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Abstract

By analyzing the discrete steady states of the Godunov scheme applied to the linear wave equation with Coriolis

source term, we show that such a collocated scheme does not preserve discrete geostrophic equilibriums (GE) on

triangular meshes. To overcome this difficulty, we propose a staggered strategy which computes the pressure field at

the vertices of the triangles and the velocity field at the cell centers (the so-called triangular B-grids). We analyze a

family of methods covering triangular variants of the Low Froude (LF) scheme [1], the Apparent Topography (AT)

scheme [2, 3], as well as a new modification of it. The LF scheme simply deletes the numerical diffusion terms in

the pressure equation in order to capture a discrete version of the GE. In the AT scheme, the numerical diffusion

on the pressure equation is kept but in such a way that it does not impact the discrete GE. However, since the AT

scheme cannot be proved to be stable through energy estimates and does not preserve the space which is orthogonal to

the discrete GE, we also study what we call the Modified Apparent Topography (MAT) that satisfies these important

properties. We also study time discretizations that preserve these properties. Numerical experiments illustrate the

performance of the new schemes.

Keywords: Shallow water equation, linear wave equation, low Froude number, Hodge decomposition, finite volume

method, staggered schemes, spurious mode, Coriolis source term.

1. Introduction

Large-scale geophysical flows are those in which the earth’s rotation has a significant impact on the dynamics [4];

in such configurations, oceanic and atmospheric circulations are often perturbations of the so-called geostrophic equi-

librium (GE) which results from the balance between the pressure gradient and the Coriolis force [4, 5]. When such

circulations are investigated by numerical approximations of the corresponding physical model, it is therefore essen-

tial that the numerical schemes are able to capture a discrete version of the GE, or at least produce numerical solutions

that remain close to this state within acceptable small errors.

For the purpose of deriving numerical schemes with such kind of properties, we begin with the investigation of

the dimensionless shallow water system of equations on the rotating frame which is given by

{

St ∂th+∇ · (hū) = 0,

St ∂t(hū) +∇ · (hū⊗ ū) + 1
Fr2

∇
(

h2

2

)

= − 1
Fr2

h∇b− 1
Ro
hū⊥.

(1)

In System (1) unknowns h and ū respectively denote the water or layer depth and the velocity of the fluid and function

b(x) denotes the topography and is a given function. Dimensionless numbers St, Fr and Ro respectively stand for
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the Strouhal, the Froude and the Rossby numbers. As mentioned above, we are interested in large scale flows, so we

will focus on the case in which the Froude and Rossby numbers are small. In particularly, we shall assume that

Ro = O(M) and Fr = O(M)

with M is a small parameter (typical values lead to M ∼ 10−2). For a Strouhal number of order O( 1
M
), i.e. for small

time scale, the solution of system (1) with flat topography is h = h0 +Mr + O(M2) and ū = u + O(M), where

h0 is a space-time constant and where, up to multiplicative constants, (r,u) satisfies the linear wave equation with

Coriolis source term
{

∂tr + a⋆∇ · u = 0

∂tu+ a⋆∇r = −ωu⊥
(2)

where u = (u, v)T , and u
⊥ = (−v, u)T . The parameters a⋆ and ω are constants of order one, respectively related

to the wave velocity and the rotating velocity. The stationary state corresponding to Equation (2) is the GE which is

given by

a⋆∇r = −ωu⊥. (3)

Note that (3) immediately implies incompressibility of the velocity field

∇ · u = 0. (4)

There are few works related to numerical schemes that preserve a discrete version of geostrophic equilibriums.

Since collocated schemes (all unknowns are located at the centers of the mesh cells) have a long and successful history

for the numerical approximation of systems of conservation laws such as (1) with ω = 0, it is quite natural to first try

to extend them to the treatment of the Coriolis source term (ω ̸= 0). As far as Cartesian meshes are concerned, it is

however well-known that the classical Godunov scheme applied to (2) will fail to capture a discrete equivalent of the

GE (3) [3]. Without going into details, the reason is that the numerical diffusion of that scheme, that is necessary for

stability reasons, also destroys GEs and, as a consequence, generates spurious modes at a rate which is proportional to
h
M

, with h being the mesh spacing. In the 1D case, the only reason for the accuracy problem is linked to the numerical

diffusion in the pressure equation [1]. To remedy this issue, the authors of [3] introduce the so-called Apparent

Topography method by adapting the hydrostatic reconstruction of [6]; this works well in the 1D case and extensions

to the 2D Cartesian case were considered in [7, 8, 9, 10]. However, in the 2D Cartesian case, the numerical diffusion

in the velocity equations also comes into play since it does not vanish on velocity fields verifying a discrete version

of (4). This issue was discussed in [11], in which modified Godunov schemes on Cartesian meshes were investigated

that correctly capture discrete GEs. Extensions to staggered schemes on Cartesian meshes are investigated in [12].

Other relevant works on this issue can be found in [13, 14, 15, 16, 17].

The present work investigates what happens if the use of triangular grids is preferred to Cartesian grids, for ex-

ample because triangular grids are much more flexible than Cartesian ones for accurate discretizations of complex

detailed geometries and for local mesh refinement. An essential characteristic of triangular meshes is that the numeri-

cal diffusion of Godunov schemes on the velocity equation is different in nature (as compared to Cartesian grids) and

does not affect velocity fields that verify a discrete version of (4). References [18, 19] give a detailed explanation of

this, which may be summarized by the fact that such discretely divergence free velocity fields can be characterized as

the curls of P 1 Lagrange functions defined by their values at the vertices of the triangular cells. This has two major

consequences: we will first show that this is hardly compatible with a discrete version of (3) when the pressure gra-

dient is defined like in the Godunov scheme with cell-centered pressures; on the other hand, we shall secondly show

that this is obviously compatible with a discrete version of (3) when the pressure gradient is defined with pressures

located at the vertices.

This, as well as the fact that such a staggered strategy (cell-centered velocities and node based pressures) is

proposed and analyzed in the finite volume coastal ocean model (FVCOM) [20]) and actually used for large-scale

ocean modeling [21, 22], leads us to the second and main purpose of this work, which is to propose a family of

staggered explicit schemes on triangular cells in which pressures and velocities that verify discrete versions of (3)–

(4) are not affected by the numerical diffusion of the scheme. This numerical diffusion is necessary for at least two

reasons: it maintains the scheme stability when an explicit discretization in time is used, and it helps damp spurious
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numerical modes that are associated with this staggered configuration, as analyzed in [23]. However, in [23], discrete

velocity Laplacians are used to damp out these spurious modes, which has the serious drawback of destroying GEs. In

the present work, the schemes we propose only use the part of the velocity numerical diffusion that preserves discrete

velocities verifying discrete versions of (3)–(4). A by-product of the analysis is that we are able to characterize the

spurious modes on general triangular grids: they are velocities which have vanishing discrete curl and divergence,

while not being zero. The third purpose of this work is to show that the family of schemes we propose also verifies

points 2 to 6 mentioned in [24]: mass conservation, curl-free pressure gradient, energy conserving pressure terms,

energy conserving Coriolis term and steady geostrophic modes. An additional feature which, to our knowledge, has

not been discussed previously in the literature, is the rigorous definition of a splitting between the vector subspace

of GEs and an orthogonal subspace containing their perturbations. In the linearized case, some of the schemes we

present not only preserve discrete GEs, but also the orthogonal subspace: whenever the initial condition is orthogonal

to the space of GEs, then so is the solution at any time; this ensures that perturbations around GEs do not exchange

energy with the space of GEs. Finally, we also show the stability of two of the proposed schemes.

