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Abstract

Accurate modeling of sea ice dynamics is critical for predicting environmental variables and is
important in applications such as navigating ice breaker ships. Research for both modeling and
simulating sea ice dynamics is ongoing, with the most widely accepted model based on the viscous-
plastic (VP) formulation introduced by Hibler in 1979. Due to its highly nonlinear features, this
model is intrinsically challenging for computational solvers. In particular, sea ice simulations often
significantly differ from satellite observations. This study therefore focuses on improving the numer-
ical accuracy of the VP sea ice model. Since the poor convergence observed in existing numerical
simulations stems from the nonlinear nature of the VP formulation, this investigation proposes using
the celebrated weighted essentially non-oscillatory (WENO) scheme – as opposed to the frequently
employed centered difference (CD) scheme – for the spatial derivatives in the VP sea ice model. We
then proceed to numerically demonstrate that WENO yields higher-order convergence for smooth
solutions, and that furthermore it is able to resolve the discontinuities in the sharp features of sea
ice covers – something that is not possible using CD methods. Finally, our proposed framework
integrates a potential function method that utilizes the phase field method to naturally incorporates
the physical restrictions of ice thickness and ice concentration in transport equations, resulting in
a modified transport equations which includes additional forcing terms. Our method does not re-
quire post-processing, thereby avoiding the possible introduction of discontinuities and corresponding
negative impact on the solution behavior. Numerical experiments are provided to demonstrate the
efficacy of our new methodology.

1 Introduction

Sea ice dynamics plays a vital role in understanding the ice cover in polar regions. Properly representing
sea ice dynamics is crucial in predicting environmental variables and is important in a wide range of
applications such as the navigation of ice breaker ships [30, 36]. The observations of the Arctic Ice
Dynamics Joint Experiment (AIDJEX) significantly improved the modeling of the sea ice dynamics in
the 1970s [10]. Since then there has been an increased effort in modeling sea ice dynamics [4, 6–9, 37].
The VP sea ice model introduced by Hibler [7] has become the most widely used approach for sea ice
dynamics. The model consists of a nonlinear momentum equation and two transport equations, and is
initially developed for meshes in the range of 100 kilometers. To solve the momentum equation at this
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spatial resolution, implicit time-stepping schemes are recommended [12] due to the nonlinear character
of the momentum equation stemming from the viscous-plastic material law. Solvers such as Jacobian-
free Newton-Krylov (JFNK) solver [21], which is an improved approximation to the Jacobian matrix
(typically used in other implicit numerical simulations), have been developed to improve the numerical
efficiency for solving the VP model. To avoid implicit methods altogether, the Elastic-Viscous-Plastic
(EVP) model is proposed by Hunke and Dukowicz [9] to relax the stability condition for an explicit
time-stepping scheme.

With increasing mesh resolutions now available, it is becoming increasingly apparent that the nu-
merical solutions to the sea ice model resulting from either the VP or EVP formulation are not well
resolved, and indeed there is a significant discrepancy with obtainable observations [17]. How much of
this discrepancy is attributable to modeling error and how much to the numerical approximation error
remains an open question [20]. In this study we focus on improving the numerical accuracy of the sea
ice representation based on the one-dimensional VP model1 which will be discussed in Section 2.

While there are many aspects of the VP model that merit investigation, our focus here is on two
different but related issues: (1) the numerical efficacy of the computational methods used for solving
the model, which includes a study on both accuracy and convergence; and (2) ensuring that the com-
putational method observes physical constraints on the ice thickness and concentration. Discussion on
each issue as motivation for this investigation is provided below.

1.1 Numerical efficacy of the VP sea ice model

One goal of this investigation is to address the numerical simulation of the nonlinear VP sea ice model,
specifically concerning the accuracy, stability, and efficiency. While many efforts have been made to
improve the computational efficiency of sea ice model solvers, e.g. [9, 14, 21, 22], analysis of the corre-
sponding convergence properties is lacking, and indeed many of these methods fail to converge [23]. We
note that [23], which proposes and implements an iterated IMplicit-EXplicit (IMEX) time integration
to solve the coupled sea ice model monolithically, does provide an analysis of the temporal convergence
of the numerical solution. There it is demonstrated that a combination of the second-order Runge-
Kutta method for the explicit time integration and a second-order backward difference method for the
implicit integration of the momentum equation yields an overall second-order accuracy in time of the
numerical solution when compared to a reference solution obtained using a tiny time step (1 second).
Spatial convergence is investigated in [38], where it is shown that in the VP sea ice model, the simulated
velocity field depends on the spatial resolution of the model and approaches the analytical solution as
the spatial resolution is increased. However, the study is not quantified in terms of convergence rate.
The method in [33] adopts the Crank Nicholson time discretization and centered difference (CD) spatial
discretization together with the JFNK solver. Second-order convergence is obtained using a synthetic
model by simultaneously refining the spatial resolution and time step. It is not observed everywhere
during the simulation test, however.

To the best of our knowledge, convergence with respect to spatial resolution has not been well studied.
In particular, no clear conclusion has been drawn in terms of spatial convergence. We adopt this as a
starting point in our investigation to explore the related numerical properties. As we focus on spatial
convergence, we choose the time step to be sufficiently small so that the time discretization error does
not affect the convergence rate. This allows us to test the VP formulation using an explicit time-
stepping scheme and therefore avoid the error caused by the nonlinear solver needed for the implicit

1We will discuss both the VP and EVP models. Since the EVP model is based on the VP model, henceforth, for ease
of presentation, we will simply write VP when discussing the general model and only write EVP when needed for clarity.
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time-stepping scheme. Based on a constructed analytical solution with appropriately added forcing term
to the governing equations, we test for convergence on the VP sea ice model using both a second-order
CD spatial discretization scheme as well as a third-order total variation diminishing (TVD) Runge-Kutta
time integration scheme.

