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Abstract

A jump-diffusion process along with a particle scheme is devised as an accurate
and efficient particle solution to the Boltzmann equation. The proposed process
(hereafter Gamma-Boltzmann model) is devised to match the evolution of all mo-
ments up to the heat fluxes while attaining the correct Prandtl number of 2/3 for
monatomic gas with Maxwellian molecular potential. This approximation model
is not subject to issues associated with the previously developed Fokker-Planck
(FP) based models; such as having wrong Prandtl number, limited applicability,
or requiring estimation of higher-order moments. An efficient particle solution to
the proposed Gamma-Boltzmann model is devised and compared computation-
ally to the direct simulation Monte Carlo and the cubic FP model [M. H. Gorji,
M. Torrilhon, and P. Jenny, J. Fluid Mech. 680 (2011): 574-601] in several test
cases including Couette flow and lid-driven cavity. The simulation results indicate
that the Gamma-Boltzmann model yields a good approximation of the Boltzmann
equation, provides a more accurate solution compared to the cubic FP in the limit
of a low number of particles, and remains computationally feasible even in dense
regimes.
Keywords: particle scheme; Fokker-Planck equation; Couette flow; lid-driven
cavity; jump process

1 Introduction

As fluid flows depart from equilibrium, the underlying closure assumptions in the clas-
sical continuum description break down, see e.g. Wang and Boyd (2003). In order to
capture the physics of the non-equilibrium phenomena, a mathematical model from the
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smaller scale, i.e. mesoscale, needs to be considered. Kinetic theory provides an accurate
statistical description of non-equilibrium fluid flows by introducing an evolution equa-
tion for the particle velocity distribution function. In the case of monatomic and neutral
particles, assuming molecular chaos, and in the limit of low density, Boltzmann devised
an exact evolution equation for the single-particle distribution function that undergoes
a binary collision operator, see Chapman and Cowling (1970).

Several approaches for solving the Boltzmann equation numerically have been devel-
oped in the literature, in particular the discrete velocity method, moment methods, and
particle Monte Carlo algorithms among others.

The various variants of the discrete velocity method discretize the phase space directly
to solve a finite system of equations. While this approach provides accurate solutions,
the computational cost limits this approach in practice, see e.g. Broadwell (1964);
Platkowski and Illner (1988). The major obstacle is the high dimensionality of the
phase space and cutting off the velocity space. The high dimensionality of the solu-
tion can be resolved by so-called moment methods, where finitely many moments of
the particle distribution are considered, their evolution equations are derived from the
Boltzmann operator, and the resulting system of partial differential equations is solved
numerically Struchtrup and Torrilhon (2003); Torrilhon (2016). Although the moment
methods allow for fast solutions, they require an ansatz for the velocity distribution func-
tion, e.g., Grad’s ansatz. This closure problem occurs because the evolution of moments
typically depends on other moments of the distribution which are not solved for. More-
over, numerical challenges in incorporating boundary conditions and restriction due to
the stability of the outcome moment system are introduced, see, e.g.,, Torrilhon (2016);
Sarna and Torrilhon (2018).

A mature approach in solving the Boltzmann equation consistently yet subject to the sta-
tistical noise is the direct simulation Monte Carlo (DSMC) as proposed by Bird (1970),
see also Bird (1994). Here, the distribution in phase space is represented by a finite
number of computational particles. These particles evolve according to the dynamics
underlying the Boltzmann equation, and pairwise collisions are performed explicitly.
Spatial heterogeneity is incorporated by splitting the domain into computational cells,
performing collisions in each cell independent of others, and streaming the position of
particles after the collision step successively. As the number of computational particles
tends to infinity, Bird’s method is expected to converge to the solution of the Boltzmann
equation, see Myong et al. (2019) for a computational analysis. A major theoretical re-
sult concerning the latter validity has been obtained by Wagner (1992), showing that the
limiting distribution satisfies an equation which closely resembles Boltzmann’s equation.
However, Wagner (1992) does not consider the limit as the space resolution increases.
For an alternative simulation method proposed by Nanbu (1980) (see also Nanbu (1983)),
the consistency is demonstrated rigorously by Babovsky and Illner (1989) who also ac-
counts for spatio-temporal discretization errors. A third approach is presented by Luk-
shin and Smirnov (1988) for the spatially homogeneous setting. Consistency with the
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homogeneous Boltzmann equation is shown as the number of computational particles
increases. While the DSMC method has been historically deemed to be prohibitively
expensive, recent advances in parallel computing have increased its practical applicabil-
ity, see Goldsworthy (2014) and Plimpton et al. (2019), among others. As the direct
simulation methods need to resolve all binary collisions, they are computationally expen-
sive at low Knudsen number regimes, i.e. where collisions becomes the dominant process.

Various attempts have been made to approximate the Boltzmann equation with a sim-
pler model which provides a reasonable estimation of moments up to heat flux while
allowing for improved numerics. In particular, a Fokker-Planck model with linear drift
was devised as an efficient approximation to the Boltzmann equation Jenny et al. (2010).
The Fokker-Planck model may be related to particle dynamics driven by stochastic dif-
ferential equations, and hence allows for a solution via particle Monte Carlo methods.
In contrast to the original Boltzmann equation, the collisional jump process is replaced
with a continuous movement which represents the collisions in an aggregated fashion.
Hence, the resulting particle scheme can be extended to the dense regime (low Knudsen
number) without introducing further numerical cost. However, the linear Fokker-Planck
model suffers from having a wrong Prandtl number. In order to resolve this issue, two
main approaches have been suggested. First, the correct Prandtl number in the Fokker-
Planck model was obtained by introducing a cubic drift and choosing the free parameters
such that the relaxation rates of stress tensor and heat fluxes are consistent with the ones
of Boltzmann equation for Maxwell molecules in the homogeneous setting Gorji et al.
(2011). Unfortunately, evaluating the projected coefficients in the cubic FP relies on
estimation of moments up to fifth order from the particles which is prone to higher error
in noisy scenarios than linear FP, since the statistical error typically increases with the
moment order. In the second approach devised by Mathiaud and Mieussens (2016), a
linear FP model with a non-isotropic (ellipsoidal) diffusion tensor was devised to correct
the Prandtl number. Compared to the cubic FP model, the drift remains linear in the
drift, which yields computational advantages. However, the positive-definiteness of the
non-isotropic diffusion tensor can no longer be guaranteed, such that this method is not
applicable in all cases.

In this paper, we present a new approach to fix the Prandtl number of linear FP model
by introducing additive jumps, such that the trajectory of particles is governed by a
jump-diffusion process. We suggest the Gamma process as a model for the jumps, and
we choose the parameters carefully to match the correct relaxation rates of stress tensor
and heat fluxes. We refer to this proposed model as the Gamma-Boltzmann model.
In contrast to the cubic FP model of Gorji et al. (2011), we only require estimates
of moments up to third order, which is expected to improve the solution compared to
cubic FP in noisy scenarios. In contrast to the ellipsoidal FP model of Mathiaud and
Mieussens (2016), the diffusion tensor remains positive-semidefinite, such that our model
is applicable in all situations. In contrast to the collisional jumps of the DSMC method,
this jump-diffusion model aggregates the collisions and allows for fast simulation of the
particle trajectories, even in the dense regime.
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The remainder of this paper is structured as follows. In § 2, the Boltzmann equation
and its Fokker-Planck approximation are reviewed. Next, the generic jump-diffusion
model is presented in § 3. We highlight that the exact Boltzmann equation may also
be regarded as a specific jump-diffusion (§ 3.1), and we devise the Gamma-Boltzmann
model with correct Prandtl number (§ 3.2). The corresponding particle Monte Carlo
scheme is described in § 4. In § 5, the solution obtained from the Gamma-Boltzmann
model is tested against solution obtained from cubic FP model as well as DSMC for the
Couette flow and the lid-driven cavity. Finally, in § 6, the conclusion and outlook for
future works are provided.

In appendices A-C, technical derivations of the proposed Gamma-Boltzmann model are
carried out. Furthermore, a digital supplement providing a brief but rigorous primer on
jump-diffusion processes is attached to this manuscript for the reader.

2 Review of the kinetic models

2.1 Kinetic theory and Boltzmann equation

The state of a dilute, monatomic gas may be described via its velocity distribution at
location x ∈ R3 and time t ∈ R+. A convenient way to identify this distribution is
in terms of its phase-space density F = F(v,x, t), which represents the mass-weighted
number of particles at time t whose locations and velocity fall inside an infinitesimal
volume around (x,v) ∈ R6. The particle distribution evolves via advection, external
force field F and collisions between particles SF , i.e.,

∂F
∂t

+
∑

i

∂

∂xi
(viF) +

∑

i

∂

∂vi
(FiF) = SF . (1)

In particular, the Boltzmann collision operator, which only acts on the velocity v, takes
the form (Bird, 1994)

SBoltzF(v) =
1

m

∫

R3

∫ 4π

0

[F(v′)F(v̄′)−F(v)F(v̄)] |v − v̄|I(Ω, |v − v̄|) dΩ dv̄.

Here, m is the mass of a single particle, (v′, v̄′) are the post-collision velocities corre-
sponding to a collision pair (v, v̄), Ω is the solid angle about the vector v′ − v̄′, and
I(Ω, |v − v̄|)dΩ is the differential cross-section of the collision, see Bird (1994) for de-
tails. The exact form of I depends on the specific molecular potential. In this paper,
we focus on Maxwellian molecules where |v− v̄|I(Ω, |v− v̄|)dΩ becomes independent of
the relative velocity |v − v̄| which simplifies computation of moments, see (Bird, 1994,
2.8) and (Struchtrup, 2005, 5.3.3).

Various macroscopic quantities of interest may be expressed as moments of F in the form
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∫
ψ(v)F(v) dv. For example, ψ(v) = 1 yields the mass density ρ(x, t) =

∫
F(v; x, t) dv,

setting ψ(v) = vj yields the bulk velocity uj(x, t) =
∫
vjF(v; x, t) dv/ρ(x, t), and

ψ(v) = 1
2

∑
k(vk−uk)2 yields the kinetic energy e(x, t) = 1

2

∫ ∑
k(vk−uk)2F(v; x, t) dv.