This work is organized as follows. In Section 2, we briefly present the problem encountered with the collocated

Godunov scheme on triangular meshes when trying to define discrete GEs verified by the scheme steady-states. In

order to overcome this difficulty, we then propose some semi-discrete (continuous in time) staggered schemes in

Section 3:

• The Low Froude staggered scheme (LF),

• The Apparent Topography staggered scheme (AT),

• The Modified Apparent Topography scheme (MAT).

Particularly, we show that the discrete differential operators that appear in the scheme definition satisfy mimetic

properties that lead to the desirable properties mentioned above. We then take into account in Section 4 the time

discretization to introduce appropriate fully discrete schemes that still possess the same properties as the semi-discrete

schemes. Some numerical test cases are shown in Section 5 to confirm the analysis led in the theoretical part and we

discuss some perspectives. Concluding remarks complete the study in Section 6.

2. Analysis of the behavior of collocated schemes

In this section, we analyse the steady-states of the Godunov collocated scheme applied to the linear wave equa-

tion (2) and provide evidence that it may not able to preserve a discrete version of the GE (3). On the other hand, the

analysis suggests that a staggered scheme with node based pressures will be able to do so.

We shall denote by Ti a generic triangular cell used for the discretization of the computational domain which is

supposed to be rectangular, periodic with no internal hole, for the sake of simplicity. Let Aij be the common edge

of the neighboring cells Ti and Tj , and nij be the unit normal vector to Aij pointing from Ti to Tj . Moreover, we

also denote the area of the cell Ti by |Ti| and the length of the edge Aij by |Aij |. Then, the semi-discrete collocated

scheme for the linear wave equation (2) can be written as

d

dt
qh + Lκ,hqh = 0 (5)

where

qh :=

(

rh
uh

)

∈ R
3N and Li

κ,hqh =









a⋆

2|Ti|

∑

Aij⊂∂Ti

|Aij |[(ui + uj) · nij + κr(ri − rj)]

a⋆

2|Ti|

∑

Aij⊂∂Ti

|Aij |[(ri + rj) + κu(ui − uj) · nij ]nij + ωu⊥
i









. (6)

In this scheme, κr and κu represent parameters that can be used to tune the diffusion terms. The classical Godunov

scheme corresponds to the case κr = κu = 1. We refer to, e.g., [18] for the construction of the scheme applied to the

homogeneous wave equation. Here, we take into account the effect of the Coriolis force in the right-hand side of the

semi-discrete scheme and we analyze whether steady-states of (5)–(6), i.e., fields in the kernel of the operator Lκ,h,

are able to correctly represent discrete versions of the GE.
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Proposition 1. On a triangular mesh, with the collocated Godunov scheme, we have:

KerLκr ̸=0,h =

{

qh :=

(

rh
uh

)

∈ R
3N such that ∃a ∈ R : ri = a and u = 0

}

. (7)

Moreover, we also have

KerLκr=0,h = C1
h ∩ C2

h (8)

with the following definitions for C1
h and C2

h:

C1
h :=







qh :=

(

rh
uh

)

∈ R
3N such that

a⋆

|Ti|
∑

Aij⊂∂Ti

|Aij |
ri + rj

2
nij = −ωu⊥

i







,

C2
h :=

{

qh :=

(

rh
uh

)

∈ R
3N such that ∃φLh ∈ C0

♯ (Ω), (φ
L
h)|Ti

∈ P 1(Ti),ui = (∇× φLh)|Ti
, ∀i ∈ [1, N ]

}

,

where C0
♯ (Ω) denotes the space of periodic continuous functions over Ω and ∇× φLh = (∂yφ

L
h,−∂xφLh)T .

Proof. Denoting by ⟨· , ·⟩ the scalar product weighted by the cell areas |Ti| and following the properties of the collo-

cated scheme [18] and using the energy conservation for the Coriolis force ⟨u⊥
h ,uh⟩ = 0, we obtain

⟨Lκ,hqh, qh⟩ =
a⋆κr

2

∑

Aij

|Aij ||ri − rj |2 +
a⋆κu

2

∑

Aij

|Aij ||(ui − uj) · nij |2. (9)

We now suppose that κu ̸= 0 and we will consider the influence of κr on the structure of the kernel KerLκ,h.

From (9), a necessary condition for a velocity field to be in the kernel is

∀(i, j) : (ui − uj) · nij = 0. (10)

This obviously implies that (using, for the second equality below, the fact that
∑

Aij⊂∂Ti

|Aij |nij = 0)

∑

Aij⊂∂Ti

|Aij |(ui − uj) · nij = 0 and
∑

Aij⊂∂Ti

|Aij |(ui + uj) · nij = 0. (11)

When κr ̸= 0, equation (9) also implies that ∀(i, j), ri = rj and it follows that r must be a constant: ∃a ∈ R such

that ri = a for all i ∈ [1, N ]. Then, the velocity equation of Lκ,hqh = 0 leads to ωu⊥
i = 0∀i. Therefore, we get (7).

In the other case , when κr = 0, the second equality in (11) implies that the pressure equality in Lκ,hqh = 0 is

verified. Moreover, we recall from [18, Lemma 5.1] that (10) is equivalent to the fact that there exists a Lagrange

piecewise P 1 conforming function, denoted by φLh , defined by its values at the vertices of the mesh and periodic over

the computational domain, and constants (b, c) ∈ R
2 such that on each triangle Ti there holds

ui = (b, c)T + (∇× φLh)|Ti
. (12)

Moreover, from the velocity equation of Lκ,hqh = 0 and (10), we get that

a⋆

|Ti|
∑

Aij⊂∂Ti

|Aij |
(ri + rj)

2
nij = −ωu⊥

i , (13)

which means that qh ∈ C1
h. In addition, by multiplying (13) by |Ti| and summing over all i ∈ [1, N ], we obtain by

periodicity that
∑

i=1,N

|Ti|ui = 0, which implies that (b, c)T in (12) vanishes. Therefore, (12) with b = c = 0 implies

that qh ∈ C2
h. In conclusion, we obtain

KerLκr=0,h ⊂ C1
h ∩ C2

h

and the converse inclusion is also true.
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Remark 1. The kernel given by (7) clearly shows that the standard Godunov scheme (κr ̸= 0) is not able to preserve

general geostrophic equilibriums. On the other hand, the situation is less clear when the diffusion in the pressure

equation vanishes. Indeed, let us consider (8). An important property is that

1

|Ti|
∑

Aij⊂∂Ti

|Aij |
ri + rj

2
nij

is exactly the gradient on the cell Ti of the non-conforming P 1 finite element function r̃CR
h which is defined by the

values
ri+rj

2 at the midpoints of the mesh edges Aij . So C1
h tells us that uh is, up to a multiplicative constant, the

curl of the non-conforming P 1 function r̃CR
h , while C2

h tells us that uh is the curl of a conforming P 1 function φLh .

