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Abstract

We consider an inverse elastic scattering problem of simultaneously reconstructing a rigid
obstacle and the excitation sources using near-field measurements. A two-phase numerical
method is proposed to achieve the co-inversion of multiple targets. In the first phase, we
develop several indicator functionals to determine the source locations and the polarizations
from the total field data, and then we manage to obtain the approximate scattered field. In this
phase, only the inner products of the total field with the fundamental solutions are involved in
the computation, and thus it is direct and computationally efficient. In the second phase, we
propose an iteration method of Newton’s type to reconstruct the shape of the obstacle from
the approximate scattered field. Using the layer potential representations on an auxiliary curve
inside the obstacle, the scattered field together with its derivative on each iteration surface can
be easily derived. Theoretically, we establish the uniqueness of the co-inversion problem and
analyze the indicating behavior of the sampling-type scheme. An explicit derivative is provided
for the Newton-type method. Numerical results are presented to corroborate the effectiveness
and efficiency of the proposed method.

Keywords: Co-inversion, inverse scattering, inverse source, elastic wave, Newton-type method,
sampling.

1 Introduction

The identification of multiple targets of distinct nature from the scattering data has significant
applications in various areas such as nondestructive testing, medical imaging, and geophysical
exploration. In the scenario of the inverse problems for the wave equations, the excitation sources
emit the signal actively while the obstacle serves the role to make a passive reaction to the imposed
information. Hence, the source and the obstacle are typically viewed as two intrinsically distinct
components in the scattering system. Due to varying practical desires, the reconstruction of either
the source points or the obstacle has received enduring attention. Depending on the reconstructed
targets, the inverse source problems usually aim to recover the source from the radiated field, where
there is no obstacle. Meanwhile, the inverse obstacle problems serve the purpose to identify the
obstacle with a given incident field.
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Typical numerical methods for the inverse elastic source problems include the recursive algorithm
by Bao et.al [7], the sampling-type method [33], the full waveform inversion method [32], and the
fast Bayesian method for seismic source inversion [31]. Meanwhile, elastic wave scattering problems
have received ever-increasing attention in recent years. For instance, Ji et. al [26] considered
the inverse elastic scattering and proposed three direct sampling methods for location and shape
reconstruction using different components of the far field patterns. Chen and Huang [14] introduced
the reverse time migration method to reconstruct the extended obstacle from the scattered field.
Recently, the authors of [27] present a study on the time reversal method to recover multiple elastic
particles in three dimensions. In addition, classical algorithms for the inverse elastic scattering
problems include the linear sampling method [2, 5], the factorization method [13], and recently the
iterative method [8] as well as the method of topological derivative by Guizina et. al [23].

In many scenarios, both the obstacle and the source are unknown, which makes it meaningful to
simultaneously reconstruct the two targets with the passive measurements, namely the measured
wave data generated by the anomalous source. As a composition of the aforementioned problems,
the co-inversion problem is more complicated and practically significant. Compared with the vast
studies on single-inversion problems, studies on the co-inversion problem are relatively rare. For
some recent works on co-inversion problems, we refer to [12, 28, 29, 34, 35]. In this paper, we consider
an inverse elastic problem to simultaneously reconstruct the rigid obstacle and its excitation source
points from time-harmonic total field data. The overall idea of the current work is divided into two
steps. We first recover the source points together with the polarization from the total field data by
the direct imaging method. Once the sources have been retrieved, the next step is to determine the
shape of the obstacle by an easy-to-implement Newton-type iteration method.

To be specific, we summarize the salient features of the proposed method as follows. First, we
propose a two-phase sampling method to determine the source locations and the polarization from
the total field. In the first phase, we implement the sampling procedure toward the spatial location,
and the source location is identified via the significant maximizer of the indicator function. Then in
the second phase, another sampling scheme is proposed to find the polarization direction. Second,
by incorporating the idea of the traditional decomposition method [16] into the Newton iteration,
we develop a novel Newton-type framework by treating the ill-posedness and the nonlinearity of the
inverse problem separately. In particular, by the Helmholtz decomposition and the layer potential
techniques, the derivative of the boundary-to-data mapping can be calculated easily, thus the
algorithm requires neither a forward solver nor alternative iterations between the sources and the
obstacle involved in the novel Newton-type method. Hence, it is computationally efficient. Third, we
demonstrate the effectiveness and efficiency of the proposed method through extensive numerical
experiments. Furthermore, we extend this method to the co-inversion in the three-dimensional
problem. Last but not least, the proposed hybrid method is comprised of a sampling scheme for
source recovery and an iteration scheme for obstacle recovery, which are novel in their own right to
solve the inverse source problem and the inverse obstacle scattering problem, respectively.

The rest of this paper is arranged as follows: In the next section, we introduce the co-inversion
problem under consideration and address the uniqueness results. In Section 3, we propose two
sampling schemes to identify the source locations and polarization from the measured total field.
Mathematical justifications for the sampling schemes are provided. By subtracting the incident
field due to the reconstructed sources from the total field, the co-inversion problem is reformulated
into an inverse obstacle scattering problem. Then, a Newton-type method based on the single
layer technique is proposed in Section 4 to recover the shape of the obstacle from the approximate
scattered field. In Section 5, we conduct several numerical experiments to verify the effectiveness
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and efficiency of our method. Finally, some conclusions are drawn in Section 6.

2 Problem setting and uniqueness

In this section, we first give a brief description of the forward and inverse problems under
consideration. Then a uniqueness result will be addressed.

2.1 Model problem

Let D ⊂ Rd (d = 2, 3) be an open and bounded Lipschitz domain such that the exterior Rd\D is
connected. Assume that Rd\D is occupied by a homogeneous and isotropic elastic medium with a
normalized mass density. Let ω > 0 be the angular frequency and λ, µ be the Lamé constants such
that µ > 0, dλ + 2µ > 0. Denote by kp = ω/

√
λ+ 2µ = ω/cp and ks = ω/

√
µ = ω/cs respectively

the compressional and shear wave numbers. Given a generic point z ∈ Rd\D and polarization
p ∈ Sd−1 := {x ∈ Rd : |x| = 1}, the incident field ui due to the source located at z satisfies the
Navier equation

∆∗ui + ω2ui = −δ(x− z)p in Rd\D, (2.1)

where δ(x− z) is the Dirac delta distribution at point z, the Lamé operator ∆∗ is defined by

∆∗u := µ∆u+ (λ+ µ)∇∇ · u.

Explicitly, we have

ui = ui(x; z,p) = G(x, z)p, x ∈ Rd\(D ∪ {z}), (2.2)

where G(x, z) is the fundamental solution to the Navier equation, i.e., (cf. [10])

G(x, z) =
1

µ
Φs(x, z)Id +

1

ω2
∇x∇>x (Φs(x, z)− Φp(x, z)). (2.3)

Here, Id is the d×d identity matrix, Φα(α = p, s) denotes the fundamental solution to the Helmholtz
equation with wave number kα, i.e.,

Φα(x, z) =


i

4
H

(1)
0 (kα|x− z|), d = 2,

eikα|x−z|

4π|x− z|
, d = 3,

α = p, s, (2.4)

where H
(1)
n the Hankel function of the first kind of order n. It holds that G = Gp + Gs where

Gp(x, z) = − 1

µk2
s

∇x∇>x Φp(x, z), Gs(x, z) =
1

µ

(
Id +

1

k2
s

∇x∇>x
)

Φs(x, z), (2.5)

Let the obstacle be illuminated by ui, then the displacement field of the scattered wave is
described by a solution v of the boundary value problem{

∆∗v + ω2v = 0, in Rd\D,
u = 0, on ∂D,

(2.6)
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where u = ui + v is the total field with the scattered field v satisfying the Kupradze-Sommerfeld
radiation condition

lim
ρ→∞

ρ
d−1
2 (∂ρvp − ikpvp) = 0, lim

ρ→∞
ρ
d−1
2 (∂ρvs − iksvs) = 0, ρ = |x|.

