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A B S T R A C T

In many astrophysical plasmas, the Coulomb collision is insufficient to
maintain an isotropic temperature, and the system is driven to the anisotropic
regime. In this case, magnetohydrodynamic (MHD) models with anisotropic
pressure are needed to describe such a plasma system. To solve the anisotropic
MHD equation numerically, we develop a robust Gas-Kinetic flux scheme for
non-linear MHD flows. Using anisotropic velocity distribution functions, the
numerical flux functions are derived for updating the macroscopic plasma vari-
ables. The schemes is suitable for finite-volume solvers which utilize a con-
servative form of the mass, momentum and total energy equations, and can be
easily applied to multi-fluid problems and extended to more generalized dou-
ble polytropic plasma systems. Test results show that the numerical scheme
is very robust and performs well for both linear wave and non-linear MHD
problems.

© 2023 Elsevier Inc. All rights reserved.

1. Introduction

The magnetohydrodynamics (MHD) theory plays an important role in studying various space and astrophysical

plasma phenomena. While the ideal, isotropic MHD equations have been successfully applied to many plasma sys-

tems, e.g., the solar corona, the heliosphere and planetary magnetospheres, its validity is questionable since these

collisionless space plasmas usually exhibit anisotropic temperature according to in-situ measurements [1, 2, 3]. Thus

anisotropic MHD theory is needed to describe such pressure anisotropy in collisionless plasma systems. Chew,

Goldberger and Low (CGL) have derived the double-adiabatic theory for describing MHD flows with anisotropic
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pressures [4]. Assuming anisotropic velocity distribution functions, the moment integrals of the Vlasov equation

gives the corresponding macroscopic equations for the perpendicular and parallel pressure with respect to the mag-

netic field. However, solving the CGL MHD equations numerically is very challenging since the equations are no

longer fully conserved. Moreover, the magnitude of the pressure anisotropy also needs to be constrained since plasma

instabilities are easily developed as the anisotropy approaches thresholds e.g., the firehose, mirror and ion-cyclotron

instabilities. Such physical constraint are not fully described by the CGL MHD equations, and the treatment is likely

problem-dependent.

Wegmann [5] included anisotropic pressure in his one-fluid model, with a Godunov-type upwind difference

scheme. Meng et al [6, 7] have developed numerical schemes for solving the anisotropic MHD equations based

on applying the characteristic wave speeds of the CGL system in a Rusanov and/or HLL type flux function. To con-

strain the magnitude of the pressure anisotropy, a relaxation source term is introduced in the pressure equations based

on the instability criteria. The scheme has been successfully used in complicated problems such as the terrestrial

magnetosphere [7] and the solar wind [8], showing promising improvements compared to the isotropic MHD models.

Hirabayashi et al.[9] developed another scheme to solve for the anisotropic MHD equations, using a general pressure

tensor with six distinct elements so no isotropic or gyrotropic assumpition is required. Similar to [6, 7], numerical

fluxes are calculated via the HLL method. Test results have shown that the Hirabayashi et al schemes effectively han-

dles both magnetized and unmagnetized regions and properly reduces to both the isotropic and gyrotropic pressure

approximations as asymptotes.

In general, solving the CGL MHD equations in a finite-volume framework requires the calculation of numerical

flux at the cell interfaces to evolve the macroscopic fluid variables. Upwind schemes require calculations in the

characteristic system, which can be quite complicated for anisotropic MHD equations. Central schemes are much

simpler since no characteristic information is needed and approximate Riemann solvers can be used, e.g., the Rusanov

solver[10] and the Harten-Lax-van Leer type solvers [11], etc. On the other hand, Boltzmann schemes, also known as

“gas-kinetic schemes”, is another type of approximate Riemann solver that calculates the numerical fluxes across the

interfaces by integrating the distribution functions over the velocity space[12, 13]. This type of numerical techniques is

examined to be very robust and reliable, especially on simplicity of of the kinetic flux functions, avoiding complicated

wave decomposition procedure and entropy fix, and is adapted by the Lyon-Fedder-Mobarry (LFM) MHD code[14]

and the Grid Agnostic MHD for Extended Research Applications (GAMERA) code [15]. Combined with a high-order

reconstruction method, the gas-kinetic schemes used in the LFM MHD code is quite robust in various space plasma

problems [16, 17], and has been adapted to multi-fluid plasma problems [18]. The GAMERA code is a reinvention of

the LFM code with significant upgrades, and has successful applications in planetary modeling recently [19, 20].

In this paper, we extend the isotropic gas kinetic schemes by introducing temperature anisotropy in the microscopic

distribution function of plasmas and derive the moment integrals to get macroscopic flux functions for advancing the

MHD equations in a finite-volume framework. To ensure energy conservation when MHD shocks occur, we track

the total energy and perpendicular pressure as the primary variables and derive the parallel pressure from the average

scalar pressure. Combined with high-order reconstruction schemes, the new gas kinetic scheme is capable of solving
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MHD equations with anisotropic pressures. The scheme is accurate for linear wave problems and is robust for non-

linear MHD flows such as strong shocks, and adapting to multi-fluid problems is straightforward. The paper is

organized as follows: Section 2 describes governing equations of the model as well as a discussion of the instabilities.