The equality

(curlφLh)|Ti
=
a⋆

ω
(curl r̃CR

h )|Ti
(14)

for all i ∈ [1, N ] provides 2N constraints while r has N degrees of freedom but φLh only has a number of degrees

of freedom equal to the number of vertices of the mesh. In a periodic triangular mesh with no holes, the number of

vertices is half the number of cells, so that (14) is actually probably too constraining (2N constraints for only 3N
2

degrees of freedom) to admit non trivial solutions.

With the previous remark, it becomes obvious that one possibility is to define the pressure field at the vertices and

replace the gradient of r̃CR
h by the gradient of the conforming Lagrange P 1 function defined by these values at the

vertices. Of course then, we have to change the pressure evolution equation accordingly. This staggered scheme, and

several variations of it, is what we explore in the sequel of this article.

3. Analysis of the semi-discrete staggered schemes

3.1. Definition of the discrete operators and the semi-discrete staggered scheme

We first define the discrete version of the gradient and divergence operators. As mentioned above, the discrete

gradient of a scalar field will be defined over the cells, from values of the scalar field defined at the vertices. The

discrete divergence operator will then be defined such that a discrete integration by parts holds; in this way we shall

be able to prove stability of the scheme by energy estimates.

Let (rk)k∈[1,Nr] be a discrete scalar field defined by its values at the vertices of the mesh, where Nr is the number

of vertices. Let us denote by rh the globally continuous function that is piecewise P 1 on each cell and defined by the

values (rk)k∈[1,Nr] at the vertices of the mesh. We can define the discrete gradient on the (primal) cells by using the

following formula

(∇T
h rh)i =

1

|Ti|
∑

Aij⊂∂Ti

|Aij |
rh(Sij) + rh(Nij)

2
nij , (15)

where for any edgeAij , we have denoted byNij and Sij its extremities (see Figure 1(b)). It is easily checked that (15)

is the gradient of the P 1 Lagrange function rh.

Let (ui)i∈[1,N ] be a discrete vector field defined by its values on the triangular cells. We shall define its divergence

on the so-called barycentric dual mesh constructed as follows. Each vertex is associated with a dual cell obtained by

joining the barycenters of the cells which share the vertex to the midpoints of the edges (see Figure 1(a)). Let us

denote the area of the dual cell Dk by |Dk|. Then, we can define the discrete divergence (∇D
h · uh) on the dual cell

by the following formula

(∇D
h · uh)k =

1

|Dk|
∑

Ti|Ti∩Dk ̸=∅

ui ·
1

2
liknik, (16)

where for a triangle Ti and a vertex k, lik is the length of the edge of Ti that is opposite to vertex k and nik is the unit

normal vector pointing outside Ti on this edge. This edge will be named Aik below.

Moreover, we can define the discrete curl of the vector field by

(∇D
h × uh)k = −(∇D

h · u⊥
h )k = − 1

|Dk|
∑

Ti|Ti∩Dk ̸=∅

u
⊥
i · 1

2
liknik. (17)
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(a) Dual cell (b) Two neighbor triangles

Figure 1: Staggered scheme.

On the other hand, we can define the discrete scalar product between q1h = (r1h,u
1
h) and q2h = (r2h,u

2
h) by

⟨q1h, q2h⟩ := ⟨r1h, r2h⟩D + ⟨u1
h,u

2
h⟩P :=

Nr
∑

k=1

|Dk|r1kr2k +
N
∑

i=1

|Ti|u1
i · u2

i . (18)

With these discrete operators, we propose the following family of semi-discrete staggered schemes which can be

applied to the linear wave equation with Coriolis source term:











d
dt
rk(t) + a⋆(∇D

h · uh)k −∇D
h ·
[

νr

(

∇T
h rh + ω

a⋆
u
⊥
h

)]

k
= 0,

d
dt
ui(t) + a⋆(∇T

h rh)i − νu(∇CRJuh · nK)i = −ωu⊥
i + ω

a⋆
(γr)i

(

∇T
h rh + ω

a⋆
u
⊥
h

)⊥

i
,

(19)

where (γr)i, (νr)i = κra⋆hi

2 , with hi being a length related to triangle Ti, e.g. its circumradius, and νu = κua⋆

2
represent the parameters that control the diffusion terms and (∇CRJuh · nK)i is given by

(∇CRJuh · nK)i :=
1

|Ti|
∑

Aij⊂∂Ti

|Aij |[(uj − ui) · nij ]nij . (20)

The term defined in (20) is the standard diffusive upwinding term in the velocity equation. The notation ∇CR is here

to recall that the right-hand side in (20) is the gradient of the Crouzeix-Raviart non-conforming P 1 function with

value [(uj − ui) · nij ] at the midpoint of the edge Aij . We also note that the Low Froude (LF) staggered scheme

corresponds to νr = γr = 0, the classical Apparent Topography (AT) scheme corresponds to νr > 0, γr = 0 and the

modified Apparent Topography (MAT) to νr = γr > 0.

3.2. Properties of the discrete operators

Proposition 2. With the discrete divergence, curl, gradient and scalar product defined respectively by (16), (17), (15)

and (18), we have the following properties for the semi-discrete staggered scheme (19):

i. Discrete integration by parts (energy conservation for the pressure gradient force)

⟨∇D
h · uh, rh⟩D = −⟨∇T

h rh,uh⟩P . (21)
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ii. Energy conservation for the Coriolis force

⟨u⊥
h ,uh⟩P = 0. (22)

iii. No vorticity production for the pressure gradient force

∇D
h ×

(

∇T
h rh

)

= 0. (23)

Proof. Using periodic boundary conditions, we obtain

⟨∇T
h rh,uh⟩P =

N
∑

i=1

|Ti|(∇T
h rh)i · ui =

N
∑

i=1

∑

Aij⊂∂Ti

|Aij |
2

[rh(Sij) + rh(Nij)]nij · ui

=

Nr
∑

k=1

∑

Ti|Ti∩Dk ̸=∅

1

2
rkui ·

∑

j|Aij⊂∂Ti
Aij ̸=Aik

|Aij |nij =

Nr
∑

k=1

∑

Ti|Ti∩Dk ̸=∅

1

2
rkui · (−liknik)

= −
Nr
∑

k=1





∑

Ti|Ti∩Dk ̸=∅

ui ·
1

2
liknik



 rk = −⟨∇D
h · uh, rh⟩D,

which proves point (i).

