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Abstract

A well-balanced moving mesh discontinuous Galerkin (DG) method is pro-
posed for the numerical solution of the Ripa model – a generalization of the shal-
low water equations that accounts for effects of water temperature variations.
Thermodynamic processes are important particularly in the upper layers of the
ocean where the variations of sea surface temperature play a fundamental role in
climate change. The well-balance property which requires numerical schemes to
preserve the lake-at-rest steady state is crucial to the simulation of perturbation
waves over that steady state such as waves on a lake or tsunami waves in the deep
ocean. To ensure the well-balance, positivity-preserving, and high-order prop-
erties, a DG-interpolation scheme (with or without scaling positivity-preserving
limiter) and special treatments pertaining to the Ripa model are employed in the
transfer of both the flow variables and bottom topography from the old mesh to
the new one and in the TVB limiting process. Mesh adaptivity is realized using
an MMPDE moving mesh approach and a metric tensor based on an equilibrium
variable and water depth. A motivation is to adapt the mesh according to both
the perturbations of the lake-at-rest steady state and the water depth distribu-
tion (bottom structure). Numerical examples in one and two dimensions are
presented to demonstrate the well-balance, high-order accuracy, and positivity-
preserving properties of the method and its ability to capture small perturbations
of the lake-at-rest steady state.
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1 Introduction

We are interested in the numerical solution of the Ripa model that is a generalization
of the shallow water equations (SWEs) where a temperature gradient is considered.
The SWEs play a critical role in the modeling and simulation of free-surface flows in
rivers and coastal areas. They can be used to predict tides, storm surge levels, coastline
changes from hurricanes, and etc. The SWEs can be derived by integrating the Navier-
Stokes equations in depth under the hydrostatic assumption when the depth of water is
small compared to its horizontal dimensions, with the density being assumed constant.
However, the SWEs have the limitation that they cannot represent thermodynamic
processes which are important particularly in the upper layers of the ocean where the
variations of sea surface temperature are an important factor to climate change.

Many oceanic phenomena can be investigated using layered models where the flow
variables such as density and horizontal velocity are considered vertically uniform in
each of the layers. Research on the numerical solution of those layered SWEs [1,
5, 19] has attracted tremendous attention in recent years. Challenges in studying
such models arise from the complicated eigenstructure, conditional hyperbolicity, non-
conservativeness of the system, and etc. The Ripa model was introduced to analyze
the ocean currents by Ripa [25] in 1993. It was derived by integrating the velocity field,
density, and horizontal gradients along the vertical direction in each layer of multi-layer
SWEs. The introduction of temperature is advantageous because the movement and
behavior of ocean currents are impacted by forces such as temperature acting upon the
water. The Ripa model in conservative form reads as

∂

∂t


h
hu
hv
hθ

+
∂

∂x


hu

hu2 + 1
2
gh2θ

huv
huθ

+
∂

∂y


hv
huv

hv2 + 1
2
gh2θ

hvθ

 =


0

−ghθbx
−ghθby

0

 , (1.1)

where h(x, y, t) ≥ 0 is the depth of water, (u, v) are the depth-averaged horizontal
velocities, θ(x, y, t) > 0 is a potential temperature field, b = b(x, y) is the bottom
topography assumed to be a given time-independent function, and g is the gravitational
acceleration constant. The horizontally varying potential temperature field θ represents
the reduced gravity g∆Θ/Θref , where ∆Θ is the difference in potential temperature
from a reference value Θref while the term, 1

2
gh2θ, represents the pressure depending

on the water temperature.
The Ripa model possesses a number of steady-state solutions [11]. Of particular

interest are the steady states corresponding to still water (also called “lake-at-rest”),

u = 0, v = 0, θ = C1, h+ b = C2, (1.2)

where C1 and C2 are positive constants. Many physical phenomena, such as waves on
a lake or tsunami waves in the deep ocean, can be described as small perturbations
of these steady-state solutions, and they are difficult to capture numerically unless
numerical schemes preserve the unperturbed steady state at the discrete level. Thus, it
is crucial to develop such steady-state preserving numerical schemes, which are called
well-balanced schemes in literature.

Developing well-balanced numerical schemes for the Ripa model is not a trivial
task. Recall that the Ripa model (1.1) reduces to the SWEs when the temperature
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is constant and both systems have a similar structure. In principle, we can extend
well-balanced schemes developed for the SWEs to the Ripa model. However, caution
must be taken to make sure that constant temperature is preserved for the still water
steady state since the Ripa model has an extra variable (the temperature) and an
extra differential equation. This is especially true when moving meshes are used in the
computation. Moreover, the Ripa model can be rewritten as

∂U

∂t
+∇ · F (U) = S(U, b), (1.3)

where

U =


h
m
w
η

 =


h
hu
hv
hθ

 , F (U) =


m w

m2

h
+ 1

2
gηh mw

h
mw
h

w2

h
+ 1

2
gηh

mη
h

wη
h

 , S(U, b) =


0

−gηbx
−gηby

0

 .
In terms of the conservative variables U = (h,m,w, η)T , the lake-at-rest steady-state
solution (1.2) reads as

m = 0, w = 0, η = C1h, h+ b = C2. (1.4)

From this, we can see that the main difference between the lake-at-rest steady-state
solutions for the SWEs and the Ripa model is that the Ripa model has an extra relation
η = C1h, which is a linear relation between η and h instead of being a constant for
a conservative variable. This relation requires special attention pertaining to the Ripa
model when verifying the well-balance property of numerical schemes. Indeed, as can
be seen in §2, special treatments are needed in the interpolation/remapping step, the
TVB limiting process, and positivity-preserving (PP) limiting process for the proposed
numerical method to be well-balanced.

In recent years studies have been made on the development of well-balanced nu-
merical schemes for the Ripa model. The first work seems to be [8] by Chertock
et al. who considered central-upwind schemes. Other examples include Touma and
Klingenberg [31] (a second-order positivity preserving finite volume scheme on rect-
angular meshes), Sánchez-Linares et al. [27] (a second-order positivity preserving
HLLC scheme based in path-conservative approximate Riemann solvers, for the one-
dimensional Ripa model), Han and Li [13] (a high-order finite difference weighted
essentially non-oscillatory (WENO) scheme), Saleem et al. [26] (a kinetic flux vector
splitting scheme on rectangular meshes), Thanh et al. [30] (a high-order scheme of
van Leer’s type for the one-dimensional SWEs with temperature gradient), Rehman
et al. [24] (a fifth-order finite volume multi-resolution WENO scheme on rectangular
meshes), Britton and Xing [6] (a DG scheme for the one-dimensional Ripa model), Qian
et al. [23] (a DG method based on a source term approximation technique), and Li
et al. [20] (a DG method based on hydrostatic reconstruction on rectangular meshes).
Fixed meshes are employed in the above mentioned works.

The objective of this work is to develop a well-balanced positivity-preserving moving
mesh DG (MM-DG) method for the Ripa model on triangular meshes. The Ripa model
is a nonlinear hyperbolic system and can develop discontinuous solutions such as shock
waves, rarefaction waves, and contact discontinuities even when the initial condition
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is continuous. Small mesh spacings are required in the regions of these structures in
order to resolve them numerically and mesh adaptation is often necessary to improve
computational accuracy and efficiency. In this work we shall study a rezoning-type
moving mesh DG method in one and two spatial dimensions. The DG method [10]
is known to be suited for the numerical solution of hyperbolic systems while adaptive
mesh movement provides the needed mesh adaptivity. Our main objective is to show
that the MM-DG method maintains high-order accuracy of DG discretization while
preserving the lake-at-rest steady state solutions and the positivity of the water depth
and temperature.