Furthermore, the kinetic temperature T is related to the kinetic energy via Boltzmann
constant kb, i.e. T =

∫ ∑
k(vk − uk)2F(v; x, t) dv/(3nkb) where n = ρ/m denotes the

number density. To simplify notation, we denote the fluctuating velocity by w = v−u,
which implicitly depends on x and t. The Boltzmann operator satisfies conservation of
mass, momentum, and energy, that is for S = SBoltz,

∫
ψ(v)SF(v; x, t) dv = 0, ψ(v) ∈

{
1, vj,

1
2

∑

k

wkwk

}
. (2)

Further, higher-order moments can be useful in describing the density F . Of particular
physical relevance are the pressure tensor p and heat flux q, given by

pij =

∫
wiwjF(v) dv, qi =

1

2

∫
wi
∑

k

wkwkF(v) dv. (3)

The deviatoric part of the pressure tensor p〈ij〉 with a negative sign gives us the stress
tensor. These quantities are not conserved by the collision operator, but rather relax
towards their equilibrium values. For Maxwell molecules, the relaxation rates of stress
tensor and heat flux are found to be (Struchtrup, 2005, 5.3.3)

∫
w〈iwj〉SBoltzF(v) dv = −α ρ p〈ij〉

1
2

∫
wi
∑

k

wkwkSBoltzF(v) dv = −2

3
α ρ qi,

(4)

for some α > 0. In particular, the ratio of these relaxation rates is constant, yielding
the Prandtl number τBoltz = 2/3.

2.2 Fokker-Planck model

To overcome the poor scaling of the collisions in DSMC, Jenny et al. (2010) suggested
to decouple the flight paths of the particles and to replace the pairwise collisions by
independent stochastic movement. In their model, the state (x(t),v(t)) of a single
particle evolves according to the Itô stochastic differential equation

dx(t) = v(t)dt,

dv(t) = µdt+ F(x(t), t)dt+ Σ
1
2dW(t),

(5)

where W(t) is a standard Brownian motion, the covariance is isotropic and given by
Σij = b

3
e(x(t), t)δij for some b ≥ 0, and the mean-reverting drift term µi = −a[vi −

ui(x(t), t)]. The only interaction of the particles is via the mean-field quantities u(x, t)
and e(x, t), which are unknown in practice but may be approximated by a suitable
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averaging of the particle ensemble. Letting the number of computational particles tend
to infinity, the corresponding population density F satisfies the kinetic equation (1),
with the right hand side

SF(v; x, t) = SFPF(v; x, t) =
∑

i

∂

∂vi
(−µiF) +

1

2

∑

i,j

∂2

∂vi∂vj
(ΣijF) .

The operator SFP satisfies conservation of mass, momentum and energy as in (2) upon
specifying b = 4a. While the Fokker-Planck operator has been suggested as an approxi-
mation of SBoltz Jenny et al. (2010), the outcome solution admits the wrong Prandtl num-
ber. Hence, for a collision operator S 6= SBoltz to yield a satisfactory approximate model
for the Boltzmann equation, it should closely match the evolution of relevant higher
order moments. That is, we would like to have

∫
ψ(v)SF(v) dv =

∫
ψ(v)SBoltzF(v) dv

for ψ ∈ {ψα : α = 1, . . . ,M} for some set of moments. For the physically interesting
cases of heat flux qi and stress tensor p〈ij〉, the linear Fokker-Planck model of Jenny et al.
(2010) yields (recall wi = vi − ui)

∫
w〈iwj〉SFPF(v) dv = −2a p〈ij〉

1

2

∫
wi
∑

k

wkwkSFPF(v) dv = −3a qi.
(6)

The relaxation rates may be adjusted by specifying the value of a. For example, the
rate for the stress tensor matches the evolution (4) of the Boltzmann model upon setting
a = α ρ/2, thus introducing an additional mean-field interaction via the mass density
ρ(x, t). Just as for the Boltzmann operator, the ratio of the relaxation rates in (6) is con-
stant and yields the Prandtl number τFP = 3/2 6= τBoltz. Hence, the linear Fokker-Planck
model may not match the evolution of both, stress tensor and heat flux, simultaneously.

To fix the issue with the wrong Prandtl number of the linear Fokker-Planck model, Gorji
et al. (2011) changed the drift term µ to include a cubic nonlinearity, see also Gorji and
Jenny (2014) and Gorji and Jenny (2015). In principle, by fine-tuning the drift term,
this approach could be extended to yield correct relaxation rates for higher-order mo-
ments. A shortcoming of the original cubic Fokker-Planck model is that evaluation of
nonlinear drift coefficients depends on estimation of moments up to fifth order which
can introduce further error in noisy settings. Furthermore, it does not necessarily satisfy
the H-theorem, i.e. for the corresponding cubic Fokker-Planck operator SCFP, it might
occur that

∫
log(F(v))SCFPF(v) dv < 0. Recently, Gorji and Torrilhon (2019) showed

that entropy can in fact be ensured to be increasing if the nonlinearity of the drift term
µ and the corresponding isotropic diffusion matrix Σ are chosen carefully.

A different approach to fix the issue with the Prandtl number is presented by Math-
iaud and Mieussens (2016), who suggest to maintain the linear drift term and use
a non-isotropic diffusion matrix Σ. They show that the choice Σij = (5/2)apij −
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(3/2)a
∑

k pkkδij yields the correct Prandtl number τ = τBoltz = 2/3, and the H-theorem
is satisfied. The advantage of this approach compared to the approach of Gorji and
Torrilhon (2019) is that the stochastic differential equation (5) admits an analytic so-
lution because the drift is linear. However, the approach of Mathiaud and Mieussens
(2016) suffers from the fact that the specified diffusion matrix Σ might lack positive-
definiteness. If this is the case, a different diffusion matrix needs to be employed, leading
to a wrong Prandtl number. The cubic Fokker-Planck model and the ellipsoidal model
suggested by Mathiaud and Mieussens (2016) have been compared empirically by Jun
et al. (2019).

3 Jump-diffusion particle methods

As our main result, we demonstrate that the evolution of higher-order moments of
the Fokker-Planck particle method may also be corrected by introducing jumps to the
velocity path v(t). In particular, our jump process will be simpler than the velocity
jumps due to collisions in the exact Boltzmann equation. To this end, we extend model
(5) and let the state of a particle evolve according to the jump-diffusion model

dx(t) = v(t)dt,

dv(t) = µdt+ F(x(t), t)dt+ Σ
1
2dW(t) +

∫
c(z,x(t), t)N(dz, dt),

(7)

where N(dz, dt) is a Poisson random measure with intensity measure ν(dz) dt. The
variable z is called the mark (see the supplement), and z 7→ c(z,x, t) is the transfer
function, mapping a mark z to the jump size c(z,x, t). Given any set A ⊂ R3, the
measure ν(A) describes the expected number of jumps with mark z ∈ A per unit of
time. Instead of working with the transfer function explicitly, it might be more intuitive
to consider the local intensity measure ν(dc,x, t), which is defined as

ν(A,x, t) = ν ({z : c(z, x, t) ∈ A}) .
Then ν(A,x, t) describes the expected number of jumps of size c ∈ A per unit of time,
for a particle located at x at time t. For the model (7) to be sensible, we require that∫

min(1, ‖c(z,x, t)‖)ν(dz) =
∫

min(1, ‖c‖)ν(dc,x, t) < ∞. A detailed introduction to
jump-diffusion models of the form (7) is given in the appendix of this article.

In order to use model (7) as a particle scheme to approximate Boltzmann’s equation,
we need to study the evolution of the corresponding particle density. As outlined in the
appendix, it satisfies equation (1) with collision operator

SF(v) = SJDF(v) = SFPF(v) + SJF(v),

SJF(v; x, t) =

∫
[F(v − c(z,x, t))−F(v)] ν(dz)

=

∫
[F(v − c)−F(v)] ν(dc,x, t).

7



The latter integral is in particular finite if v 7→ F(v) is Lipschitz continuous and
bounded, and

∫
min(1, ‖c‖)ν(dc,x, t) <∞, as assumed. This evolution equation should

be interpreted only formally. Additional regularity requirements are necessary to make
the evolution of F mathematically precise, which is however out of scope of this article.

The evolution of moments ψ(v) may be determined as

∫
ψ(v)SJF(v; x, t) dv =

∫ ∫
[ψ(v + c)− ψ(v)] ν(dc,x, t)F(v; x, t) dv. (8)

Since the local intensity measure ν(dc,x, t) is an infinite dimensional object, the detailed
specification of (7) admits sufficiently many degrees of freedom to closely match the
Boltzmann collision operator.

3.1 Boltzmann equation as a jump-diffusion

In fact, we may even specify ν such that the moment evolution of the Boltzmann operator
is matched exactly. It holds that (Struchtrup, 2005, eq. 3.28)

∫
ψ(v)SBoltzF(v) dv

=

∫
[ψ(v′)− ψ(v)]F(v̄)F(v)|v − v̄|I(Ω, |v − v̄|) dΩ dv̄ dv

=

∫ {∫
[ψ(v + c(v, v̄,Ω))− ψ(v)]F(v̄)|v − v̄| I(Ω, |v − v̄|) dΩ dv̄

}
F(v) dv

=

∫ {∫
[ψ(v + c)− ψ(v)] νBoltz(dc; v,x, t)

}
F(v; x, t) dv. (9)

Here, c(v, v̄,Ω) = v′ − v is the change of velocity due to collision with a particle with
velocity v̄ and collision angle Ω. The measure νBoltz on R3 is given by

νBoltz(A; v,x, t) =

∫
1 {c(v, v̄,Ω) ∈ A} F(v̄) · |v − v̄| · I(Ω, |v − v̄|) dΩ dv̄.

Since the identity (9) holds for arbitrary moment functions ψ(v), we conclude that

SBoltzF(v; x, t) =

∫
[F(v − c)−F(v)] νBoltz(dc; v,x, t) = SJF(v; x, t) .

