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Abstract. This article proposes an efficient numerical method for solving nonlinear partial differential

equations (PDEs) based on sparse Gaussian processes (SGPs). Gaussian processes (GPs) have been exten-
sively studied for solving PDEs by formulating the problem of finding a reproducing kernel Hilbert space

(RKHS) to approximate a PDE solution. The approximated solution lies in the span of base functions

generated by evaluating derivatives of different orders of kernels at sample points. However, the RKHS
specified by GPs can result in an expensive computational burden due to the cubic computation order of

the matrix inverse. Therefore, we conjecture that a solution exists on a “condensed” subspace that can

achieve similar approximation performance, and we propose a SGP-based method to reformulate the opti-
mization problem in the “condensed” subspace. This significantly reduces the computation burden while

retaining desirable accuracy. The paper rigorously formulates this problem and provides error analysis and

numerical experiments to demonstrate the effectiveness of this method. The numerical experiments show
that the SGP method uses fewer than half the uniform samples as inducing points and achieves comparable

accuracy to the GP method using the same number of uniform samples, resulting in a significant reduction
in computational cost.

Our contributions include formulating the nonlinear PDE problem as an optimization problem on a

“condensed” subspace of RKHS using SGP, as well as providing an existence proof and rigorous error
analysis. Furthermore, our method can be viewed as an extension of the GP method to account for general

positive semi-definite kernels.

1. Introduction

This work develops a numerical method based on sparse Gaussian processes (SGPs) [19, 37] to solve
nonlinear partial differential equations (PDEs). PDEs have been widely used to model applications in science,
economics, and biology [25, 36]. However, very few PDEs admit explicit solutions. Standard numerical
approaches including finite difference [36] and finite element methods [13] for solving PDEs are prone to
the curse of dimensions. Recently, to keep pace with increasing problem sizes, machine learning methods
have attracted a lot of attention [4, 20, 21, 29, 42]. Probabilistic algorithms to solve linear problems are
presented in [6, 22, 23]. The authors of [4] extend these ideas and propose a Gaussian process (GP) framework
for solving general nonlinear PDEs. In particular, for time-dependent PDEs, GP methods based on time-
discretization are considered in [15, 28, 38]. Most of the algorithms mentioned above seek approximations of
a solution to a PDE in a normed vector space with base functions chosen beforehand. For instance, for the
GP method in [4], by the representer theorem [24, Section 17.8], a solution of a PDE is approximated in the
span of base functions, each of which is associated with a sample. If the samples are not chosen properly,
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Fig. 1. The illustration of Problem 1. u∗ is the solution of a PDE in the space U . Given an

approximation u†
Ũ
of u∗ in the subspace Ũ of U such that ∥u†

Ũ
−u∗∥U ⩽ ϵ for some ϵ > 0, and

given a positive number δ such that ϵ ⩽ δ, we “compress” Ũ to find a minimum subspace

Uc of Ũ such that the approximation u†Uc
of u∗ in Uc satisfies ∥u∗ − u†Uc

∥U ⩽ δ.

the base functions may contain redundant information about the approximated solution. Therefore, a set
of random samples may result in consuming unnecessary extra storage and in a waste of computational
time. The computational cost of the GP method [4] grows cubically with respect to the number of samples
due to the inversion of covariance matrices of samples. To improve the performance of [4], [21] proposes
to approximate the solution of a PDE in the space generated by random Fourier features [27, 41], where
the corresponding covariance matrix is a low-rank approximation to that of the GP method in [4]. The
numerical experiments in [21] show that approximating solutions of PDEs in the spaces generated by low-
rank kernels reduces the precomputation time, saves the memory, and achieves comparable accuracy to the
GP method. This motivates us to question whether the space we use to approximate a solution of a PDE
contains redundant information for general numerical methods of solving nonlinear PDEs and whether we
can “compress” the space until it reaches a minimum subspace but contains sufficient information to express
a solution of the PDE. In other words, we are interested in the following problem:

Problem 1. Let U be a normed vector space equipped with the norm ∥ · ∥U and let u∗ ∈ U be the solution

of a nonlinear PDE. For any W ⊂ U , denote by u†W a best approximation of u∗ in W in terms of a specific

numerical method and by |W| the cardinality of W. Let u†
Ũ

be the approximation of u∗ in a subspace Ũ of

U , and ∥u†
Ũ
− u∗∥U ⩽ ϵ for some ϵ > 0. Given a positive number δ such that ϵ ⩽ δ, find a subspace Uc, with

the minimum cardinality, of Ũ such that the approximation u†Uc
of u∗ in Uc satisfies ∥u∗ − u†Uc

∥U ⩽ δ. That
is, we find Uc such that

Uc = argminV⊂Ũ,∥u∗−u†
V∥U⩽δ |V|.