Section 3 presents the numerical method for the new gas-kinetic scheme. An example of extending the method

to multi-dimensional applications is also shown in section 3. In section 4, numerical tests, including the Brio-Wu

shock problem, one-dimensional magnetosonic wave, two-dimensional nonlinearly polarized circular Alfvén wave,

Orszag–Tang Vortex as well as reconnection in the GEM challenge, are presented. We give a summary in section 5.

An example one-dimensional Python code with the numerical technique described is also provided [21].

2. The double-adiabatic(CGL) MHD equations

2.1. Governing Equations

The conservative form of the double adiabatic equations can be written as follows:

∂ρ

∂t
= −∇ · (ρu) (1)

∂ρu
∂t

= −∇ · (ρuu + P) − ∇ ·
(
I

B2

2
− BB

)
(2)

∂B
∂t

= −∇ × E, (3)

where ρ and u are plasma density and plasma bulk velocity, respectively. B is the magnetic field, and E = −u × B is

the electric field based on the ideal Ohm’s law. P is the plasma thermal pressure tensor expressed as follows:

P = P⊥I +
(
P‖ − P⊥

)
b̂b̂, (4)

where b̂ = B/|B| is the unit vector along the magnetic field, P‖ and P⊥ are the pressure components parallel and

perpendicular to the magnetic field, respectively. Therefore the average scalar pressure can be then written as:

P =
2P⊥ + P‖

3
(5)

which is one-third of the trace of the pressure tensor. Without considering higher order moments (e.g., third moment

heat fluxes), other than the ideal Faraday’s Law, two adiabatic constants can be derived:

D P⊥
ρB

Dt
= 0, (6)

D P‖B2

ρ3

Dt
= 0, (7)

where D/Dt = ∂/∂t + u · ∇ is the Lagrangian derivative. Hau[22] showed that equations (6) and (7) can be put into

conservative forms as follows:
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∂S ⊥
∂t

+ ∇ · (S ⊥u) = 0, (8)

∂S ‖
∂t

+ ∇ ·
(
S ‖u

)
= 0, (9)

where S ⊥ = p⊥B−1, S ‖ = p‖(B/ρ)2 and B = |B| is the strength of the magnetic field. S ⊥ is the magnetic moment

and will be notated as µ throughout the paper. More generalized double polytropic equations can be obtained by

introducing appropriate polytropic exponents γ⊥, γ‖ with S ⊥ = p⊥/Bγ⊥−1 and S ‖ = p‖(B/ρ)γ‖−1 [23]. The double

adiabatic equations can be interpreted as a limiting case with γ⊥ = 2 corresponding to degree of freedom f = 2 and

γ‖ = 3 corresponding to degree of freedom f = 1. Note that the numerical method described in this paper can easily

be extended to the generalized double polytropic cases since the double polytropic equations can also be casted into

conservative form as Equations (8) and (9).

To ensure energy conservation. We also solve for the plasma energy equation as used in previous MHD solvers

[14, 15] for the average scalar pressure P :

∂EP

∂t
= −∇ · [u (EP + P)] − u · ∇ ·

(
B2

2
I − BB

)
(10)

where Ep is the plasma energy, defined as follows:

Ep =
1
2
ρu2 +

P
γ − 1

. (11)

The use of the plasma energy equation has significant advantages in a MHD flows with low plasma β. Although

the total energy equation is a more proper choice for energy conservation, Lyon et al. [14] have shown that the use of

plasma energy equation in numerical MHD does follow the Rankine–Hugoniot conditions within the truncation error,

which is independent of whether or not the electric field is carried by dissipative processes through the shock. Con-

sidering the energy conservation, jump condition near shock, and µ being a good constant of the motion, the plasma

energy equation(10) and the first invariant equation(8) are used to determine the the average pressure P and perpen-

dicular component P⊥. The parallel pressure P‖ is then calculated as P‖ = 3P − 2P⊥ according to the equation(5).

Nevertheless, solving for P‖ using the second adiabat equation serves as a good check and the needed equations are

also provided in the method derivation.

2.2. Instabilities and relaxation

In double-adiabatic MHD, plasma instabilities occur due to strong pressure anisotropy. Physically, these in-

stabilities tend to push the system to equilibrium and cause isotropizion of the plasma. Without considering such

isotropization processes, numerical solutions to the double-adiabatic MHD equation may lead to nonphysical results

with pressure anisotropy exceeding the physical limits. To resolve the issue of non-physical pressure anisotropy,

Meng et al. [6, 7] introduced a relaxation scheme using a operator splitting technique. The relaxation term is applied
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when any of the following instabilities criteria is reached:

P‖
P⊥

> 1 +
B2

P⊥
, (12)

P⊥
P‖

> 1 +
B2

2P⊥
, (13)

P⊥
P‖

> 1 + C1

(
B2

2P‖

)C2

, (14)

where (12) describes the criterion for the firehose instability[24], (13) and (14) correspond to the mirror instability

and ion cyclotron instability[25, 26], respectively. C1 and C2 are constants depending on the field of interest and

research approaches (e.g., Anderson et al. [27], Gary et al. [28]). Here we use the set of values in Meng et al.