Here, vp = − 1
k2p
∇∇ · v is the compressional component of v. The shear component of v is given by

vs =


1

k2
s

curlcurlv, d = 2,

1

k2
s

curlcurlv, d = 3,

where the curl operators are defined by

curlw = ∂x1
w2 − ∂x2

w1, curlw = (∂x2
w,−∂x1

w)>, d = 2,

curlw = (∂x2
w3 − ∂x3

w2, ∂x3
w1 − ∂x1

w3, ∂x1
w2 − ∂x2

w1)>, d = 3.

Here w is a scalar function, and w = (w1, w2)> or (w1, w2, w3)> denotes a vector function.
For any solution v of equation (2.6), the Helmholtz decomposition splits it into its compressional

and shear parts:

v =

{
∇φ+ curlψ, d = 2,

∇φ+ curlψ, d = 3,
(2.7)

where φ and ψ are scalar potential functions and ψ is a vector potential function fulfilling ∇·ψ = 0.
Combining (2.6) and (2.7) gives the Helmholtz equations:

∆φ+ k2
pφ = 0, ∆ψ + k2

sψ = 0, d = 2, (2.8)

∆φ+ k2
pφ = 0, ∆ψ + k2

sψ = 0, d = 3. (2.9)

In addition, φ, ψ and ψ are supposed to satisfy the Sommerfeld radiation condition

lim
ρ→∞

ρ
d−1
2 (∂ρφ− ikpφ) = 0, lim

ρ→∞

√
ρ(∂ρψ − iksψ) = 0,

lim
ρ→∞

ρ(curlψ × x̂− iksψ) = 0, ρ = |x|.
(2.10)

It has been proven in [11] that there exists a unique solution v ∈
(
H1

loc(Rd\D)
)d

to the direct
problem (2.6) and (2.10).

In this paper, we take BR := {x ∈ Rd : |x| < R} containing D such that BR\D is connected. For
N ∈ N+, let S := ∪Nj=1{zj} ⊂ BR\D be a set of N distinct source points and P := ∪Nj=1{pj} ⊂ Sd−1

be the set of polarization directions. Given the incident field ui(x; zj ,pj), j = 1, · · · , N, of the form
(2.2), we collect the total field u(x; zj ,pj) = ui(x; zj ,pj) + v(x; zj ,pj) on the measurement curve
ΓR := ∂BR = {x ∈ Rd : |x| = R}, where v(x; zj ,pj) is the scattered field corresponding to the
incident field ui(x; zj ,pj). Then, the co-inversion problem we are interested in is stated as:

Problem 2.1 (Co-inversion problem). Find the obstacle ∂D, source points S and polarization
directions P simultaneously from the measurements U := {u(x; z,p) : x ∈ ΓR, z ∈ S,p ∈ P}, i.e.,

U→ (∂D, S, P ). (2.11)

For an illustration of the geometry setup of Problem 2.1, we refer to Figure 1.
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Figure 1: Illustration of the co-inversion for imaging the obstacle and sources.

2.2 Uniqueness

In this subsection, we consider the uniqueness issue concerning Problem 2.1. Specifically, we
show that S and ∂D can be uniquely determined from the total-field measurements. We also refer
to [17, 18, 19, 24] and the references therein for more studies on the uniqueness of inverse elastic
scattering problems.

Theorem 2.1. The source points S can be uniquely determined by the total field U. Let N0 be
defined by (A.3). If N ≥ N0 + 1 for one fixed angular frequency ω and one fixed polarization
p ∈ Sd−1, then the obstacle D can also be uniquely determined by the total field data U.

Proof. We first prove the unique identification of the source points by contradiction.
Let D1 and D2 be two elastically rigid obstacles such that D1 ∪ D2 ⊂ BR. Assume w1 6= w2

be two different source points in S and denote the total fields due to (D1, w1) and (D2, w2) by
u(x;D1, w1), u(x;D2, w2), respectively. Assume that

u(x;D1, w1) = u(x;D2, w2), ∀x ∈ ΓR. (2.12)

From the uniqueness of the exterior Dirichlet boundary value problem for the Navier equation, we
derive that

u(x;D1, w1) = u(x;D2, w2), in Rd\BR.
Further, the analyticity leads to the following fact

u(x;D1, w1) = u(x;D2, w2), in Rd\
(
D1 ∪D2 ∪ {w1} ∪ {w2}

)
.

Let x→ w1, then u(x;D1, w1) tends to infinity. Meanwhile, from the fact v(x;D`, w`), (` = 1, 2) is
bounded, we know that u(x;D2, w2) is bounded, which leads to a contradiction. Thus, w1 = w2.

In what follows, we prove by a contradiction argument that if N ≥ N0 + 1, then ∂D can be
uniquely determined by U.

Assume that D1 and D2 are two bounded domains and vi, i = 1, 2 satisfy (2.6) with D replaced
by Di, respectively. Let G be the unbounded component of the complement of D1 ∪ D2 and the
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total wave vanishes on ∂G. Without loss of generality, we assume that D∗ := (Rd\G)\D2 6= ∅. Then
v2(·, z) satisfies {

∆∗v2 + ω2v2 = 0, in D∗,

v2(·, z) = −ui(·, z), on ∂D∗.

Let w(·, z) = v2(·, z) + ui(·, z) for a fixed z ∈ S, then w satisfies{
∆∗w + ω2w = 0, in D∗,

w = 0, on ∂D∗.
(2.13)

As a result, w is a Dirichlet eigenfunction for −∆∗ in D∗ with ω2 the eigenvalue. Next, we show
that the eigenfunctions w(·, zj), zj ∈ S, j = 1, · · · , N0 + 1 corresponding to the same eigenvalue ω2

are linearly independent. Assume that

N0+1∑
j=1

cjw(x, zj) = 0, x ∈ D∗, (2.14)

holds for some constants cj and N0 + 1 distinct source points zj , j = 1, · · · , N0 + 1. Then by
analyticity, (2.14) is also satisfied in the exterior of some circle containing D1 and D2. For a fixed
j0 ∈ [1, N0 + 1], we take h > 0 sufficiently small such that xj0s = zj0 + h

s ν(zj0), s = 1, 2, · · · are in a
neighborhood of zj0 . Then,

cj0w(xj0s , zj0) = −
N0+1∑

j=1,j 6=j0

cjw(xj0s , zj).

Further, we derive that

cj0u
i(xj0s , zj0) = −

N0+1∑
j=1,j 6=j0

cju
i(xj0s , zj)−

N0+1∑
j=1

cjv(xj0s , zj). (2.15)

Noticing the fact that ui(xj0s , zj0) becomes unbounded and the right hand side in (2.15) remains
bounded while s → ∞, we derive that cj0 = 0 for j0 = 1, 2, · · · , N0 + 1, which implies that
w(·, zj), j = 1, · · · , N0 + 1, are linearly independent.

We can proceed with the proof in the same way as in the proof of Theorem 5.2 in [16]. Let
0 < λ1 ≤ λ2 ≤ · · · ≤ λm = ω2 be the Dirichlet eigenvalues of D∗ that are smaller than or equal
to ω2 and µ1 ≤ µ2 ≤ · · ·µm are the first m eigenvalues of BR, then µm < λm = ω2. Based on the
strong monotonicity property for the Dirichlet eigenvalues of −∆∗, we obtain that the multiplicity
M of λm is less than or equal to the sum of multiplicities of eigenvalues for the disk BR which
are less than ω2. In other words, M ≤ N0, which contradicts with the fact that N0 + 1 distinct
incident waves yield N0 + 1 linearly independent eigenfunctions with eigenvalue ω2 for D∗. Hence,
D1 = D2.