The rezoning MM-DG method contains three basic components at each time step,
the adaptive mesh movement, interpolation/remapping of the solution between the old
and new meshes, and numerical solution of the Ripa model on the new mesh. The first
component is based on the MMPDE moving mesh method [14, 16, 17, 18] which has
been shown analytically and numerically in [15] to generate meshes free of tangling for
any (convex or concave) domain in any dimension. With the MMPDE method, the
size, shape, and orientation of the mesh elements are controlled through the metric
tensor, a symmetric and uniformly positive definite matrix-valued function defined
on the physical domain and computed typically using the recovered Hessian of a DG
solution. The equilibrium variable E = 1

2
(u2 + v2) + gθ(h + b) and the water depth h

were used in [36] to construct the metric tensor so that the resulting mesh adapts to
the perturbations of the lake-at-rest steady-state solution. Instead of using E and h
directly, we use ln(E) and ln(h) here to minimize the effect of dimensional difference
between E and h.

The interpolation/remapping is a key component for the MM-DG method to main-
tain high-order accuracy, preserve the lake-at-rest steady-state solutions, preserve the
positivity of water depth and temperature field, and conserve the mass. Several con-
servative interpolation schemes between deforming meshes have been investigated; see,
e.g. [21, 29]. We use the recently developed DG-interpolation scheme [35] for this
purpose. This scheme works for large mesh deformation, has high-order accuracy, con-
serves the mass, and preserves solution positivity as well as constant solutions. It has
been applied successfully to the moving mesh solution of the radiative transfer equation
[35] and the SWEs [36].

A well-balanced DG method is used for the numerical solution of the Ripa model
on the new mesh; the detail of the method is presented in §2. It should be pointed out
that a TVB slope limiter [9] is used in our computation to avoid spurious oscillations.
However, the standard TVB limiter procedure applied directly to the local characteris-

tic variables based on
(
hh,mh, wh, ηh

)T
may destroy the well-balance property. Special

treatments are needed in their use to warrant the well-balance and high-order accuracy
properties of the overall MM-DG method and in the situation with dry or almost dry
regions in the domain. The detail of the discussion is given in §2.

The paper is organized as follows. §2 is devoted to the description of the overall
procedure of the well-balanced MM-DG method and its DG and Runge-Kutta dis-
cretization for the Ripa model. The DG-interpolation scheme and its properties are
described in §3. Numerical results obtained with the MM-DG method for a selection of
one- and two-dimensional examples are presented in §4. Finally, §5 contains conclusions
and further comments.
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2 Well-balanced MM-DG method for Ripa model

In this section we describe the well-balanced rezoning-type MM-DG method for the
numerical solution of the Ripa model on moving meshes. It contains three basic com-
ponents at each time step, the adaptive mesh movement (generation of the new mesh),
interpolation/remapping of the solution from the old mesh to the new one, and nu-
merical solution of the Ripa model on the new mesh; see Fig. 1. An MMPDE moving
mesh method is used to generate the new mesh (see its description in §4). A DG-
interpolation scheme is used for the solution interpolation between deforming meshes
(see §3). In this section we focus on the overall description of the scheme and the
discretization of the Ripa model in two dimensions on triangular meshes.

Given

T nh , Un

Generate

T n+1
h

Interpolation:

Un
h |T nh → Ũn|T n+1

h

Solve Ripa

model on T n+1
h :

Ũn
h → Un+1

h

Figure 1: Illustration of the rezoning-type moving mesh scheme.

We use a well-balanced Runge-Kutta DG method for solving the Ripa model on
triangular meshes T n+1

h to obtain Un+1
h at physical time tn+1. To this end, we assume

that the meshes at tn and tn+1, T nh and T n+1
h , respectively, and the numerical solutions

Un
h = (hnh,m

n
h, w

n
h , η

n
h)T on T nh are known. We also assume that the projection of

Un
h = (hnh,m

n
h, w

n
h , η

n
h)T on the new mesh T n+1

h , denoted by Ũn
h = (h̃nh, m̃

n
h, w̃

n
h , η̃

n
h)T ,

has been obtained. Define the DG finite element space on new mesh T n+1
h as

Vk,n+1
h = {q ∈ L2(Ω) : q|K ∈ Pk(K), ∀K ∈ T n+1

h }, (2.1)

where k is a positive integer, Pk(K) = span{φ(j)
K }

nb
j=1 is the set of polynomials of degree

up to k in the element K, and φ
(j)
K , j = 1, ..., nb are the local orthogonal basis functions.

Multiplying (1.3) by a test function φ ∈ Vk,n+1
h , integrating the resulting equation

over K ∈ T n+1
h , and using the divergence theorem, we have

d

dt

∫
K

Uhφdx−
∫
K

F (Uh) · ∇φdx +

∫
∂K

F (Uh) · nKφds =

∫
K

S(Uh, bh)φdx, (2.2)

where nK = (nx, ny)
T is the outward unit normal to the boundary ∂K and Uh ∈

Vk,n+1
h is a DG approximation to the exact solution U , and bh is a DG polynomial

approximation of the bottom topography b. Notice that Uh is discontinuous on interior
edges of the mesh. On any interior edge eK ∈ ∂K, Uh can be defined using its value
either in K, denoted by U int

h,K |eK , or in the element K ′ sharing eK with K, denoted by
U ext
h,K |eK . Moreover, we define the Lax-Friedrichs numerical flux approximating the flux

function F (U) · nK on the edge eK ∈ ∂K as

F̂ |eK = F̂ (U int
h,K |eK , U ext

h,K |eK )

=
1

2

((
F (U int

h,K |eK ) + F (U ext
h,K |eK )

)
· nK − αh

(
U ext
h,K |eK − U int

h,K |eK
))
,

(2.3)
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where αh is the maximum absolute value of the eigenvalues of the Jacobian matrix of
F (U int

h,K |eK ) · nK and F (U ext
h,K |eK ) · nK taken over edge eK or over all elements. The

Jacobian of the matrix-valued flux function F (U) · nK is

F ′(U) · nK =


0 nx ny 0

(1
2
ghθ − u2)nx − uvny 2unx + vny uny

1
2
ghnx

(1
2
ghθ − v2)ny − uvnx vnx unx + 2vny

1
2
ghny

−θ(unx + vny) θnx θny (unx + vny)

 ,
and its eigenvalues are given by

λ1 = unx + vny − c, λ2,3 = unx + vny, λ4 = unx + vny + c,

where c =
√
ghθ.

The semi-discrete DG scheme for the Ripa model is to find Uh(t) ∈ Vk,n+1
h , t ∈

(tn, tn+1], such that, for any φ ∈ Vk,n+1
h

d

dt

∫
K

Uhφdx−
∫
K

F (Uh) · ∇φdx +
∑

eK∈∂K

∫
eK

F̂ |eKφds =

∫
K

S(Uh, bh)φdx. (2.4)

Generally speaking, the above scheme does not preserve the lake-at-rest steady-state
solution and thus is not well-balanced.