Problem 1 is concerned about the efficient information in the space Ũ used to approximate the true
solution u∗, which is illustrated in Figure 1. Using a “condensed” space not only saves the storage but
reduces the computational costs. Merely decreasing the number of base functions of U may not sufficiently
handle Problem 1, which is implied by the numerical experiments in Section 4 (see discussions in Subsection
4.1). A thorough general discussion of Problem 1 for all the numerical methods of solving nonlinear PDEs is
out of the scope of this paper. Here, we propose to study Problem 1 in terms of the framework in [4], where a
numerical approximation of the solution to a nonlinear PDE is viewed as the maximum a posteriori (MAP)
estimator of a GP conditioned on solving the PDE at a finite set of sample points. By using the representer
theorem [24, Section 17.8], the approximated solution lies in the span of base functions which are obtained
by evaluating kernel functions or derivatives of kernels at sample points. Thus, base functions generated by
random samples may provide redundant information about the approximated solution. To address Problem
1 with respect to the GP method in [4], we propose a low-rank approximation method based on SGPs, which
leverages a few inducing points to summarize the information from observations. In the SGP method, we
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replace the Gaussian prior by an alternative with a zero mean and a low-rank kernel induced from inducing
points. The approximation to the solution of a PDE can be viewed as a MAP estimator of a SGP conditioned
on a noisy observation about the values of linear operators of the true solution, where the observation satisfies
the PDE at the samples. Meanwhile, the numerical approximation can also be viewed as a function with the
minimum norm in the reproducing kernel Hilbert space (RKHS) associated with the low-rank kernel. By
Theorem 3.4 in Section 3, a solution given by the SGP method lies in the span of base functions generated
by evaluating kernels or derivatives of kernels at inducing points. Thus, if a small number of inducing points
are sufficient to capture the information in the sample points, the RKHS generated by the low-rank kernel is
sufficient to serve as a candidate of the minimum subspace in Problem 1 for the GP method [4]. By a stable
Woodbury matrix identity stated in Subsection 2.2, the dimension of the matrix to be inverted in the SGP
method depends only on the number of inducing points selected. In the numerical experiments in Section 4,
the SGP method reduces the computational cost by sacrificing only negligible amounts of accuracy by using
half of the samples as inducing points.

This inducing-point approach is initially proposed in the deterministic training conditional (DTC) ap-
proximation [32], and then it has been fully studied in several works. [26] provides a unifying view for the
approximation of GP regressions. This framework includes the DTC, the fully independent training condi-
tional (FITC) approximation [35], and the partial independent training conditional (PITC) approximation.
All the above methods modify the joint prior using a conditional independence assumption between training
and test data given inducing variables. Alternatively, [12, 37] leverage the inducing-point approach into the
computing of the evidence lower bound of the log marginal likelihood. They retain exact priors but approxi-
mate the posteriors via variational inference. On the other hand, the estimation of inducing inputs has been
generalized into an augmented feature space in [16]. In particular, SGPs are extended in the spectral domain
with and without variational inference [11, 17]. Moreover, some works directly speed up the computation
of GP regressions through fast matrix-vector multiplication and pre-conditional conjugate gradients [9], and
through structured kernel interpolation [40].

Our contributions are summarized as follows:

1. We introduce a general framework based on SGPs to solve nonlinear PDEs. Our method seeks
approximated solutions in RKHSs associated with positive semi-definite kernels generated by inducing
points. The SGP method provides a way of “compressing” function spaces such that “condensed”
subspaces provide sufficient information about approximated solutions to PDEs. Meanwhile, the
framework in this paper can be viewed as an extension of the one in [4] to take into consideration of
more general positive semi-definite kernels;

2. In the SGP method, the inversion of the covariance matrix requires only the inversion of a matrix
whose size is proportional to the number of inducing points which is much less than the number of
samples. The numerical experiments in Section 4 show that the SGP method, which leverages less
than half of the uniform samples as inducing points, reduces the computational cost by sacrificing
only negligible amounts of accuracy compared to the GP method in [4] using the same number of
uniform samples;

3. We give a rigorous existence proof for the numerical approximation to the solution of a general
PDE and analyze error bounds in Section 3. Our analysis bases on the arguments in [4], learning
theory [33, 34], and Nyström approximations [14]. The error bound given in Theorem 3.7 provides
qualitative hints to improve the accuracy of our method;

4. The numerical experiments show that the choice of the positions of inducing points and parameters
of kernels has a profound impact on the accuracy of the numerical approximations. In Section 2, we
give a probabilistic interpretation for the SGP method in the setting of [37], which motivates future
work for hyperparameter learning.