3 Recovering the source

In this section, we develop several novel indicator functionals to determine the source points S
and the polarization directions P from the total field U. It deserves noting that, different from the
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existing direct sampling methods for the inverse source problem, we adopt the total field instead of
the incident field in the imaging function. For convenience, we use (·, ·) for the real inner product
on C2 and the overbar for the complex conjugate, and use 〈·, ·〉 for the inner product defined on
(L2(ΓR))2.

3.1 Recovering the location

The aim of this subsection is to determine the locations of source points from U. Let Ω ⊂ Rd
be a bounded sampling domain such that D ∪ S ⊂ Ω. For any sampling point y ∈ Ω, we define N
indicator functionals as follows:

Iqj (y) = 〈u(·; zj),G(·, y)q〉 , j = 1, · · · , N, (3.1)

where q ∈ Sd−1. We would like to point out that, to determine the source points S, the auxiliary
polarization q is not necessarily the same as pj .

To investigate the characteristics of the indicator functions (3.1), several crucial lemmas are
needed.

Lemma 3.1. [14, Lemma 3.4] For all y, z ∈ BR, y 6= z, it holds that

ωcα 〈Gα(x, z),Gα(x, y)〉 = ={Gα(y, z)}+ Wr
α(y, z), α = p, s,

ω 〈Gp(x, z),Gs(x, y)〉 = Wr
ps(y, z),

ω 〈Gs(x, z),Gp(x, y)〉 = Wr
sp(y, z),

where ‖Wr
α‖L∞(BR×BR) + ‖∇xWr

α‖L∞(BR×BR) ≤ CR−
d−1
2 holds uniformly with α ∈ {p, s, ps, sp}.

Here, ‖A‖L∞(BR×BR) = max
i,j=1,··· ,d

‖Aij‖L∞(BR×BR) for A(x, y) = (Aij(x, y)) ∈ Cd×d(i, j = 1, · · · , d).

For the trace of Green tensors, we have the following property.

Lemma 3.2. For d = 2, 3, it holds that

tr(Gα) = CαΦα, α = p, s, (3.2)

where tr denotes the sum of the diagonal terms and

Cα =


1

λ+ 2µ
, α = p,

d− 1

µ
, α = s.

Proof. Define

fn =

{
H

(1)
n , d = 2,

h
(1)
n , d = 3,

n = 0, 1, 2, · · · ,

and

σα =

{
π, d = 2,

kα, d = 3,
α = p, s.
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Then we see that

f ′n(z) =
n

z
fn(z)− fn+1(z), n = 0, 1, 2, · · · , (3.3)

df1(z)/z = f0(z) + f2(z), d = 2, 3, (3.4)

Φα(x, y) =
iσα
4π

f0(kα|x− y|), α = p, s. (3.5)

By (3.3), it can be straightforwardly derived that

∇x∇>x f0(kα|x− y|) = k2
αf2(kα|x− y|)

(x− y)⊗ (x− y)

|x− y|2
− kα
|x− y|

f1(kα|x− y|)I, α = p, s,

where ⊗ denotes the outer product. Hence, together with (2.5) and (3.5), the Green tensors can
be rewritten as

Gp(x, y) = − iσp
4πc2p

(
f2(kp|x− y|)

(x− y)⊗ (x− y)

|x− y|2
− f1(kp|x− y|)

kp|x− y|
I
)
,

Gs(x, y) =
iσs

4πc2s

[(
f0(ks|x− y|)−

f1(ks|x− y|)
ks|x− y|

)
I + f2(ks|x− y|)

(x− y)⊗ (x− y)

|x− y|2

]
.

Further, using (3.4), we obtain that

tr (Gp(x, y)) = − iσp
4πc2p

(
f2(kp|x− y|)−

df1(kp|x− y|)
kp|x− y|

)
=

iσp
4πc2p

f0(kp|x− y|) =
1

c2p
Φp(x, y),

tr (Gs(x, y)) =
iσs

4πc2s

(
df0(ks|x− y|)−

df1(ks|x− y|)
ks|x− y|

+ f2(ks|x− y|)
)

=
iσs(d− 1)

4πc2s
f0(ks|x− y|)

=
d− 1

c2s
Φs(x, y),

which completes the proof.

To analyze the indicating behavior of the indicator (3.1), we rewrite (3.1) into two parts as
follows:

Iqj (y) = IS,qj (y) + ID,qj (y),

where

IS,qj (y) =
〈
ui(·, zj),G(·, y)q

〉
, (3.6)

ID,qj (y) = 〈v(·, zj),G(·, y)q〉 . (3.7)

Proposition 3.1. Let IS,qj (y), j = 1, · · · , N, be defined by (3.6). Then we have

IS,qj (y) =
∑

α∈{p,s}

1

ωcα
=
{(
pj ,Gα(y, zj)q

)}
+O

(
R−

d−1
2

)
, R→∞.

8



Proof. To see this property, we find that j = 1, · · · , N, and y ∈ Ω,

〈G(·, zj)pj ,G(·, y)q〉

=
∑

α∈{p,s}

〈Gα(x, zj)pj ,Gα(x, y)q〉+ 〈Gp(x, zj)pj ,Gs(x, y)q〉+
〈
Gs(x, zj)pj ,Gp(x, y)q

〉
=

∑
α∈{p,s}

1

ωcα
=
{(
pj ,Gα(y, zj)q

)}
+

1

ω

(
(pj ,Wr

pq)

cp
+

(pj ,Wr
sq)

cs
+ (pj ,Wr

psq) + (pj ,Wr
spq)

)
=

∑
α∈{p,s}

1

ωcα
=
{(
pj ,Gα(y, zj)q

)}
+O

(
R−

d−1
2

)
,

which completes our proof.

Let J0 be the Bessel function of order zero. From Lemma 3.2, we know that the crucial quantity

1

ωcα
={tr(Gα(y, zj))} =


Cα

4ωcα
J0(kα|y − zj |), d = 2,

Cα
4πωcα

sin(kα|y − zj |)
|y − zj |

, d = 3,

obtains its significant value at y = zj , j = 1, · · · , N. Otherwise, this term is relatively small, which
implies that the indicator functional proposed in (3.6) can indicate the presence of source points.

To analyze the indicating behaviors of (3.7), we notice that through the single-layer represen-
tation, the scattered field can be given by

vj(x) = (S1ϕj)(x) =

∫
∂D

G(x,w)ϕj(w)ds(w), (3.8)

with ϕj ∈ (L2(Λ))d the density corresponding to the j-th source point zj .

Proposition 3.2. Let ID,qj , j = 1, 2, · · · , N, be defined by (3.7), then it holds that:

ID,qj (y) =

∫
∂D

ϕj(w) · q
∑

α∈{p,s}

1

ωcα
=(Gα(w, y))ds(w) +O

(
R−

d−1
2

)
. (3.9)

Proof. Substituting (3.8) into (3.7) derives that

ID,qj (y) = 〈vj(x),G(x, y)q〉 =

∫
∂D

ϕj(w) · qds(w) 〈G(x,w),G(x, y)〉 .

Noticing Lemma 3.1, we obtain that

〈G(x,w),G(x, y)〉 = 〈Gp(x,w) + Gs(x,w),Gp(x, y) + Gs(x, y)〉
= 〈Gp(x,w),Gp(x, y)〉+ 〈Gs(x,w),Gs(x, y)〉

+ 〈Gp(x,w),Gs(x, y)〉+ 〈Gs(x,w),Gp(x, y)〉

=
1

ωcp
={Gp(w, y)}+

1

ωcs
={Gs(w, y)}+ W(w, y),

9



where

W =
1

ω

(Wr
p

cp
+

Wr
s

cs
+ Wr

ps + Wr
sp

)
.