Following the idea of hydrostatic reconstruction [2, 6, 20], after computing the
boundary values U int

h,K |eK and U ext
h,K |eK , we define

hint,∗h,K |eK = max
(

0, hinth,K |eK + binth,K |eK − b∗h,K |eK
)
,

hext,∗h,K |eK = max
(

0, hexth,K |eK + bexth,K |eK − b∗h,K |eK
)
,

b∗h,K |eK = max
(
binth,K |eK , bexth,K |eK

)
.

(2.5)

We redefine

U int,∗
h,K |eK =


hint,∗h,K |eK

hint,∗h,K |eK
minth,K |eK
hinth,K |eK

hint,∗h,K |eK
winth,K |eK
hinth,K |eK

hint,∗h,K |eK
ηinth,K |eK
hinth,K |eK

 , U ext,∗
h,K |eK =


hext,∗h,K |eK

hext,∗h,K |eK
mexth,K |eK
hexth,K |eK

hext,∗h,K |eK
wexth,K |eK
hexth,K |eK

hext,∗h,K |eK
ηexth,K |eK
hexth,K |eK

 . (2.6)

Finally, the new numerical flux is defined as

F̂ ∗|eK = F̂ (U int,∗
h,K |eK , U

ext,∗
h,K |eK ) +

(
F (U int

h,K |eK )− F (U int,∗
h,K |eK )

)
· nK . (2.7)

Replacing F̂ |eK by F̂ ∗|eK in (2.4), we obtain the semi-discrete DG scheme as

d

dt

∫
K

Uhφdx−
∫
K

F (Uh) · ∇φdx +
∑

eK∈∂K

∫
eK

F̂ ∗|eKφds =

∫
K

S(Uh, bh)φdx. (2.8)

This can be written as

d

dt

∫
K

Uhφdx = R∗h,K(Uh, bh, φ), ∀φ ∈ Vk,n+1
h (2.9)

6



where

R∗h,K(Uh, bh, φ) =

∫
K

S(Uh, bh)φdx +

∫
K

F (Uh) · ∇φdx−
∑

eK∈∂K

∫
eK

F̂ ∗|eKφds.

We now show the above scheme is well-balanced. Assume that the solution is at
the lake-at-rest steady state (1.4), i.e.,

hinth,K |eK + binth,K |eK = C2, hexth,K |eK + bexth,K |eK = C2,

ηinth,K |eK = C1h
int
h,K |eK , ηexth,K |eK = C1h

ext
h,K |eK ,

mint
h,K |eK = mext

h,K |eK = 0, winth,K |eK = wexth,K |eK = 0.

(2.10)

Using these, (2.5), and (2.6), we get hint,∗h,K |eK = hext,∗h,K |eK and then U int,∗
h,K |eK = U ext,∗

h,K |eK .
From the consistency of the numerical flux, we have

F̂ ∗|eK = F (U int
h,K |eK ) · nK . (2.11)

Using the above results, we have

R∗h,K(Uh, bh, φ) =

∫
K

(
S(Uh, bh)−∇ · F (Uh)

)
φdx

+
∑

eK∈∂K

∫
eK

(
F (U int

h,K |eK ) · nK − F̂ ∗|eK
)
φds

= 0.

From (2.9), this gives
d

dt

∫
K

Uhφdx = 0, ∀φ ∈ Vk,n+1
h .

Hence, the semi-discrete DG scheme (2.8) (or (2.9)) preserves the lake-at-rest steady-
state solution (1.4) and therefore, is well-balanced.

In principle, (2.9) can be integrated in time using any marching scheme. We use
a third-order strong stability preserving (SSP) Runge-Kutta scheme [12]. For ∀K ∈
T n+1
h , ∀φ ∈ Vk,n+1

h , we have

∫
K

U
(1)
h φdx =

∫
K

Ũn
hφdx + ∆tnR

∗
h,K(Ũn

h , b
n+1
h , φ),∫

K

U
(2)
h φdx =

3

4

∫
K

Ũn
hφdx +

1

4

(∫
K

U
(1)
h φdx + ∆tnR

∗
h,K(U

(1)
h , bn+1

h , φ)
)
,∫

K

Un+1
h φdx =

1

3

∫
K

Ũn
hφdx +

2

3

(∫
K

U
(2)
h φdx + ∆tnR

∗
h,K(U

(2)
h , bn+1

h , φ)
)
,

(2.12)

where ∆tn = tn+1 − tn and bn+1
h is a polynomial approximation of the bottom topog-

raphy on T n+1
h .

We now show that the fully discrete scheme (2.12) is well-balanced. That is, we
need to show Un+1

h = (hn+1
h ,mn+1

h , wn+1
h , ηn+1

h )T satisfies (1.4) if Un
h = (hnh,m

n
h, w

n
h , η

n
h)T

satisfies (1.4). To this end, for now we assume that the interpolation/remapping is
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well-balanced, i.e., the interpolant Ũn
h satisfies (1.4). Recall that R∗h,K vanishes for the

lake-at-rest steady state. Then, scheme (2.12) reduces to

∫
K

U
(1)
h φdx =

∫
K

Ũn
hφdx,∫

K

U
(2)
h φdx =

3

4

∫
K

Ũn
hφdx +

1

4

∫
K

U
(1)
h φdx,∫

K

Un+1
h φdx =

1

3

∫
K

Ũn
hφdx +

2

3

∫
K

U
(2)
h φdx.

This implies that Un+1
h,K ≡ U

(2)
h,K ≡ U

(1)
h,K ≡ Ũn

h,K , i.e.,

hn+1
h,K = h̃nh,K , mn+1

h,K = m̃n
h,K , wn+1

h,K = w̃nh,K , ηn+1
h,K = η̃nh,K .

From the arbitrariness of K, by combining the above result and the assumption that
Ũn
h satisfies (1.4), we conclude that Un+1

h satisfies (1.4). Thus, the scheme (2.12) is
well-balanced.

We now show that the interpolation/remapping step is well-balanced while preserv-
ing the positivity of the water depth and temperature for the dry situation. We first
recall that we need to interpolate Un

h = (hnh,m
n
h, w

n
h , η

n
h) and bnh from the old mesh to

the new one. We use a DG-interpolation scheme (with or without the linear scaling
PP limiter) (see §3 for detail) for this purpose. Specifically, we use

h̃nh = PP-DGInterp(hnh),

η̃nh = PP-DGInterp(ηnh),

m̃n
h = DGInterp(mn

h),

w̃nh = DGInterp(wnh),

bn+1
h = DGInterp(hnh + bnh)− h̃nh.

(2.13)

In this step, bn+1
h is obtained as the difference between DGInterp(hnh + bnh) and h̃nh

(instead by simply interpolating bnh or b on the new mesh). This treatment is crucial
to the preservation of constant (h+ b), as demonstrated in [36]. Unlike the SWEs, we
also need to check whether the form η = C1h is preserved or not. Fortunately, the DG-
interpolation scheme in §3 also satisfies the linearity property (cf. Proposition 3.3) in
addition to preserving constant solutions (cf. Proposition 3.2). From these properties,
we have

η̃nh = PP-DGInterp(ηnh) = PP-DGInterp(C1h
n
h) = C1 · PP-DGInterp(hnh) = C1h̃

n
h.

