noise ratio, which will have a beneficial effect on solving the inverse
problem.

In Fig. 5.1(b), when <(λ(ω)) = 0 and the plasmon resonance frequency ω = 0.01, we can see
that scattering field gradually increases as the =λ(ω) decreases, in particular, the scattering field
tends to flatten out after the imaginary part is small with 10−4. That is, when the loss of magnetic
permeability µc is small enough, the scattered field reaches a maximum.

Next, we study the effect of different values λ on the reconstruction. In Fig. 5.2 (a) and Fig. 5.2
(b), with the same error level δ = 0.01, the inversion results of µc = −1 + 0.004i are better than
µc = 5. Then, it can be obtained that the reconstruction effect of plasmon resonance is better than
that of non-resonance. Even in larger error levels, the reconstructed results of plasmon resonance
are still satisfactory, as can be seen in Fig. 5.2 (c) and Fig. 5.2 (d), at error levels δ = 0.1 and
δ = 0.3, respectively.
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Figure 5.1: (a) The |us| in Example 5.1 for different ω, (b) when <(λ) = 0 and ω = 0.01, the
result of the variation of |us| with =(λ).

We explore the variation of ‖SSF (∂B)‖L2(∂Ω) for different sizes of shape scaling factors ζ.

We first suppose that B = ζD and set h(x) = x1 + x2, then |∂B|
1
2 = ζ

1
2 |∂D|

1
2 and ‖τ‖C(∂B) =

1
ζ ‖τ‖C(∂D). In Table 1, we find that as ζ increases, the ‖SSF (∂B)‖L2(∂Ω) increases with it. The
result is consistent with that of (3.46), and the upper bound of its ‖SSF (∂B)‖L2(∂Ω) increases with
the growth of ζ.

Example 5.2. In the second example, we consider that the inclusion is a peanut, and the polar
radius of the peanut is parameterized by

q(t) =

√
cos2 t+ 0.26 sin2(t+ 0.5), 0 ≤ t ≤ 2π,
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Figure 5.2: Reconstruction of the shape in Example 5.1 with different noise level δ.

Table 1: The ‖SSF (∂D)‖L2(∂Ω) of Example 5.1 for different ζ.

ζ |∂B|
1
2 ‖τ‖C(∂B) ‖SSF (∂D)‖L2(∂Ω)

0.50 1.5852 2.500 2.293

0.67 1.8306 1.875 3.103

1 2.2417 1.250 5.0

1.1 2.3514 1.136 5.698

1.2 2.4558 1.041 6.487
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where we take α0=1000, β0 = 0.01 and η0 = 1000 as the initial values in the iterative algorithm 1.

In Fig. 5.3, for different µc = 5 (normal material) and µc = −0.4508 + 0.1058i (plasmon
resonance materials), it can be seen that the |us|∂Ω is one orders of magnitude higher than the
normal material for Example 5.2 when plasmon resonance occurs. Then we show the reconstruction
results for different λ and µc in Fig. 5.4. When D is peanut and the plasma resonance frequency
ω is 0.01, we take three different spectrum λ1 = 0.1856, λ2 = 0.0393, λ3 = 0.003, respectively,
i.e. <(λ(ω)) = λ1, µc = −0.4508 + 0.1058i, <(λ(ω)) = λ2, µc = −0.8541 + 0.0034i and <(λ(ω)) =
λ3, µc = −0.9392 + 0.3084i. It can be obtained that the inversion effect using plasmon resonance
techniques is better than that of non-plasmon resonance of µc = 5, λ = −0.75, and even as the
error level increases, the reconstruction remains perfect, see Table 2.

It follows from [12] that the singular value decomposition of the sensitivity matrix plays a key
role in uncertainty quantification. Let the singular value decomposition (SVD) of the sensitivity
matrix (Jacobian matrix) G of the forward operator at the true solution qtrue be denoted as

G(qtrue) = Udiag(si)V
T

with strictly positive decreasing singular values si, and U = [U1 U2] is an n× n orthogonal matrix,
with U1 containing the first 2m+ 1 columns of U and U2 containing the last n− (2m+ 1) columns.
The matrix V is an (2m+ 1)× (2m+ 1) orthogonal matrix, vi and ui denote the ith columns of V
and U , respectively. Then the estimator q has the following form:

q = qtrue + V Λ−1UT1 ξ̃ = qtrue +
2m+1∑
i=1

1

si
viu

T
i ξ̃. (5.52)

From (5.52), it can be seen that the instability of the inverse problem is caused by the small singular
values. In Example 5.2, the singular values of the sensitivity matrix are calculated at different values
of λ in Fig. 5.5. The singular values of the sensitivity matrix where plasmon resonance occurs are all
larger than the singular values without resonance. We can see that plasmon resonance can correct
the small singular values of the sensitivity matrix G, thus effectively reducing the instability of the
solution.