Nowadays, with increasing mesh resolutions of up to 10 km [23], the general performance of the
existing sea ice solvers is degrading, leading to a significant increase in numerical cost [10]. Higher-
order spatial discretization methods may be able to offset this problem. Due to the natural discontinuity
feature of ice concentration and ice thickness, traditional higher-order finite difference schemes typically
have spurious oscillations near discontinuities (the Gibbs phenomenon), which may pollute smooth
regions and even lead to instability, causing blowups of the schemes [34]. The weighted essentially
non-oscillatory (WENO) method [27] is designed to achieve higher-order accuracy in smooth regions
while sharply resolving discontinuities in an essentially non-oscillatory fashion. This study verifies that
these desirable properties hold when implementing WENO for the sea ice model.

1.2 Ice thickness and ice concentration

In most sea ice models, including the VP model, two idealized thickness levels, namely thick and thin,
are often adopted to approximately characterize ice thickness in a relatively simple form. The two
variables used to keep track of these levels are ice thickness, which is equivalent to the mass of ice in
any grid cell, and ice concentration, which is defined as the fraction of the grid cell area covered by
thick ice.

One issue is how the constraints on these two variables are imposed. In particular, assuming continuity
of the ice thickness and the ice velocity, the ice thickness should remain non-negative (see [16, Theorem
3.10]). The non-negativity of ice concentration is similarly guaranteed. As will be demonstrated,
preserving the non-negativity in both parameters is an important consideration for choosing a numerical
solver. Moreover, although not explicitly providing a method to guarantee the upper bound of ice
concentration to be 1, such a constraint is described in Hibler [7] to be equivalent to adding a mechanical
sink term in the model, which is turned on when the ice concentration reaches 1 to prevent its further
growth.

As far as we know, the numerical methods used to solve the model or impose the constraints have
not been rigorously analyzed or compared. As already mentioned, the original work in [7] does not
explicitly discuss how these constraints may be incorporated into the numerical implementation of the
model. Since then some investigations have explicitly provided approaches both for numerical simulation
of the model as well as for imposing these constraints. For example, Mehlmann [29] uses a finite element
framework to solve the sea ice model and imposes restrictions on the trial spaces of ice thickness and
ice concentration through a projection of the solution. Lipscomb and Hunke [24] adopt an incremental
remapping scheme for sea ice transport. This is a Lagrangian approach that preserves the monotonicity
by Van Leer limiting. That is, the gradients are reduced when necessary to ensure that the values in
the reconstructed fields stay inside the range of the mean values in the cell and its neighbors. All of
these mentioned approaches impose the model constraints through a post-processing procedure, which
may, unfortunately, introduce discontinuity into the numerical solution, which affects the accuracy and
might ultimately impact stability so that the solution does not converge.

Therefore, the other goal of this investigation is to develop a numerical approach that more intuitively
imposes the model constraints without any post-processing procedure. To accomplish this task, we
propose using the potential function method motivated by the analogous approach of using a double-
well potential function in what is commonly referred to as the phase field method [5, 18], which is
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designed to solve interface problems by treating the interface as an object with finite thickness. Our
proposed method, described in Section 4, offers a simple but elegant way to incorporate additional
restrictions into the model and could be generalized in various settings. It further yields a modified
transport model with the extra forcing terms coming from the potential energy function, which is
consistent with Hibler’s statement on how to include the mechanical sink term in the model.

The rest of the paper is organized as follows. In Section 2 we describe the sea ice model. Section 3
provides a brief overview of standard numerical solvers for the sea ice model, focusing on the JFNK
solver and EVP solver. We describe both the WENO scheme and the potential function method in
Section 4. In Section 5 we conduct some numerical experiments and compare the performances of
the WENO method with the more typically employed CD scheme. We also provide some numerical
illustrations depicting the use of the potential function method. We make some concluding remarks in
Section 6.

2 Sea ice dynamics model

We begin by describing the two-dimensional VP model introduced by Hibler [7] for the simulation of
sea ice circulation and thickness. Although sea ice dynamics occurs in a three-dimensional space, the
vertical scale of O(m) is much smaller than the horizontal scale of O(1000 m), so the motion of sea ice
is usually described in two dimensions. The VP sea ice model comprises of a momentum equation and
two transport equations that describe the balance laws and is given by

m
Du

Dt
= m(

∂u

∂t
+ u · ∇u) = ∇ · σ −mf k× u + τa − τw −mg∇Hd, (2.1a)

∂h

∂t
+∇ · (uh) = Sh, (2.1b)

∂A

∂t
+∇ · (uA) = SA. (2.1c)

Here u is the two-dimensional ice velocity, h is the mean ice thickness, and A is the ice concentration.
The ice mass per unit area m is given by ρh, where ρ is the sea ice density. The internal forces are
modeled by ∇ · σ where σ is the internal ice stress. The external forces comprise of the Coriolis
force, forces due to air and water stress τa and τw, and the force to the surface height. The other
parameters include f , the Coriolis parameter, k, a unit vector perpendicular to the horizontal plane,
g the acceleration due to gravity, and Hd the sea surface dynamic height. Finally, Sh and SA are the
thermodynamic source or sink terms. We note that the advection term u · ∇u of ice momentum can be
neglected due to scaling properties [40]. Furthermore, the thermodynamic terms are set to zero in the
simulations as we concentrate on dynamic effects.

To better understand and analyze how well different computational approaches are suited to sea ice
dynamics, we focus on a simplified one-dimensional sea ice model in this study, which is given by

ρh
∂u

∂t
− τa + τw −

∂σ

∂x
= 0, (2.2a)

∂h

∂t
+

∂

∂x
(uh) = 0, (2.2b)

∂A

∂t
+

∂

∂x
(uA) = 0. (2.2c)
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u is the one-dimensional sea ice velocity, and σ is the internal stress corresponding to σxx of the 2D
model. In this model, the Coriolis force and sea surface tile are set to zero as the external forces act only
in one direction on a static ocean slab [25, 38]. The air and water stress terms, τa and τw respectively,
are determined from the nonlinear boundary layer theories and the quadratic drag formulas used in the
model [28]:

τa = ρaCda|ua|ua, (2.3)

τw = ρwCdw
√
u2 + ε1u, (2.4)

where ρa and ρw are the air and water densities, Cda and Cdw are the air and water drag coefficients,
ua is the surface wind, and ε1 is a very small value (10−10 m2/s2) introduced for numerical stability.
Here the sea ice drift speed is neglected in the air drag formulation as it is much slower than the wind
speed. The water under the ice is assumed to be at rest, leading to the absence of the water velocity in
the water drag formulation.