Point (ii) is obvious and now we turn to point (iii); we have

[

∇D
h ×

(

∇T
h rh

)]

k
= − 1

|Dk|
∑

Ti|Ti∩Dk ̸=∅

(

∇T
h rh

)⊥

i
· 1
2
liknik =

1

|Dk|
∑

Ti|Ti∩Dk ̸=∅

(

∇T
h rh

)

i
· 1
2
likn

⊥
ik

=
1

2|Dk|
∑

Ti|Ti∩Dk ̸=∅

[rh(Sik)− rh(Nik)] = 0,

where Nik and Sik are the vertices of the edge Aik oriented such that
−−−−→
NikSik = likn

⊥
ik and where we have used that,

since rh is a P 1 function

(

∇T
h rh

)

i
· likn⊥

ik =
(

∇T
h rh

)

i
· −−−−→NikSik = ∇rh · −−−−→NikSik = rh(Sik)− rh(Nik).

3.3. Evolution of the discrete energy

Proposition 3. With νr = γr and the discrete energy defined with the following expression

Eh(t) = ⟨qh, qh⟩ =
Nr
∑

k=1

|Dk|r2k +

N
∑

i=1

|Ti| |ui|2,

we obtain
d

dt
Eh(t) ≤ 0

which means that the Low Froude and Modified Apparent Topography semi-discrete staggered scheme dissipate the

discrete energy.
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Proof. We take the scalar product of the staggered scheme (19) with qh = (rh,uh) in order to obtain

1

2

d

dt
Eh(t) = −a⋆

〈

∇D
h · uh, rh

〉

D
− a⋆

〈

∇T
h rh,uh

〉

P
− ω

〈

u
⊥
h ,uh

〉

P
+ νu

〈

∇CRJuh · nK,uh

〉

P

+

〈

∇D
h ·
[

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)]

, rh

〉

D

+
ω

a⋆

〈

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)⊥

,uh

〉

P

.

Like in (9), the term
〈

∇CRJuh · nK,uh

〉

P
is equal to −∑

Aij

|Aij ||(ui − uj) · nij |2 ; then, using (21) and (22), and

denoting by || · ||P the norm associated to the scalar product on the primal mesh, we get

d

dt
Eh(t) = −2νu

∑

Aij

|Aij ||(ui − uj) · nij |2 − 2

∥

∥

∥

∥

√
νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)∥

∥

∥

∥

2

P

, (24)

which leads to the conclusion.

Remark 2. The fact that γr = νr is essential in the calculation above. For this reason, the usual Apparent Topography

scheme (νr > 0, γr = 0) cannot be proved to dissipate energy with this kind of energy estimation (which does not

mean that it does not).

3.4. Analysis of the discretized steady-states and their orthogonal subspace

We now define a set of discretized steady-states with staggered variables on triangular meshes by the following

expression

E△
ω ̸=0 =

{

q̂h = (r̂h, ûh) ∈ R
Nr × R

2N : a⋆(∇T
h r̂h)i = −ωû⊥

i

}

(25)

which is a consistent discretization of the GE (3). Defining further a set Ah by

Ah :=
{

qh = (rh,uh) ∈ R
Nr × R

2N : a⋆(∇D
h × uh)k = ωrk

}

, (26)

we have the following discrete orthogonal decomposition:

Proposition 4. The orthogonal space of E△
ω ̸=0 is given by

E△,⊥
ω ̸=0 = Ah. (27)

Proof. For each q̂h = (r̂h, ûh) ∈ E△
ω ̸=0 and arbitrary q̃h = (r̃h, ũh) ∈ R

Nr × R
2N , we use the discrete integration

by parts formula (21) to obtain

⟨q̂h, q̃h⟩ = ⟨r̂h, r̃h⟩D + ⟨ûh, ũh⟩P = ⟨r̂h, r̃h⟩D + ⟨û⊥
h , ũ

⊥
h ⟩P

= ⟨r̂h, r̃h⟩D − a⋆

ω

〈

∇T
h r̂h, ũ

⊥
h

〉

P
= ⟨r̂h, r̃h⟩D +

a⋆

ω

〈

r̂h,∇D
h · ũ⊥

h

〉

D

=
〈

r̂h, r̃h − a⋆

ω
∇D

h × ũh

〉

D
.

Hence, if q̃h ∈ Ah , we obviously have ⟨q̂h, q̃h⟩ = 0 which leads to Ah ⊂ E△,⊥
ω ̸=0 . On the other hand, since r̂h can

be arbitrary in R
Nr when q̂h ∈ E△

ω ̸=0, then the equality
〈

r̂h, r̃h − a⋆

ω
∇D

h × ũh

〉

D
= 0 for all q̂h ∈ E△

ω ̸=0 implies that

r̃h − a⋆

ω
∇D

h × ũh = 0 and thus q̃h ∈ Ah. It follows that E△,⊥
ω ̸=0 ⊂ Ah.
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Remark 3. The discrete orthogonal decomposition allows us to define the following discrete orthogonal projection

Ph :

{

R
Nr+2N −→ E△

ω ̸=0

qh 7−→ q̂h

and we can construct q̂h by what follows:

Let qh = (rh,uh) be given in R
Nr+2N . For all (p̂h, v̂h) ∈ E△

ω ̸=0, using orthogonality, we have

⟨r̂h, p̂h⟩D + ⟨ûh, v̂h⟩P = ⟨rh, p̂h⟩D + ⟨uh, v̂h⟩P .

We then use the definition of the discrete steady-states and the discrete integration by parts formula to get

⟨r̂h, p̂h⟩D −
(a⋆

ω

)2
〈

∇D
h ·
(

∇T
h r̂h

)

, p̂h
〉

D
= ⟨rh, p̂h⟩D − a⋆

ω
⟨∇D

h × uh, p̂h⟩D.

As a result, since p̂h can be arbitrary in R
Nr , it is possible to find r̂h by solving the following linear system

r̂k −
(a⋆

ω

)2
[

∇D
h ·
(

∇T
h r̂h

)]

k
= rk − a⋆

ω
(∇D

h × uh)k. (28)

Then, by the definition of the discrete steady-states, the part of the velocity field in E△
ω ̸=0 is given by

ûi =
a⋆

ω
(∇T

h r̂h)
⊥
i .

Finally, the orthogonal component is simply given by q̃h = qh− q̂h. Moreover, the linear system (28) defines a unique

solution since −∇D
h · and ∇T

h are adjoint operators as shown by the discrete integration by parts formula (21).

3.5. Well-balanced and orthogonality preserving properties

Definition 1. A semi-discrete scheme is said to be well-balanced with respect to system (2) if

q0h ∈ E△
ω ̸=0 ⇒ ∀t ≥ 0, qh(t) = q0h ∈ E△

ω ̸=0.

Definition 2. A semi-discrete scheme is said to be orthogonality preserving with respect to system (2) if

q0h ∈ E△,⊥
ω ̸=0 ⇒ ∀t ≥ 0, qh(t) ∈ E△,⊥

ω ̸=0 .

Proposition 5. We have:

(i) The semi-discrete staggered type scheme (19) is a well-balanced scheme in the sense that it can capture the

discrete steady states (25).

(ii) The semi-discrete Low Froude (νr = γr = 0) and modified Apparent Topography staggered scheme (νr = γr >

0) are orthogonality preserving schemes.