[6, 7] with C1 = 0.3 and C2 = 0.5 for space plasma problems. Note that in the double-adiabatic MHD description of

plasmas, only the firehose instability is resolved by the fluid assumption, while the mirror instability and ion cyclotron

instability are of kinetic effects that cannot be captured by fluid model.

To impose limits on the pressure anisotropy from the numerical solutions, we use a similar relaxation method

developed by Meng et al. [6, 7].The basic idea of such relaxation is similar to that in [29], which sets the distribution

back to marginal stability. In our scheme, the relaxation process is applied on the perpendicular pressure P⊥, while

the parallel pressure P‖ was used in Meng et al. [6, 7]. Thus the relaxation term in our calculation is expressed as:

δP⊥
δt

=
P̄⊥ − P⊥

τ
(15)

where P̄⊥ is the marginal stable value of the perpendicular pressure, obtained from Eqs.(5) as well as (12)-(14). For

example, if the firehose instability is present, the P̄⊥ is calculated from (12) as followed:

P̄⊥ = P −
B2

3
(16)

The marginal stable values for mirror instability and ion cyclotron instability are calculated through a similar

process. τ is the time rate at which P⊥ approaches the marginal stable state, which can be either a constant value

taken to be uniform in the simulation domain, or based on instabilities growth rate. Both approaches of determining

τ should lead to much smaller value than the dynamical time of the system, and the results are compared in the

application of geospace-type problem [7]. With such technique, the pressure anisotropy is secure from reaching

instabilities and breaking µ invariance. For now we adapt the first approach to set τ. The relaxation term then can be

applied in a point-implicit way, as a splitting operator at the end of each time step:

Pn+1
⊥ = P∗⊥ +

(
P̄⊥ − P∗⊥

)
∆t

∆t + τ
(17)

where ∆t is the time step, P∗⊥ and Pn+1
⊥ are the perpendicular pressure value before and after the relaxation term is

applied, respectively. If the pressure anisotropy exceeds thresholds of both mirror and ion cyclotron instabilities, the

relaxation term with a larger value will be applied. We note that in global magnetospheric MHD models, besides

a pressure relaxation term in unstable regions, a general global relaxation/isotropization term might be needed, as
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suggested in[7]. Such global relaxation aims to represent other possible mechanisms restricting the plasma pressure

anisotropy in the actual magnetosphere and will not be discussed here.

3. Numerical Schemes

3.1. Fluid and Adiabatic Invariant Fluxes

To compute the fluxes through cell interfaces for finite-volume solvers, we use a Boltzmann-type solver for the

plasma part of the anisotropic MHD equations adapted from Lyon et al. [14]. Boltzmann solvers depend on integrating

distribution functions with respect to the needed variables. The plasma distribution function can be a physical one, for

example, describing the distribution of actual physical particles and their energy and momenta. It can also be more

abstract, for example a function weighting the spread of Riemann invariants. In what follows, we use the common

bi-Maxwellian distribution:

f
(
v⊥, v‖

)
=

(
1

2π

)3/2 1
a2b

exp

−v2
⊥

2a2 +
−v2
‖

2b2

 , (18)

where v⊥is two-dimensional in the two directions perpendicular to the magnetic field direction, which is arbitrary.

a = (P⊥/ρ)1/2 and b =
(
P‖/ρ

)1/2 are the perpendicular and parallel thermal speeds, respectively. In the following

calculations, we use a unit normalization form for initial simplicity. Note that other forms of the distribution function

may be used to derive the flux functions, following the same process as in the next sections.

Fig. 1. The interface coordinate system used in evaluating the numerical fluxes.

In Lyon et al. [14], the calculation of fluxes across a cell face is accomplished in a coordinate system fixed to

the cell interface. Results are then transformed back to the global reference. By convention, here we use x̂ as the

normal direction to the face. The other two direction vectors (ŷ0, ẑ0) are well-defined for the face and are consistent
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across the face, as shown in Fig 1. For the calculation of anisotropic fluxes, it is convenient to perform a further

transformation to a coordinate system that may be different on the two sides of the face, if the magnetic field differs

across the interface. In the new coordinate system, x̂ remains the same, ẑ is defined by x̂ × B, and ŷ = ẑ × x, forming

an orthogonal right-handed Cartesian system. This amounts to a rotation about the original coordinate system so that

(x, y) plane contains the magnetic field, with B in the new system equal B(x̂ cos θ, ŷ sin θ), as showm in Fig. 1. Within

the rotated interface coordinate system (x̂, ŷ, ẑ) the parallel and perpendicular velocities become

v⊥ = −x̂vx sin θ + ŷvy cos θ + ẑvz v2
⊥ = v2

x sin2 θ − 2vxvy cos θ sin θ + v2
y cos2 θ + v2

z (19)

v‖ = x̂vx cos θ + ŷvy sin θ v2
‖ = v2

x cos2 θ + 2vxvy cos θ sin θ + v2
y sin2 θ (20)