Further,

ID,qj (y) =

∫
∂D

ϕj(w) · q

 ∑
α∈{p,s}

1

ωcα
=(Gα(w, y)) + W(w, y)

 ds(w)

=

∫
∂D

ϕj(w) · q
∑

α∈{p,s}

1

ωcα
=(Gα(w, y))ds(w) +O

(
R−

d−1
2

)
,

which completes the proof.

From Lemma 3.2, we know that ID,qj (y) attains its maximum at y = w ∈ ∂D, which indicates
the presence of the obstacle.

Combining the above analysis, we know that by choosing proper polarization q, the indicator
functional (3.1) can indicate the presence of the source points and the obstacle. As will be seen in
later numerical experiments, the indicator functional in (3.1) identifies the source points accurately,
while the obstacle can not be recognized properly since only a single source point is involved.

3.2 Identifying the polarization directions

In Section 3.1, we point out that the choice of the polarization q in the indicating function Iqj
need not be the same as pj . Nevertheless, it is the source location zj and the polarization pj that
determine the incident field ui(·; zj ,pj) collectively. In other words, only the source location can
not determine the incident field. Therefore, we also need to determine the polarizations pj from U.

For convenience, we only consider the case for d = 2. Let [0, π) be an angular sampling interval.
Choose an angle θ1 ∈ [0, π2 ) randomly and let θ2 = π − θ1. Compute

Iqij (y) = 〈u(·; zj),G(·, y)qi〉 , j = 1, · · · , N, (3.10)

with the polarization qi = (cos θi, sin θi), i = 1, 2, and collect all the maximizer z̃ij of each indicator
function |Iqij (y)|, i = 1, 2, j = 1, 2, · · · , N, which can be viewed as the reconstructed source points.

Now, for each j = 1, 2, · · · , N, we have obtained two reconstructed source points z̃ij , i = 1, 2.

Define a uniform partition for [0, π) by θ` = `π
Nq
, ` = 1, 2, · · · , Nq. Then for each z̃ij , i = 1, 2, we

compute the indicator functions defined by

Iij(q`) =
〈
u(·; zj),G(·, z̃ij)q`

〉
, j = 1, · · · , N, (3.11)

with q` = (cos θ`, sin θ`)
>. For each i = 1, 2, we take `ij such that∣∣∣Iij(q`ij )∣∣∣ = max

`=1,··· ,Nq

∣∣Iij(q`)∣∣ .
Further, we take i0 such that ∣∣∣Ii0j (q

`
i0
j

)
∣∣∣ = max

i=1,2

∣∣∣Iij(q`ij )∣∣∣ ,
10



Algorithm 1: Determine the source points and polarization from the total field.
Step 1 Data collection: Measure the data U = {u(x; zj ,pj) : x ∈ ΓR, j = 1, · · · , N};
Step 2 Determine the location:

(a) Select a sampling domain Ω ⊂ BR such that D ∪ S ⊂ Ω and generate
the sampling grid T over the sampling domain Ω. Choose two polarizations

qi = (cos θi, sin θi) with θ1 ∈
[
0, π2

)
, θ2 = π − θ1;

(b) For each sampling point y ∈ T , compute Iqij (y), i = 1, 2, j = 1, 2, · · · , N ;

(c) Collect the maximizer z̃ij of each indicator |Iqij (y)|, i = 1, 2, j = 1, 2, · · · , N ;

Step 3 Determine the polarization:

(a) Define the sampling polarizations q` =
(

cos `π
Nq
, sin `π

Nq

)>
, ` = 1, 2, · · · , Nq;

(b) For each j = 1, 2, · · · , N, and ` = 1, 2, · · · , Nq, compute the indicator
function (3.11) and take `ij such that Iij(q`ij ) = max

`=1,2,··· ,Nq
|Iij(q`)|;

(c) For each j = 1, 2, · · · , N , we take i0 such that

Ii0j (q
`
i0
j

) = max
i=1,2

∣∣∣Iij(q`ij )∣∣∣ ,
and take q̃j = q

`
i0
j

as an approximation to the polarization pj .

Step 4 Once the polarization pj is approximated by q̃j , we further take z̃j defined by
(3.12) as the reconstruction to the source point zj ;

and take q̃j = q
`
i0
j

as an approximate to the polarization pj .

Once the polarization pj , j = 1, 2, · · · , N is approximated by q̃j , we shall take z̃j such that∣∣∣I q̃jj (z̃j)
∣∣∣ = max

i=1,2

∣∣∣I q̃jj (z̃ij)
∣∣∣ (3.12)

as the reconstruction to the exact source points zj .
Finally, the inversion scheme for recovering the source is summarized in Algorithm 1.

4 Recovering the obstacle

The identification of sources in the previous section enables us to convert the co-inversion prob-
lem into an inverse obstacle scattering problem by subtracting the incident wave from the total
field. In this section, we shall further determine the obstacle from the approximate scattered field.

Due to the existence of unknown sources, the scattered field can not be measured directly.
Nevertheless, from Section 3, the source points and the polarizations can be recovered from the total
field. Denote by z̃j and p̃j , j = 1, · · · , N the reconstructed source points and polarization directions.
Then the scattered field corresponding to zj can be approximated by subtracting the incident field
ui(x; z̃j , p̃j) due to the numerical source point z̃j from the measured total field u(x; zj ,pj), i.e.,

ṽ(x; zj ,pj) = u(x; zj ,pj)− ui(x; z̃j , p̃j), j = 1, · · · , N. (4.1)

Then the inverse problem is simplified to the inverse scattering problem: reconstruct ∂D from

{ṽ(x; zj ,pj) : x ∈ ΓR, j = 1, · · · , N}.

11



For ease of exposition, we mainly consider the reconstruction of the obstacle with a single (exact
or approximate) incident wave. In Section 4.1, we shall propose a novel Newton-type method for
the conventional inverse obstacle scattering problem. Without loss of generality, we shall design
the Newton-type method for the more general inverse elastic scattering problem and will denote
the scattered field corresponding to zj as v(x; zj ,pj). The co-inversion problem can be tackled by
substituting the scattered field v(x; zj ,pj) with the approximate scattered field ṽ(x; zj ,pj). In what
follows, we always assume that, under certain prior information about the obstacle, we can choose
a closed surface Λ ⊂ D such that ω2 is not the Dirichlet eigenvalue for −∆∗ inside Λ.

4.1 Layer potentials for approximating the wave field

To establish the iteration scheme, we first represent the approximate scattered field as an ap-
propriate layer potential defined on the auxiliary surface Λ. Since the representation is dimension-
dependent, we first consider the 2D formulation and then discuss the extension to the 3D case.

Using the auxiliary curve Λ, the scattered wave v can be represented in the form of (2.7),
with the scalar potential functions φ and ψ given by the single-layer potential with densities g1, g2,
respectively, namely:

φ(x) =

∫
Λ

Φp(x, y)g1(y)ds(y), (4.2)

ψ(x) =

∫
Λ

Φs(x, y)g2(y)ds(y). (4.3)

Given the scattered field v = (v1, v2)> on ΓR, the scalar potential functions φ and ψ are supposed
to satisfy ∇φ + curlψ = v on ΓR, thus the density g = (g1, g2)> satisfies the following integral
equation:

(Sg)(x) = v(x), x ∈ ΓR, (4.4)

with the operator S : (L2(Λ))2 → (L2(ΓR))2 defined by

(Sg)(x) =

∫
Λ

K(x, y)g(y)ds(y),

where g = (g1, g2)> ∈ (L2(Λ))2, and the kernel is given by

K(x, y) =

[
∂x1

Φp(x, y) ∂x2
Φs(x, y)

∂x2
Φp(x, y) −∂x1

Φs(x, y)

]
.