We now describe the rheology term modeling the ice interaction, a viscous-plastic constitutive law
relating the stresses and the strain rates. Due to the dimension reduction, all other components σxy,
σyx and σyy vanish, and therefore the divergence of the stress tensor in (2.2a) is reduced to

∂σ

∂x
=

∂

∂x

[
(η + ζ)

∂u

∂x
− P

2

]
, (2.5)

where

η = ζe−2 and ζ =
P

2∆
(2.6)

are the bulk and shear viscosities modeled by a normal flow rule in the plastic state and are chosen as
constant values in the viscous regime. Here e is the eccentricity of the elliptical yield curve, and ∆ in
one dimension is obtained as

∆ =

[
(1 + e−2)

(
(
∂u

∂x
)2 + ε2

)]1/2
, (2.7)

with ε2 = 10−22 s−2 as another small parameter introduced for numerical stability purposes.

The original viscous-plastic formulation [7] realizes the viscous coefficients by capping them at some
maximum values, leading to a rheology term that is not continuously differentiable with respect to
velocity. To obtain a smooth formulation of the viscous coefficients, we follow Lemieux and Tremblay [20]
and replace the expression of ζ by the hyperbolic tangent function

ζ =
P

2∆min
tanh(

∆min

∆
), (2.8)

with ∆min = 2× 10−9 s−1 in accordance with the ζmax definition in [7].

The ice strength P is expressed as

P = P ?h exp[−C(1−A)], (2.9)

where P ? and C are the strength and concentration parameters.

Finally, Table 1 provides the values for all of the physical parameters which we will use in our
numerical experiments. These parameter values are typically used in the VP sea ice model [22,23,39].
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Symbol Definition Value

ρ Sea ice density 900 kg/m3

ρa Air density 1.3 kg/m3

ρw Water density 1026 kg/m3

Cda Air drag coefficient 1.2× 10−3

Cdw Water drag coefficient 5.5× 10−3

P ? Ice strength parameter 27.5× 103 N/m2

C Ice concentration parameter 20

e Ellipse ratio 2

Table 1: Physical parameters used in the VP sea ice model.

3 Numerical solvers

Time splitting methods are standard for solving the coupled sea ice system (2.2a)–(2.2c) [23], and in
general, they are widely used to cope with the complex coupled system, e.g., in [7, 8, 14, 23]. The basic
idea is to decouple the momentum equation (2.2a) from the transport equations and solve it first, and
then use the updated momentum to solve the transport equations, (2.2b) and (2.2c), together. The main
difficulty here lies in the momentum equation due to the highly nonlinear feature of the viscous-plastic
rheology.

To apply an explicit time-stepping scheme to the momentum equation, numerical stability dictates a
time step on the order of 1 second for a 100 km grid resolution [12], or equivalently 1/100 second for
a 10 km resolution grid, which is a typical spatial resolution for earth system models. Because of this
very restrictive time step, it is recommended in [12] to use implicit time-stepping for the momentum
equation. Implicit time-stepping requires the use of iterative methods which are notoriously difficult for
nonlinear problems, however. To alleviate this issue, a Picard solver designed to repeatedly solve simple
linear systems was proposed in [40]. Further investigation in [20] demonstrated the impractical slow
convergence of the Picard solver which ultimately motivated the development of an inexact Newton
method, realized as the JFNK solver, in [21].

On the flip side, in order to entirely avoid implicit methods, the EVP model proposed by Hunke and
Dukowicz [9] and then further modified by Hunke in [8] adds an artificial elastic term to the viscous-
plastic constitutive equation, thereby relaxing the stability condition for an explicit time-stepping
scheme. The basic idea of the EVP model is to approximate the VP solution by damping the resulting
artificial elastic waves via subcycling [22].

Below we provide a brief overview of the JFNK and EVP solvers focusing on the one-dimensional
case.

3.1 The Jacobian-free Newton-Krylov (JFNK) solver

We illustrate the procedure of the JFNK implementation with a backward Euler time integration scheme
for the momentum equation (2.2a). The time-discretized one-dimensional momentum equation is written
as

ρhn−1
un − un−1

∆t
= τna − τw(un) +

∂σ(un, hn−1, An−1)

∂x
, (3.1)
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where the superscript n denotes the current time level. The numerical solution at the previous time
level n−1 for (2.2) is known. Let un = {uj}Nj=1 denote the approximation of un obtained by some finite

difference spatial discretization technique at each grid point xj , j = 1, . . . N .2 The spatial discretization
scheme will be specified on both non-staggered and staggered grids in Section 4. For now we generically
define the solution on N grid points. At current time level n, we therefore seek a solution to

F(un) = 0,

where F(un) is the difference between the right- and left-hand sides of (3.1) following spatial discretiza-
tion.

Since we are focusing on a single time step, we can simplify the notation by dropping the superscript
n, so that we seek the solution u = un. Using the velocity solution at the previous time level as
the initial value u(0), we iteratively solve a sequence of linearized systems to consecutively obtain
u(1),u(2), · · · ,u(k), · · · until some stopping criterion is satisfied. Algorithm 1 summarizes the iterative
technique. More details can be found in [3, 19,21].

Algorithm 1 JFNK solver

Start with an initial iterate u(0) and calculate ‖F(u(0))‖, here ‖ · ‖ is the L2-norm.
for k = 1 to kmax = 150 do

Solve F(u(k−1)) + J(u(k−1))δu(k) = 0 for δu(k), where J(uk−1)v ∼ F(u(k−1) + εv)− F(u(k−1))

ε
and ε = 10−7.

Set u(k) = u(k−1) + λ δu(k), where λ =

[
1,

1

2
,

1

4
,

1

8

]
is successively reduced until ‖F(u(k))‖ <

‖F(u(k−1))‖ or until λ =
1

8
.