This match with the Boltzmann operator suggests to build a particle Monte Carlo scheme
by simulating particles according to (7) with µ = 0, Σ = 0, and jump measure νBoltz.
Since |νBoltz| = νBoltz(R3) is finite, the process (7) has finitely many jumps and may be
sampled numerically by a suitable Euler scheme. The value |νBoltz| is the expected total
number of jumps per time unit, which directly corresponds to the number of collisions
in Boltzmann’s equation. Hence, in dense regimes, the process (7) with jump measure
νBoltz incurs many jumps. Since the form of the Boltzmann jump measure νBoltz is
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rather generic, we may not expect to find a fast sampling procedure for the correspond-
ing jump process. Instead, all jumps need to be resolved individually, and hence this
Boltzmann jump-diffusion model suffers from computational limitations similar to the
DSMC method.

3.2 The Gamma-Boltzmann model

Fortunately, there exist jump measures ν which allow for more efficient sampling of the
process (7), at the price of matching only finitely many moments of the Boltzmann
operator. We suggest to use an intensity measure corresponding to the Gamma process,
which is given by

νΓ(dc,x, t) =
∑

i

γi
exp(−ci/λi)
|ci|

1(λici > 0)SRi
(dc), (10)

where SRi
(dc) denotes the Lebesgue measure on the i-th axis, i.e. SR1(dc) is the one-

dimensional Lebesgue measure on R1 = R×{0}×{0}. The parameters γi and λi, which
may depend on x and t, satisfy γi ≥ 0 and λi ∈ R \ {0}. This local intensity measure
may be realized by choosing ν(dz) and the transfer function cΓ(z,x, t) suitably.

We highlight that the intensity measure νΓ is infinite, which implies that the correspond-
ing velocity trajectory (7) has infinitely many jumps. Since νΓ concentrates around the
origin, the majority of these infinitely many jumps are very small, such that the tra-
jectory is still well-defined. In fact, since

∫
min(1, ‖c‖) νΓ(dc,x, t) < ∞, the jumps are

actually summable, see the appendix. Moreover, the measure νΓ is only supported on
the axis, which implies that each individual jump only affects a single dimension.

We suggest to instantiate model (7) by choosing values b, c ≥ 0 such that b + c = 2a,
and setting

µi = −a(vi − ui)− λiγi,

Σij = δij

∑
k pkk
3

1

ρ
[b+ c1qi=0]

λi =
5a

c

qi∑
k pkk

,

γi =
c3

75a2

1

ρ

(
∑

k pkk)
3

q2
i

1qi 6=0.

(11)

With this specification, the jump-diffusion operator SJD conserves mass, momentum,
and energy

∫
1 · SJDF(v; x, t) dv = 0,

∫
vi · SJDF(v; x, t) dv = 0,

∫ ∑

k

wkwkSJDF(v) dv = 0.

9



Furthermore, as derived in equation (A.4) in the appendix, the evolution of the stress
tensor p〈ij〉 and the heat flux qi are given by

∫
w〈iwj〉SJDF(v) dv = −2ap〈ij〉,

1

2

∫
wi
∑

k

wkwkSJDF(v) dv = −4

3
aqi.

(12)

Hence, the model gives rise to the correct Prandtl number τJD = τBoltz = 2/3, for any
choice of c ∈ (0, 2a].

The Fokker-Planck model of Jenny et al. (2010) corresponds to the special case c = 0.
Hence, the introduction of the jump component, c > 0, is crucial to ensure the correct
Prandtl number. Compared to purely Gaussian noise, the jumps have a bigger impact
on the higher order moments of the particle velocities. In particular, the relaxation of
the heat flux qi, as a third-order moment, is diminished due to the jumps. To achieve
this, the precise value of c > 0 is not important because the effect on the third order mo-
ments may be achieved by various combinations of λi and γi. That is, our specification
as a function of c leads to the correct Prandtl number for any choice c 6= 0. This holds
true for constant values c, but also if c = c(x, t) is a function of the solution F(v; x, t)
itself. Also, for any choice of c, we find that SJDF = 0 if and only if F is the Maxwellian
equilibrium distribution; see Section A.3 in the appendix.

4 Particle Monte Carlo scheme

Here, similar to DSMC and cubic FP, we consider samples of distribution function and
evolve their positions and velocities in two separated steps of streaming and velocity
update. Holding the moments constant during a time step, the evolution of the particle
velocity in the Gamma-Boltzmann model may be simulated exactly, as demonstrated
below. We also present an approximation which may be helpful in regimes where the
exact solution becomes computationally demanding. An efficient solution algorithm
combining the exact and approximated solution to the Gamma-Boltzmann model is
provided in § 4.3.

4.1 Exact solution of particle velocity

If we keep the local moments constant for the interval [t, t+ ∆], then the jump measure
ν(dz; v, x, t) = νΓ(dz) is constant as well. In particular,

∫ t+r
t

c(z, X(t), t)N(dz, ds) =
J(r) is a Lévy process, namely a Gamma process, see above. Hence, the velocity of a
single particle evolve according to the jump-diffusion

dvi(t+ r) = [−a(vi(t+ r)− ui(t))− λiγi] dt+ [b+ c1qi=0]

∑
k pkk
3

dWi(t+ r) + dJi(r),

10



which admits the analytical solution

vi(t+ r) = (1− e−ar)ui(t) + e−arvi(t)− λiγir

+ [b+ c1qi=0]

∑
k pkk
3

∫ r

0

e−a(r−s) dWi(t+ s) +

∫ r

0

e−a(r−s) dJi(s).
(13)

The first three terms are deterministic and fully explicit. The second term has a multi-

variate normal distribution with covariance Σij = δij[b+ c1qi=0]
∑

k pkk
3

1−e−2ar

2a
.

The last term is a stochastic integral w.r.t. a Lévy process and does not admit a simple
closed form solution. Nevertheless, we may utilize the exact simulation scheme of (Qu
et al., 2019, Algorithm 4.1) to find that1

∫ r

0

e−a(r−s) dJi(s)
d
= Γr +

Nr∑

k=1

Sk,r, (14)

where the Γr, Nr, Sk,r are independent random variables such that

Γr ∼ Γ(γir,
1
λi
ear),

Nr ∼ Poi(1
2
γiar

2),

Sk,r ∼ Exp( 1
λi
ear
√
U), U ∼ U(0, 1),

i.e. the Sk,r are mixed exponentially distributed. This formula is valid for λi > 0, other-
wise consider −J(r)i.

Note that the expectation of Nr is E(Nr) = 1
2
γiar

2, hence the computational cost to
evaluate (14) is on average O(1 + γir

2). We will usually set r = ∆. However, if γi is
very large, we might want to choose r < ∆ and perform multiple exact steps using (14).
If we split the interval [t, t + ∆] in m sub-intervals of equal length, the computational

effort will be on average O(m(1 + γi∆
2/m2)) = O(m+ γi∆

2

m
). Thus, the optimal choice

of m will be m ≈ d∆√γie. If ∆ is sufficiently small, m = 1 will usually be satisfactory,
but in some extreme cases the described variant might be useful.

4.2 Approximate solution to particle velocity

The representation (14) may also be used to derive an approximate numerical scheme

for the regime where γi is large. We use that Sk,r = λie
−ar
√
Uk,rZk,r, where Uk,r are

independent and identically distributed (iid) standard uniform random variables, and
Zk,r are iid standard exponential random variables. This suggests the approximation

∫ r

0

e−a(r−s) dJi(s)
d
= Γr + λiE(e−ar

√
U)

Nr∑

k=1

Zk,r + εr, (15)

1The algorithm of Qu et al. (2019) contains an error and is only correct for ρ = 1. This is not a
restriction because in the model formulation of Qu et al., the parameter β and ρ serve the same purpose,
i.e. their model is overparametrized.
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where εr denotes the approximation error. The advantage of this scheme is that the sum
may be aggregated, since the sum of independent exponential random variables follows
a Gamma distribution, i.e.

λiE(e−ar
√
U)

Nr∑

k=1

Zk,r
d
= Γ

(
Nr,

1

λiE(e−ar
√
U)

)
, Nr ∼ Poi(1

2
γiar

2).

Hence, the sum admits a mixed Gamma distribution, which may be simulated effi-
ciently, even in the critical regime γi is very large. We also remark that E(e−ar

√
U) =

2 ear

(ar)2
(ear − 1− ar).

In order to analyze the error εr, note that |E(e−ar
√
U) − e−ar

√
U | ≤ ar. Since the sum-

mands are independent, we conclude that

E(εr) = 0, E(|εr|2) = Var(εr) ≤ λ2
i (ar)

2E(Nr) =
a3r4

2
γiλ

2
i .

By our model specification (11), the regime γi →∞ corresponds to low heat flux qi → 0.
But in this regime, the product γiλ

2
i stays bounded. Hence, the approximate scheme (15)

yields a satisfactory approximation in situations where the exact scheme is prohibitively
expensive.

4.3 Solution algorithm

In this section, we provide a detailed solution algorithm, i.e. Algorithm 1, that solves the
Gamma-Boltzmann model for future reference. First, similar to other particle methods,
one needs to discretize the phase space with Np particles, i.e.

F(v,x, t) = lim
Np→∞

Np∑

j=1

w(j)δ(v(j)(t)− v)δ(x(j)(t)− x) (16)

where w(j) is the weight associated with the jth particle, and δ(.) is the Dirac delta func-
tion. Having discretized the solution domain in x dimension into Ncells cells, a constant
weight for all particles leads to the trivial computation of density and number density
for the ith cell, i.e. ρ(i) ≈ wNp/cell and n(i) = ρ(i)/m. The fixed value of particle weight
is initially set given the initial mass density of the system ρ0, volume of the system, and
the number of particles in the domain. Since in practice we can only deploy a finite
number of samples, the stochastic representation is subject to statistical errors.