Accordingly, the adjoint operator S∗ : (L2(ΓR))2 → (L2(Λ))2 is given by

(S∗ψ)(y) =

∫
ΓR

K∗(y, x)ψ(x)ds(x),

where K∗ is the complex conjugate transpose of K, and ψ = (ψ1, ψ2)> ∈ (L2(ΓR))2.
The integral operator S has an analytic kernel and therefore (4.4) is severely ill-posed, which

motivates us to apply the Tikhonov regularization to find the regularized density gξ = (gξ1, g
ξ
2)> by

solving
(ξI2 + S∗S)gξ = S∗v, (4.5)

12



where ξ > 0 is the regularization parameter.
Once the regularized density function gξ = (gξ1, g

ξ
2)> is obtained by solving (4.5), the approxi-

mation vξ = (vξ1, v
ξ
2)> for the scattered field v can be represented in form of

vξ = ∇φξ + curlψξ,

with φξ and ψξ obtained by inserting the regularized densities gξ1 and gξ2 into the single-layer
potential representation (4.2) and (4.3), respectively. Explicitly, we obtain that

vξ(x) =

∫
Λ

K(x, y)gξ(y)ds(y). (4.6)

Similar to the 2D case, the 3D formulation of the potentials can be derived as well. Assume
that the scattered field v is split by (2.7) into a scalar potential φ and a vector potential ψ:

φ(x) =

∫
Λ

Φp(x, y)gp(y)ds(y), (4.7)

ψ(x) =
1

k2
s

curlcurl

∫
Λ

Φs(x, y)gs(y)ds(y), (4.8)

where gp ∈ L2(Λ), gs = (gs1, gs2, gs3)> ∈ (L2(Λ))3 are the scalar and vector densities, respectively.
Denote by ν = (ν1, ν2, ν3)> ∈ S2 the unit normal vector to ΓR, and let ∇φ+ curlψ = v on ΓR.

Taking the dot product and the cross product of the above equation with ν, respectively, we get{
ν · ∇φ+ ν · curlψ = ν · v, on ΓR,

ν ×∇φ+ ν × curlψ = ν × v, on ΓR.
(4.9)

Using curlcurl = ∇(∇·) −∆, one easily derives that curlψ = curl
∫

Λ
Φs(x, y)gs(y)ds(y). Conse-

quently, substituting φ and ψ in (4.9) by (4.7)–(4.8), a straightforward calculation shows that

(Sg)(x) =

∫
Λ

K(x, y)g(y)ds(y) = t(x), x ∈ ΓR, (4.10)

where

K =

[
∂νΦp (ν ×∇Φs)

>

ν ×∇Φp ∇Φs ⊗ ν − ∂νΦsI3

]
, g =

[
gp
gs

]
, t =

[
ν · v
ν × v

]
.

Since the operator S : (L2(Λ))4 → (L2(ΓR))4 in (4.10) is well defined and it has an analytic
kernel, the Tikhonov regularization strategy is employed to solve the ill-conditioned equation (4.10):

(ξI4 + S∗S)gξ = S∗t, (4.11)

where ξ > 0 is the regularization parameter, I4 is the 4× 4 identity matrix, and S∗ : (L2(ΓR))4 →
(L2(Λ))4 is the adjoint operator of S.

Given the regularized density gξ =
(
gξp, g

ξ
s

)>
, the approximate scattered field vξ = (vξ1, v

ξ
2, v

ξ
3)>

can be given by

vξ(x) = ∇φξ(x) + curlψξ(x)

= ∇
∫

Λ

Φp(x, y)gξp(y)ds(y) +
1

k2
s

curlcurlcurl

∫
Λ

Φs(x, y)gξs(y)ds(y)

=

∫
Λ

(
∇Φp(x, y)gξp(y) + curl(Φs(x, y)gξs(y))

)
ds(y).
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4.2 Linearization by explicit gradient

Once the ansatz field vξ is available, the gradient can be evaluated explicitly. In 2D, the gradient
of the approximate scattered field vξ can be calculated by

∇vξ =

[
∂x1v

ξ
1 ∂x2v

ξ
1

∂x1v
ξ
2 ∂x2v

ξ
2

]
,

where

∂x1
vξ1 =

∫
Λ

(
∂2
x1x1

Φp(x, y)gξ1(y) + ∂2
x1x2

Φs(x, y)gξ2(y)
)

ds(y),

∂x2v
ξ
1 =

∫
Λ

(
∂2
x1x2

Φp(x, y)gξ1(y) + ∂2
x2x2

Φs(x, y)gξ2(y)
)

ds(y),

∂x1
vξ2 =

∫
Λ

(
∂2
x1x2

Φp(x, y)gξ1(y)− ∂2
x1x1

Φs(x, y)gξ2(y)
)

ds(y),

∂x2
vξ2 =

∫
Λ

(
∂2
x2x2

Φp(x, y)gξ1(y)− ∂2
x1x2

Φs(x, y)gξ2(y)
)

ds(y).

Analogously, the gradient of the approximate scattered field vξ in R3 can be explicitly calculated

as the 3× 3 tensor ∇>vξ whose (i, j)-th entry is given by
(
∂xjv

ξ
i

)
, i, j = 1, 2, 3.

Based on the gradient of the approximate scattered field, we are now ready to propose the
Newton-type iteration scheme for recovering ∂D. Given the incident field ui and the approximate
scattered field vξ, we define the operator F ξ mapping the boundary contour γ onto the approximate
total field uξ = ui + vξ = (uξ1, · · · , u

ξ
d)
>, for later use, we denote

F ξ : γ 7→ uξ. (4.12)

To seek the Dirichlet boundary where the total field uξ vanishes, we only need to find the parame-
terization p of the boundary contour γ such that

F ξ(p) = 0, p ∈ γ. (4.13)

Now, we consider the linearization of the above equation. Let γj , j = 0, 1, · · · , n be the approx-
imation to the boundary ∂D, we want to seek for γn+1 such that F (pn+1) = 0. Noticing that the
mapping F is nonlinear, we instead update the approximation via the following procedure{

F ξ(pn) + F ′ξ(pn)hn = 0,

pn+1 = pn + hn,
(4.14)

where hn is the shift at the n-th iteration and the gradient F ′ξ = ∇>uξ in (4.14) is a d× d tensor
whose elements can be explicitly computed by[

F ′ξ
]
ij

= ∂xju
ξ
i , i, j = 1, · · · , d.

Remark 4.1. The above procedure can be readily extended to the case of more than one incident
wave. For example, here we briefly mention in passing the 3D modifications concerning multiple
sources. The other similar details are omitted.
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Let vj(j = 1, · · · , N) denote the scattered field due to incident wave uij(j = 1, · · · , N). Corre-
spondingly, the vector functions g and t in (4.10) should be replaced by the matrix-valued functions

g =
[
g1 · · · gN

]
, t =

[
ν · v1 · · · ν · vN
ν × v1 · · · ν × vN

]
.

Then the approximate scattered field vξj can be represented by the layer potential with regularized

density gξj (j = 1, · · · , N). Accordingly, the operator F ξ is column-wisely extended to the form

F ξ : γ 7→ uξ = [uξ1 · · ·u
ξ
N ],

where uξj = uij + vξj (j = 1, · · · , N) are the approximate total fields.

4.3 Star-like approximation

To accomplish the iteration numerically, we still need an appropriate representation of the
admissible surface p(t) for approximating ∂D. Therefore, we briefly describe the 2D star-like
approximation of the boundary curve, which is in the parametric form

p(t) = {r(t)(cos t, sin t) : t ∈ [0, 2π]},

with r ∈ C2([0, 2π],R+) denoting the radial function. For simplicity, we also denote by r the ap-
proximation to ∂D in what follows. To numerically approximate r, we assume that r is represented
as the trigonometric polynomials of degree less than or equal to M ∈ N+, i.e.,

r(t) = a0 +

M∑
`=1

(a` cos `t+ b` sin `t).