Thus, η = C1h is preserved and the interpolation/remapping step is well-balanced.

Since spurious oscillations and nonlinear instability can occur in numerical solu-
tions, we need to apply a nonlinear slope limiter after each Runge-Kutta stage. We use
a characteristic-wise TVB limiter [9] for this purpose. However, the TVB limiter pro-

cedure applied directly to the local characteristic variables based on
(
hh,mh, wh, ηh

)T
may destroy the well-balance property. To avoid this difficulty, following [2], we apply
the TVB limiter to the local characteristic variables based on

(
(hh + bh),mh, wh, (ηh +

8



(bθ)h)
)T

(instead of
(
hh,mh, wh, ηh

)T
) to obtain

(
(hh+bh)

mod,mmod
h , wmodh , (ηh+(bθ)h)

mod
)T

,
and then define

hmodh = (hh + bh)
mod − bh,

ηmodh = (ηh + (bθ)h)
mod − (bθ)h.

(2.14)

It is worth pointing out that the TVB limiter procedure actually contains two steps:
the first one is to check whether any limiting is needed based on

(
(hh+bh),mh, wh, (ηh+

(bθ)h)
)T

in a cell; and, if yes, the second step is to apply the TVB limiter to modify(
(hh + bh),mh, wh, (ηh + (bθ)h)

)T
in the cell.

In the above limiting process, we need to reconstruct its DG approximation (bθ)h ∈
Vkh based on hh, ηh, and bh. If the reconstruction satisfies

(bθ)h = C1bh (2.15)

for the lake-at-rest steady-state solution (1.4), we can show that the above limiting
process is well-balanced. Indeed, from (2.15) we have hh + bh = C2, and ηh + (bθ)h =
C1hh + C1bh = C1C2 for the lake-at-rest steady state. Since the constants h + b =
C2 and ηh + (bθ)h = C1C2 will not be affected by the limiting procedure, we have
(hh + bh)

mod = C2 and (ηh + (bθ)h)
mod = C1C2. Combining the above results, from

(2.14) and (2.15) we get hmodh = C2− bh and ηmodh = C1C2−C1bh = C1h
mod
h . Thus, the

above limiting process maintains the well-balance property.
We use a DG reconstruction of (bθ)h based on hh, ηh, and bh as

(bθ)h,K =
η̄h,K
h̄h,K

bh,K , ∀K ∈ Th (2.16)

where η̄h,K and h̄h,K are the cell averages of ηh and hh on K, respectively. It is not
difficult to see that this reconstruction satisfies (2.15) for ηh = C1hh.

The above described TVB limiter does not work well for problems with dry or nearly
dry regions where the water depth h is close to zero. Although η = hθ also is close to
zero in those regions, the temperature θ = η/h can hardly be computed accurately due
to loss of significance in floating-point arithmetic. To avoid this difficulty, for problems
with dry or nearly dry regions we first identify troubled cells using the TVB limiter
based on the free water surface (h+ b) and then carry out the polynomial modification

phase of the TVB limiter to the local characteristic variables based on
(
hh,mh, wh, ηh

)T
on the troubled cells.

It is known that the above limiting process preserves the cell averages of hh and ηh
since the TVB limiter preserves cell averages. However, it does not necessarily preserve
the nonnegativity of hh and ηh (or θ). Thus, after each application of the TVB limiter,
we apply the linear scaling PP limiter [22, 32, 33] to modify hmodh and ηmodh as

ĥmodh (x) = λh
(
hmodh (x)− h̄modh

)
+ h̄modh , λh = min

{
1,

h̄modh

h̄modh − min
x̂α∈Gp

hmodh (x̂α)

}
η̂modh (x) = λη

(
ηmodh (x)− η̄modh

)
+ η̄modh , λη = min

{
1,

η̄modh

η̄modh − min
x̂α∈Gp

ηmodh (x̂α)

} (2.17)
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whereGp is a set of special quadrature points [32, 33]. It can be verified that ĥmodh (xα) ≥
0 and η̂modh (xα) ≥ 0 for ∀xα ∈ Gp. We now show that it preserves η̂modh (x) = C1ĥ

mod
h (x)

for the still water steady state. Since the fully discrete scheme and TVB limiter pro-
cedure are all well-balanced, we have

η̄modh = C1h̄
mod
h , ηmodh (x) = C1h

mod
h (x), ∀x ∈ Ω. (2.18)

Thus, we have λh = λη, and then we have η̂modh (x) = C1ĥ
mod
h (x). However, this PP

limiter does not preserve ĥmodh +bh = C2 (well-balance) in general. To restore the prop-
erty, following the idea of [36], we make a high-order correction to the approximation
of b according to the changes in the water depth due to the PP limiting, i.e.,

b̂h = bh − (ĥmodh − hmodh ). (2.19)

Remark 2.1. For dry or nearly dry regions where the water height is close to zero,
the velocities u = (hu)/h and v = (hv)/h cannot be computed accurately due to loss
of significance in floating-point arithmetic. Following [32, 33, 36], we set u = 0 and
v = 0 when h < 10−6 in our computation.

From the above discussion, we have seen that the interpolation/remapping step
(2.13), the limiting process (2.14), and the physical PDE solver (2.12) are all well-
balanced. Hence, the MM-DG method is well-balanced. The procedure of the MM-DG
method is summarized in Algorithm 1.

Algorithm 1 The MM-DG method for the Ripa model on moving meshes.

0. Initialization. Choose an initial mesh T 0
h and project the initial physical con-

servative variables U = (h,m,w, η)T and bottom topography function b into the
DG space Vk,0h to obtain approximation polynomials U0

h = (h0h,m
0
h, w

0
h, η

0
h)
T and

b0h.

For n = 0, 1, ..., do

1. Mesh adaptation. Generate the new mesh T n+1
h using the MMPDE method

based on variable Enh = 1
2

(
(unh)2 + (vnh)2

)
+ gθnh(hnn + bnh) and water depth hnh (cf.

§4).

2. Solution interpolation/remapping. Interpolate Un
h = (hnh,m

n
h, w

n
h , η

n
h)T and

bnh from T nh to T n+1
h using DG-interpolation to obtain Ũn

h = (h̃nh, m̃
n
h, w̃

n
h , η̃

n
h)T and

bn+1
h (cf. (2.13) and §3).

3. Numerical solution of the Ripa model on the new mesh. Integrate the
Ripa model from tn to tn+1 on the new mesh T n+1

h using the MM-DG scheme
(2.12) to obtain Un+1

h = (hn+1
h ,mn+1

h , wn+1
h , ηn+1

h )T . After each of the RK stage,
the characteristic-wise TVB limiter is applied to obtain (hmodh ,mmod

h , wmodh , ηmodh )T .
Moreover, the linear scaling PP limiter is applied to the water depth hh and
temperature field ηh, and a corresponding high-order correction approximation
of the bottom topography.
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3 DG-interpolation scheme

In this section we briefly describe a DG-interpolation scheme [35] to transfer a numerical
solution qnh between deforming meshes that have the same number of vertices and
elements and the same connectivity. The scheme works for arbitrary (large or small)
mesh deformation. It has high-order accuracy, conserves the mass, obeys the geometric
conservation law (GCL), preserves constant solutions, and satisfies the linearity. The
reader is referred to [35] for the detail of the scheme.