In order to avoid high computational cost associated with performing all the jumps
exactly, we estimate the cost associated with jumps and deploy the approximate solu-
tion, see § 4.2, as the cost exceeds a given threshold ε. The simulation results of this
work are obtained by deploying this algorithm.
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Initialize particles in the phase space;
while t < tfinal do

for i = 1, ..., Ncells do
Compute needed moments;

τ (i) = 2µ/(n(i)kbT
(i)) and a(i) = 1/τ (i);

Select a value for c(i) ∈ (0, 2a], e.g. c(i) = a(i);

b(i) = 2a(i) − c(i) ;

λ
(i)
j = 5aq

(i)
j /(c

(i)
∑

k p
(i)
kk) ;

γ
(i)
j = (c(i))3(

∑
k p

(i)
kk)

3/(75(a(i))2)/(q
(i)
j )2;

for j = 1, ..., N
(i)
p/cell do

if γ
(i)
j ∆t2 < ε then
Evolve velocity v of particle j according to Eqs. (13)-(14);

else
Evolve velocity v of particle j using the approximate solution
Eq. (15);

end

end

end
Stream particles with the new velocity;
Apply boundary condition;
t = t+ ∆t;

end
Algorithm 1: Particle Monte Carlo scheme for the Gamma-Boltzmann approxima-
tion to the Boltzmann equation

5 Computational results

In this section, an implementation of the devised Gamma-Boltzmann model is compared
to the analytical solution as well as benchmarks in several test cases. In § 5.1, we con-
sider the relaxation of a bi-modal distribution to equilibrium in a spatially homogeneous
setting. This setup serves as a toy problem where we show that the measurement of
relaxation rates is in agreement with the analytical derivation.

Then, we test the solution obtained from the Gamma-Boltzmann model against DSMC
and cubic FP model in Couette flow § 5.2 and lid-driven cavity § 5.3. Here, we take
Argon as the monatomic hard-sphere gas with mass m = 6.6335×10−26 kg, and viscosity
µ = 2.117× 10−5 kg.m−1.s−1 at T0 = 273 K. In the result section, we refer to Knudsen
number

Kn =
λ

L
(17)
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where L denotes the length scale of problem and λ is the mean free path of hard-sphere
molecules. Furthermore, we deployed r = ∆t and ε = 0.1 in Algorithm 1, everywhere
unless mentioned otherwise.

5.1 Homogeneous toy example

As a proof of concept, we study a simple example where we assume the particle distri-
bution to be perfectly homogeneous in Rd, without boundaries. That is, F(v; x, t) =
F(v; t). We treat this case by simulating Np = 106 particles representing the distribu-
tion function, and consider the evolution equation for velocity only. We choose c = 2a
and b = 0, such that the Gaussian component is omitted. The relaxation rate is fixed
by setting a = 1/2. At time t = 0, we initialize the distribution as a mixture of two
highly concentrated Gaussian distributions,

F(v; 0) =
2

3
ϕ0,B(v) +

1

3
ϕτ,B(v),

Bij = 10−4δij,

τ = (3, 6, 9)

Here, ϕτ,B denotes the density of a multivariate normal distribution with mean value
τ ∈ R3 and covariance matrix B ∈ R3×3. In particular, the initial velocity distribution
is far from the Maxwellian equilibrium.

We simulate the particles in the interval [0, 10] and update the ensemble moments at
step size ∆ = 10−2. Since the exact scheme becomes computationally expensive for
small value γi, we change the simulation method if γi∆

2 raises above a threshold of 0.1.
In this regime, we use the approximate scheme 4.2 with smaller step size r = 10−3.

The evolution of the velocity distribution is depicted in Figure 1, in a single dimension.
The convergence towards the Maxwellian equilibrium distribution is evident. In Figure
2, we depict the heat fluxes q1 < q2 < q3 as a function of time. The exponential decay
matches the theoretical model (12). The logarithmic plot reveals that the decay rate 4

3
a

is attained in the beginning. The erratic behavior for large times may be explained by
the sampling error incurred by approximating the equation with finitely many particles.

14



15

Figure 1: Evolution of a bi-modal distribution in v1 dimension towards the Maxwellian
distribution. The distribution is estimated at t = 0.2, 0.5, 1, 2 by solving the Gamma-
Boltzmann particle scheme.

Figure 2: Relaxation of heat flux as the particle distribution approaches equilibrium.
The heat flux is computed via the Gamma-Boltzmann particle scheme.



5.2 Couette flow

In order to investigate the accuracy of the devised model in a shear dominant setting, we
simulate a planar Couette flow. Consider a particle system enclosed between two thermal
moving walls with velocity uw = (±100, 0, 0)T m.s−1 and temperature Tw = 273 K at
the distance of L from one another where x2 is normal to the walls. Hence, the solution
domain is x2 ∈ [0, L], while ignoring the other dimensions in x, and the initial number
density n0 = 1019 m−3 and initial temperature T0 = 273 K. As particles hit the walls
(leave the domain), we sample the velocity of the incoming particle from the flux of
shifted Gaussian distribution and stream the particle with the new velocity for the
remainder of the time step. For example, particles that enter the domain from the lower
wall at x2 = 0, the new velocity component normal to the wall is sampled from the
flux of the Maxwellian distribution, i.e. the probability density of the sampled flux is
proportional to v2N (0, kbTw/m), v2 > 0. This distribution may be sampled explicitly
as

v2 =
√

2kbT/m
√
− log(α) (18)

where α ∼ U(0, 1) is a uniformly distributed random variable. In other directions, we
sample vj ∼ N (uw,j, kbTw/m) for j = 1, 3. Here, N (m,σ2) is the normal distribution
function with mean m and variance σ2, and the corresponding probability density ϕm,σ2 .
Initially, particles are distributed uniformly in x2 ∼ U([0, L]) and normally distributed
in velocity v ∼ N (u0, kbT0/mI), where kb is the Boltzmann constant. As particles
evolve and hit the boundaries, the evolution of moments evolve and reach a steady state
profile, i.e. a stationary solution for the distribution function in the solution domain is
achieved. A convergence study lead us to use initially Np/cell = 1000 particles per cell,
the time step size of ∆t = 10−6, and Ncells = 100 computational cells in x2.

Here, we simulate the Couette flow using Direct Simulation Monte Carlo (DSMC) and
cubic Fokker-Planck model (FP) as benchmarks against the Gamma-Boltzmann model
developed in this work. We deploy Algorithm 1 in order to numerically solve the Gamma-
Boltzmann model with c = a where a = 1/τ , τ = 2µ/p is the time scale of diffusion
part of the process and p = nkbT is the equilibrium pressure of ideal gas. As shown in
Fig. 3, a reasonable agreement in the predicted profile of number density, bulk velocity,
temperature, and heat flux for the Gamma-Boltzmann model compared with the bench-
marks is obtained. Furthermore, we have studied the cost of the Gamma-Boltzmann
particle scheme for the Couette flow at different densities compared to the benchmarks.
As shown in Fig. 4, similar to FP model and unlike DSMC solution, the cost of the new
scheme does not scale with density nor temperature. Hence, the Gamma-Boltzmann
model can provide an efficient alternative approximation to the Boltzmann equation for
non-equilibrium fluid flows at small Knudsen numbers.

Furthermore, we compare the solution obtained from the devised jump-diffusion process
against the cubic FP model in the limit of low number of particles. Here, we simulate the
Couette flow using initially Np/cell = 100, 200, 400, and 1000 particles per cell. Once
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Figure 3: Profiles of number density, bulk velocity, temperature, and kinetic heat flux for
Couette flow between moving thermal walls at 100 m.s−1 in opposite directions obtained
from DSMC, cubic FP model, and the Gamma-Boltzmann model, shown in black, red,
and blue respectively. Here, the Knudsen number is Kn = 0.17.
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Figure 4: Normalized computation time τ of solving the Couette flow problem using
DSMC, cubic FP model, and the Gamma-Boltzmann model against the initial number
density of the gas using Np/cell = 1000 particles per cell in all cases. The computation
times are normalized with τ0, i.e., the one obtained from DSMC for n0 = 10−19 m−3. In
all the simulations, time step size is ∆t = 10−6 s, and initial temperature is T0 = 273 K.

stationary state is achieved (5000 steps), we average the moments in time until the noise
level in the profile of temperature is below 5%. This analysis allows us to investigate
the error in each model due to lack of particles. As shown in Fig. 5, the devised jump-
diffusion process provides a more accurate solution compared to the cubic FP when less
particles are available. This can be explained by the fact that the Gamma-Boltzmann
model requires an estimate of lower order moments (third order) compared to cubic FP
model (fifth order). Therefore, the jump-diffusion process is less prone to error due to
statistical noise.
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(a) Np/cell = 100 (b) Np/cell = 200
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(c) Np/cell = 400 (d) Np/cell = 1000
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Figure 5: The temperature profile of Couette flow obtained from simulation of jump-
diffusion process (blue), cubic FP model (red) using initially Np/cell = 100, 200, 400, and
1000 particles per cells. As the reference, the temperature profile obtained from the
DSMC solution (black) with initially Np/cell = 2000 particles per cell is shown in all
figures as the reference solution.



5.3 Lid-driven cavity

One of the classical fluid problems with a clear non-equilibrium effect is the lid-driven
cavity at high Knudsen numbers. Consider a particle system inside Ω = [0, L]2 where all
the walls are taken to be constant and thermal with temperature of Tw = 273 K, except
for the northern wall which moves with the velocity of unw = (150, 0, 0)T m.s−1. The
boundary conditions on the walls for the particles leaving the domain are imposed in a
similar manner to the one of Couette flow which is explained in § 5.2. Here, we initially
deploy Np/cell = 2000 particles per cell, discretize the spatial domain Ω uniformly with
Ncell = 100×100 cells and considered time step size of ∆t = 2.08×10−6 s. The stationary
solution is achieved after 5′000 steps and the moments are time-averaged for 65′000 steps.

A comparison of the temperature and heat fluxes obtained from simulation of DSMC,
cubic FP, and the Gamma-Boltzmann model is shown in Fig. 6. As expected, we observe
the cold-to-hot heat flux as a non-equilibrium effect in all simulation results. Overall, a
reasonable agreement between the developed Gamma-Boltzmann model and the bench-
marks in the estimation of moments up to heat flux is obtained.
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Figure 6: Temperature contours overlaid by the heat flux curves in the lid-driven cavity
flow with unw = (150, 0, 0)T m.s−1 at Kn = 0.17 obtained from simulation of (a) DSMC,
(b) cubic FP and (c) Gamma-Boltzmann. The heat fluxes and temperature on x2 = 4L/5
line is plotted against the benchmark in (d), (e) and (f).