Proof. With the discrete steady state (25), the velocity field can be written as

ûi =
a⋆

ω
(∇T

h r̂h)
⊥
i . (29)

Since we have no vorticity production of the gradient term (see (23)), we get

(∇D
h · ûh)k =

a⋆

ω

[

∇D
h · (∇T

h r̂h)
⊥
]

k
= −a⋆

ω

[

∇D
h × (∇T

h r̂h)
]

k
= 0. (30)

On the other hand, since ûh is the curl of a discrete piecewise P 1, globally continuous function, then its normal jumps

through edges vanish, as recalled in the lines before (12):

Jû · nKij := (ûi − ûj) · nij = 0. (31)
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Therefore, the definition of the discrete kernel (25), the divergence free property (30) and the vanishing of the jumps of

the velocity field through the edges Aij (31) imply the well-balanced property of the semi-discrete staggered scheme

(19). This proves Point (i).

In consideration of the orthogonality preserving property, by taking the discrete scalar product of the semi-discrete

staggered scheme with any stationary state q̂h ∈ E△
ω ̸=0, we obtain when νr = γr

〈

d

dt
qh(t), q̂h

〉

=− a⋆⟨∇D
h · uh, r̂h⟩D +

〈

∇D
h ·
[

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)]

, r̂h

〉

D

− a⋆⟨∇T
h rh, ûh⟩P + νu⟨∇CRJuh · nK, ûh⟩P − ω⟨u⊥

h , ûh⟩P

+
ω

a⋆

〈

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)⊥

, ûh

〉

P

.

By using the discrete integration by parts formula and (30) , we have

⟨∇T
h rh, ûh⟩P = −

〈

rh,∇D
h · ûh

〉

D
= 0.

Moreover, by simple calculations, we get, thanks to (31):

−
〈

∇CRJuh · nK, ûh

〉

P
=
∑

Aij

|Aij |[(ui − uj) · nij ]nij · ûi +
∑

Aij

|Aij |[(uj − ui) · nji]nji · ûj

=
∑

Aij

|Aij |[(ui − uj) · nij ][(ûi − ûj) · nij ] = 0.

Using a final discrete integration by parts formula and the fact that q̂h ∈ E△
ω ̸=0, we get

−a⋆⟨∇D
h · uh, r̂h⟩D − ω⟨u⊥

h , ûh⟩P =
〈

a⋆∇T
h r̂h + ωû⊥

h ,uh

〉

P
= 0.

On the other hand, using integration by parts, ∀q̂h ∈ E△
ω ̸=0 we get

〈

∇D
h ·
[

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)]

, r̂h

〉

D

+
ω

a⋆

〈

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)⊥

, ûh

〉

P

=

−
〈

νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)

,∇T
h r̂h +

ω

a⋆
û
⊥
h

〉

= 0.

Therefore, the semi-discrete staggered scheme is orthogonality preserving.

Remark 4. Although the Low Froude and Modified Apparent Topography staggered schemes on the one hand, and the

classical Apparent Topography staggered scheme on the other hand can capture the discrete GE (25), the behaviors

of their numerical solutions are very different. Let us decompose the numerical solution into two parts according to

the orthogonal decomposition:

qh(t) = q̂h(t) + q̃h(t).

Since the Low Froude and Modified Apparent Topography schemes are orthogonality preserving, their orthogonal

parts q̃h(t) do not move into the kernel. As a result, we can ensure that

q̂h(t) = Phq
0
h , ∀t ≥ 0

for both schemes. This means that the kernel part of their numerical solutions is always equal to the initial projection

Phq
0
h, which is also the final state of the numerical solution when the orthogonal part is damped to zero by the

numerical diffusion of the schemes.

On the other hand, the classical Apparent Topography scheme is not orthogonality preserving because of its numerical

diffusion on the pressure equation. As a consequence, the orthogonal part not only damps out, but also partly moves

into the kernel. Therefore, the kernel part of this scheme may be changed at each time step until there is no energy left

in the space orthogonal to the kernel.
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3.6. Low Froude number accuracy

When both a⋆ and ω scale like 1
M

, with M ≪ 1, then the solution of (2) is typically a GE (an element in the

kernel) plus an orthogonal perturbation of order M . We shall verify under which (sufficient) condition a scheme

like (19) mimics this. More precisely, we set

Definition 3. Let qν,h(t) be the solution of the semi-discrete scheme (19) with initial condition q0h. This scheme is

said to be accurate at low Froude number if

∀C1 ∈ R
+, if ∥q0h − Ph(q

0
h)∥ = C1M, then ∥qν,h(t)− Ph(q

0
h)∥ ≤ C1M, ∀t ≥ 0.

Proposition 6. With νr = γr, the semi-discrete scheme (19) is accurate at low Froude number; this is in particular

the case for the LF and the MAT schemes.

Proof. By linearity, the solution of semi-discrete staggered scheme qν,h(t) can be written as

qν,h(t) = qaν,h(t) + qbν,h(t)

where qaν,h(t) and qbν,h(t) are solutions of (19) with initial conditions respectively given by

qaν,h(0) = Ph(q
0
h) and qbν,h(0) = q0h − Ph(q

0
h).

Then, we have

∥qν,h(t)− Ph(q
0
h)∥ = ∥qaν,h(t) + qbν,h(t)− Ph(q

0
h)∥ ≤ ∥qaν,h(t)− Ph(q

0
h)∥+ ∥qbν,h(t)∥.

Moreover, when νr = γr, the dissipation of the semi-discrete staggered scheme proved in Lemma 3 leads to the

conclusion that ∥qbν,h(t)∥ ≤ ∥qbν,h(0)∥. For this reason, the accuracy of the scheme is linked to the behavior of qaν,h(t).

Since the semi-discrete scheme (19) is a well-balanced scheme, we obviously have qaν,h(t) = Ph(q
0
h). Therefore, we

obtain

∀t ≥ 0, ∥qν,h(t)− Ph(q
0
h)∥ ≤ C1M.

Remark 5. Since it is difficult to prove dissipation of energy for the classical Apparent Topography scheme (see

Remark 2), we do not have enough evidence to conclude that this well-balanced scheme is accurate at low Froude

number.

3.7. Analysis and damping of spurious modes

One of the drawbacks of the triangular B-grid scheme is that the standard scheme without damping (i.e. νr =
γr = νu = 0 in (19)) supports spurious numerical modes: the analysis of the numerical dispersion relation on

uniform equilateral meshes performed in [23] shows that (non trivially constant) divergence free velocity fields (with

vanishing pressure) can oscillate with pulsation ω. This means that there are non trivial velocity fields verifying

(∇D
h · uh)k = 0 , ∀k, (32)

d

dt
ui(t) = −ωu⊥

i , ∀i. (33)

We analyse in what follows these fields on general triangular grids: taking the ∇D
h · operator on both sides of (33) and

using (32), we conclude that for ω ̸= 0, it also holds that

(∇D
h × uh)k = 0 , ∀k. (34)

If uh were a continuous velocity field in a periodic rectangular domain with no holes as is considered here, a vanishing

curl and a vanishing divergence would be sufficient to infer that uh is a constant vector field. However, at the discrete

level, (32) and (34) do not imply that uh is a constant vector field: indeed, with N the number of triangles and Nr