The interpolation/remapping problem between two deforming meshes T nh and T n+1
h

is mathematically equivalent to solving the pseudo-time PDE

∂q

∂ς
(x, ς) = 0, (x, ς) ∈ Ω× (0, 1] (3.1)

on the moving mesh Th(ς) that is defined as the linear interpolant of T nh and T n+1
h .

Specifically, Th(ς) has the same number of elements and vertices and the same connec-
tivity as T nh and T n+1

h and its nodal positions and displacements (or deformation) are
given by

xi(ς) = (1− ς)xni + ςxn+1
i , i = 1, ..., Nv (3.2)

ẋi = xn+1
i − xni , i = 1, ..., Nv. (3.3)

Using the Reynolds transport theorem, we can rewrite (3.1) into

d

dς

∫
K

qφdx−
∫
∂K

qφẊ · nds+

∫
K

qẊ · ∇φdx = 0, ∀φ ∈ Vkh(ς) (3.4)

where φi is the linear basis function associated with the vertex xi and Ẋ is the piecewise
linear mesh deformation function defined as

Ẋ(x, ς) =
Nv∑
i=1

ẋiφi(x, ς). (3.5)

The spatial discretization using DG and temporal discretization using the SSP Runge-
Kutta scheme for (3.4) are similar to that for the Ripa model (1.3). For this reason,
we omit the derivation and formula of the scheme here and refer the interested reader
to [35] for the detail. We mention that a local Lax-Friedrichs numerical flux is used
and ∆ς is chosen according to the CFL condition

∆ς =
Cp

max
e,K
|Ẋe · ne

K |
·min

(
anmin, a

n+1
min

)
, (3.6)

where Cp is the CFL condition constant number and usually taken less than 1/(2k+ 1)
and anmin and an+1

min are the minimum element heights of T nh and T n+1
h , respectively.

Moreover, the volume of mesh elements need to be updated at each stage of the RK
scheme so that the geometric conservation law is not violated.

The interpolation/remapping scheme has the following properties.

Proposition 3.1 ([35]). The DG-interpolation scheme conserves the mass, i.e.,∑
Kν+1

∫
Kν+1

qν+1
h dx =

∑
Kν

∫
Kν

qνhdx, ν = 0, 1, ... (3.7)
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Proposition 3.2 ([35]). The DG-interpolation scheme preserves constant solutions,
i.e., for any arbitrary constant C, qνh ≡ C implies qν+1

h ≡ C.

Proposition 3.3. The DG-interpolation scheme is linear in the sense that for any
constants C1 and C2 and any functions qh, ph ∈ Vkh , the scheme satisfies

DGInterp(C1 · qh + C2 · ph) = C1 ·DGInterp(qh) + C2 ·DGInterp(ph). (3.8)

Proof. The linearity of the scheme can be seen readily from the formula of the
scheme [35].

Proposition 3.4 ([35]). The DG-interpolation scheme with the linear scaling PP lim-
iter [22, 37, 38] preserves the solution positivity in the sense that, for ν = 0, 1, ..., if
qνh has nonnegative cell averages for all elements and is nonnegative at a set of special
points GKν at each element Kν ∈ Th(ςν), then qν+1

h has nonnegative cell averages for
all elements and is nonnegative at the corresponding set of special points GKν+1 at each
element of Kν+1 ∈ Th(ςν+1).

The DG-interpolation with the linear scaling PP limiter will be denoted as the
PP-DG-interpolation.

Proposition 3.5. For any arbitrary constant C ≥ 0, for any qh ∈ Vkh , the PP-DG-
interpolation scheme satisfies

PP-DGInterp(Cqh) = C · PP-DGInterp(qh). (3.9)

Particularly, the PP-DG-interpolation scheme preserves constant solutions.

4 Numerical examples

In this section we present numerical results obtained with the P 2 MM-DG method
described in the previous sections for a selection of one- and two-dimensional examples
of the Ripa model on triangular moving meshes. Unless otherwise stated, the CFL
number is taken as 0.18 and 0.1 in one and two dimensions, respectively. For the TVB
limiter, the constant Mtvb is taken as zero except for the accuracy test in Example 4.2
to avoid the accuracy order reduction near the extrema. The gravitational acceleration
constant is taken as g = 1 in the computation. For examples where the analytical
exact solution is unavailable, the numerical solution obtained by the P 2-DG method
with a fixed mesh of N = 3000 is taken as a reference solution.

For mesh movement, we use the MMPDE moving mesh method; e.g., see [36,
Section 4] for a brief yet complete description of the method and [14, 15, 16, 17, 18]
for a more detailed description and a development history. A key idea of the MMPDE
method is to view any nonuniform mesh as a uniform one in some Riemannian metric
specified by a tensor M = M(x, t), a symmetric and uniformly positive definite matrix-
valued function that provides the information needed for determining the size, shape,
and orientation of the mesh elements throughout the domain.

In this work we use an optimal metric tensor based on the L2-norm of piece linear
interpolation error [17, 18]. To be specific, we consider a physical variable q and its
finite element approximation qh. Let HK be a recovered Hessian of qh on K ∈ Th such
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as one obtained using least squares fitting. Assuming that the eigen-decomposition of
HK is given by

HK = Qdiag(λ1, λ2)Q
T ,

where Q is an orthogonal matrix, we define

|HK | = Qdiag(|λ1|, |λ2|)QT .

The metric tensor is defined as

MK = det
(
βhI + |HK |

)− 1
6
(
βhI + |HK |

)
, ∀K ∈ Th (4.1)

where I is the identity matrix, det(·) is the determinant of a matrix, and βh is a
regularization parameter defined through the algebraic equation∑

K∈Th

|K| det(βhI + |HK |)
1
3 = 2

∑
K∈Th

|K| det(|HK |)
1
3 .

Roughly speaking, the choice of (4.1) is to concentrate mesh points in regions where
the determinant of the Hessian is large.

Follow the idea of [36, Section 4], we compute the metric tensor based on the
equilibrium variable E = 1

2
(u2 +v2)+gθ(h+ b) and the water depth h so that the mesh

adapts to the features in the water flow and the bottom topography. Instead of using
E and h directly as in [36], we use ln(E) and ln(h) here in attempt to minimize the
effect of dimensional difference between E and h. More specifically, we first compute
MEK and Mh

K using (4.1) with q = ln(E) and ln(h), respectively. Then, a new metric
tensor is obtained through matrix intersection [34] as

MK = MEK ∩ (δ ·Mh
K), (4.2)

where the parameter δ is taken as 0.1 and 1 in our computation for one- and two-
dimensions, respectively.

It has been shown analytically and numerically in [15] that the moving mesh gen-
erated by the MMPDE method stays nonsingular (free of tangling) if the metric tensor
is bounded and the initial mesh is nonsingular. Moreover, a number of other moving
mesh methods have been developed as well; e.g., see the books [3, 17] and reviews
[4, 7, 28] and references therein.

Example 4.1. (The lake-at-rest steady-state flow test for the 1D Ripa model.)