It’s useful to point out that the b̂b̂ dyadic is

b̂b̂ =

 cos2 θ cos θ sin θ 0
sin θ cos θ sin2 θ 0

0 0 0

 . (21)

In terms of the x, y, z velocities, the bi-Maxwellian distribution function (18) becomes

f
(
vx, vy, vz

)
=

(
1

2π

)3/2 1
a2b

exp


−

(
a2

(
v2

x + v2
y

)
+

(
b2 − a2

) (
vy cos θ − vx sin θ

)2
)

2a2b2 +
−v2

z

2a2

 . (22)

In general, v contains both the bulk velocity u and the thermal (peculiar) component w. To simplify the calculation of

the moment integrals, we transform the distribution function to a velocity system centered at the bulk velocity u. The

various moments of the Vlasov equation then become, for example:

M
(
vm

i vn
j

)
=

∫ ∞

−∞

(ui + wi)m
(
u j + w j

)n
f (w)dw. (23)

In the (x, y, z) coordinate system, z integrals are separable, and the y integrals can be evaluated in [−∞,∞]. Thus only

the x integrals need to be evaluated in a partial velocity domain. To evaluate the flux crossing a face, the rightward

(positive) flux requires the integral of the distribution over [−ux,∞] and the leftward over [−∞,−ux]. The separation

into parallel and perpendicular velocities leaves cross terms, wxwy in the exponential. These can be handled by

completing the square in wy. The reduced distribution with y dependence removed is calculated as

f (y)
0 (wx) =

exp −w2
x

2η2

√
2πη

(24)

η2 = a2 sin2 θ + b2 cos2 θ = a2 +
(
b2 − a2

)
cos2 θ (25)

The second form for η shows the relationship to P‖ − P⊥ that comes out later in the actual flux functions. We also

need the first two moments of wy as functions of wx.

f (y)
1 (wx) =

exp −w2
x

2η2

(
b2 − a2

)
cos θ sin θwx

√
2πη3

(26)

f (y)
2 (wx) =

exp −w2
x

2η2

(
w2

x sin2 θ cos2 θ
(
b2 − a2

)2
+ a2b2η2

)
√

2πη5
(27)
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We define a number of integrals, denoted by IL
m,n, where the superscript,L, denotes the rightward going integral∫ ∞

−ux
, i.e., flux from the left hand interface. m and n refer to the powers of wx and wy in the integral moment. For

example:

IL
1,2 =

∫ ∞

−ux

dwx

∫ ∞

−∞

dwyw1
xw2

y f (28)

and so on. Using the two-sided definition of the error function er f (·), i.e. er f (0) = 0, er f (−∞) = −1, and er f (∞) = 1.

The needed integrals are:

IL
0,0 =

1 − erf
(
−

ux√
2η

)
2

(29)

IL
1,0 =

ηe
−u2

x
2η2

√
2π

(30)

IL
2,0 =

η2
(
1 − erf

(
−

ux√
2η

))
−
√

2/πηuxe
−u2

x
2η2

2
(31)

IL
3,0 =

η
(
2η2 + u2

x

)
e
−u2

x
2η2

√
2π

(32)

IL
0,1 =

(
b2 − a2

)
sin θ cos θe

−u2
x

2η2

√
2πη

(33)

IL
1,1 =

1
2

(
b2 − a2

)
sin θ cos θ


1 − erf

− ux
√

2η

 − √2uxe
−u2

x
2η2

√
πη

 (34)

IL
2,1 =

sin θ cos θ
(
b2 − a2

) (
2η2 + u2

x

)
e
−u2

x
2η2

√
2πη

(35)

IL
0,2 =

1
2
√
πη3

(
−
√

2
(
b2 − a2

)2
sin2 θ cos2 θuxe

−u2
x

2η2 +1 − erf
 −u2

x
√

2η

 ((b2 − a2
)2

sin2 θ cos2 θ + a2b2
) √

πη

 (36)

IL
1,2 =

1
√

2πη3
e
−u2

x
2η2

(
a2b2η2 +

(
b2 − a2

)2
sin2 θ cos2 θ

(
2η2 + u2

x

))
(37)

To show how these integrals align with the standard forms, they reduce to the following when the integral is

runover the range, [−∞,∞]. :

I0,0 = 1 (38)

I1,0 = 0 (39)

I2.0 = η2 = a2 +
(
b2 − a2

)
cos2 θ (40)

I3,0 = 0 (41)
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I0,1 = 0 (42)

I1,1 =
(
b2 − a2

)
cos θ sin θ (43)

I2,1 = 0 (44)

I0,2 = a2 +
(
b2 − a2

)
sin2 θ (45)

I1,2 = 0 (46)

The leftward going integrals are IR = I − IL. Based on (29)-(37), the rightward fluxes are calculated as:

FL(ρ) =

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvxρ
L f L

=

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwx (ux + wx) ρL f L = ρL
(
uxIL

0,0 + IL
1,0

)
(47)