Stop if ‖F(u(k))‖ < γnl‖F(u0)‖ with γnl = 10−6.
end for

Observe that Algorithm 1 is an inexact Newton’s method as it approximates the Jacobian J by a first-
order Taylor series expansion. The linear system of equations is, in general, solved by the preconditioned
FGMRES method [31], which is a Krylov subspace method. This method is introduced as a matrix-
free approach because forming and storing the Jacobian matrix is prohibitively expensive in CPU time
and storage [21]. In the one-dimensional case, we are able to obtain the matrix representation of J
by applying it to the basis vectors. We can then solve the linear system using a direct solver as the
computational cost and efficiency in the one-dimensional case are not causes for concern.

3.2 The Elastic-Viscous-Plastic (EVP) solver

In the EVP solver, the velocity at time level n is obtained by explicitly solving the momentum equation
from the previous time level n − 1. In particular, the constitutive law was rewritten by Hunke and
Dukowicz [9] to include a time dependence on the stress tensor. The velocity is then solved together
with stress during subcycling. In the one-dimensional case [39], the stress-strain relationship

σ = (η + ζ)
∂u

∂x
− P

2
(3.2)

2To avoid cumbersome notation, for the rest of this paper we will use u to depict the vectorized solution of (2.2) (and
not the continuous solution (2.1)).
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is equivalent to
σ

η + ζ
+

P

2(η + ζ)
=
∂u

∂x
. (3.3)

By adding an artificial elastic strain with an elastic parameter E, we obtain

1

E

∂σ

∂t
+

σ

η + ζ
+

P

2(η + ζ)
=
∂u

∂x
. (3.4)

In the original version of the EVP model [9], the viscosities η and ζ were held fixed throughout the
subcycling procedure. However, because the viscosities were not regularly updated, such linearization
of the internal stress term caused the computed principal stress states to lie outside the elliptical yield
curve [8]. To address this issue, Hunke [8] proposed to include the viscosities within the subcycling,
while simultaneously changing the definition of the elastic parameter E to maintain the computational
efficiency. Specifically, with E defined in terms of a damping timescale for elastic waves and T according

to the equation E =
ζ

T
, (3.4) can be rewritten as

∂σ

∂t
+

σ

(1 + e−2)T
+

P

2(1 + e−2)T
=
ζ

T

∂u

∂x
. (3.5)

The subcycling solution is advanced iteratively with subcycling time step ∆te. This approach yields the
time evolution of stress as a function of the velocity from the previous iterate according to

σs − σs−1

∆te
+

σs

(1 + e−2)T
+

Pn−1

2(1 + e−2)T
=
ζs−1

T

∂us−1

∂x
, (3.6)

where the subcycling iterate is denoted with the superscript s. With the newly calculated stress in
(3.6), the velocity is subcycled according to

ρhn−1
us − us−1

∆te
= τ sa − τ s−1w +

∂σs

∂x
. (3.7)

Observe that in the EVP solver, the damping timescale T is a tuning parameter satisfying ∆te < T < ∆t,
which is in general set to be T = 0.36∆t following the documentation of the CICE model [11]. In
addition, we denote the number of subcycles by Nsub, satisfying Nsub ×∆te = ∆t.

Remark 3.1. We note that neither the JFNK nor the EVP solver has entirely resolved the convergence
issue. In particular, the JFNK solver is not robust, as it was demonstrated in [21] that the failure rate
for the JFNK solver increases as the grid is refined. On the other hand, it was shown in [22] that the
EVP approximate solution has notable differences from the reference solution, which becomes relatively
more distinct with finer resolution. Furthermore, neither solver provides an explicit way to treat the
out-of-range issues for either ice thickness or ice concentration. Hence it is possible to obtain unrealistic
physical values for either or both when applying the solvers directly to the sea ice model. Thus we are
motivated to address these issues in the 1D case so that we are better able to subsequently solve the more
complicated two-dimensional version in (2.1).

4 Proposed numerical methods

Motivated by the above discussion, in this section we propose an approach to help mitigate the limita-
tions of existing solvers for both the VP and EVP sea ice models. We first discuss the WENO method [27]
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to advocate the use of higher-order methods for improving numerical accuracy and efficiency. We then
describe the potential function method as a means to incorporate the physical restrictions of the ice
thickness and concentration on top of the existing numerical methods. This will help to alleviate the
out-of-range issues.

4.1 Weighted essentially non-oscillatory (WENO) scheme

A main goal of this investigation is to demonstrate the advantages of using higher-order methods to
solve the sea ice model. We use the WENO method [27] as a prototype for two reasons. First, WENO is
designed to have a higher-order convergence rate for smooth solutions than standard three point stencil
CD schemes (which are second order), and second, WENO is able to maintain stable, non-oscillatory,
and sharp discontinuity transitions so that it is suitable for sea ice with natural discontinuity feature of
thickness and concentration. We verify that both of these properties hold in our numerical simulation
of sea ice cover with and without sharp features.

We use the method of lines for time integration in each numerical test. To ensure stability and
maintain the accuracy obtained in the spatial derivative approximation, we use the third-order TVD
Runge-Kutta (TVRK3) [35] when employing both WENO and CD schemes. We then compare the
numerical convergence properties of the results obtained using both methods. We implement the same
time integration scheme to ensure that we are only comparing the spatial discretization performances
for each scheme and not evaluating the time integration methods. Indeed, using an implicit time
integration (backward Euler) for the momentum equation and explicit time integration (forward Euler)
for the transport equations is common [3,22,23]. Our numerical example in Section 5.3 provides a case
study for the mixed time integration approach. It is also, of course, possible to use a different spatial
discretization for each equation in the system. As we did not observe any advantage in this approach,
to reduce complexity, we did not do this.