We choose this example to test the well-balance property of the MM-DG method
with smooth and discontinuous topography functions. First, we consider the lake-at-
rest steady state and discontinuous bottom topography function as

h+ b = 2, u = 0, θ = 10,

b(x) =

{
1, for x ∈ (0.3, 0.7)

0, for x ∈ (0, 0.3) ∪ (0.7, 1).

(4.3)
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Next, we consider the lake-at-rest steady state with a two bumps bottom function on
(−2, 2) as

h+ b = 6, u = 0, θ = 4,

b(x) =


0.85(cos(10π(x+ 0.9)) + 1), for x ∈ (−1,−0.8)

1.25(cos(10π(x− 0.4)) + 1), for x ∈ (0.3, 0.5)

0, otherwise.

(4.4)

We expect that the steady-state solution is preserved since the MM-DG method
is well-balanced. The final simulation time is t = 1. To show that the well-balance
property is attained up to the level of round-off error (double precision in MATLAB),
we present the L1 and L∞ error for h + b, hu and hθ at t = 1 in Tables 1 and 2 for
the discontinuous bottom topography (4.3) and the smooth bottom topography (4.4),
respectively. The results clearly show that the MM-DG method is well-balanced.

Table 1: Example 4.1 with initial data (4.3). Well-balance test for the P 2 MM-DG
method.

h+ b hu hθ
N L1-error L∞-error L1-error L∞-error L1-error L∞-error

50 7.22E-14 1.02E-13 2.11E-14 5.07E-14 3.28E-13 7.83E-13
100 1.12E-14 2.10E-14 2.59E-14 6.34E-14 1.20E-13 2.64E-13

Table 2: Example 4.1 with initial data (4.4). Well-balance test for the P 2 MM-DG
method.

h+ b hu hθ
N L1-error L∞-error L1-error L∞-error L1-error L∞-error

50 1.79E-14 2.67E-14 4.58E-14 9.58E-14 2.71E-17 1.42E-15
100 4.34E-14 6.89E-14 1.92E-13 4.07E-13 1.02E-16 7.88E-15

Example 4.2. (The accuracy test for the 1D Ripa model.)

In this example we verify the high-order accuracy of the well-balanced MM-DG
method. The bottom topography is a sinusoidal hump

b(x) = sin2(πx), x ∈ (0, 1).

Periodic boundary conditions are used for all unknown variables. The initial conditions
are given by

h(x, 0) = 5 + esin(2πx), u(x, 0) =
sin(cos(2πx))

5 + esin(2πx)
, θ(x, 0) = sin(2πx) + 2.

The final simulation time is t = 0.04 while the solution remains smooth. A reference
solution is obtained using the P 2-DG method with a fixed mesh of N = 20000. The
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L1 and L∞ norms of the error with moving and fixed meshes for h, hu, and hθ are
plotted in Fig. 2. It can be seen that the MM-DG method has the expected third-order
for P 2-DG in both L1 and L∞ norm. Moreover, the error is comparable for fixed and
moving meshes since the solution is smooth.
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Figure 2: Example 4.2. The L1 and L∞ norm of the error with moving and fixed
meshes for variables h, hu and hθ.

Example 4.3. (The perturbed lake-at-rest steady-state flow test for the 1D Ripa model.)

We choose this example to verify the ability of our well-balanced MM-DG scheme to
capture small perturbations over the lake-at-rest water surface and temperature field.
Similar examples have been used by a number of researchers, e.g., [6, 31]. The bottom
topography in this example is taken as

b(x) =


0.85(cos(10π(x+ 0.9)) + 1), for x ∈ (−1,−0.8)

1.25(cos(10π(x− 0.4)) + 1), for x ∈ (0.3, 0.5)

0, otherwise

(4.5)

which has two bumps in the computational domain (−4, 2). In this test, we initially add
a small perturbation of magnitude ε = 0.01 to the free water surface of the still-water
steady state. The initial conditions are given by

(
h, u, θ

)
(x, 0) =

{(
6− b(x) + ε, 0, 4

)
, for x ∈ (−1.5,−1.4)(

6− b(x), 0, 4
)
, otherwise.

(4.6)

The initial conditions are constituted by the two Riemann problems at x = −1.5 and
x = −1.4, respectively. We compute the solution up to t = 0.4 when the right wave
has already passed the two bottom bumps.

In this case, the temperature θ stays a constant. As time being, the Riemann
problems at x = −1.5 and x = −1.4 each produce a left-shock wave and a right-shock
wave. At around t = 0.0098, the right-shock wave of the left Riemann problem at
x = −1.5 collides with the left-shock wave of the right Riemann problem at x = −1.4,
which produces a new Riemann problem at x = −1.45. Then, the new Riemann
problem produces two shock waves that propagate left and right, respectively.
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The free water surface evolution along the time obtained with the P 2 MM-DG
method of N = 300 is plotted in Fig. 3(a). The right-propagating waves interacts with
the first bottom bump (at around t = 0.082) and generates a complex wave structure
in the bump region. Thus, it is beneficial to concentrate mesh points around the bump.
The mesh trajectories (N = 300) obtained with the P 2 MM-DG method are plotted in
plotted in Fig. 3(b). The mesh has higher concentrations around the shock waves and
bottom bumps. It is clear that the mesh adaptation captures the shock waves before
and after the split and interaction of the shock waves with the bottom bumps.

The solutions h+b, hu, and hθ at t = 0.4 obtained with P 2-DG and a moving mesh
of N = 300 and fixed meshes of N = 300 and N = 900 are plotted in Figs. 4, 5, and 6,
respectively. The results show that the DG method with moving or fixed meshes is
able to capture waves of small perturbation. Moreover, the moving mesh solutions with
N = 300 are more accurate than those with fixed meshes of N = 300 and N = 900
and contain no visible spurious numerical oscillations.

(a) free water surface (b) mesh trajectories

Figure 3: Example 4.3 with initial data (4.6). The free water surface evolution along
the time and mesh trajectories are obtained with P 2-DG of a moving mesh of N = 300.
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Figure 4: Example 4.3 with initial data (4.6). The solutions h+ b at t = 0.4 obtained
with P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.
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Figure 5: Example 4.3 with initial data (4.6). The solutions hu at t = 0.4 obtained
with P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.
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Figure 6: Example 4.3 with initial data (4.6). The solutions hθ at t = 0.4 obtained with
P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.

Next, we consider a situation with perturbations of magnitude ε = 0.01 in both the
free water surface and temperature. The initial conditions read as

(
h, u, θ

)
(x, 0) =

{(
6− b(x) + ε, 0, 24

6+ε

)
, for x ∈ (−1.5,−1.4)(

6− b(x), 0, 4
)
, otherwise

(4.7)

which are constituted by the two Riemann problems at x = −1.5 and x = −1.4,
respectively. We compute the solution up to t = 0.4 when the right wave has already
passed the two bottom bumps.

For the current situation, the interactions between waves become more complicated
due to the fact that each Riemann problem can produce left and right shock waves and
a center contact discontinuity wave. For example, at around t = 0.0098, the right-
shock wave of the left Riemann problem at x = −1.5 collides with the left-shock wave
of the right Riemann problem at x = −1.4 and produces a new Riemann problem at
x = −1.45, which produces two shock waves that propagate left and right, respectively.
At around t = 0.02, these shock waves collide with the contact discontinuities of the
Riemann problems at x = −1.5 and x = −1.4, respectively. Then they produce two
new Riemann problem at x = −1.5 and x = −1.4, respectively.