For an iteration sequence {rn} of radial functions, the shift at the n-th step is correspond-
ingly written as rhn, i.e., rn+1 = rn + rhn, n = 1, 2, · · · . Alternatively, if we denote by c =
(a0, a1, · · · , aM , b1, · · · , bM )> the Fourier coefficients to r, then the iteration process is implemented
via the update cn+1 = cn + chn where {cn} and {chn} are the Fourier coefficients to rn and rhn, re-
spectively.

Now, the iteration procedure (4.14) can be rewritten as{
uξ(rnx̂) + (∇>uξ(rnx̂)x̂)rhn = 0,

rn+1 = rn + rhn,

or more specifically, {
uξ(Bcnx̂) + (∇>uξ(Bcnx̂)x̂)Bchn = 0,

cn+1 = cn + chn,

where x̂(t) = (cos t, sin t)> and B(t) = (1, cos t, · · · , cosMt, sin t, · · · , sinMt). For the further
discretization, suppose that tj = 2πj/J, j = 1, · · · , J, is a set of quadrature points, then the update
chn can be obtained by solving the linear system

(∇>uξ(B(tj)cnx̂(tj))x̂(tj))B(tj)c
h
n = −uξ(B(tj)cnx̂(tj)), j = 1, · · · , J.
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Algorithm 2: Newton-type method for the inverse elastic obstacle problem.
Step 1 Generate the approximate scattered data on ΓR by subtracting the exact or

approximate incident field from the total field measurements U;
Step 2 Select an auxiliary surface Λ ⊂ D and represent the approximate scattered field

as layer potentials by solving (4.5) or (4.11);
Step 3 Choose an initial guess γ(0) for ∂D and the error tolerance ε. Set n = 1;
Step 4 Solve (4.14) to update the approximation pn and evaluate the error En;
Step 5 If En > ε, then set n = n + 1 and go to Step 4. Otherwise, take the current

approximation pn as the final reconstruction of ∂D.

Typically for iterative algorithms, we finally need to impose a stopping criterion to terminate
the iteration process. For convenience, we quantify the convergence of iteration by the relative error

En =
‖hn‖L2

‖pn−1‖L2

, (4.15)

and choose some constant ε > 0. Once En < ε, the update process can be stopped. For a description
of the inversion algorithm to determine the obstacle, we refer to Algorithm 2.

5 Numerical experiments

In this section, we shall conduct several numerical experiments to verify the efficiency and
effectiveness of the proposed methods. In our numerical experiments, the synthetic scattered fields
are generated by reformulating the direct problem into coupled boundary integral equations (cf.
[20, 21]), and the integral equations are solved by the Nyström method based on Alpert’s quadrature.
The receivers are chosen to be xr = 10(cos θr, sin θr), θr = πr/60, r = 1, 2, · · · , 120. The forward
solver produces the total field data

u(xr; zj), r = 1, · · · , 120, j = 1, · · · , N.

To test the stability of the proposed algorithm, random noise is added to the measured data.
The noisy total field data are given according to the following formula:

uε = u+ εr1|u|eiπr2 ,

where r1, r2 are two uniformly distributed random numbers ranging from −1 to 1, and ε > 0 is the
noise level.

In the following experiments, the Lamé constants are set to be λ = µ = 1. The sampling
domain for locating the source points is set to be Ω = [−5, 5] × [−5, 5] with 200 × 200 equally
spaced sampling grid. For the purpose to determine the polarization p, we set Nq = 40 in Step 3
of Algorithm 1, i.e., we seek for p over a sampling angles θ` = `π

40 , ` = 0, 1, · · · , 39. The noise level
is set to be ε = 5% unless otherwise stated. The auxiliary curve is chosen to be a circle centered at
the origin with a radius of 0.7. The integrals over the auxiliary curve are numerically approximated
by the trapezoidal rule with 100 grid points. The regularization parameter ξ is set to be 10−2. The
boundaries of the obstacles are parameterized as follows:

L-leaf: x(t) = (1 + 0.2 cosLt)(cos t, sin t), 0 ≤ t ≤ 2π, L = 3, 5, (5.1)

Kite: x(t) = (cos t+ 0.65 cos 2t− 0.65, 1.5 sin t), 0 ≤ t ≤ 2π. (5.2)
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5.1 Inverse source problem

In this subsection, we test the performance of Algorithm 1 in reconstructing the source from
the measured total field, i.e., we now consider the source identification with the unknown obstacle.

Example 5.1.1. In the first example, we consider the reconstruction of the locations and the
polarizations of the source points from the noisy total field data. The angular frequency is set to
be ω = 8. The two initial polarizations are chosen to be q1 = 1√

2
(1, 1)> and q2 = 1√

2
(−1, 1)>.

The source locations and polarizations together with the reconstructions are displayed in Table 1.
As shown in Table 1, all the locations and the polarizations are well-reconstructed from the noisy
total field data. It deserves noting that, though the polarizations differ from point to point, all the
polarizations are well-recovered.

Further, we point out that it is necessary to determine the source positions and the polarizations
twice using different auxiliary polarizations qi, i = 1, 2, as done in Section 3.2. Otherwise, it may
fail to reconstruct the source (locations or polarizations) correctly. To clarify this point, we further
consider the reconstruction of the four source points and the associated polarizations in Table 2–
Table 3. Table 2 shows that the locations can be well reconstructed. One can find from Table 3
that the reconstruction of the polarization significantly depends on the choice of qi. However, after
a second calibration as introduced in Section 3.2, the polarizations can be also stably and well
recovered. These results illustrate that our method performs well in recognizing the source position
and the associated polarization from the noisy total field data.

Table 1: Comparison of the locations and polarizations.

Exact sources Reconstructed sources
Locations polarizations Locations polarizations

Point 1 (3, 0) (0.86, 0.5) (2.98,−0.03) (0.89, 0.45)
Point 2 (1.5, 2.59) (0.5, 0.86) (1.47, 2.56) (0.52, 0.85)
Point 3 (−1.5, 2.59) (0, 1) (−1.47, 2.62) (−0.07, 0.99)
Point 4 (−3, 0) (−0.5, 0.86) (−3.04, 0.03) (−0.52, 0.85)
Point 5 (−1.5,−2.59) (−0.86, 0.5) (−1.53,−2.62) (−0.85, 0.52)

Table 2: Reconstruction of the four point sources (locations).

Point 1 Point 2 Point 3 Point 4
Exact (3, 0) (0, 3) (−3, 0) (0,−3)

Reconstructed (2.98,−0.03) (−0.03, 2.98) (−3.04, 0.03) (−0.03,−2.98)

5.2 Inverse obstacle scattering problem

In this subsection, we test the performance of Algorithm 2 in recovering the obstacle from the
scattered field under the assumption that the sources are known in advance. In all the figures in
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Table 3: Reconstruction of the four point sources (polarizations).

polarizations q`1j q`2j q̃j

Point 1 (0.76, 0.64) (0.76, 0.64) (−0.99, 0.07) (0.76, 0.64)
Point 2 (0, 1) (0, 1) (0, 1) (0, 1)
Point 3 (−0.71, 0.71) (0.99, 0.07) (−0.71, 0.71) (−0.71, 0.71)
Point 4 (−1, 0) (0.80, 0.58) (−1, 0) (−1, 0)

this subsection, the red solid lines represent the exact boundaries, and the black dashed lines denote
the reconstructed boundaries.

Example 5.2.1. In this example, we adopt the Newton-type method proposed in Section 4 to
recover the obstacles of 3-leaf shape and kite shape. Here 12 source points are equally placed on the
measurement circle with radius R = 3. The polarization is chosen to be p = (cos(π/3), sin(π/3)).