11



the number of vertices, a cell-centered velocity field has 2N degrees of freedom, while (32) and (34) sum up to only

2Nr = N constraints (this equality holds on a periodic triangular mesh of a periodic rectangular domain with no

holes). Therefore there are many such spurious modes and a general construction is given in the associated numerical

test in Section 5.3. We shall build on (24) to show that these modes are damped to zero by the family of schemes we

propose as soon as νr = γr > 0. More precisely, with an initial condition rh(0) = 0 and uh(0) such that (34) is

verified, then by definition (26) and property (27), it holds that (rh(0),uh(0)) ∈ E△,⊥
ω ̸=0 . By virtue of Lemma 5 (ii),

we infer that (rh(t),uh(t)) ∈ E△,⊥
ω ̸=0 for all t ≥ 0. This implies by (26)–(27) that

a⋆∇D
h × uh(t) = ωrh(t) , ∀t ≥ 0. (35)

Now, we use a general decomposition of discrete velocity fields on periodic triangular meshes with no holes (see [19,

Lemma 3.5] with α ≡ 1): there exists two time-dependent discrete fields ψh(t) and φh(t), with ψh defined by its

values at the vertices of the mesh and φh defined by its values at the edges of the mesh, and a uniform vector field

ū(t) such that

ui(t) = (∇T
h × ψh(t))i + (∇CRφh(t))i + ū(t) ∀i. (36)

Moreover, in this decomposition, each of the three components is orthogonal to the other two with respect to the

scalar product ⟨ , ⟩P . Now, computing the second term in the right-hand side of (24), we obtain, thanks to (36) and the

orthogonality of ∇T
h with ∇CR× and uniform fields

∥

∥

∥

∥

√
νr

(

∇T
h rh +

ω

a⋆
u
⊥
h

)∥

∥

∥

∥

2

P

≥ νmin

(

∥

∥

∥

∥

∇T
h (rh +

ω

a⋆
ψh)

∥

∥

∥

∥

2

P

+

(

ω

a⋆

)2
(

∥

∥∇CR × φh
∥

∥

2

P
+
∥

∥

ū
⊥
∥

∥

2

P

)

)

, (37)

where νmin is the minimum value of νr over the mesh. Developing the first term in the right-hand side of (37) we

obtain
∥

∥

∥

∥

∇T
h (rh +

ω

a⋆
ψh)

∥

∥

∥

∥

2

P

=
∥

∥∇T
h rh

∥

∥

2

P
+ 2

ω

a⋆
⟨∇T

h rh,∇T
hψh⟩P +

(

ω

a⋆

)2
∥

∥∇T
hψh

∥

∥

2

P
. (38)

In order to evaluate the second term in the right-hand side of (38), we first use (35), then a discrete integration by part

for the curl operators (that can be proved just like (21) was proved), then (36) and the fact that this decomposition is

orthogonal, to obtain

ω

a⋆
||rh||2D = ⟨∇D

h × uh, rh⟩D = ⟨uh,∇T
h × rh⟩P = ⟨∇T

h × ψh,∇T
h × rh⟩P = ⟨∇T

hψh,∇T
h rh⟩P . (39)

Plugging (39) into (38) and then into (37), and using (24) we obtain the following inequalities

d

dt
Eh(t) + 2νmin

[

∥

∥∇T
h rh

∥

∥

2

P
+ 2

(

ω

a⋆

)2

||rh||2D +

(

ω

a⋆

)2
(

∥

∥∇T
hψh

∥

∥

2

P
+
∥

∥∇CR × φh
∥

∥

2

P
+
∥

∥

ū
⊥
∥

∥

2

P

)

]

≤ 0,

d

dt
Eh(t) + 2νmin

(

ω

a⋆

)2
(

||rh||2D + ||u⊥
h ||2P

)

≤ 0

d

dt
Eh(t) + 2νmin

(

ω

a⋆

)2

Eh(t) ≤ 0,

which implies

Eh(t) ≤ exp

[

−2νmin

(

ω

a⋆

)2

t

]

Eh(0),

and thus the exponential damping of the spurious modes with a damping rate (at least) proportional to νmin and thus

to hmin, where hmin is the minimum of the hi over the mesh.
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4. Analysis of fully discrete staggered schemes

We present in this section a time discretization for scheme (19). Of course, one may first think about the splitting

scheme where we deal with the homogeneous system in the first step and take the source term into account in the

second step. However, this naive splitting scheme is unable to capture the steady states. Therefore, in this section, we

focus on the analysis of the so-called one step scheme.

4.1. The fully discrete one step scheme

Due to the fact that the totally explicit scheme is unstable [1], we have to ensure that the Coriolis source term is

discretized implicitly enough. In order to achieve this, let us introduce two new parameters θ1 and θ2 corresponding

to the time discretization of the Coriolis source term. Let us also introduce τ1 and τ2 corresponding to the time

discretization of the divergence term in the pressure equation. For convenience, let us denote

u
θ =

(

θ1u
n + (1− θ1)u

n+1

θ2v
n + (1− θ2)v

n+1

)

and u
τ =

(

τ1u
n + (1− τ1)u

n+1

τ2v
n + (1− τ2)v

n+1

)

.

Then, we introduce the θ-τ scheme which is given by










rn+1
k = rnk − a⋆∆t(∇D

h · uτ
h)k +∆t∇D

h ·
[

νr

(

∇T
h r

n
h + ω

a⋆
u
n,⊥
h

)]

k

u
n+1
i = u

n
i − a⋆∆t(∇T

h r
n
h)i + νu∆t

(

∇CRJun
h · nK

)

i
− ω∆tuθ,⊥

i + ω
a⋆
∆t(γr)i

(

∇T
h r

n
h + ω

a⋆
u
n,⊥
h

)⊥

i

(40)

Remark 6. The θ-τ scheme (40) is still explicit, although the velocity field u
n+1 appears in the pressure equation:

we first compute the updated velocity field from the momentum equation, and then use it to compute uτ in the pressure

equation without having to solve any linear system.

4.2. Well-balanced and orthogonality preserving scheme

Proposition 7. It holds that

(i) The fully discrete one step scheme (40) is a well-balanced scheme.

(ii) When νr = γr, the fully discrete one step scheme (40) is an orthogonality preserving scheme if

τ1 = θ1 and τ2 = θ2,

which means that the velocity field used in the Coriolis source term in the velocity equation and that used to compute

the divergence term in the pressure equation should be the same.

Proof. Let us consider at time tn a numerical solution q̂nh = (r̂nh , û
n
h) which is in the discrete kernel, which reads (29).

We also recall that this implies that û
n
h also verifies (30) and (31). We shall show that the numerical solution at time

tn+1 is still equal to q̂nh . First, developing u
θ and taking (29) into account to express the pressure gradient, as well as

the fact that the jump term vanishes due to (31), the velocity equation of (40) leads to
(

1 −ω∆t(1− θ2)
ω∆t(1− θ1) 1

)(

un+1
i

vn+1
i

)

=

(

1 −ω∆t(1− θ2)
ω∆t(1− θ1) 1

)(

uni
vni

)

,

which implies that un+1
i = ûni and vn+1

i = v̂ni . Next, this implies that uτ = û
n

and ∇D
h ·uτ = 0 by (30). Therefore,

the pressure equation of the fully discrete one step scheme (40) reduces to rn+1
k = r̂nk . This proves (i).