6 Conclusion

In this work, we devised a jump-diffusion process which approximates the solution of
the Boltzmann equation up to heat fluxes. In particular, we adapted the linear Fokker-
Planck model by adding a jump process which provides us with an explicit evolution
of particle velocity. While the proposed Gamma-Boltzmann particle scheme avoids per-
forming explicit collisions as particles follow independent paths, the computational effort
increases near the equilibrium. We tackled this numerical challenge by replacing the ex-
act trajectories with an approximation which provide us with appropriate efficiency
in simulations. The devised solution algorithm was tested against the ones obtained
from the DSMC and cubic FP model in several test cases, such as the Couette flow
and lid-driven cavity. Overall, a reasonable agreement between the Gamma-Boltzmann
model and the benchmark has been observed. Furthermore, we observe that the devised
Gamma-Boltzmann model gives a more accurate solution in the noisy settings compared
to the cubic FP as it does not require estimation of high order moments in comparison.

The specification of particle dynamics in terms of jump-diffusion processes allows for
great flexibility. Future work might explore the use of different jump intensity mea-
sures to approximate the Boltzmann operator with more accuracy, e.g. by matching the
evolution of higher order moments and the entropy production. Furthermore, to avoid
the approximation made for Gamma-Boltzmann model near equilibrium, a more accu-
rate solution near equilibrium may be achieved by coupling the jump-diffusion process
with the ellipsoidal Fokker-Planck model, where one can switch between both dynamics
according to the distance of the gas from equilibrium.
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Appendices

A Evolution of moments for the Gamma process

jump operator

In this section, we study the integral operator SJ corresponding to the jump process,
which is defined as

SJF(v; x, t) =

∫
[F(v − c)−F(v)] νΓ(dc,x, t),
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with intensity measure

νΓ(dc,x, t) =
∑

i

γi
exp(−ci/λi)
|ci|

1(λici > 0)SRi
(dc). (19)

Our goal is to specify the parameters γi and λi such that SJ may be used to ap-
proximate the Boltzmann collision operator SBoltz. To this end, we compute the rates∫
ψ(v)SJF(v) dv for the intensity measure νΓ.

Recall that
∫
ψ(v)SJF(v; x, t) dv =

∫ ∫
[ψ(v + c)− ψ(v)] ν(dc,x, t)F(v; x, t) dv. (20)

We may employ (20) to obtain, for i = 1, 2, 3,
∫
viSJF(v; x, t) dv =

∫ ∫
ciν

Γ(dc; x, t)F(v; x, t) dv = λi(x, t)γi(x, t)ρ(x, t),

which is non-zero. Hence, to ensure conservation of momentum, we need to introduce
an additional linear term −λiγi to the drift µ. That is, we consider the operator

SΓF(v) = SJF(v) +
∑

i

∂

∂vi
(λiγiF(v)) ,

such that
∫
viSΓF(v) dv = 0.

Furthermore, applying (20) to the function ψ(v) = 1, we obtain
∫
SΓF(v) dv = 0.

That is, the operator SΓ satisfies conservation of mass and momentum. Furthermore,
the second moments may be determined as
∫
wiwjSΓF(v; x, t) dv

=

∫ ∫
[cicj + wicj + wjci] ν

Γ(dc,x, t)F(v; x, t) dv − λiγi
∫
wjF(v) dv − λjγj

∫
wiF(v) dv

=

∫ ∫
cicjν

Γ(dc; x, t)F(v; x, t) dv,

because
∫
wiF(v) dv = 0, and

∫
ciν

Γ(dc, x, t) = λiγi. Since νΓ is only supported on the
axis Ri, we find that

∫
cjciν

Γ(dc,x, t) = δijγi

∫ ∞

0

c2
i

|ci|
exp(−ci/λi) dci = δijγiλ

2
i , i, j = 1, 2, 3,
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so that
∫
wiwjSΓF(v; x, t) dv = δijργiλ

2
i . In particular, the operator SΓ does not con-

serve internal energy on its own. This can be corrected by choosing a suitable mean-
reverting drift term µ, as demonstrated in the next section.

Regarding the heat flux, we observe that

∫
wi
∑

k

wkwkSΓF(v) dv

=

∫
wi
∑

k

wkwkSJF(v) dv −
∫ ∑

k

[2wiwkλkγk + wkwkλiγi]F(v) dv,

where

∫
wi
∑

k

wkwkSJF(v) dv

=

∫ ∫ ∑

k

[(wi + ci)(wk + ck)(wk + ck)− wiwkwk] νΓ(dc)F(v) dv

=

∫ ∫ ∑

k

[cickck+2ciwkck + wickck + ciwkwk + 2wiwkck] ν
Γ(dc)F(v) dv

=

∫ ∫
ci
∑

k

ckckν
Γ(dc)F(v) dv +

∫ ∑

k

[2wiwkλkγk + λiγiwkwk] F(v) dv.

In the last step, we used that

∫ ∫ ∑

k

ciwkckν
Γ(dc)F(v) dv =

∑

k

∫
cick

∫
wkF(v) dv νΓ(dc) = 0,

∫ ∫ ∑

k

wickckν
Γ(dc)F(v) dv = 0,

because
∫
wF(v) dv = 0. Since νΓ is only supported on the axes, we find that

∫
wi
∑

k

wkwkSΓF(v) dv =

∫ ∫
ci
∑

k

ckckν
Γ(dc)F(v) dv

= ρ

∫
ci
∑

k

ckckδikν
Γ(dc)

= ργiλ
3
i

∫ ∞

0

c3
i

|ci|
exp(−ci) dci

= 2ργiλ
3
i .
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To summarize, we obtain
∫

1 · SΓF(v; x, t) dv = 0,
∫
viSΓF(v; x, t) dv = 0,

∫
wiwjSΓF(v; x, t) dv = δijρ(x, t) γi(x, t)λi(x, t)

2,
∫
wi
∑

k

wkwkSΓF(v; x, t) dv = 2ρ(x, t) γi(x, t)λi(x, t)
3.

For the jump operator SJ without mean correction, this implies
∫

1 · SΓF(v; x, t) dv = 0,
∫
viSJF(v; x, t) dv = ρ(x, t)λi(x, t) γi(x, t)

∫
wiwjSJF(v; x, t) dv = δijρ(x, t)λi(x, t)

2 γi(x, t)
∫
wi
∑

k

wkwkSJF(v; x, t) dv = 2ρ(x, t)λi(x, t)
3 γi(x, t)

+

∫ ∑

k

(2wiwkλkγk + λiγiwkwk)F(v; x, t) dv.

B Fixing the Prandtl number

In this section, we devise the full jump-diffusion model in velocity space

dv(t) = µdt+ F(x(t), t)dt+ Σ
1
2dW(t) +

∫
c(z,x(t), t)N(dz, dt) (21)

by setting

µi = −a(vi − ui)− λiγi,

Σij = bδij

∑
k pkk
3

.

Moreover, we choose c(z,x, t) and the underlying intensity measure ν(dz) such that the
local jump intensity measure is given by

ν(dc,x, t) = νΓ(dc, x, t).

where νΓ(dz) is as in (19), and γi ≥ 0 and λi ∈ R \ {0} are functions of location x and
the density F . Note that the specific choice of ν(dz) and c(z,x, t) is irrelevant, as long
as they correspond to the local jump intensity measure ν(dc,x, t).
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The values a, b, and the specific form of λi, γi, need yet to be specified. The corre-
sponding collision operator SJD is given by

SJDF(v; x, t) = SFPF(v; x, t) + SΓF(v; x, t)

where SFPF(v; x, t) =
∑

i

∂

∂vi
( a(vi − ui)F(v; x, t)) +

1

2

∑

i,j

∂2

∂vi∂vj
(ΣijF(v; x, t)) ,

SΓF(v; x, t) =

∫
[F(v − z)−F(v)] ν(dz; v,x, t) +

∑

i

λiγi
∂

∂vi
F(v).

Just like SFP and SΓ, the operator SJD conserves mass and momentum for any value of
a and b, i.e.

∫
1 · SJDF(v; x, t) dv = 0,

∫
vi · SJDF(v; x, t) dv = 0.

In the sequel, we will omit the dependency on (x, t). From our previous derivations, we
find that

∑

k

∫
wkwkSJDF(v) dv = (b− 2a)

∑

k

pkk + ρ
∑

k

γkλ
2
k,

∫
w〈iwj〉SJDF(v) dv = −2ap〈ij〉 + δijρ

[
γiλ

2
i −

∑

k

γkλkλk
3

]
,

1

2

∫
wi
∑

k

wkwkSJDF(v) dv = −3aqi + ργiλ
3
i .

For some 0 ≤ c ≤ 2a, we suggest to choose γi and λi such that

γiλ
2
i =

c

3

∑
k pkk
ρ

,

γiλ
3
i =

5a

3

qi
ρ
,

that is

λi =
5a

c

qi∑
k pkk

, γi =
c3

75a2

1

ρ

(
∑

k pkk)
3

q2
i

.

This choice yields
∫ ∑

k

wkwkSJDF(v) dv = (b+ c− 2a)
∑

k

pkk,

∫
w〈iwj〉SJDF(v) dv = −2ap〈ij〉,

1

2

∫
wi
∑

k

wkwkSJDF(v) dv = −4

3
aqi.

(22)
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Hence, conservation of energy is satisfied if b + c = 2a. Furthermore, this model gives
the correct Prandtl number τJD = τBoltz = 2

3
. The choice of c ∈ (0, 2a] is a remaining

degree of freedom.

C Particle dynamics near equilibrium

If qi = 0, the values of γi and λi are not well-defined. To extend our model to this
regime, we consider the limit as qi → 0. In this situation, λi → 0 and γi →∞ such that
the variance γiλ

2
i of the jump process remains constant. In particular, the jumps become

smaller but also more frequent. It turns out that a type of central limit theorem applies,
such that in the limit, the jump process becomes a continuous Gaussian movement. To
make this precise, we observe that

SΓF(v) =

∫ [
F(v − c)−F(v)−

∑

i

ci
∂

∂vi
F(v)

]
νΓ(dv),

because
∫
ciν

Γ(dv) = λiγi. Now recall from (19) that νΓ is the sum of three measures
supported on the axes Ri. With some abuse of notation, we write v + ci to mean that ci
is added to the i-th component of the vector v. Then the jump operator may be written
as

SΓF(v) =
∑

i

SΓ
i F(v),

SΓ
i F(v) =

∫ ∞

0

[F(v − λici)−F(v)] γi
exp(−ci)

ci
dci.