FL (px) =

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxv2
xρ

L f L

=

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwx (ux + wx)2 ρL f L = ρL
(
u2

xIL
0,0 + 2uxIL

1,0 + IL
2,0

)
(48)

FL
(
py

)
=

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvxvyρ
L f L

=

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwx (ux + wx)
(
uy + wy

)
ρL f L

=ρL
(
uxuyIL

0,0 + uxIL
0,1 + uyIL

1,0 + IL
1,1

)
(49)

FL (pz) =

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvxvzρ
L f L

=

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwx (ux + wx) (uz + wz) ρL f L = ρL
(
uxuzIL

0,0 + uzIL
1,0

)
(50)

FL
(
Eplasma

)
=

1
2

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvx

(
v2

x + v2
y + v2

z

)
ρL f L

=
1
2

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvx

(
(ux + wx)2 +

(
uy + wy

)2
+ (uz + wz)2

)
ρL f L

=
ρL

2

(
ux

(
a2 + u2

x + u2
y + u2

z

)
IL
0,0 +

(
a2 + 3u2

x + u2
y + u2

z

)
IL
1,0 + 3uxIL

2,0 + IL
3,0+

2uxuyIL
0,1 + uxIL

0,2 + 2uyIL
1,1 + IL

1,2

)
(51)

FL(µ) =
1

2BL

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvx

((
wx sin θ + wy cos θ

)2
+ w2

z

)
ρL f L

=
ρL

2BL

(
ux

(
IL
0,0a2 + IL

0,2 cos2 θ − 2IL
1,1 cos θ sin θ + IL

2,0 sin2 θ
)

+ IL
1,0a2 + IL

1,2 cos2 θ

−2IL
2,1 cos θ sin θ + IL

3,0 sin2 θ
)

(52)

FL (
S ‖

)
=

(
BL

ρL

)2 ∫ ∞

−∞

dwy

∫ ∞

−∞

dwz

∫ ∞

−ux

dwxvx

(
wx cos θ + wy sin θ

)2
ρL f L

=

(
BL

ρL

)2

ρL
(
ux

(
IL
0,2 sin2 θ + 2IL

1,1 cos θ sin θ + IL
2,0 cos2 θ

)
+IL

1,2 sin2 θ + 2IL
2,1 cos θ sin θ + IL

3,0 cos2 θ
)

(53)
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The leftward going fluxes are the same with IL replaced with IR. The fluxes F at interface, is given by FL + FR,

and if the state vectors are the same on both sides, F would be as follows:

F(ρ) = ρux (54)

F (px) = ρ
(
u2

x + a2 +
(
b2 − a2

)
cos2 θ

)
(55)

F
(
py

)
= ρ

(
uxuy +

(
b2 − a2

)
sin θ cos θ

)
(56)

F (pz) = ρuxuz (57)

F
(
eplasma

)
= ρux

((
u2

x + u2
y + u2

z

)
/2 +

(
4a2 + b2

)
/2 +

(
b2 − a2

)
cos2 θ

)
(58)

F(µ) =
ρ

B

(
uxa2

)
(59)

F
(
S ‖

)
=

B2

ρ

(
uxb2

)
(60)

Set a = b =
√

P
ρ

=
√

P⊥
ρ

=

√
P‖
ρ

, (47)-(51) and (54)-(58) recover the flux splitting schemes developed by Xu [13]

and used in Zhang et al. [15].

3.2. Magnetic Stresses

To calculate the fluxes for magnetic stresses, we use a similar bi-Maxwellian distribution function with total

pressure (gas+magnetic) for the values of a and b. This choice of the distribution function is similar to the ones used

in Xu [13] and Lyon et al. [14] for computing the magnetic stresses, which has the mean speed within the distribution

linked to the fast mode speed:

fB
(
v⊥, v‖

)
= exp

−v2
⊥

2a2
B

+
−v2
‖

2b2
B

 , (61)

where aB =
√

Ptot⊥
ρ

, Ptot⊥ = P⊥+ 1
2

(
B2

x + B2
y + B2

z

)
, and bB =

√
Ptot‖

ρ
, Ptot‖ = P‖+ 1

2

(
B2

x + B2
y + B2

z

)
. Since the magnetic

stress tensor does not explicitly contain the bulk velocity, only the zeroth moments of corresponding distribution that

across the interface, i.e. IL
B0,0 and IR

B0,0 are needed, and calculated as follows:

IL
B0,0 =

∫ ∞

−ux

dwx

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz f L
B =

1 − erf
(
−

ux√
2ηB

)
2

(62)

IR
B0,0 =

∫ −ux

−∞

dwx

∫ ∞

−∞

dwy

∫ ∞

−∞

dwz f R
B =

1 + erf
(
−

ux√
2ηB

)
2

, (63)

where ηB =

√
a2

B sin2 θ + b2
B cos2 θ. The magnetic stress tensor is calculated as follows:

Smag =IL
B0,0

[
1
2

(
BL

)2
I − BLBL

]
+ IR

B0,0

[
1
2

(
BR

)2
I − BRBR

]
.