We first consider the reconstruction of the 3-leaf shaped obstacle. By taking ω = 5, 8 and 10,
we display the reconstruction for the 3-leaf shaped obstacle in Figure 2. From Figure 2, we find
that the 3-leaf obstacle can be well-reconstructed with three angular frequencies.

Further, we consider the reconstruction of the kite-shaped obstacle. By taking ω to be 3, 5 and
6, we display the reconstruction of the kite-shaped obstacle in Figure 3–Figure 4. It can be seen
that the reconstructions are accurate.

In Figure 2–Figure 4, the green dashed lines denote the initial guesses for the Newton-type
methods. We can easily see from the results that the method performs well no matter whether the
obstacle is starlike or not. Especially for the kite-shaped obstacle, the two wings and the concave
regions are well recovered using the proposed method.

In addition, the relative error estimator En defined in (4.15) is plotted against the number of
iterations in the second row of Figure 3. It can be seen from the error curves that the relative error
estimator En decreases quickly, which demonstrates that our method converges fast.

Example 5.2.2. In the second example, we consider the reconstruction of star-like obstacles whose
radial functions r(t) of the boundary curves are randomly generated by the following procedure:

• Choose Nt randomly in the integer set {8, 9, · · · , 20} and generate the knots Tt = 2tπ/Nt, t =
0, 1, · · · , Nt − 1;

• For each Tt, we generate randomly the radial grid knots r(Tt) ∼ U [0.8, 1.8], i.e., r(Tt) is a
uniform distribution in [0.8, 1.8]. Under this setting, the boundary curves are located in the
annular domain with the inner radius 0.8 and outer radius 1.8;

• Given the random radial grid knots (Tt, r(Tt)), t = 0, 1, · · · , nT − 1, we generate the radial
function r(t) by the cubic spline interpolation to (Tt, r(Tt)). In addition, to ensure that the
generated star-like curves are closed, the periodic condition r(T0) = r(TnT ) is imposed;

We refer to Figure 5 for some examples of such randomly generated shapes. In Figure 5, the red
solid lines stand for the boundaries of the obstacle, the black small circles designate the radial gird
knots r(Tt) generated randomly, the black solid lines mark the radial and the blue dashed circles
with radii 0.8 and 1.4 respectively bound the domains containing the boundary curves.
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(a) (b) (c)

(d) (e) (f)

Figure 2: Reconstruction of the 3-leaf obstacle with different frequencies. Left column: ω = 6;
Middle column: ω = 8; Right column: ω = 10.

By taking ω = 9, we exhibit the reconstruction subject to different initial guesses in Figure 6.
From Figure 6, we find that the non-symmetric obstacle can be well reconstructed by the novel
Newton-type method. Though with different initial guesses, the algorithms perform satisfactorily.
In addition, we find that the convex parts of the non-symmetric obstacles are better reconstructed
compared with the non-convex part, which is because the convex domain can be illuminated more
adequately and the total field brings us more geometry information.

In this subsection, we test the performance of the novel Newton method by reconstructing the
obstacles from the scattered field data through two numerical experiments. Though no forward
solver is involved in the Newton method, the reconstruction is rather accurate.

5.3 Co-inversion problem

By integrating Algorithm 1 with Algorithm 2, this subsection is devoted to the co-inversion of
the obstacle-source pair from the total field. In this subsection, we assume that the polarization
direction is fixed for all the sources in each example and concentrate on the reconstruction of the
source locations and the shape of the obstacle. Throughout the subsection, the initial guess for the
obstacle is chosen to be the unit circle centered at the origin. The polarizations are chosen to be
p = (cos(π/5), sin(π/5))> and q = (cos(π/4), sin(π/4))>.

In the figures about the reconstruction, the green solid lines represent the exact boundary of
the obstacle, the blue dashed lines stand for the reconstructed boundary, the black ‘+’ markers,
and the small red circles denote the exact and the reconstructed source points, respectively.
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(a) (b) (c)

(d) (e) (f)

Figure 3: Reconstruction of the kite-shaped obstacle with different frequencies. Left column: ω = 3;
Middle column: ω = 4; Right column: ω = 6.

(a) (b) (c)

Figure 4: Reconstruction of the kite-shaped obstacle with initial guess different from that in Fig-
ure 3. (a) ω = 3; (b) ω = 4; (c) ω = 6.
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(a) (b) (c)

Figure 5: Illustration of the randomly generated shapes.

(a) (b) (c)

(d) (e) (f)

Figure 6: Reconstruct the obstacles of non-symmetric shapes.
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(a) (b) (c) (d)

Figure 7: Reconstruction of the obstacle and source points of different distributions.

Table 4: Reconstruction of the polarizations in Figure 8

Figure 8(a) 8(b) 8(c)
q̃ (0.8088, 0.5881) (0.8172, 0.5763) (0.8104, 0.5859)

Figure 8(d) 8(e) 8(f)
q̃ (0.8083, 0.5887) (0.8099, 0.5881) (0.7992, 0.6060)

Example 5.3.1. In this example, we consider the reconstruction of the L-leaf (L = 3, 5) shaped
obstacle together with its excitation source points.

In Figure 7, we exhibit the reconstruction of the 3-leaf obstacle and three source points. In
Figure 7(a)–Figure 7(c), we display the imaging function Ij(y), j = 1, 2, 3 over the sampling domain
Ω. It can be easily seen that each imaging function attains its peak at the source points, and the
obstacle is reconstructed overall. As will be seen in the later numerical experiments, when more
source points are determined, the quality of reconstruction for the obstacle can be improved.

By taking different angular frequencies, we exhibit the reconstruction of different obstacle-
source pairs in Figure 8, which illustrates that both the obstacle and the source points can be
well reconstructed. In addition, it can be seen that the distribution of source points influences the
accuracy of obstacle reconstruction. This phenomenon naturally reflects the wave fields interplay
between the source and the scatterer.

Next, we compare the reconstructed polarization directions with the exact one p = (cos π5 , sin
π
5 ) ≈

(0.8090, 0.5878). In Table 4, we list the polarizations corresponding to Figure 8. Table 4 shows
that the polarization can be also well-reconstructed. Therefore, our method has the capability of
reconstructing the obstacle, its excitation source points as well as the polarization direction from
the total field.

In Figure 9, we investigate the situation where the sources are spatially confined to a limited-
angle sector region with respect to the obstacle. Clearly, all the source points are well recovered but
only the illuminated part of the obstacle can be easily reconstructed. The recoveries of the ‘shadow
regions’ are of reasonably low resolution because the scatterer is not encircled by the sources and
thus the geometry information is inadequately perceived by the sensors from the back.

Example 5.3.2. This example concerns the reconstruction of the kite-shaped obstacle and the
corresponding sources. The reconstructions are depicted in Figure 10 to illustrate the influence of
the number of source points. These results indicate that the source locations can always be favorably
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(a) (b) (c)

(d) (e) (f)

Figure 8: Reconstruction of the obstacle and source points of different distributions. Top row:
ω = 6; Bottom row: ω = 9.

(a) (b) (c)

Figure 9: Reconstruction of the obstacle and source points with partial illuminations.
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(a) (b) (c)

Figure 10: Coinversion of the kite and source points with ω = 6.

Table 5: Computing time for the reconstructions of the obstacles in Figure 8 and Figure 10

Figure 8(a) 8(b) 8(c) 10(a) 10(b) 10(c)
CPU(s) 29.17 74.32 81.61 39.43 38.59 39.35

iter 29 75 81 38 37 38

identified. In addition, the shape of the obstacle can be also satisfactorily recovered except for the
case that only a few illuminating sources are available, for instance, see Figure 10(d). We would
like to emphasize that, contrary to the typical inverse scattering problems where the incident waves
usually can be artificially deployed to cater to reconstructions, the source points here are in general
not at our disposal in the co-inversion problem. Hence the less accurate reconstruction such as
Figure 10(d) is due to the insufficient amount of information and the lack of data may inevitably
occur.