If the third order derivatives of F are bounded, then a Taylor expansion gives

SΓ
i F(v) =

1

2

∫ ∞

0

c2
i

∂2

∂v2
i

F(v) γi
exp(−ci)

ci
dci +O

(∫ ∞

0

|λici|3 γi
exp(−ci)

ci
dci

)

= (λ2
i γi)

1

2

∂2

∂v2
i

F(v) +O(|λ3
i γi|).

As qi → 0, the second term vanishes, so that SΓ
i converges towards a diffusion operator.

That is, as qi → 0, the jumps in dimension i increasingly resemble a continuous Gaussian
movement with diffusion coefficient λ2

i γi.
To incorporate this limiting behaviour in the definition of the jump diffusion model

(21), we modify the equation by setting

Σij = bδij

∑
k pkk
3

+ δij
c

ρ

∑
k pkk
3

1qi=0,

γi =
c3

75a2

1

ρ

(
∑

k pkk)
3

q2
i

1qi 6=0.
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Thus, the particle evolution is well defined for all cases, and admits the correct Prandtl
number, for any choice a, b, c, such that b+ c = 2a.

If qi = 0 for all i, then SJD reduces to the Fokker-Planck operator SFP as studied
by Jenny et al. (2010). Hence, we also find that SJDFeq = 0, where Feq denotes the
Maxwellian equilibrium distribution. On the other hand, if SJDF = 0, then we find that
qi = 0 from the moment evolutions. Thus, SJDF = SFPF = 0, which implies F = Feq.
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This attachment serves as a brief, but rigorous, introduction to stochastic processes
with jumps, with a special focus on jump diffusions. After describing the necessary
theory to define jump diffusion processes, we in particular present the evolution equations
for the marginal moments, and discuss the relation to the Kolmogorov-forward equation
which describes the evolution of the corresponding probability density function.

D.1 Basics

A stochastic process (Xt)t≥0, is a collection of random vectors, which is in our case
indexed by time t. Formally, we endow the scenario-set Ω with a σ-algebra F and a
probability measure P on (Ω,F), such that each Xt : Ω→ Rd is a measurable mapping.
If we fix some ω ∈ Ω, the mapping t 7→ Xt(ω) is called the trajectory of Xt. Hence, a
stochastic process may be regarded as a random function. The shape of these trajectories
depends on the probabilistic properties of the process (Xt)t≥0. There exist examples of
stochastic processes whose trajectories are discontinuous, continuous, or very smooth.
In the sequel, the dependence on ω will be implicit.

A minimal assumption imposed in most of the literature on stochastic processes is
that the trajectories are right continuous and admit finite left-hand limits, that is for each
t > 0, the left-hand limit Xt− := lims↑tXs exists, and for all t ≥ 0, the right-hand limit
satisfies lims↓tXs = Xt. This property is often referred to by the french acronym càdlàg
(continue à droite, limite à gauche). The trajectories of a càdlàg process only admit
jump-type discontinuities, but no singularities. We denote the jump size at time t by
∆Xt = Xt−Xt−, which is a random variable, i.e. ∆Xt = ∆Xt(ω). An important property
of càdlàg functions is that, on any finite interval, they admit only finitely many jumps
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of size larger than some arbitrary ε > 0, i.e.
∑

t∈[0,T ] 1(|∆Xt(ω)| > ε) <∞ (Applebaum,

2004, Thm. 2.9.2). As a consequence, the set of jump times {t ≥ 0 : ∆Xt 6= 0} is
countable. Hence, sums of the form

∑
t≥0 f(∆Xt, t) are sensible as countable sums

for any function f such that f(0, t) = 0 , although the summation range is formally
uncountable. In this appendix, we explain the construction and calculus of a special
class of discontinuous processes, namely jump diffusions.

D.2 Constructive definition of jump processes

A simple jump process may be constructed as follows. Let τi, i ∈ N, be a sequence of
independent, exponentially distributed random variables with rate parameter λ0 > 0,
τi ∼ Exp(λ0), and let Zi, i ∈ N, be a sequence of independent random vectors with
probability distribution Q. Define the process Xt as

Xt =
∞∑

i=1

Zi · 1
(
t ≤

i∑

j=1

τj

)
=

Nt∑

i=1

Zi, Nt = inf

{
k ∈ N0 : t ≥

k∑

i=1

τi

}
. (D.1)

That is, after the i-th jump, we wait for a random time τi+1 ∼ Exp(λ0) until the next
jump, and then sample the jump size Zi+1 according to the distribution Q. In other
words, the jump times are Ti =

∑i
j=1 τj, and the jump sizes are ∆XTi = Zi. The process

defined via (D.1) is a so-called compound Poisson process. An example for the univariate
case d = 1 is depicted in Figure 1.

The exponential distribution is chosen for the waiting times because of its memoryless
property, i.e. P (τi > t + s|τi ≥ t) = P (τi > s) for all t, s ≥ 0. That is, having already
waited for time t does not change the waiting time, i.e. the remaining waiting time may
not be predicted. In other words, the jumps of Xt occur suddenly. A consequence of the
memoryless property is that Xt is a special instance of a Lévy process. Lévy processes
constitute a broad class of stochastic processes defined as follows.

Definition D.2.1. A stochastic process (Xt)t≥0 is a Lévy process if it satisfies:

• X0 = 0 almost surely.

• The increments are independent and stationary, i.e. Xt+s −Xt, s ≥ 0, is indepen-
dent of {Xr, r ∈ [0, t]}, and Xt+s −Xt has the same distribution as Xs.

• The process is stochastically continuous, i.e. P (|Xt+s − Xt| > ε)
s→0−→ 0 for any

t ≥ 0 and any ε > 0.

Another prominent example of a Lévy process is the Brownian motion (Bt)t≥0, where
Bt+s − Bt ∼ N (0, sσ2) for s ≥ 0 and some σ2 > 0. It is tempting to try to define a
process by specifying any arbitrary distributionQs for the incrementsXt+s−Xt, and then
construct Xt by summing up the independent increments. This is, however, in general
not possible, because the family of probability measures (Qs)s>0 needs to be consistent
with the property of independent and stationary increments for all s ≥ 0. In particular,
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Figure 1: Sample path of a compound Poisson process, with uniformly distributed jump
sizes Zi ∼ U(−1, 1).

Xt+s1+s2−Xt = (Xt+s1+s2−Xt+s1)+(Xt+s1−Xt), where both terms are independent and
distributed as Qs1 and Qs2 . Hence, the family of measures needs to satisfy Qs1 ∗Qs2 =
Qs1+s2 , where ∗ denotes convolution of measures. The set of distributions which may
consistently be chosen as Qs is the class of so called infinitely divisible distributions. This
class contains, for example, Gaussian and Gamma distributions, but not the uniform
distribution.

D.3 Integral representation

The trajectory of the compound Poisson process (D.1) may be completely described
by the sequences of the jump times Ti =

∑i
j=1 τj, i ∈ N, and the jump sizes (Zi)i∈N.

An equivalent representation is via the measure N = N(dt, dz) on [0,∞) × Rd, given
by N =

∑∞
i=1 δ(Ti,Zi). Here, δ(t,z) denotes the point measure, i.e. the delta functional,

at (t, z) ∈ [0,∞) × Rd, and the dependence on ω ∈ Ω is implicit, i.e. N(dt, dz) =
N(dt, dz, ω). The compound Poisson process may then be recovered by integrating

Xt =

∫ t

0

∫

Rd
z N(ds, dz) =

∞∑

i=1

Zi 1(Ti ≤ t). (D.2)

While this formulation might seem unnecessarily complicated at first sight, it allows
for an elegant generalization of the compound Poisson process. Since N(dt, dz) is a
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measure, it may be evaluated for any Borel set A ⊂ [0,∞) × Rd. It can be shown
that for any such A, the measure N(A) =

∫
A
N(dt, dz) has a Poisson distribution with

parameter λ(A) ≥ 0, i.e. P (N(A) = k) = λ(A)ke−λ(A)

k!
, k ∈ N0. In particular, E(N(A)) =∫

Ω

(∫
A
N(dt, dz)

)
P (dω), where P is the underlying probability measure. Moreover, if

A ∩ Ã = ∅, then N(A) and N(Ã) are independent; see e.g. (Sato, 1999, Thm. 19.2).
For a rectangular set A = [t1, t2]×B, the measure N(A) counts the number of jumps

of size z ∈ B occurring at a time t ∈ [t1, t2], and λ(A) is the expected number of these
jumps. Since A 7→ N(A) is a measure, a so-called a Poisson random measure, it can
be shown that its expectation A 7→ λ(A) is a measure as well, the so-called intensity
measure. For the compound Poisson process, we have λ(dt, dz) = dtQ(dz), i.e. λ is the
product of the Lebesgue measure on [0,∞) and a finite measure Q. In particular, the
rate of jumps is λ0 = Q(Rd), and the distribution of the jump sizes Zi is given by the
normalized probability measure Q/Q(Rd).