(64)
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3.3. Coordinates Transforms to the Base System

So far everything is to have x as the interface normal vector and the magnetic field is contained in the (x, y) plane,

which in general not aligned with the global reference (x, y0, z0). To use these fluxes functions, it is convenient to

define a rotated local coordinates (x, y, z) transformed from the original coordinate (x0, y0, z0), after the left interface

states are split to left and right states, then vector fluxes are solved and rotated back into the base system.

One example of such transformation process, where x is set to x0-direction, is as follows:

ux,y,z = T · ux0,y0,z0 ⇒

 ux

uy

uz


=

 1 0 0
0 cosα sinα
0 − sinα cosα

 ·
 ux0

uy0

uz0

 ,
(65)

where cosα =
By+ε√

B2
y+B2

z +ε
, sinα =

Bz√
B2

y+B2
z +ε

. The idea of introducing the infinitesimal term ε is optional, but it does

account for including the special case that the direction of magnetic field is normal to the interface as well, i.e. B is

aligned with x and θ = 0. In such case of θ = 0, (49) and (50) are identical, therefore there is no need to distinguish

y from z. The inverse transformation matrix used to rotate the results back to global reference is simply the transpose

of the tranformation matrix T in that T is a rotation matrix :

Fx0,y0,z0
ρu = T

T
· Fx,y,z

ρu ⇒

 Fx0

Fy0

Fz0


=

 1 0 0
0 cosα − sinα
0 sinα cosα

 ·
 Fx

Fy

Fz

 .
(66)

The transformation matrices for y0-face-normal coordinate system and z0-face-coordinate system go through the

same process.

4. Test Results

In this section, we show standard test simulation results to demonstrate the effectiveness of the anisotropic gas

kinetic scheme for MHD problems, including both one-dimensional and two-dimensional MHD tests for both linear

and nonlinear flow conditions. We use a similar finite-volume scheme as developed by Zhang et al. [15], with high-

order upwind reconstruction combined with the Partial Donor Cell (PDM) limiter, and constrained transport (Yee-

Grid) to satisfy the divergence-free magnetic field ∇ · B = 0. Since a second order Adams-Bashforth time stepping

scheme is used in the test simulations, the relaxation terms serves as a splitting operator which is applied after the

corrector step.

4.1. 1-D Linear Magnetosonic waves

We first simulate the propagation of one-dimensional magnetosonic waves in the linear region with small velocity

perturbation on a uniform background plasma and magnetic field. The simulated wave speeds are compared with the

analytical solutions to demonstrate that the wave behavior follows the analytical dispersion relations.
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The simulation domain is x ∈ [−1, 1] with Nx = 256 grid cells. A hard-wall boundary condition is used in the

simulation so that the linear wave exhibits standing-wave structures. The initial condition is set to ρ = 1, P = 0.5,

Vx = 0.01 sin 2πx, Vy = Vz = 0, Bx = Bz = 0, and By = 1. The set of values of perpendicular and parallel pressures

are then calculated according to specific anisotropy while keeping the average scalar pressure P = 0.5. The initial

magnitudes of the anisotropic pressure values used in the linear wave simulationss are listed in Table 1.

Pressure anisotropy P‖
P⊥

Parallel pressure P‖ Perpendicular pressure P⊥ Average scalar pressure P
0.25 1/6 2/3 0.5
0.5 0.3 0.6 0.5
1 0.5 0.5 0.5
2 0.75 0.375 0.5
3 0.9 0.3 0.5
4 1 0.25 0.5

Table 1. Values of pressure anisotropy P‖
P⊥

, parallel pressure P‖, perpendicular pressure P⊥ and average scalar pressure P in the presented
test examples.

Fig. 2. The vx as a function of time and position. The color shows the magnitude of vx. The standing wave pattern is seen in the vertical (x)
direction with the standing waves oscillations apparent in the horizontal (time). The oscillation period is shown by the arrowed indications
beneath each plot.

The wave speed of the perpendicular fast mode is given by [6]:

VF =

√
V2

A + V2
S⊥ =

√
B2

ρ
+

2p⊥
ρ

(67)
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To show the dynamic variation of the standing wave, we use a set of keograms showing the vx as a function of time

and position under different pressure anisotropy as presented in Figure 2. The phase speeds of the perpendicular mag-

netosonic modes are derived from the simulated periodicity, as shown in Figure 2, which exhibit excellent agreement

with the analytical wave speeds. The comparison of the numerical and theoretical values is shown in Figure 3.

Fig. 3. Comparison of numerical and analytical perpendicular fast wave speed.