The free water surface evolution along the time is plotted in Fig. 7(a). It is inter-
esting to see that the shock waves move away from the point of origin and propagate
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left and right at the characteristic speeds ±
√
ghθ, respectively, while the the contact

discontinuities waves (around a half of magnitude ε, i.e., 0.005) remains unmoved at
the center of the perturbed region.

The mesh trajectories of N = 300 obtained with the P 2 MM-DG method are
plotted in Fig. 7(b). It is clear that the mesh is concentrated around the shock waves,
the contact discontinuity waves, and bottom bumps as expected.

The solutions h+b, hu, and hθ at t = 0.4 obtained with P 2-DG and a moving mesh
of N = 300 and fixed meshes of N = 300 and N = 900 are plotted in Figs. 8, 9, and 10,
respectively. The results show that the DG method with moving or fixed meshes is able
to capture the waves of small perturbation. Moreover, the moving mesh solutions with
N = 300 are more accurate than those with fixed meshes of N = 300 and N = 900
and contain no visible spurious numerical oscillations.

(a) free water surface (b) mesh trajectories

Figure 7: Example 4.3 with initial data (4.7). The free water surface evolution along
the time and mesh trajectories are obtained with P 2-DG of a moving mesh of N = 300.
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Figure 8: Example 4.3 with initial data (4.7). The solution h + b at t = 0.4 obtained
with P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.
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Figure 9: Example 4.3 with initial data (4.7). The solution hu at t = 0.4 obtained with
P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.
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Figure 10: Example 4.3 with initial data (4.7). The solution hθ at t = 0.4 obtained
with P 2-DG and a moving mesh of N = 300 and fixed meshes of N = 300 and N = 900.

Example 4.4. (The dam break over the non-flat bottom for the 1D Ripa model.)

We choose this example to verify the ability of our well-balanced MM-DG scheme
to simulate the dam break problem over a non-flat bottom. The computational domain
is (−1, 1). The bottom topography and the initial conditions [6] are given by

b(x) =


0.5(cos(10π(x+ 0.3)) + 1), for x ∈ (−0.4,−0.2)

0.75(cos(10π(x− 0.3)) + 1), for x ∈ (0.2, 0.4)

0, otherwise(
h, u, θ

)
(x, 0) =

{(
5− b(x), 0, 3

)
, for x < 0(

2− b(x), 0, 5
)
, otherwise.

(4.8)

We compute the solution up to t = 0.14.
The mesh trajectories obtained with the P 2 MM-DG method with a moving mesh of

N = 200 are plotted in Fig. 11. The mesh has higher concentrations around the shock
waves, contact discontinuity, and bottom bumps. It is clear that the mesh adaptation
captures the shock waves before and after the split and the interaction of the shock
waves with the bottom bumps.

The free water surface h+ b and the temperature θ and pressure 1
2
gh2θ at t = 0.14

obtained with P 2-DG and a moving mesh of N = 200 and fixed meshes of N = 200 and
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N = 600 are plotted in Figs. 12 and 13, respectively. The results show that the DG
method with moving or fixed meshes capture the discontinuity very well. Moreover,
the moving mesh solutions with N = 200 are more accurate than those with fixed
meshes of N = 200 and N = 600.

Figure 11: Example 4.4. The mesh trajectories are obtained with P 2-DG of a moving
mesh of N = 200.
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Figure 12: Example 4.4. The free water surface h+ b at t = 0.14 obtained with P 2-DG
and a moving mesh of N = 200 and fixed meshes of N = 200 and N = 600.
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Figure 13: Example 4.4. The temperature θ and pressure 1
2
gh2θ at t = 0.14 obtained

with P 2-DG and a moving mesh of N = 200 and fixed meshes of N = 200 and N = 600.

Example 4.5. (The dam break over the non-flat bottom with a dry region for the 1D
Ripa model.)

We choose this example to verify the ability of our well-balanced MM-DG scheme
to preserve the positivity of the water depth and temperature. The computational
domain is (−1, 1). Similar examples have been used in [8, 26, 27]. The initial data and
the bottom topography for this example are given by

b(x) =


2.0(cos(10π(x+ 0.3)) + 1), for x ∈ (−0.4,−0.2)

0.5(cos(10π(x− 0.3)) + 1), for x ∈ (0.2, 0.4)

0, otherwise(
h, u, θ

)
(x, 0) =

{(
5− b(x), 0, 1

)
, for x < 0(

1− b(x), 0, 5
)
, otherwise

(4.9)

which contain a dry region near x = 0.3. To ensure positivity preservation [32] we take
a smaller CFL number 0.15. The solution is computed up to t = 0.3.

The mesh trajectories obtained with the P 2 MM-DG method with a moving mesh of
N = 200 are plotted in Fig. 14. The mesh has higher concentrations around the shock
waves, contact discontinuity, and bottom bumps, which shows that the adaptation
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captures the shock waves before and after the split and the interaction of the shock
waves with the bottom bumps.

The free water surface h + b and the temperature θ and pressure 1
2
gh2θ at t = 0.3

obtained with P 2-DG and a moving mesh of N = 200 and fixed meshes of N = 200 and
N = 600 are plotted in Figs. 15 and 16, respectively. The results show that the DG
method with moving or fixed meshes capture the discontinuity very well. Moreover,
the moving mesh solutions with N = 200 are more accurate than those with fixed
meshes of N = 200 and N = 600. The results also demonstrate that the scheme can
preserve the positivity of the water depth h and temperature θ.

Figure 14: Example 4.5. The mesh trajectories are obtained with P 2-DG of a moving
mesh of N = 200.
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Figure 15: Example 4.5. The free water surface h+ b at t = 0.3 obtained with P 2-DG
and a moving mesh of N = 200 and fixed meshes of N = 200 and N = 600.
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Figure 16: Example 4.5. The temperature θ and pressure 1
2
gh2θ at t = 0.3 obtained

with P 2-DG and a moving mesh of N = 200 and fixed meshes of N = 200 and N = 600.

Example 4.6. (The lake-at-rest steady-state flow test for the 2D Ripa model.)

We choose this example to verify the well-balance property of the MM-DG scheme
in two dimensions. We solve the system on the domain Ω = (−1, 1) × (−1, 1). The
bottom topography reads as

b(x, y) =

{
0.5e−100((x+0.5)2+(y+0.5)2), for x < 0

0.6e−100((x−0.5)
2+(y−0.5)2), otherwise.

(4.10)

The initial water level, velocities and temperature are given by

h(x, y, 0) = 3− b(x, y), u(x, y, 0) = 0, v(x, y, 0) = 0, θ(x, y, 0) =
4

3
.

We use periodic boundary conditions for all unknown variables and compute the solu-
tion up to t = 0.12. Initial meshes used in the computation are shown in Fig. 17. The
L1 and L∞ error for solutions h + b, hu, hv, and hθ at t = 0.12 is listed in Table 3.
They show that our MM-DG method maintains the lake-at-rest steady state to the
level of round-off error in both L1 and L∞ norm.
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Figure 17: Example 4.6. Initial meshes used in the moving mesh computation.