It is also possible to start with the intensity measure λ and to construct a cor-
responding Poisson random measure N , see e.g. (Bertoin, 1996, Sec. 0.5). That is,
A 7→ N(A) = N(A, ω) is a measure and for any Borel set A ⊂ [0,∞)× Rd, the random
variable N(A) has a Poisson distribution with parameter λ(A), and N(A) and N(Ã) are
independent for A∩ Ã = ∅. Since N is an integer-valued measure, it may be represented
as a sum of point measures, N =

∑∞
i=1 δ(Ti,Zi) for random variables Ti = Ti(ω) ∈ [0,∞),

and random vectors Zi = Zi(ω) ∈ Rd. In contrast to the special case of the compound
Poisson process described above, the Zi are not necessarily identically distributed, but
nevertheless independent. Using this representation of the Poisson random measure, one
may try to construct a process Xt =

∫ t
0

∫
Rd z N(ds, dz) as in (D.2) by integrating the

Poisson measure.
The compound Poisson process has finitely many jumps, hence the sum in (D.2)

is always finite so that existence of the integral is trivial. If, on the other hand, N is
an infinite measure, the sum is no longer finite. To handle this case of inifnitely many
jumps, an alternative integrability condition is that the series are absolutely summable
in expectation, that is

E

[ ∞∑

i=1

‖Zi‖1(Ti ≤ t)

]
= E

[∫ t

0

∫

Rd
‖z‖N(ds, dz)

]
=

∫ t

0

∫

Rd
‖z‖λ(ds, dz)

!
<∞. (D.3)

Condition (D.3) also covers cases where λ is an infinite measure, i.e. the process has
infinitely many jumps. For the integrability to hold, the mass of λ needs to concentrate
around z = 0. That is, the process may have infinitely many jumps, but the jumps
are sufficiently small to be summable. It is even possible to define an integral w.r.t. N
under the weaker condition

∫ t
0

∫
Rd min(1, ‖z‖2)λ(ds, dz) < ∞ using an L2(P )-isometry,

see e.g. (Applebaum, 2004, Sec. 4.2). However, for the purposes of this paper, condition
(D.3) suffices.

In Figure 2, we depict the realization of a Poisson random measure N(dt, dz), and
the corresponding jump process Xt =

∫ t
0

∫
Rd z N(ds, dz). The intensity measure is

homogeneous in time, λ(dt, dz) = dt ν(dz), where ν(dz) admits the density ν(dz) =
(20e−z/z)1z>0 dz. Note that ν(dz), and hence λ(dt, dz), is an infinite measure, with a
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Figure 2: Left: realization of a Poisson random measure with intensity λ(dt, dz) =
dt⊗ (20e−z/z)+dz. Right: the corresponding jump process Xt =

∫ t
0

∫
Rd zN(ds, dz).

singularity around zero. Accordingly, the process Xt has infinitely many small, positive
jumps. This is possible because the singularity of ν(dz) is small enough for the jumps
to be summable.

D.4 Nonstationary jump processes

Defining a stochastic process Xt via (D.2) allows us to relate various properties of
Xt to the Poisson random measure N(ds, dz) and the corresponding intensity measure
λ(ds, dz). For example, for two Borel sets A,B ⊂ [0,∞)×Rd such that A ∩B = ∅, the
random variables N(A) and N(B) are stochastically independent. As a consequence, the
increments Xt+s1+s2 −Xt+s1 and Xt+s1 −Xt are independent as well, just as for a Lévy
process. For Xt to be a Lévy process, the increments furthermore need to be stationary,
i.e. the distribution of the random vectors Xt+h −Xt should not depend on t, but only
on h > 0. This property holds if the intensity measure λ(ds, dz) is homogeneous in time,
that is, we may write it as a product measure λ(ds, dz) = ds ν(dz), where ds denotes
the Lebesgue measure on [0,∞), and ν(dz) is a measure on Rd. In this stationary case,
ν(dz) is called the Lévy measure of the Lévy process Xt. One readily finds that for any
Borel set C ⊂ Rd, we have ν(C) = λ([0, 1] × C) = E(

∑
t∈[0,1] 1(∆Xt ∈ C)), i.e. ν(C) is

the expected number of jumps of size ∆Xt ∈ C during the unit time interval.
If the intensity measure λ(ds, dz) is not of product form, then the process Xt is

in general nonstationary. This nonstationarity is deterministic by nature, since the
stochastic behavior of Xt in the interval [1, 2], say, is fully determined by the non-
random measure λ(ds, dz). However, from a modeling perspective, it is of interest to let
the random trajectory of Xt, t ∈ [0, 1] affect the behavior of Xt on the interval [1, 2]. For
example, the jump behavior of Xt at time t could depend on the value Xt, giving rise to
a special kind of Markov process. If Xt describes the location of a particle, this would
mean that the jump behavior is spatially inhomogeneous. This state-dependent behavior
gives rise to a stochastic differential equation. An established method to formalize this is
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to maintain a deterministic intensity measure λ, while defining the process Xt differently
as

Xt =

∫ t

0

∫

Rd
c(s, z,Xt−)N(ds, dz). (D.4)

It is important to use the left-hand limit Xt−, because the value Xt may already be
affected by a jump at time t. Furthermore, for the integral(D.4) to be well-defined as a
countable sum, the function c(s, z, x) needs to be such that

∫ t
0

∫
Rd E‖c(s, z,Xt−)‖λ(ds, dz) <

∞. Verifying this condition is in general non-trivial and amounts to establishing exis-
tence of solutions of stochastic differential equations. Simple conditions can be for-
mulated in terms of Lipschitz-continuity of the mapping x 7→ c(s, z, x), see Theorem
D.5.1 below. In the sequel, we assume that the function c(s, z, x) is such that (D.4) is
well-defined.

In (D.4), the variable z is called the mark of the Poisson process, which is transformed
to a jump of size c(s, z,Xt−). Here, we choose the mark space Rd, i.e. z ∈ Rd, but the
theory for Poisson integrals is formulated for more general mark spaces E .

For many purposes, it is most suitable to choose a homogeneous basic intensity
measure, i.e. λ(ds, dz) = ds⊗ν(dz) for some measure ν, and to introduce nonstationarity
via (D.4). In particular, if Xt is given by (D.4), we may describe the instantaneous jump
behavior by the measure νt(dz), which is the push-forward measure of ν(dz) under the
mapping z 7→ c(t, z,Xt−). That is, for any Borel set C ⊂ Rd,

νt(A) = ν
(
{z ∈ Rd : c(t, z,Xt−) ∈ A}

)
. (D.5)

In fact, if we change the underlying intensity measure ν(dz) and the mapping c(s, z, x)
such that νt(dz) remains unchanged, then the corresponding stochastic process Xt is
the same, distributionally. Hence, the measure νt(dz) fully describes the jump behav-
ior of Xt. Note that νt(dz) depends implicitly on Xt−, i.e. νt(dz) is a random mea-
sure. Instead of modeling the mapping Xt− 7→ c(t, z,Xt−), it is often more intuitive
to model the mapping Xt− 7→ νt(dz;Xt−) in order to specify the instantaneous jump
behavior. The measure νt(dz) is called the instantaneous intensity measure, or spot
intensity measure in the mathematical finance literature. The measure should be spec-
ified such that

∫
Rd ‖z‖νt(dz) < ∞ almost surely. This condition can be weakened to∫

Rd min(1, ‖z‖2) νt(dz) < ∞ using the more general L2(P ) construction of jump inte-
grals. However, we do not need this generality in the present paper.

D.5 Jump Diffusions

One may also construct processes which combine a dynamic jump behavior as described
above, with a continuous Gaussian diffusion between jumps, see Figure 3. Stochastic
processes of this type are called jump diffusions. If the process has infinitely many
jumps, the notion of time “between jumps” is not sensible, but the jump diffusion may
still be defined via stochastic calculus.

A jump diffusion is a stochastic process Xt which satisfies a stochastic differential
equation consisting of
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Figure 3: Sample path of a Lévy process, as a special instance of a jump diffusion. In
this case Xt = Bt + Jt for a standard Brownian motion Bt, and Jt as in Figure 1.

• a drift term µ(t,Xt−),

• a diffusion term with diffusion matrix Σ(t,Xt−), and

• a jump term with instantaneous intensity measure νt(dz;Xt−).

In particular, the process needs to satisfy the stochastic integral equation

Xt = X0 +

∫ t

0

µ(s,Xs−) ds+

∫ t

0

Σ
1
2 (s,Xs−) dWs +

∫ t

0

∫

Rd
c(s, z,Xs−)N(ds, dz).

(D.6)

Here, the mapping c(s, z, x) and the intensity measure λ(ds, dz) = ds ν(dz) need to be
such that the measure νt(dz;Xt−) is as specified in (D.5). The process Ws is a standard
d-dimensional Brownian motion also known as Wiener process, and

∫ t
0
(·) dWs denotes the

Itô integral. Most mathematical results on jump diffusions employ weaker assumptions
on the function c(s, z, x) of the form

∫ t
0

∫
Rd Emin(1, ‖c(s, z,Xs−‖2) ν(dz) ds < ∞. To

make sense of the Poisson integral in this more general setting, one studies the equation

Xt = X0 +

∫ t

0

µ(s,Xs−) ds+

∫ t

0

Σ
1
2 (s,Xs−) dWs

+

∫ t

0

∫

Rd
c(s, z,Xs−) (N − λ)(ds, dz),

(D.7)
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where (N − λ) is the so-called compensated Poisson random measure. Existence and
uniqueness of the solution of this SDE may be derived under suitable Lipschitz con-
ditions. If the transformation c(s, z, x) is such that µ̃(s, x)

∫
Rd c(s, z, x) ν(dz) < ∞ is

sufficiently regular, then we may write (D.6) in the form (D.7) with drift µ̄ = µ − µ̃.
Hence, one may easily deduce results for equation (D.7) from the more general results
in the literature.

The following theorem gives conditions for the existence of solutions to (D.7) in terms
of Lipschitz-continuity. Denote a ∨ b = max(a, b).

Theorem D.5.1 (Kunita (2019), Theorem 3.3.1 & Lemma 3.3.2). Suppose that for
p ≥ 2, there exists some C > 0 such that the coefficients of (D.7) are bounded and
Lipschitz such that

‖µ(t, 0)‖+ ‖Σ 1
2 (t, 0)‖+

∫

Rd
‖c(s, z, 0)‖p(|z|p−2 ∨ 1)ν(dz) ≤ C,

and

‖µ(t, x)− µ(t, y)‖+ ‖Σ 1
2 (t, x)− Σ

1
2 (t, y)‖

+

(∫

Rd
‖c(s, z, x)− c(s, z, y)‖p(|z|p−2 ∨ 1)ν(dz)

) 1
p

≤ C‖x− y‖.