In the WENO case we construct a non-staggered grid so that all variables are defined at the center of

each grid cell. That is, we seek the solution at the j = 1, . . . , N midpoints of each cell, xj− 1
2

= xj−
1

2
∆x,

with xj = j∆x and ∆x =
L

N
where L is the domain length. Following [26] for nonlinear degenerate

parabolic equations, we use higher-order finite differencing for (2.2a). In particular,
∂u

∂x
and

∂σ

∂x
are

discretized using the fifth order finite difference WENO method for conservation laws [13] based on the
left-biased stencil and right-biased stencil, respectively. The fifth order WENO method for conservation
laws [13] is also used to solve the transport equations (2.2b) and (2.2c).

On the other hand, in the CD case, we construct a one-dimensional version of the staggered Arakawa
C-grid [1], where the velocity u is defined on vertices, u0, · · · , uN , and the traces h and A are defined at
the center of each grid cell, h 1

2
, · · · , hN− 1

2
and A 1

2
, · · · , AN− 1

2
respectively. Correspondingly, the stress

σ, the viscosities η and ζ and the ice strength P are also defined at the center of each grid cell. To solve

for the velocity u in the momentum equation (2.2a), we take hi =
1

2
(hi+ 1

2
+ hi− 1

2
) for i = 1, · · · , N − 1.

We then approximate
∂u

∂x
at each cell center as

{du}i+ 1
2

=
ui+1 − ui

∆x
,

so that σ = (η+ ζ)
∂u

∂x
− P

2
is defined at xi+ 1

2
. This leads to the approximation

∂σ

∂x
at each vertex given

9



by

{dσ}i =
σi+ 1

2
− σi− 1

2

∆x
.

Similarly, for the transport equation (2.2b) of h, we approximate
∂

∂x
(uh) at each cell center as

{d(uh)}i+ 1
2

=
(uh)i+1 − (uh)i

∆x
.

We similarly solve A using the same spatial discretization for the transport equation (2.2c). Finally, we
note that although it is not a realistic assumption, we assume periodic boundary conditions to avoid
errors introduced by boundary approximation. That said, the complexities introduced at the boundaries
are not fundamentally different from other PDE models.

In terms of time integration, we consider the ordinary differential equation

du

dt
= L(u),

where L(u) is a discretization of the spatial operator. The TVRK3 method advances the current solution
un to the next time level un+1 according to Algorithm 2.

Algorithm 2 TVRK3 time integration

Start with initial value un and calculate L(un). To calculate the solution at the next time step n+ 1:
u(1) = un + ∆t L(un),

u(2) = 3
4u

n + 1
4u

(1) + 1
4∆t L(u(1)),

un+1 = 1
3u

n + 2
3u

(2) + 2
3∆t L(u(2)).

4.2 Potential function method

Due to its physical interpretation, the variable ice thickness h in the sea ice model must remain non-
negative. Similarly, the ice concentration value A must be between 0 and 1. It is crucial for the numerical
methods to preserve both of these properties to ensure that a meaningful solution is obtained. Motivated
by the double-well potential function in the phase field method [5, 18], where the resulting equation is
limited to a particular set of prescribed values due to the local minima of the potential function, we
develop the potential function method here to impose the corresponding restrictions of ice thickness
and ice concentration.

We begin by illustrating the potential function method on the transport equation of ice concentration
A and note that the case for ice concentration h similarly follows. First, to restrict ice concentration A
so that 0 ≤ A ≤ 1, we define a potential function in a piecewise manner as

f(A) =


γ1f1(A), if A < 0,

0, if 0 ≤ A ≤ 1,

γ2f2(A), if A > 1,

(4.1)
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where f1 > 0 and f2 > 0 for all A, and γ1 > 0 and γ2 > 0 are parameters chosen so that f has minima
on [0, 1]. For example, if both f1 and f2 are linear functions, a particular form of f might be

f(A) =


−γ1A, if A < 0,

0, if 0 ≤ A ≤ 1,

γ2(A− 1), if A > 1.

(4.2)

The transport equation (2.2c) is then modified by adding a forcing term given by the gradient of the
potential. This has the effect of the ice concentration experiencing a gradient force that tracks down to
the physical range [0, 1]. The resulting equation is given by

∂A

∂t
+

∂

∂x
(uA) = −f ′(A). (4.3)

Observe that for the piecewise linear case, the forcing term −f ′(A) is piecewise constant, meaning that
the force transition is not continuous. To enable a more desirable smooth transition for this term we
will instead choose both f1 and f2 to be quadratic and define f as

f(A) =


γ1A

2, if A < 0,

0, if 0 ≤ A ≤ 1,

γ2(A− 1)2, if A > 1.

(4.4)

The corresponding forcing term is now given by

f ′(A) =


2γ1A, if A < 0,

0, if 0 ≤ A ≤ 1,

2γ2(A− 1), if A > 1,

(4.5)

which is clearly continuous.

4.2.1 Determining parameters γ1 and γ2

We now must determine parameters γ1 and γ2 in (4.2) that ensure A will stay in range, that is 0 ≤ A ≤ 1.
To this end, we first prescribe a Lagrangian representation of the ice concentration field A, which we
will denote as

B(t) = A(x(t), t).

From the method of characteristics we have ẋ =
dx

dt
= u(x, t), so that the modified transport equation

(4.3) can be written as

Ḃ = −f ′(B)−B ∂u

∂x
.

Using local analysis around B = 0 and B = 1 to respectively determine the appropriate ranges for γ1

and γ2, we conduct linear approximation to u and estimate
∂u

∂x
as a = a(x). This leads to the ODE

given by
Ḃ = −f ′(B)− aB. (4.6)
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Determining a range for γ1: To determine an appropriate range for γ1, we use local analysis around
B = 0 so that (4.6) becomes

Ḃ = −2γ1B − aB, B(0) = B0 < 0, (4.7)

which has the analytical solution
B = B0e

−(2γ1+a)t. (4.8)

Since we are considering the case where the numerical solution yields the out-of-range solution A < 0,
we choose the initial condition B0 to be negative. Our goal is to “nudge” the numerical solution so that
A moves back into range. Accordingly, we need B to be an increasing function, or equivalently Ḃ > 0

in (4.7). Clearly this requires γ1 > −
a

2
. Observe from (4.8) that it is always true that B < 1 (in fact

B < 0), so A will never fall out of range near the value 1 as long as γ1 > −
a

2
.