4.2. 1-D MHD Shock Tube Problem

To show the performace of the anisotropic gas kinetic scheme on handling non-linear problems with strong shocks,

we use one-dimensional Brio-Wu shock tube problem as a standard test[30]. The 1-D MHD shock tube test is done

in a domain of x ∈ [−1, 1] with Nx = 512 cells. The initial conditions follow:

(
ρ,Vx,Vy,Vz, Bx, By, Bz, P, P⊥, P‖

)
=

(1.0, 0.0, 0.0, 0.0, 0.75, 1.0, 0.0, 1.0, 1.0, 1.0) (x < 0)
(0.125, 0.0, 0.0, 0.0, 0.75,−1.0, 0.0, 0.1, 0.1, 0.1) (x ≥ 0)

(68)

The simulation results of the anisotropic MHD shock tube at t = 0.2 are shown in Figure 4. Similar test sim-

ulation results can be found in Hirabayashi et al. [9]. It is evident that our simulation results are very similar to

Hirabayashi’s nearly double adiabatic results. Both our results and those in Hirabayashi et al. [9] have shown: (1)

the contact discontinuity region exhibits variations in ρ, By, P⊥ and P‖, which is different from the ideal MHD case,

and (2) selective enhancement of the parallel pressure across the slow shock. The feature (1) can be explained by

the momentum conservation law applied across a boundary without mass flux, and the feature (2) can be explained

by the conservation of the two adiabatic invariants, i.e, Eqs.(6)-(7). Hirabayashi et al. [9] provided detailed physical

explanations for these noteworthy features compared with isotropic, ideal MHD solutions. We note that the jump

condition of density and pressure is slightly different compared with Hirabayashi et al. [9], probably because we solve

the conservative form of the plasma energy equations, while the numerical schemes developed by Hirabayashi et al.

[9] only used non-conservative form of the anisotropic pressure equations.
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Fig. 4. Brio–Wu shock tube problem under CGL MHD, data taken at t = 0.2.

4.3. 2-D Nonlinearly Polarized Alfvén waves

We use the nonlinearly polarized circular Alfvén wave test described in Tóth [31] to demonstrate the effectiveness

of the new scheme in the nonlinear regime, as well as for multi-dimensional applications. The computational domain

is set to 0 ≤ x ≤ 1
sinα and 0 ≤ y ≤ 1

cosα , where α = π
3 is the angle of Alfvén wave propagation with respect to the

x-axis. The multi-dimensional nature of the test is guaranteed by having different numerical fluxes in the x- and y-

directions. Simulations are done with using a Cartesian grid with 128 × 128 cells, with periodic boundary conditions

in both x- and y-directions. The initial conditions are ρ = 1, P = 0.5, u⊥ = δU sin 2πx‖, B⊥ = δB sin 2πx‖, and

uz = δU cos 2πx‖, Bz = δB cos 2πx‖ with γ = 5
3 and x‖ = (x cosα + y sinα), where u⊥ and B⊥ are the components

of the velocity and magnetic field perpendicular to the wave vector. The B‖ and B⊥ components are calculated as

B⊥ = By cosα − Bx sinα, and B‖ = Bx cosα + By sinα. The set of values of perpendicular and parallel pressures is

the same as in the 1-D magnetosonic wave tests, shown in Table 1. In order to make the non-linear Alfvén waves

propagate in the direction α, the relation between δU and δB follows the Walen relation in anisotropic system, as

suggested by Hirabayashi et al. [9]:
δU
V∗A

=
δB
B‖0

, (69)
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where B‖0 = 1 is the strength of the initial magnetic field parallel to the wave vector, δB is set to 0.1, and V∗A is the

modified Alfvén wave speed in anisotropic plasmas as follows:

V∗A =

√
B2 + (P⊥ − P‖)

ρ
, (70)

A set of keogram showing the B⊥ as a function of time and position under different pressure anisotropy is presented

in figure5. Compared with the isotropic case, the wave speed is faster when p⊥ > p‖ and is slower when p⊥ < p‖. A

comparison of the numerical speed in the presented test cases and analytical propagation speed is shown in Figure 6:

Fig. 5. The B⊥ as a function of time and position. x-axis is time, y-axis is position (x‖). The color shows the magnitude of B⊥. The wave
speed is shown by the slope of arrowed indications in each plot. Simulation time is 1.0.

4.4. 2-D Orszag–Tang Vortex

To test the effectiveness of the anisotropic gas-kinetic scheme on tracking both discontinuities and smooth struc-

tures, we run the Orszag–Tang Vortex simulation [32] using the double-adiabatic flux schemes. The test simulation is

done within a square domain, with a grid of x ∈ [0, 1], y ∈ [0, 1], and Nx = Ny = 256. The initial density and pressure

are uniform within the simulation domain: ρ = 25
36π, P = 5

12π, and γ = 5
3 . The initial velocities are set as periodic:

vx = − sin(2πy) and vy = sin(2πx). The initial magnetic field are set as Bx = −B0 sin(2πy) and By = B0 sin(4πx) with

B0 = 1. The boundary conditions are periodic in both x- and y-direction.