The paper is organized as follows. Section 2 summarizes our SGP method by solving a nonlinear elliptic PDE.
In Section 3, we provide a framework of the SGP method to solve general PDEs. Numerical experiments are
presented in Section 4. Further discussion and future work appear in Section 5.
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Notations. Vectors are in bold font. For a real-valued vector v, we represent by |v| the Euclidean norm of
v and by vT its transpose. For a matrix A, we denote by ∥A∥ the spectral norm of A. Let ⟨u,v⟩ or uTv be
the inner product of vectors u and v. For a normed vector space V , let ∥ · ∥V be the norm of V . Let U be a
Banach space associated with a quadratic norm ∥ ·∥U and let U∗ be the dual of U . Denote by [·, ·] the duality
pairing between U∗ and U . We assume that there exists a linear, bijective, symmetric ([KUϕ, ψ] = [KUψ, ϕ]),
and positive ([KUϕ, ϕ] > 0 for ϕ ̸= 0) covariance operator KU : U∗ 7→ U , such that

∥u∥2U = [K−1u, u],∀u ∈ U .

Let {ϕi}Pi=1 be a set of P ∈ N elements in U∗ and let ϕ := (ϕ1, . . . , ϕP ) be in the product space (U∗)
⊗
P
.

Then, for u ∈ U , we denote the pairing [ϕ, u] by

[ϕ, u] := ([ϕ1, u], . . . , [ϕP , u]).

Furthermore, for u := (u1, . . . , uS) ∈ U
⊗
S , S ∈ N, we represent by [ϕ,u] ∈ RP×S the matrix with entries

[ϕi, uj ]. We write ∥ · ∥ as the induced norm for linear operators on U , i.e., for any F : U 7→ U , we define
∥F∥ = max∥u∥U=1 ∥F(u)∥U . Given any R ∈ N, we denote by [R] the set of nonnegative integers less equal
to R. Finally, we represent by C a positive real number whose value may change line by line.

2. A Recapitulation of the SGP Method

To briefly summarize the SGP method and compare it to the GP method proposed in [4], in Subsection
2.1, we demonstrate the SGP method by solving a nonlinear elliptic PDE (2.1). Both the GP and the SGP
methods can be applied to more general forms of PDEs, which is discussed in Section 3. Furthermore, we can
naturally extend what we discuss below to solve PDE systems. We show a numerical example about solving
a PDE system in Subsection 4.2. The SGP method approximates the solution of the PDE by a minimizer
of an optimal recovery problem, which searches a solution with the minimum norm in the RKHS associated
with a low-rank kernel generated by inducing points and where the values of linear operators of the solution
are close to those satisfying the PDE at finite samples. From a probabilistic perspective, the optimal recovery
problem can also be interpreted as the MAP estimation for a SGP constrained by a noisy observation of
linear operator values of the true solution. The SGP method also requires the inversion of a covariance
matrix. In Subsection 2.2, we describe a robust way to compute the inverse of the covariance matrix, which
is the cornerstone of the SGP method to reduce computational complexity. Finally, in Subsection 2.3, we
give a probabilistic explanation for the SGP method, which motivates a way to choose hyperparameters in
future work.

2.1. The SGP Method. Let Ω be a bounded open subset of R2 with a Lipschitz boundary ∂Ω. Given
continuous functions f : Ω 7→ R and g : ∂Ω 7→ R, we seek a function u∗ solving{

∆u∗(x) = u∗(x)(∂x1u
∗(x) + ∂x2u

∗(x)) + f(x),∀x := (x1, x2) ∈ Ω,

u∗(x) = g(x),∀x := (x1, x2) ∈ ∂Ω,
(2.1)

where we assume that (2.1) admits a unique strong solution. We propose to approximate the solution to
(2.1) by functions in a RKHS generated by inducing points. First, we show the construction of such RKHS.
We assume that the solution of (2.1) is in the space U , where U is a RKHS associated with a nondegenerate,
symmetric, and positive definite kernel K : Ω×Ω 7→ R. We view U as the ambient space. Let U∗ be the dual
space of U and let [·, ·] : U∗ × U 7→ R be the duality pairing. Next, we sample M inducing points {x̂j}Mj=1

in Ω such that {x̂j}MΩ
j=1 ⊂ Ω and {x̂j}Mj=MΩ+1 ⊂ ∂Ω for 1 ⩽ MΩ ⩽ M . Then, we define the functionals