Next, let us consider a numerical solution qnh belonging to E△,⊥
ω ̸=0 , so that ⟨qnh , q̂h⟩ = 0 for any steady state q̂h ∈

E△
ω ̸=0. Taking the scalar product of (40) with any q̂h ∈ E△

ω ̸=0, and following the proof of Proposition 5, the only terms

that remain are
〈

qn+1
h , q̂h

〉

= a⋆∆t
〈

u
τ
h,∇T

h r̂h
〉

P
+ ω∆t

〈

u
θ
h, û

⊥
h

〉

P
.

We realize that when τ1 = θ1 and τ2 = θ2, we get uτ
h = u

θ
h, from which it follows that

〈

qn+1
h , q̂h

〉

= 0, ∀q̂h ∈ E△
ω ̸=0.

Therefore, we conclude that qn+1
h ∈ E△,⊥

ω ̸=0 and so the scheme is orthogonality preserving.
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5. Numerical test cases

In this section, we perform several test cases for all proposed schemes: LF, AT and MAT. Moreover, for the sake

of comparison, we also run the scheme with the Laplacian diffusion in the pressure equation and with the normal

velocity jump diffusion for the velocity equations (PL-VJ scheme): in (19), the diffusion in the pressure equation

is replaced by −∇D
h ·
(

νr∇T
h rh

)

and γr is set to 0. The classical scheme with the full Laplacian diffusion for the

velocity equations and no diffusion in the pressure equation (VL scheme) is also tested in this section: in (19), we set

νr = γr = 0 and then replace the diffusion term (20) in the velocity equation by
1

|Ti|
∑

Aij⊂∂Ti

|Aij |(uj − ui).

5.1. Well-balanced test case

In this test case, we investigate the behavior of the staggered schemes with a GE as an initial condition. Partic-

ularly, we consider the stationary vortex in the square periodic domain T2 = [−0.5, 0.5] × [−0.5, 0.5] with initial

pressure r0 given by

r(x, y, t = 0) = 1− exp

[

−
(

3x

0.5

)2

−
(

3y

0.5

)2
]

,

and we construct the discrete initial pressure by interpolating this pressure field at the mesh vertices. Then, we

construct the initial velocity field u
0 by using the definition of the discrete kernel (25) so that we can obtain a discrete

stationary state (see Fig. 2).

Figure 3 indicates that the classical VL staggered scheme is not well-balanced since it quickly produces some spurious

waves in the orthogonal subspace (Fig. 3b); it also strongly damps the kernel part (Fig. 3a). Similarly, The PL-VJ

scheme also destroys the geostrophic equilibrium. However, compared to the VL scheme, it produces waves with a

smaller amplitude in the orthogonal part and the damping rate of the kernel part is much slower.

On the contrary, the LF, AT and MAT staggered schemes are well-balanced as expected. This can be checked because

the orthogonal parts of their solutions remain equal to zero (Figure 3b) during the computation and their kernel parts

remain constant (Figure 3a). Additionally, Figure 4 shows that the pressure contours of the VL and, to a much smaller

extent, PL-VJ schemes are different from those of the other schemes. This is another evidence that they are unable to

capture steady-states, contrarily to the LF, AT and MAT schemes.

-0.5 0 0.5

-0.5

0

0.5

0

0.2

0.4

0.6

0.8

1

(a) Contours of r(x, y, t) at t = 0 (b) Contours of u(x, y, t) at t = 0 (c) Contours of v(x, y, t) at t = 0

Figure 2: Stationary vortex as an initial condition.
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Figure 3: Vortex test case: evolution of the kernel and orthogonal parts.
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Figure 4: Pressure contours r(x, y, t) at time t = 10 obtained from staggered type schemes.
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5.2. Orthogonality preserving test case

In this test case, we consider periodic boundary conditions and an initial vector field given by

u(x, y, t = 0) =
1

2
exp

[

−
(

4x

0.4

)2

−
(

4y

0.8

)2
]

and v(x, y, t = 0) =
1

2
exp

[

−
(

4x

0.8

)2

−
(

4y

0.4

)2
]

in the domain T2 = [−0.5, 0.5] × [−0.5, 0.5] and we construct the discrete initial velocity by interpolating this

velocity field at the cell centers. Then the initial pressure r(x, y, t = 0) is constructed at the mesh vertices by using

the definition of the discrete orthogonal subspace (26)–(27). In all cases, we choose θ1 = θ2 = 1
2 for the time

discretization of the Coriolis force in (40) and the value of (τ1, τ2) may vary from test to test.

Figure 5a shows that the classical VL, PL-VJ and AT schemes are not orthogonality preserving since the kernel

components of these schemes are not equal to zero. Moreover, since the kernel part is updated at each time step,

it is not a constant in time. Figure 5b shows that the damping rates of the orthogonal parts of the VL, PL-VJ, AT

and MAT schemes are larger than that of the Low Froude scheme. Although the PL-VJ and the AT schemes are

not orthogonality preserving, these strategies on triangular grid create waves in the kernel that have much smaller

amplitudes than those on Cartesian grids (see [11]). Next, Figure 5a was obtained with τ1 = τ2 = 1 for the fully

discrete LF and MAT schemes, and this generates waves with very small amplitudes in the kernel part; this underlines

that in order to obtain schemes that are really orthogonality preserving, we need to use a velocity field in the Coriolis

source term that is equal to that used for the computation of the divergence term in the pressure equation. Indeed,

Figures 6a and 6b clearly show that the LF-θ-τ and the MAT-θ-τ schemes with θ1 = θ2 = τ1 = τ2 = 1
2 are perfectly

orthogonality preserving since these strategies do not create waves in the kernel subspace during the computational

process, as proved by Lemma 7.
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Figure 5: Orthogonality preserving test case: evolution of the kernel and orthogonal parts of different staggered type schemes with θ1 = θ2 = 1

2

and τ1 = τ2 = 1 for the time discretization of the Coriolis force.
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Figure 6: Orthogonality preserving test case: evolution of the kernel part of the LF-θ-τ and MAT-θ-τ scheme with θ1 = θ2 = 1

2
and various

values of (τ1, τ2). Orthogonality preservation is only achieved when τ = θ.

5.3. Spurious mode test case

In this test case, we consider an initial condition given by a spurious mode of the triangular B-grid when no

damping is used (i.e. (19) with νr = γr = νu = 0), and we shall observe that this mode is now correctly damped to 0.

As described in Section 3.7, this initial condition satisfies

r = 0 and ∇D
h · uh = ∇D

h × uh = 0.

In order to construct such a spurious mode, we recall the discrete Hodge decomposition on periodic triangular grids

that is given by (36) (taken at time t = 0):

uh = ∇T
h × ψh +∇CRφh + ū.