We perform three test simulations. Run 1 is from the isotropic, Maxwellian-based gas-kinetic scheme for ideal

MHD, as developed by Xu [13] and used in Zhang et al. [15]. Run 2 employs the anisotropic MHD scheme developed
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Fig. 6. Comparison of numerical and analytical Alfvén wave speed.

in this study, while isotropization is enforced, i.e., P‖ = P⊥ = P at each time step. Run 3 uses the anisotropic

MHD scheme, with relaxation time τ = 10−2dt identical for three types of instabilities present in the computational

domain, for simplicity. Figure 7(a) shows the spatial distributions of pressure at t = 0.48 in Run 1. Figure 7(b) shows

the pressure from run 2 at the same simulation time. Figure 7(c) and (d) show the the spatial distributions of P‖

and P⊥ from Run 3 at t = 0.48, respectively. The comparison between Figure 7(a) and (b) demonstrates that the

anisotropic MHD scheme is reduced to the isotropic gas-kinetic scheme, when P‖ = P⊥ = P is enforced. Note that up

to simulation time t = 0.48, the overall structure of the anisotropic run 3 does not deviate from the ideal MHD result

in an exaggerated/extreme way, since in the Orszag–Tang Vortex problem the plasma beta are large that β‖, β⊥ > 1,

and hence the anisotropy is limited within a quite narrow range, by the instability condition. A more quantitative

comparison of run 1 and run 2 is presented in Figure 8 using line profiles. Figure 8(a) shows the comparisons of

the plasma pressure profiles (of run 1 and run 2) at t = 0.48, with x = 0.5, along the y direction. The simulated P‖

and P⊥ in Run 3 along the same x=0.5 cut line are presented in Figure8(b). The results show the effectiveness of

the numerical scheme on handling the highly nonlinear MHD shock formation and interactions, as well as correctly

reducing to isotropic scheme as a limiting case.

4.5. The Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge

We run the Geospace Environmental Modeling (GEM) Magnetic Reconnection Challenge [33, 34] to verify the

scheme’s capability of handling reconnection process. The initial conditions are a perturbed Harris sheet equilibrium.

The unperturbed equilibrium is given by
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Fig. 7. The spatial distribution of plasma pressure P at t = 0.48 in three Orszag–Tang simulations. Panel(a) shows the result in run 1 (ideal,
isotropic model ). Panel(b) shows the result in run 2 (anisotropic model with enforced isotropization). Panel (c)(d) show P‖ and P⊥ in run
3 (anisotropic model), respectively.

Bx = B0 tanh(y/λ) (71)

n = n0

(
1/5 + sech2(y/λ)

)
(72)

P =
B2

0

2n0
n(y), (73)

(74)

And the perturbation is given as:

δB = −ẑ × ∇(ψ) (75)

ψ(x, y) = ψ0 cos (2πx/Lx) cos
(
πy/Ly

)
, (76)
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Fig. 8. The line profiles of plasma pressure at x = 0.5 from three Orszag–Tang simulations at t = 0.48.

where λ = 0.5, B0 = 1, n0 = 1, ψ0 = B0/10, Lx = 25.6 and Ly = 12.8. The boundary condition is periodic in the

x-direction, and zero gradient is used in the y-direction. The 2-D computational domain is ranging from x = +Lx/2

to x = −Lx/2 and from y = +Ly/2 to y = −Ly/2, with 512 × 256 grid cells. Since our focus is to test the effectiveness

of the anisotropic gas-kinetic schemes in an application like the GEM reconnection challenge, no resistive term is

implemented in the test simulation, i.e., η = 0. In the simulation, no fast reconnection rate is observed since we did

not include Hall physics. We also note that there is strong firehose-type anisotropy(P‖ − P⊥) in the outer layers of

the magnetic islands but still inside the separatrix. This distinguished feature is consistent with the observation in the

anisotropic MHD result of [34], and remains throughout the whole simulation, we give a snapshot of such feature at

t=16 so the result can be compared with [34] Plate 4.

5. Summary and Conclusion

We proposed a new gas kinetic schemes for solving the double adiabatic MHD equations. The numerical method

incorporates pressure anisotropy in the microscopic distribution function of plasmas. Moment integrals for macro-

scopic flux functions for conservative forms of anisotropic MHD equations (mass, momentum, energy as well as two

adiabat), are derived. We implemented a source(relaxation) term to mimic micro-scale plasma interactions that re-

laxes the pressure to the marginally stable state, when the pressure anisotropy meets any instabilities criteria (fire-hose,

mirror and ion cyclotron).
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Fig. 9. The pressure difference, current, as well as some magnetic field lines of the anisotropic run in the GEM reconnection at t = 16.
Panel(a) shows the pressure difference, Panel(b) shows the current density Jz with a minus sign added to keep the direction of color bar
consistent.

The numerical schemes have a comparable computational cost as the ideal MHD gas-kinetic flux splitting method

[13],[15] which has a few exp and erf function on each interface side. Since we use conservative form of pressure

equations, the extension of the current numerical scheme to the generalized double polytropic equations is straight-

forward.

We perform a series of test cases to verify the numerical model. The results in both one-dimensional magnetosonic

wave and two-dimensional nonlinearly polarized circular Alfvén wave propagation tests demonstrates the quality and

accurateness of the current numeric scheme. The successful application in nonlinear test cases including Brio-Wu

shock, Orszag–Tang Vortex and GEM reconnection simulations demonstrates the robustness of the method. We plan

to apply the numerical model to geospace as well as planetary magnetospheres modeling. Extension to including Hall

term and multi-fluid implementation will be done in the future.
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