Plasmon resonances occurs to enhance the scattering field, improving the signal-to-noise ratio
and as dist(λ, σ(K∗D)) → 0, then ‖G‖2 = smax tends to blow up, see Table 3, which is consis-
tent with the conclusion of Theorem 3.3. However, the condition number of sensitivity matrix G
becomes worse with enhanced plasmon resonance (reducing the imaginary part of λ, making the
dist(λ, σ(K∗D))→ 0 ). In the iterative algorithm to solve the matrix of (GTG+ ηδ2I)−1, the condi-
tion number of G is too large, then the Fisher information matrix (GTG) inherits a large condition
number, even if the penalty item is increased, it will be invalid, and it cannot alleviate the bad
condition number of Fisher information matrix, which leads to the failure of the reconstructed
shape.

Table 2: Numerical results of Example 5.2 for eγ associated with different λ and noise level δ

λ δ = 0.001 δ = 0.005 δ = 0.01

−0.75 0.3179 0.3610 0.4006

0.0393 + 10−3i 0.0162 0.0588 0.073

Example 5.3. In this example, we consider that the inclusion is a peach, and the polar radius of
the peanut is parameterized by

q(t) = 18/25− 1/5 sin(t)− 3/35 cos(3t), 0 ≤ t ≤ 2π,
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Figure 5.3: The |us| on a circle of radius 1.5 in Example 5.2 for different µc (a) µc = −0.4508 +
0.1058i, (b) µc = 5.
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Figure 5.4: Reconstruction of the shape in Example 5.2 with 0.001 noise data for different µc or λ.
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Figure 5.5: The distribution of the singular values associated to different values of λ for Example
5.2.

Table 3: Numerical results of Example 5.2 for singular values and condition number of G associated
with different λ.

λ smax smin cond

−0.75 0.042 0.0014 28

0.1856 + 10−1i 0.289 0.0203 14.25

0.1856 + 10−2i 30.66 0.025 1.2× 103

0.1856 + 10−3i 2.9× 103 0.070 4.2× 104

0.1856 + 10−4i 1.85× 105 0.500 3.69× 105

where we take α0=1000, β0 = 0.01 and η0 = 1000 as the initial values in the iterative algorithm 1.

In Example 5.3, we consider reconstructing a more challenging pear-shaped inclusion and we
can reach similar conclusions to the previous two Examples. When plasmon resonance occurs, we
get a significant enhancement of the scattering field in Fig. 5.6 and q̃Ne coincides well with the
exact solution, see Fig. 5.7. Next, we give the µc = −0.7372+0.1521i, λ = 0.0712+0.05i confidence
intervals in Fig. 5.8, where the blue region represent the corresponding 95% confidence regions. In
Table 4, the variation of the norm ‖SSF (∂D)‖L2(∂Ω) with different ζ is presented, and it is obtained

that as the scale factor ζ grows, |∂D|
1
2 increases, the curvature of ‖τ‖C(∂D) becomes smaller, and

the norm ‖SSF (∂D)‖L2(∂Ω) grows larger.

Table 4: The ‖SSF (∂D)‖L2(∂Ω) of Example 5.3 for different ζ.

ζ |∂D|
1
2 ‖τ‖C(∂D) ‖SSF (∂D)‖L2(∂Ω)

0.50 1.5628 6.981 0.147

0.67 1.8044 5.236 0.263

1 2.1909 3.491 0.608

1.1 2.3180 3.173 0.743

1.2 2.4210 2.909 0.895
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Figure 5.6: The |us| on a circle of radius 1.5 in Example 5.3 for different µc.
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Figure 5.7: Shape reconstruction in Example 5.3 with 0.001 noise data for different µc or λ.
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Figure 5.8: The numerical results for Example 5.3 with 0.001 noise data and 95% confidence
interval.
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6 Conclusions

In this paper, we study the inverse problem of reconstructing the shape of an anomalous nano-sized
inclusion by using the scattering field measurement data in the quasi-static regime. We propose
a method utilizing plasmon resonance techniques, to improve the sensitivity of the reconstruction
and reduce the ill-posedness of the inverse problem. First, based on the asymptotic expansion of
the layer potential operator, we investigate the asymptotic expansion of the perturbation domain
and derive the spectral expansion of the shape sensitivity functional. The results show that the
shape sensitivity functional increases rapidly or even blows up with the occurrence of plasmon
resonance. Then, to overcome the ill-posedness of the inverse problem, we combine the Tikhonov
regularization method with the Laplace approximation to solve the inverse problem based on the
hierarchical Bayesian model. This method enables the flexible selection of regularization parameters
and obtains statistical information about the solution. Finally, the effectiveness and feasibility of
the proposed method are verified by three different examples.
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