We list the computational CPU time for the reconstructions in Table 5 to quantify the efficiency
of the proposed algorithm. All of the codes in the numerical experiments are written in MATLAB
and run on an Intel Core 2.6 GHz laptop. The computational cost is low because we do not need
to solve any forward problem in each iteration. More importantly, this sheds light on the feasibility
of a computationally affordable extension of our algorithm to 3D reconstructions.

Example 5.3.3. In the last example, we test the co-inversion of the non-symmetric obstacle and
its excitation source points from the noisy total field. The non-symmetric obstacle is created as the
procedure described in Example 5.1.2. The reconstructions with ω = 8 are displayed in Figure 11.

As can be seen in Figure 11, all the source points are reconstructed well. For the obstacle, the
convex part can be better recovered compared with the concave part because the convex part can
be better illuminated.

6 Conclusions

We propose a novel method for the elastic co-inversion problem of determining the rigid obstacle
together with its excitation point sources from the measured total field. A direct sampling method
is proposed to recover the source points and the associated polarization directions from the total
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(a) (b) (c)

(d) (e) (f)

Figure 11: Reconstruction of the non-symmetric obstacle and source points.

field measurements. After reformulating the co-inversion problem into the inverse obstacle subprob-
lem by subtracting the incident wave due to the reconstructed source points from the total field,
we propose a novel Newton-type method by approximating the scattered field as suitable layer po-
tentials. Theoretically, we analyze the uniqueness of the co-inversion, and the indicating behaviors
of the indicator functions and give an explicit formula for the shape derivative. We remark that
the indicator functions and the Newton-type method are not only used in the co-inversion problem
but also useful in their own right for solving inverse source and inverse scattering problems. A
noteworthy advantage of our algorithm is the complete independence of any solution to the forward
problem, thus our method is easy-to-implement and fast. Finally, several numerical experiments
are conducted and the results show that the proposed sampling-iterative method performs well in
the simultaneous reconstruction of the sources and the obstacle from the noise total field data.

We believe that the basic idea of this work can be applied to many other similar inverse scattering
models, for instance, imaging in acoustics and electromagnetism. Due to the limited time and
computing resources, three-dimensional numerical experiments are currently not conducted. In
addition, theoretical issues such as the convergence of the iteration method have not yet been
mathematically analyzed. Our ongoing and future works would consist of further attempts at these
related directions.
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Appendix: Multiplicities of the Dirichlet eigenvalues for −∆∗

inside a ball

This appendix presents the multiplicities of the Dirichlet eigenvalues for the negative Lamé
operator inside BR. For n = 0, 1, 2, · · · , denote by Jn and jn the Bessel function and spherical
Bessel function of order n, respectively.

Lemma 6.1. For r = |x| and n = 0, 1, 2, · · · , let

Pn(x) =

∣∣∣∣∣kprJ
′
n(kpr) inJn(ksr)

inJn(kpr) −ksrJ ′n(ksr)

∣∣∣∣∣ , (A.1)

Qn(x) =

∣∣∣∣∣kprj
′
n(kpr) n(n+ 1)jn(ksr)

jn(kpr) jn(ksr) + ksrj
′
n(ksr)

∣∣∣∣∣ . (A.2)

Then the sum of the multiplicities of the Dirichlet eigenvalues for −∆∗ inside BR is given by

N0 :=


∑
pnl<R

(2n+ 1), d = 2,

∑
tnl<ksR

(2n+ 1) +
∑
qnl<R

(2n+ 1), d = 3,
(A.3)

where pnl, qnl and tnl(l = 0, 1, · · · ;n = 0, 1, · · · ) are respectively the l-th positive zero of Pn, Qn,
and jn, namely, Pn(pnl) = Qn(qnl) = jn(tnl) = 0.

Proof. We consider the Dirichlet eigenvalue problem inside BR ⊂ Rd:{
∆∗v + ω2v = 0, in BR,

v = 0, on ΓR.
(A.4)

(i) d = 2. In the 2D case, the eigenfunction v of (A.4) can be split by (2.7) into v = vp + vs =
∇φ+ curlψ where the scalar functions φ and ψ can be given by

φ(x) =

∞∑
n=−∞

φnJn(kp|x|)einθ, ψ(x) =

∞∑
n=−∞

ψnJn(ks|x|)einθ. (A.5)

with the polar coordinate x = |x|(cos θ, sin θ)> and the coefficients φn and ψn, respectively.
Define eρ = (cos θ, sin θ)> and eθ = (− sin θ, cos θ)>, then from

∇w =
∂w

∂ρ
eρ +

1

|x|
∂w

∂θ
eθ, curlw =

1

|x|
∂w

∂θ
eρ −

∂w

∂ρ
eθ,

we have

vp(x) =

∞∑
n=−∞

φn∇
(
Jn(kp|x|)einθ

)
=

∞∑
n=−∞

φn

(
kpJ

′
n(kp|x|)einθeρ +

in

|x|
Jn(kp|x|)einθeθ

)
,
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vs(x) =

∞∑
n=−∞

ψncurl
(
Jn(ks|x|)einθ

)
=

∞∑
n=−∞

ψn

(
in

|x|
Jn(ks|x|)einθeρ − ksJ ′n(ks|x|)einθeθ

)
.

By the Dirichlet boundary condition (vp + vs)|ΓR = 0 and the orthogonality eρ · eθ = 0, we get{
kpRJ

′
n(kpR)φn + inJn(ksR)ψn = 0,

inJn(kpR)φn − ksRJ ′n(ksR)ψn = 0,
∀n = 1, 2, · · · .

Further, by [16, Theorem 2.7], the multiplicity of the Dirichlet eigenvalues is given by∑
qnl<R

(2n+ 1),

with qnl the l-th zero of Pn as defined in (A.1).
(ii) d = 3. Let x̂ = x/|x| ∈ S2 and Y mn (x̂)(m = −n, · · · , n; n = 0, 1, 2, · · · ) be the spherical

harmonics [16]. Similar to the 2D case, we introduce

vp(x) :=

∞∑
n=1

n∑
m=−n

amn ∇(jn(kp|x|)Y mn (x̂)),

vs(x) :=

∞∑
n=1

n∑
m=−n

(bmnM
m
n (|x|, x̂) + cmn ∇×Mm

n (|x|, x̂)) ,

where amn , b
m
n , c

m
n are the coefficients and Mm

n (|x|, x̂) = ∇× (xjn(ks|x|)Y mn (x̂)) . For later analysis,
we explicitly rewrite v as follows:

v(x) =

∞∑
n=1

n∑
m=−n

amn

(
kpj
′
n(kp|x|)Y mn (x̂)x̂+

jn(kp|x|)
|x|

GradY mn (x̂)

)
+ bmn jn(ks|x|)GradY mn (x̂)× x̂

+ cmn

(
n(n+ 1)

jn(ks|x|)
|x|

Y mn (x̂)x̂+

(
jn(ks|x|)
|x|

+ ksj
′
n(ks|x|)

)
GradY mn (x̂)

)
,

where Grad is the surface gradient.
From the Dirichlet condition (vp + vs)|ΓR = 0, one can deduce that

amn kpj
′
n(kpR) + n(n+ 1)cmn

jn(ksR)

R
= 0,

amn
jn(kpR)

R
+ cmn

(
jn(ksR)

R
+ ksj

′
n(ksR)

)
= 0,

bmn jn(ksR) = 0,

∀m = −n, · · · , n; n = 0, 1, 2, · · · (A.6)

From (A.6), we see that the multiplicity of the Dirichlet eigenvalues is given by∑
tnl<ksR

(2n+ 1) +
∑
qnl<R

(2n+ 1),

such that jn(tnl) = 0 and Qn(qnl) = 0 with Qn defined by (A.2).
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