Table 3: Example 4.6. Well-balance test for the P 2 MM-DG method over the two
bumps bottom function.

N h+ b hu hv hθ

L1-error 400 1.606E-15 1.723E-15 1.745E-15 4.507E-16
1600 1.501E-15 1.822E-15 1.839E-15 7.841E-16

L∞-error 400 6.345E-15 7.853E-15 7.864E-15 2.250E-15
1600 6.277E-15 9.354E-15 9.289E-15 4.146E-15

Example 4.7. (The perturbed lake-at-rest steady-state flow test for the 2D Ripa model.)

We choose this example to verify the ability of our well-balanced MM-DG scheme
to capture small perturbations over the lake-at-rest water surface and temperature in
two dimensions. The bottom topography is an isolated elliptical shaped hump,

B(x, y) = 3e−5(x−0.9)
2−50(y−0.5)2 , (x, y) ∈ (−2, 2)× (0, 1).

The initial depth of water, velocities, and temperature are given by

(h, u, v, θ)(x, y, 0) =

{(
6− b(x, y) + ε, 0, 0, 24

6+ε

)
, for x ∈ (0.05, 0.15)(

6− b(x, y), 0, 0, 4
)
, otherwise

where ε = 0.1. As time being, the initial perturbation splits into three waves, one
remaining at the initial position and the others propagating left and right at the char-
acteristic speeds ±

√
ghθ. The reflection boundary conditions are used for all domain

boundary.
The mesh at t = 0.16 and 0.24 obtained with the P 2 MM-DG method and a moving

mesh of N = 14400 are shown in Fig. 18. One can see that the distribution of the
mesh concentration is consistent with the contours of h+b while capturing the complex
features in small perturbations.
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The contours of h+ b at t = 0.16 and 0.24 obtained using the P 2 MM-DG method
with a moving mesh of N = 14400 and the fixed meshes of N = 14400 and N = 102400
are shown in Fig. 19. The similar results of hu, hv, and hθ are shown in Figs. 20, 21,
and 22, respectively. In Figs. 23 and 24, the cut of the corresponding results of h+ b
and hu along the line y = 0.5 is compared for the moving and fixed meshes. We can
see that the moving mesh solution with N = 14400 is more accurate than that with a
fixed mesh of N = 14400 and N = 102400.
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Figure 18: Example 4.7. The moving mesh of N = 14400 at t = 0.16 and 0.24 are
obtained with the P 2 MM-DG method.
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(a) h+ b: MM 14400 (b) h+ b: MM 14400

(c) h+ b: FM 14400 (d) h+ b: FM 14400

(e) h+ b: FM 102400 (f) h+ b: FM 102400

Figure 19: Example 4.7. The contours of h + b at at t = 0.16 (left column) and
0.24 (right column) are obtained with the P 2 MM-DG method and a moving mesh of
N = 14400 and fixed meshes of N = 14400 and N = 102400.

(a) hu: MM 14400 (b) hu: MM 14400

(c) hu: FM 14400 (d) hu: FM 14400

(e) hu: FM 102400 (f) hu: FM 102400

Figure 20: Example 4.7. The contours of hu at at t = 0.16 (left column) and 0.24 (right
column) are obtained with the P 2 MM-DG method and a moving mesh of N = 14400
and fixed meshes of N = 14400 and N = 102400.
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(a) hv: MM 14400 (b) hv: MM 14400

(c) hv: FM 14400 (d) hv: FM 14400

(e) hv: FM 102400 (f) hv: FM 102400

Figure 21: Example 4.7. The contours of hv at at t = 0.16 (left column) and 0.24 (right
column) are obtained with the P 2 MM-DG method and a moving mesh of N = 14400
and fixed meshes of N = 14400 and 102400.

(a) hθ: MM 14400 (b) hθ: MM 14400

(c) hθ: FM 14400 (d) hθ: FM 14400

(e) hθ: FM 102400 (f) hθ: FM 102400

Figure 22: Example 4.7. The contours of hθ at t = 0.16 (left column) and 0.24 (right
column) are obtained with the P 2 MM-DG method and a moving mesh of N = 14400
and fixed meshes of N = 14400 and N = 102400.
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Figure 23: Example 4.7. The cut of h+ b along the line y = 0.5 at t = 0.16 (first row)
and 0.24 (second row) are obtained with P 2-DG and a moving mesh of N = 14400 and
fixed meshes of N = 14400 and N = 102400.

33



-2 -1 0 1 2

-0.1

-0.05

0

0.05

0.1

FM N=102400
FM N=14400
MM N=14400

(a) hu: t = 0.16

-0.8 -0.7 -0.6 -0.5

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.2 0.4
-2

0

2

4

6

8

10

12

14

10-3

0.7 0.8 0.9

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(b) close view of (a)

-2 -1 0 1 2

-0.1

-0.05

0

0.05

0.1

FM N=102400
FM N=14400
MM N=14400

(c) hu: t = 0.24

-1.3 -1.2 -1.1 -1 -0.9

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0 0.2 0.4

0

5

10

15

20

10-3

0.9 1 1.1 1.2 1.3

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(d) close view of (c)

Figure 24: Example 4.7. The cut of hu along the line y = 0.5 at t = 0.16 (first row)
and 0.24 (second row) are obtained with P 2-DG and a moving mesh of N = 14400 and
fixed meshes of N = 14400 and N = 102400.

5 Conclusions

We have presented a high-order well-balanced and positivity-preserving rezoning-type
moving mesh DG method for the Ripa model on triangular meshes. The Ripa model
takes into account thermodynamic processes which are important particularly in the
upper layers of the ocean where the variations of sea surface temperature are an im-
portant factor in climate change.

The rezoning-type MM-DG method contains three basic components at each time
step, the adaptive mesh movement, interpolation/remapping of the solution between
the old and new meshes, and numerical solution of the Ripa model on the new mesh.
We have employed the MMPDE scheme in the first component at each time step. A
key of the MMPDE scheme is to define the metric tensor that provides the information
needed for controlling the size, shape, and orientation of mesh elements over the whole
spatial domain. We compute the metric tensor based on the equilibrium variable
E = 1

2
(u2 + v2) + gθ(h + b) and the water depth h so that the mesh adapts to the

features in the water flow and the bottom topography. To minimize the effect of
dimensional difference between E and h, we use ln(E) and ln(h) instead of using E and
h directly in the computation.
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To ensure the well-balance property of the overall MM-DG method for the Ripa
model, special attention needs to be paid to the interpolation/remapping of the flow
variables and bottom topography, slope limiting, and positivity preserving limiting;
cf. §2. We have proposed to use a DG-interpolation scheme (cf. §3) for the purpose.
It has high-order accuracy, conserves the mass, preserves constant solutions, preserves
positivity of water depth h and temperature η (or θ), and satisfies the linearity. We have
also employed a high-order correction for the approximation of the bottom topography.

The numerical examples in one and two dimensions have been presented to demon-
strate the well-balance, positivity preservation, high-order accuracy, and mesh adap-
tation ability of the MM-DG method. They have also shown that the method is well
suited for the numerical simulation of the lake-at-rest steady-state and its perturba-
tions. Particularly, the mesh concentration reflects structures in the flow variables and
bottom topography and leads to more accurate numerical solutions than a fixed mesh
with the same number of elements.
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