Then equation (D.7) admits a unique solution. If X0 ∈ Lp(P ), then Xt ∈ Lp(P ) for all
t ≥ 0.

Now denote the (marginal) distribution of Xt, for any t ≥ 0, by Pt. That is, the initial
value follows the distribution X0 ∼ P0, and Pt describes the evolution of this distribution.
For a jump diffusion as above, we may employ Dynkin’s formula (Øksendal and Sulem,
2007, Thm. 1.22) to find that1, for any f ∈ C2

0 ,

∫
f dPt = Ef(Xt)

!
= Ef(X0) +

∫ t

0

E[Asf(Xs)] ds =

∫
f dP0 +

∫ t

0

∫
Asf dPs, (D.8)

(Atf)(x) = −
d∑

i=1

∂if(x) · µ(t, x)i −
1

2

d∑

i,j=1

∂ijf(x) · Σ(t, x)ij

+

∫

Rd
[f(x+ c(t, z, x))− f(x)] ν(dz).

The operator At is called the generator of the Markov process Xt, and gives rise to a
functional analytic perspective on stochastic processes. See Ethier and Kurtz (2005) for
more details.

Dynkin’s formula may be extended to a broader class of functions f if we impose
stronger assumptions on the process Xt.

1The additional term in the integral in Øksendal and Sulem (2007) occurs because they consider
equation (D.7) instead of (D.6).
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Proposition D.5.2. Let the conditions of Theorem D.5.1 hold for all p ∈ [1, 2 + q], for
some q > 0. Then Dynkin’s formula (D.8) holds for any function f ∈ C2(Rd) such that
|f(x)|+ ‖Df(x)‖+ ‖D2f(x)‖ ≤ C(1 + ‖x‖)q. Moreover, there exists some C̃ such that
|Atf(x)| ≤ C̃(1 + ‖x‖)q+2 for all t ≥ 0.

Proof of Proposition D.5.2. Any such function f may be approximated by a sequence
fn ∈ C2

0(Rd) such that |Dkfn(x)| ≤ C̃(1 + ‖x‖)q and Dkfn(x) → Dkf(x) pointwise, for
k = 0, 1, 2. For example, we may set fn = f ·ϕn, where ϕn is a sequence of C∞0 indicators
on [−n, n] with bounded derivatives up to order 2. Via dominated convergence, we
find that

∫
fn dPt →

∫
f dPt, and

∫
∂ifn(x)µ(t, x) dPt(x) →

∫
∂if(x)µ(t, x) dPt(x), and∫

∂ijfn(x)Σ(t, x)ij dPt(x)→
∫
∂ijfn(x)Σ(t, x)ij dPt(x).

It remains to study the jump term, i.e. the integral operator. To this end, we employ
the mean value theorem, i.e. for some x̃(t, z) between x and x+ c(t, z, x),

∫

Rd
|f(x+ c(t, z, x))− f(x)| ν(dz)

≤
∫

Rd
‖Df(x̃(t, z))‖ · ‖c(t, z, x)‖ ν(dz)

≤
∫

Rd
C(1 + ‖x‖+ ‖c(t, z, x)‖)q · ‖c(t, z, x)‖ ν(dz)

≤ C̃

∫

Rd

[
(1 + ‖x‖)q‖c(t, z, x)‖+ ‖c(t, z, x)‖q+1

]
ν(dz)

≤ C̃(1 + ‖x‖)q
∫

Rd
[‖c(t, z, 0)‖+ ‖c(t, z, x)− c(t, z, 0)‖] ν(dz)

+ C̃

∫

Rd

[
‖c(t, z, 0)‖q+1 + ‖c(t, z, x)− c(t, z, 0)‖q+1

]
ν(dz)

(∗)
≤ C̃(1 + ‖x‖)q(1 + ‖x‖) + C̃(1 + ‖x‖q+1)

≤ C̃(1 + ‖x‖q+1).

At step (∗), we used the conditions of Theorem D.5.1 for p = 1 and p = q + 1. Also,
the factor C̃ may vary from line to line.

Note that the upper bound (1 + ‖x‖q+1) is integrable with respect to Pt. Hence,
|f(x+ c(t, z, x))− f(x)| ≤ C(1 + ‖x‖+ ‖c(t, z, x)‖)q · ‖c(t, z, x)‖ is a majorant which is
integrable w.r.t. Pt(dx) ⊗ ν(dz) ⊗ dt. Replacing C by some C̃, this is also a majorant
for |fn(x+ c(t, z, x))− fn(x)|. The dominated convergence theorem yields

∫ t

0

∫ ∫

Rd
[fn(x+ c(s, z, x))− fn(x)] ν(dz)Ps(dx) ds

n→∞−→
∫ t

0

∫ ∫

Rd
[f(x+ c(s, z, x))− f(x)] ν(dz)Pt(dx) ds.

Hence, we may pass to the limit fn → f on both sides of (D.8).
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Differentiating equation (D.8) yields the identity

d

dt

∫
f dPt =

∫
Atf dPt. (D.9)

Thus, we obtain an evolution equation for the nonlinear moments of the distribution Pt.
If the distribution Pt admits a density, i.e. Pt(dx) = pt(x) dx, then equation (D.8) may
be rewritten as

〈f, pt〉 = 〈f, p0〉+

∫ t

0

〈Asf, ps〉 ds

= 〈f, p0〉+ 〈f,
t

∫
0
A∗sps〉 ds,

where 〈f, g〉 =
∫
f(x)g(x) dx denotes the scalar product in L2(Rd), and A∗t is the formal

adjoint operator of At. Since Dynkin’s formula holds in particular for all f ∈ C∞0 , the
variational formulation yields that pt = p0 +

∫ t
0
A∗sps, or

d

dt
pt = A∗tpt. (D.10)

Equation (D.10) is known as the Kolmogorov forward equation in the literature. It
should be pointed out that the rigorous derivation of (D.10) raises several difficulties.
In particular, the density pt needs to exist and be sufficiently regular such that A∗tpt is
well-defined. Furthermore, the adjoint operator A∗t is in general hard to determine due
to the jump integral operator.

In the context of this article, we may exploit some additional structure. In particular,
the state of a particle is described by a location vector and a velocity vector. On the one
hand, the instantaneous jump intensity depends on the location of the particle, but not
on its velocity. On the other hand, our proposed model only includes jumps in velocity,
but not in location. That is, we may represent the model by a transfer function c(t, z, x)
such that

c(t, z, x) = c(t, z, x+ c(t, z, x)). (D.11)

Proposition D.5.3. Suppose that x 7→ c(t, z, x) is continuously differentiable for all
t, z. If (D.11) holds, then the formal adjoint operator A∗t is well defined for any g ∈ C2

0 ,
and is given by

A∗tg(x) =
d∑

i=1

∂i [g(x)µ(t, x)i]−
1

2

d∑

i,j=1

∂ij [g(x)Σ(t, x)ij]

+

∫

Rd
[g(x− c(t, z, x))− g(x)] ν(dz)

(D.12)

We call A∗t in Proposition D.5.3 the formal adjoint because we discuss neither the
domain of At nor the domain of A∗t .
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Proof of Proposition D.5.3. The adjoints of the drift and the diffusion part may be de-
rived via partial integration. Hence, we study the jump term. If ν(Rd) <∞, we have

∫
g(x)

∫
[f(x+ c(t, z, x))− f(x)] ν(dz) dx

=

∫ ∫
g(x)f(x+ c(t, z, x)) dx ν(dz)−

∫
g(x)f(x)

∫
ν(dz) dx.

Now, observe that the equation y = x+c(t, z, x) has the unique solution x = y−c(t, z, y).
A substitution yields

∫ ∫
g(x)f(x+ c(t, z, x)) dx ν(dz)

=

∫ ∫
g(x)f(x+ c(t, z, x+ c(t, z, x))) dx ν(dz)

=

∫ ∫
g(y − c(t, z, y))f(y − c(t, z, y) + c(t, z, y)) |det (I −Dyc(t, z, y))| dx ν(dz)

=

∫ ∫
g(y − c(t, z, y))f(y) |det (I −Dyc(t, z, y))| dx ν(dz).

Lemma D.5.4 below shows that |det (I −Dyc(t, z, y))| = 1. Hence,

∫
g(x)

∫
[f(x+ c(t, z, x))− f(x)] ν(dz) dx =

∫ ∫
[g(y − c(t, z, y))− g(y)] f(y) ν(dz) dy.

This identity for the case ν(Rd) < ∞, and may be extended to the general case by a
limiting procedure, using that

∫
‖c(t, z, y)‖ ν(dy) <∞.

Lemma D.5.4. Let h : Rd → Rd, h ∈ C1, such that h(x) = h(x+ h(x)) for all x ∈ Rd.
Then | det(I −Dxh(x))| = 1 for all x ∈ Rd.

Proof of Lemma D.5.4. Let f(x) = x+ h(x), and determine its inverse as

y
!

= x+ h(x) = x+ h(x+ h(x)) = x+ h(y),

 x = y − h(y),

i.e. f−1(y) = y − h(y) for all y ∈ Rd. fix some x ∈ Rd, and denote A = Dxh(x). Then
Dxf(x) = I + A and Dxf

−1(x) = I − A. On the other hand, Dxf
−1(x) = [Dxf(x)]−1.

Hence, we may conclude that

I − A = (I + A)−1. (D.13)

We will show that (D.13) implies | det(I + A)| = | det(I − A)| = 1.
A consequence of (D.13) is that I = (I − A)(I + A) = I − AA, so that AA = 0.

Thus, (I + A)2 = I + 2A+ A2 = I + 2A, and via induction

(I + A)n = I + nA, n ∈ N.
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Using the mulitiplicativity of the determinant, |det(I+A)|n
n

= | det(A + I/n)|. Now let
n→∞ and use the continuity of the determinant, to find that

lim
n→∞

| det(I + A)|n
n

= det(A) = 0.

This implies | det(I + A)| ≤ 1, since otherwise the left hand side diverges. By the
symmetry of (D.13), we may repeat the argument for −A to find that | det(I −A)| ≤ 1.
Since det(I−A) = det((I+A)−1) = 1/ det(I+A), we conclude that | det(I+A)| = 1.

References
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