Imposing this constraint is straightforward. Since A is initially within [0, 1] for the whole domain and
f ′(A) = 0 everywhere, we start by solving the non-modified transport equation (2.2c). Now suppose
that at some later time there is a point in the domain for which the numerical scheme computes A < 0.
This is equivalent to B0 < 0 in (4.7), establishing the need to modify the transport equation by adding
an extra forcing term −f ′(A) = −2γ1A from (4.5).

Remark 4.1. We could simplify the analysis by considering the one-step forward Euler approximation
of (4.7),

B = −(2γ1 + a)B0∆t+B0. (4.9)

Based on the arguments above requiring B to be an increasing function, we still need γ1 > −
a

2
. Using

(4.9), to ensure that B ≤ 1, we impose an upper bound for γ1 as

γ1 ≤ −
a

2
− 1−B0

2B0∆t
,

which yields the finite range for γ1 given by

− a

2
< γ1 ≤ −

a

2
− 1−B0

2B0∆t
. (4.10)

Note that the upper bound is not tight, because when B0 is close to 0, which is in general the case, the

term −1−B0

2B0∆t
is a very large number.

Determining a range for γ2:

Using a similar approach, we now consider the local analysis around B = 1, corresponding to the
case where A goes out of range near the value 1. The ODE in (4.6) around B = 1 reduces to

Ḃ = −2γ2(B − 1)− aB, B(0) = B0 > 1, (4.11)

which yields the analytical solution

B = (B0 −
2γ2

2γ2 + a
)e−(2γ2+a)t +

2γ2
2γ2 + a

. (4.12)

In this case, we seek γ2 so that B is decreasing, or equivalently Ḃ < 0, which will “nudge” the numerical
solution so that A gets back in range of possible physical solutions, [0, 1]. Clearly, then, we require
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γ2 > −
aB0

2(B0 − 1)
. To ensure B remains non-negative, so that we don’t fall out of range on the left side

of the solution interval, we first observe that (4.12) can also be written as

B = (B0 − 1)e−(2γ2+a)t +
a

2γ2 + a
(e−(2γ2+a)t − 1) + 1. (4.13)

It is immediately apparent that B > 1 for all γ2 as long as a ≤ 0. It is also possible to show that B ≥ 0

for a ≤ 1. In this regard we recall that a is the approximation of
∂u

∂x
, whose physical value is generally

less than 1 m/s. Thus we can conclude that B ≥ 0 holds for all γ2 for the given problem.

Remark 4.2. As in 4.1, again we consider the one-step forward Euler approximation

B = −(2γ2 + a)B0∆t+ 2γ2t+B0. (4.14)

The requirements of decreasing B with B ≥ 0 lead to the range of γ2 given by

− aB0

2(B0 − 1)
< γ2 ≤ −

aB0

2(B0 − 1)
+

B0

2(B0 − 1)∆t
. (4.15)

As before, we add the extra forcing term, in this case −f ′(A) = −2γ2(A−1), whenever A > 1 results
from the numerical solver. Finally, we also note that the same procedure is implemented for the ice
thickness h when the numerical solver causes it to become negative.

5 Numerical experiments

We provide three numerical experiments to illustrate the behavior of our proposed methods for the
1D sea ice simulation model. The first experiment is to corroborate the higher rate of convergence
for WENO as compared to CD for smooth solutions. The capacity to resolve discontinuities (sharp
features) in the sea ice covers is verified in the second test, while the final example shows how the
potential function is implemented in situations where the numerical solutions A and h fall out of range.

5.1 Numerical convergence analysis

To assess the convergence rate of WENO, we consider a test problem in a domain Ω = [0, 2000] km
with a known analytical solution.3 We construct our test cases by adding appropriate extra forcing
terms to the governing equations. Specifically, we introduce to the right hand side of each equation of
(2.2) forcing terms which are obtained by plugging into the left hand side terms corresponding to the
following proposed solutions:

utrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1)× 0.001 + 0.2,

htrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1) + 0.1,

Atrue = (sin(2πx/(2× 106) + 5t/518400− π/2) + 1)× 0.15 + 0.7. (5.1)

Observe that the values in (5.1) of utrue, htrue and Atrue are consistent in magnitude to their correspond-
ing true physical values. Also observe that while we construct extra forcing terms from the left hand

3This is, of course, generally not the case as the sea ice model has no known solutions.
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side of (2.2a), the wind forcing is canceled out and therefore does not affect the convergence results.
Initial conditions for the system are obtained by plugging t = 0 into (5.1).

The total simulation time is T = 5 s. The time step ∆t = 10−4 s is intentionally chosen to be small
enough to ensure that the time discretization error does not affect the convergence rates. It furthermore
allows us to conduct convergence tests directly on the VP sea ice model for both the WENO and CD
explicit spatial discretization schemes without the usual concern for the stability issue associated with
explicit methods.

Table 2 compares the relative `2 errors for increasing resolutions with each spatial discretization
choice. We observe second-order convergence for all three variables for the CD case, which is consistent
with the standard convergence analysis results for CD schemes. By employing the WENO scheme in
the ideal case, one would expect to obtain sixth-order convergence for the velocity u and fifth-order
convergence for both the ice thickness h and ice concentration A. However, due to the complexity and
non-linearity of the sea ice model, coupled with the fact that the added extra forcing terms are not being
updated in the stages of TVRK3 time integration, theoretical accuracy is unlikely to be obtained. We
still observe higher-order convergence for all three variables as compared to the CD results. In addition,
a direct comparison of the error magnitudes for all three variables indicates that the WENO scheme
indeed provides more accurate results than those obtained using CD, noting that WENO appears to be
mainly affected by round-off error at 10 km resolution.