But the role of the curl and gradient operators can be exchanged so that there also exist (µh, λh) defined respectively

by their values at the vertices and at the edges of the mesh such that

uh = ∇T
hµh +∇CR × λh + ū.

Now ∇D
h ·uh = 0 implies that (up to the constant ū) uh = ∇CR ×λh and ∇D

h ×uh = 0 implies that uh = ∇CRφh.

In order to have a velocity field that is at the same time a non-conforming gradient and a non-conforming curl, a

possibility is that one picks any random (periodic) αh defined at the edges of the mesh and first set vh = ∇CRαh.

Then, one computes the second Hodge decomposition of vh:

vh = ∇T
h ζh +∇CR × λh.

Then, if we set uh = vh −∇T
h ζh, we obtain that uh is both a non-conforming gradient and a non-conforming curl:

uh = ∇CR × λh and uh = ∇CR
h αh −∇T

h ζh = ∇CR(αh − ζ̃h),

where ζ̃h is defined at the edge midpoints as the half-sum of the values of ζh at the vertices of the edges.

Note that, in order to decompose vh, we have to solve a P 1 Lagrange finite element solution of the Laplace

equation:

(∇T
h ζh,∇T

h θh) = (vh,∇T
h θh) , ∀θh.

Figure 7 shows a typical velocity field of a spurious mode that was constructed by the above process. Then, we use

this mode as an initial value for the various schemes developed in this article, as well as the ”Inertial Oscillation” (IO
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scheme) which is simply the θ-scheme (with θ = 1
2 ) applied to (33), since this corresponds to the standard B-grid

scheme applied to the spurious mode (r = 0 and ∇D
h · uh = 0) when no damping is used. We recall that these

spurious modes belong to the orthogonal space (26)–(27) since both their pressure components and the curls of their

velocity components vanish. So their initial projections in the kernel space (25) also vanish. According to Figure 8a,

we can see that the three non-orthogonality preserving schemes VL, PL-VJ and AT immediately create some waves

in the kernel part. Moreover, concerning the long time behavior, the kernel part of the VL scheme is damped by the

Laplacian diffusion while it seems to be a constant for the PL-VJ and AT schemes. On the other hand, the LF and

MAT schemes do not create any wave in the kernel. Figure 8b shows that the orthogonal part is damped by all the

numerical schemes with numerical diffusion. As a final remark, we can stress that Figure 8c illustrates the fact that

damping spurious modes supported by the standard B-grid scheme (the IO scheme) can be achieved by schemes that

preserve GEs and their orthogonal space (the LF and MAT schemes), which is a major improvement over the usual

damping solution (the VL scheme).

Moreover, Figure 9 clearly shows that the pressure components of the PL-VJ and AT schemes are very noisy,

while small oscillations appear in the solution of the VL scheme. This may be related to the fact that these schemes

are not orthogonality preserving. As a consequence, there are some spurious modes coming to the kernel from the

orthogonal space.

(a) Contours of u(x, y, t) at t = 0 (b) Contours of v(x, y, t) at t = 0

Figure 7: Velocity components of a spurious mode.
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Figure 8: Energy evolution of the kernel part (a), of the orthogonal part (b) and of the full solution (c).

5.4. Accuracy at low Froude number test case

We now consider an initial condition close to the discrete kernel, up to a perturbation of size M . This initial

condition is simply given by

q0h = q̂0h +M
q̃0h

∥q̃0h∥
,

where q̂0h stands for the kernel part given in Section 5.1 and q̃0h is the orthogonal part considered in Section 5.2. In

that case, the exact solution remains close to q̂0h, in the sense that their difference remains of size M for all time (see

Lemma 6). So we expect efficient schemes to follow this behaviour. However, Figures 10a and 10b indicate that the

classical VL and PL-VJ schemes are not accurate at low Froude number because the norm of ∥q(t)− Pq0∥ has a size

which is much larger than M and independent of the value of M . These figures also illustrate that the solutions of

the VL and PL-VJ schemes quickly move far from the kernel without regard to the size of parameter M . By contrast,

the proposed LF, AT and MAT schemes are accurate at low Froude number because the norm of the total deviation

remains of order O(M).

5.5. Circular dam-break test case

In this test case, we consider the initial condition given by



















r(x, y, t = 0) =

{

2, if x2 + y2 ≤ 1

1, if x2 + y2 > 1.

u(x, , y, t = 0) = 0,

v(x, , y, t = 0) = 0.

with periodic boundary condition, a⋆ = ω = 1 and the domain is the square [−5, 5]× [−5, 5]. In this test case, we aim

to investigate the long time behavior of the numerical solution when the initial condition is far from the GE. Figure 11
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(a) VL scheme (b) PL-VJ scheme

(c) LF scheme (d) AT scheme

(e) MAT scheme

Figure 9: Pressure r(x, y, t) at time t = 40 obtained from staggered type schemes.
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Figure 10: Evolution of the total deviation from the initial condition, when the initial condition is close to the discrete kernel.

presents the projection into the kernel of the initial condition. This is the target solution for the simulation in long

time since the numerical diffusion will damp the orthogonal part.

Figure 12 clearly shows that in long time, the solution of the VL and PL-VJ schemes tend to a trivial steady state

which consists of only a constant pressure field. On the contrary, the LF, AT and MAT schemes tend to the GE, since

the final state is similar to projection Pq0 of the initial condition shown in Figure 11.

On the other hand, Figure 13 shows that the kernel components of the classical VL or PL-VJ schemes are damped

during the simulation while it is a constant for the LF and MAT schemes, and nearly a constant for the classical AT

scheme. Moreover, the total deviation (distance between the numerical solution and the initial projection) of VL or

PL-VJ scheme decreases in early times, but eventually increases in long time, while it tends to zero with the other

schemes. This is another evidence to conclude that the VL and PL-VJ schemes will tend to a wrong component in the

kernel, while the other schemes have solutions that, as expected, tend to the correct GE. The fact that the classical AT

scheme does not capture a projection in the kernel which is constant in time is due to the fact that it is not orthogonality

preserving, and so there is an exchange of energy between the orthogonal space and the kernel.

6. Conclusion

In this work, we propose new staggered type schemes that are accurate for the simulation of flows near the GE.

The construction of these schemes is based on the adaptation of the Low Froude and Apparent Topography strategies

to triangular grids. Theoretical analysis and numerical results show that the new schemes are well-balanced. On

the other hand, unlike the classical VL, PL-VJ and Apparent Topography method, the Low Froude and the modified

Apparent Topography are orthogonality preserving under an appropriate discretization in time. This seems particularly

important to really separate the GE from the orthogonal perturbations around it.

Future works will be dedicated to the optimal time step choice of these schemes and to extensions to the nonlinear

shallow water equations, which may be inspired by [25, 26].
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Figure 11: Projection of the initial condition.
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(a) VL scheme (b) PL-VJ scheme

(c) LF scheme (d) AT scheme (e) MAT scheme

Figure 12: Pressure r(x, y, t) at time t = 150 obtained from staggered type schemes.
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Figure 13: The evolution of the kernel part (a), deviation from the initial projection (b), orthogonal component (c) and norm of the full solution (d).
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