CD TVRK3

resolution ∆x u error u rate h error h rate A error A rate

40 km 2.6655e-06 4.4967e-09 1.0362e-09

20 km 6.6698e-07 1.9987 1.1247e-09 1.9992 2.5920e-10 1.9991

10 km 1.6692e-07 1.9984 2.8120e-10 1.9998 6.4883e-11 1.9981

WENO TVRK3

resolution ∆x u error u rate h error h rate A error A rate

40 km 5.2407e-07 1.3483e-11 8.8200e-12

20 km 2.1769e-08 4.5894 5.8573e-13 4.5248 9.2062e-13 3.2601

10 km 8.3211e-10 4.7093 8.8497e-14 2.7265 5.5688e-13 0.7252

Table 2: A comparison of CD and WENO spatial discretization errors for increasing resolution.

5.2 A simulation of sea ice with sharp features

In this example we test the performance of the WENO scheme on a simulation of a sea ice cover with
sharp features. To better capture the solution behavior near the discontinuity region while maintaining
periodic boundary conditions, the structure of ice is designed such that relatively solid ice covers both
ends of the domain and a very thin layer of ice is in the center of the domain. This is realized via a
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discontinuous setting on the initial conditions of ice thickness and ice concentration given by

u = 0 m/s on [0, 2000] km,

h =

{
0.01 m on [400, 1600] km,

2 m on [0, 400] ∪ [1600, 2000] km,

A =

{
0 on [400, 1600] km,

0.8 on [0, 400] ∪ [1600, 2000] km.

(5.2)

For the external forcing in (2.3) we impose uniform constant wind forcing ua = 10 m/s.

As the WENO and CD schemes yield theoretically different convergence rates, for a direct comparison,
we also consider the linear WENO scheme, for which the nonlinear weights are replaced by linear ones of
the same order accuracy. Note that this is equivalent to using an upstream centered scheme (upstream
in time, centered in space), [13]. Due to the combined stencil, the highest possible order of accuracy is
obtained in smooth regions. The results are oscillatory near discontinuities, however.

5.2.1 Simulation results on the VP model

We first discuss the results for the VP model in (2.2). The simulation is run with a spatial resolution
of ∆x = 10 km and time step ∆t = 1 s for a total simulation time of 1 hour (3600 s).

Figure 1 compares the results using WENO (top row), linear WENO (middle row), and CD (bottom
row) spatial discretizations for the simulation of the sea ice model with sharp features as constructed
using the initial conditions given in (5.2). Observe that the solutions for each variable u (left column),
h (middle column) and A (right column) are discontinuous. The solution plots demonstrate that only
WENO maintains a sharp non-oscillatory solution for the velocity u in each sub-region, with a sharp
overshoot occurring in the CD velocity profile. We also note that while the WENO solution is plotted
at the final time of 1 hour, the solutions for the linear WENO and CD are presented at 2000 s and
at 2332 s, respectively, since the oscillations eventually cause these solutions to blow up. There is less
distinction between the methods in the ice thickness and ice concentration solutions, which all retain
the initial profiles while moving slightly toward the ends of the domain due to the exerted wind forcing.
However, since they are coupled with velocity, the CD and linear WENO solutions will also blow up
before the final time.

5.2.2 Simulation results on the EVP model

For the EVP solver described in Section 3.2, we run the simulation with spatial resolution ∆x = 10 km
and time step ∆t = 10 s with 1000 sub-cycling steps for a total simulation time of 1 hour.

As in Figure 1, Figure 2 displays the solution for the initial conditions given in (5.2) obtained by
WENO (top row), linear WENO (middle row) and CD (bottom row) spatial discretizations. Once again,
the simulation can only reach the final time of 1 hour using the WENO scheme. Observe that the results
for the EVP and VP models are nearly identical, with no oscillatory behavior near discontinuities. The
linear WENO solution is shown at time 2110 s, where again we see oscillations in the velocity profile.
The bottom row (left) shows the velocity during the sub-cycling iteration between 2340 s and 2350 s.
The ice thickness and ice concentration at 2340 s are shown in the bottom-middle and bottom-right,
respectively. We present the velocity profile during the sub-cycling stage to capture the undershoot
that occurs within the sub-cycling – it is not detectable outside the sub-cycling for this case. This
undershoot eventually leads to the solution blowing up before reaching the final time.
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Figure 1: Simulation of sea ice with sharp features on VP model. (Top) solution plots using WENO at
1 hour; (middle row) solution plots using linear WENO at 2000 s; (bottom) solution plots using CD at
2332 s. (Left) velocity u; (middle column) ice thickness h; (right) ice concentration A.

The simulation results for both the VP and EVP models lead us to conclude that while we are
able to properly resolve the discontinuities and obtain a stable solution using WENO, this cannot be
accomplished using either the CD or the traditional higher-order (linear WENO) schemes.

5.3 Incorporating the potential function method into the solver

We now test the model for which no exact solution is known. The main goal of this numerical test is to
determine how out-of-range issues, namely A < 0, A > 1, or h < 0, may be effectively mitigated using
the potential method described in Section 4.2.

We use the backward Euler time integration with CD spatial discretization and JFNK to solve the
momentum equation, along with TVRK3 with CD spatial discretization scheme for transport equations.
We note that in choosing to use an implicit time-stepping method for solving (2.2a) we avoid issues
concerning stability. Moreover, with regard to the transport problem, we note that the WENO scheme
does not yield out-of-range negative solutions for either A or h. Hence to determine the efficacy of
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Figure 2: Simulation of sea ice with sharp features on EVP model. (Top) solution plots of u, h and
A using WENO at 1 hour; (middle row) solution plots of u, h and A using linear WENO at 2110 s;
(bottom) solution plots of u (left) during sub-cycling between 2340 s and 2350 s; h (middle) at 2340 s;
A (right) at 2340 s using CD .

the potential method we apply the CD scheme (using explicit time-stepping) to the transport equations
(2.2b) and (2.2c). As discussed in 4.1, we also use the one-dimensional version of the staggered Arakawa
C-grid [1].

We run all the experiments on a domain of length 2000 km for a total integration time of 6 days.
We choose a spatial resolution of 20 km and 90 s as the time step. The initial conditions are constant
throughout [0, 2000] km and given by

u(x, 0) = 0 m/s, h(x, 0) = 1 m, A(x, 0) = 0.9.

We impose Dirichlet boundary conditions so that

u(0, t) = u(2000, t) = 0 m/s.

Observe that since the ocean is considered to be at rest in this model, the only variable external
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forcing term is the wind, which is imposed uniformly as a constant given by

ua(x, t) = 10 m/s.

For imposing the boundary conditions numerically, we have u0 = 0 (similarly uN = 0) so that

(uh)0 = u0h0 = 0,

leading to

{d(uh)} 1
2

=
(uh)1 − (uh)0

∆x
=

(uh)1
∆x

for the transport equation (2.2b) (similarly for {d(uh)}N− 1
2
). The Dirichlet boundary conditions also

yield analogous equations for A at the boundaries in (2.2c).

For comparison purposes we first run the simulation without applying the potential function method.
Throughout the 6-day simulation, we find that the largest A value is 1.0540, the smallest A value is
-0.1445, and the smallest h value is -0.1606, which are all out of range.

To employ the potential function method, we first simulate the model (without incorporating the
potential function method into the transport equations) until the time T1 for which min

x
{A(x, T1)} < 0.4

The potential function variables corresponding to (4.7) are then determined as

a ≈ ∂u

∂x
, B0 = A.

While B0 is determined directly from the numerical implementation of the scheme, as previously men-

tioned after (4.6), a is computed as a linear approximation of
∂u

∂x
.

Following the discussion in Section 4.2, we then find a uniform bound for γ1 by computing

γ1,min = max
x

{
− a

2

}
, γ1,max = min

x

{
− a

2
− 1−B0

2B0∆t

}
.

The process is similar for determining γ2 for when max
x
{A(x, T2)} > 1, T2 > 0, and in our experiment

we obtain
γ1 ∈ (3.6682× 10−7, 786.4101), γ2 ∈ (0.0075, 273.1214).

Finally the corresponding range for the parameter γ associated with h < 0 is

γ ∈ (3.6682× 10−7, 707.7696).

Based on these results and the discussion in Section 4.2, we choose

γ1 = 10−3, γ2 = 10−2, and γ = 10−3.

We then run the remainder of the simulation, up until final time T = 6 days, with the potential function
method now incorporated into the transport equations.

The solutions of u, h, and A are displayed in Figure 3, where the top row depicts the solutions
without employing the potential function method, the middle row shows the solutions when the potential

4We only do this process one time for each out-of-range situation, A < 0, A > 1, and h < 0. The potential function
parameters then remain fixed for all time.
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Figure 3: Potential function method example. (Top) images of computed solutions without applying
potential function method; (middle row) images of computed solutions applying potential function
method; (bottom) solutions plots at final time.

function is used, and the bottom row shows the solution plots at the final time. It is evident that using
the potential function yields some differences in the solution. The change of color shade in the velocity
image around the 2000 km boundary of the region at roughly 30 hours indicates the situation when the
non-physical values are detected and potential function starts to take effect. With the potential function
method, the velocity remains a relatively large value on a larger portion of the domain and decreases
to 0 in a sharper manner towards the end of the boundary. The behavior of the ice thickness near
the boundary, especially around 2000 km, dramatically changes due to the application of the potential
function method. In particular, the non-physical negative values near the left boundary are replaced by
smoother physically meaningful values. Also, the thickness value is much larger near the right boundary,
and the ridging effect is more clearly observed. This makes more sense physically for ridging on the
ocean-land boundary. For the ice concentration, non-physical negative values near the left boundary
and non-physical large values near the right boundary are also appropriately treated by the potential
function method.
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Remark 5.1. As shown in the numerical tests, the potential function method plays an important role
in preserving the bounds for ice concentration and ice thickness in the sea ice model. Compared with
the cut-off approach, which simply removes any values outside the desired range, the potential function
method has the advantage of not requiring any post-processing that may introduce discontinuities into
the solution. Our results (not shown here) also demonstrate that for the current numerical test case
setup, the potential function method and cut-off approach perform similarly with respect to conservation.
It remains an open question to see how the potential function method performs in more complicated
scenarios, such as in the case of non-uniform wind forcing or in higher-dimensional settings. Such
details will be explored in future work.

6 Concluding remarks

This paper discusses the current methodology and limitations, namely poor convergence and out-of-
range issues for both ice concentration and ice thickness, for solving the VP sea ice model. To improve the
performance of the numerical solutions, we propose the use of higher-order methods. In particular, a case
study of the celebrated WENO scheme is provided for the one-dimensional sea ice model, and we verify
its improved numerical convergence when compared to standardly employed algorithms. Moreover,
WENO is able to resolve discontinuities and sharp features that may occur in sea ice covers. With regard
to the out-of-range issue, this investigation proposes and implements a potential function method that
naturally incorporates the physical restrictions of ice thickness and ice concentration in the transport
equations.

Since it is relatively easier to examine numerical convergence properties, the current work is re-
stricted to a one-dimensional case study. Moving forward, we will test the ideas here of using both
higher-order methods and the potential function approach in more realistic environments, including the
two-dimensional model as well as physical set-up test regimes. Besides viscous-plastic rheology, other
rheologies have also been proposed, such as elastic-anisotropic-plastic rheology [37] and Maxwell elasto-
brittle rheology [4]. Investigating the numerical performance of the approaches used here may benefit
the numerical solutions for these types of rheologies as well. Another avenue for future work is to obtain
a more realistic setup of the sharp features in the sea ice cover by incorporating available observations
with the physical model via data assimilation techniques. For example, in [2] data assimilation exper-
iments are based on the one-dimensional VP model discretized by a centered difference scheme, and
in future investigations, we can adapt this approach to the higher-order method framework discussed
here. Finally, sparse features in the ice thickness have been observed in [2], leading to the successful
implementation of an `1 − `2 regularization approach. A general framework for incorporating `1 regu-
larization into numerical solvers for partial differential equations with sparse solutions was developed
in [32], and combining ideas from there along with the results here may also be beneficial within the
data assimilation framework.
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