ϕ
(1)
j = δx̂j

for 1 ⩽ j ⩽ M , ϕ
(2)
k = δx̂k

◦ (∂x1 + ∂x2) and ϕ
(3)
k = δx̂k

◦ ∆ for 1 ⩽ k ⩽ MΩ. Denote by

ϕ(1), ϕ(2), ϕ(3) the vectors with entries ϕ
(1)
j ϕ

(2)
k , ϕ

(3)
k , respectively. Let ϕ be the vector concatenating ϕ(1)

ϕ(2), and ϕ(3). For simplicity, we denote by ϕj the jth component of ϕ. Define K(·,ϕ) as the vector with
entries

∫
K(·,x′)ϕj(x

′) dx′ and define K(ϕ,ϕ) as the matrix with elements
∫ ∫

K(x,x′)ϕi(x)ϕj(x
′) dx dx′.
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Suppose that the inducing points are chosen such that K(ϕ,ϕ) is positive definite. Then, we define a new
kernel Q : Ω× Ω 7→ R as

Q(x,x′) = K(x,ϕ)(K(ϕ,ϕ))−1K(ϕ,x′).

Using the positivity of the kernel K, we see that Q is positive semi-definite (see Lemma 3.1 in Section 3).
Thus, by the Moore–Aronszajn theorem, Q induces a unique RKHS, denoted by UQ. We call UQ the RKHS
generated by inducing points.

Next, we approximate the solution u in UQ. We take N samples {xi}Ni=1 such that {xi}NΩ
i=1 ⊂ Ω and

{xi}Ni=NΩ+1 ⊂ ∂Ω for 1 ⩽ NΩ ⩽ N . Let ∥ · ∥UQ
be the norm of UQ. To find an approximated solution in

UQ, for the first attempt, we consider a similar formulation to that of the GP method in [4] and solve the
optimal recovery problem

min
u∈UQ

∥u∥2UQ

s.t. ∆u(xj) = u(xj)(∂x1u(xj) + ∂x2u(xj)) + f(xj),∀j = 1, . . . , NΩ,

u(xj) = g(xj),∀j = NΩ + 1, . . . , N.

(2.2)

However, since Q is only positive semi-definite, the representer theorem [24, Section 17.8] does not apply.
Furthermore, since UQ is a subspace of U , the solution u∗ to (2.1) may not lie in UQ. Hence, we may not
find a function in UQ satisfying the constraints in (2.2). Thus, instead of seeking a function in UQ satisfying
the constraints of (2.2) exactly, we consider a relaxed version of (2.2).

More precisely, our SGP method introduces a slack vector z and approximates the solution u∗ of (2.1)
with a minimizer of the following regularized optimal recovery problem

min
z∈R2NΩ+N ,u∈UQ

N∑
j=1

|z(1)j − u(xj)|2+
NΩ∑
j=1

|z(2)j − (∂x1
+ ∂x2

)u(xj)|2 +
NΩ∑
j=1

|z(3)j −∆u(xj)|2 + γ∥u∥2UQ

s.t. z
(3)
j = z

(1)
j z

(2)
j +f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N,

(2.3)

where γ > 0 is a given small regularization parameter and

z := (z
(1)
1 , . . . , z

(1)
NΩ
, z

(1)
NΩ+1, . . . , z

(1)
N , z

(2)
1 , . . . , z

(2)
NΩ
, z

(3)
1 , . . . , z

(3)
NΩ

).

Let (u†, z†) be a minimizer of (2.3). A minimizer u† of (2.3) can be viewed as a MAP estimator of a SGP
ξ ∼ N (0, Q) conditioned on a noisy observation z† about values of the linear operators of u†, where z†

satisfies the PDE at the sample points. A probabilistic interpretation of (2.3) is given in Subsection 2.3.
To solve the infinite dimensional minimization problem (2.3), we derive a representer formula for a min-

imizer u. Define ψ as the vector consisting of δxj
, δxk

◦ (∂x1
+ ∂x2

), and δxk
◦ ∆, for 1 ⩽ j ⩽ N and

1 ⩽ k ⩽ NΩ. We represent by ψj the jth component of ψ. Let Q(·,ψ) be the vector containing entries∫
Q(·,x′)ψj(x

′) dx′ and let Q(ψ,ψ) be the matrix consisting of elements
∫ ∫

Q(x,x′)ψi(x)ψj(x
′) dx dx′.

Theorem 3.4 in Section 3 shows that (2.3) admits a minimizer u† such that

u†(x) = Q(x,ψ)T (γI +Q(ψ,ψ))−1z†, (2.4)

where I is the identity matrix and z† is a minimizer of
min

z∈R2NΩ+N
zT (γI +Q(ψ,ψ))−1z

s.t. z
(3)
j = z

(1)
j z

(2)
j +f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.5)
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Next, we use the technique of eliminating variables in [4] to remove the constraints of (2.5). More precisely,

observing z
(1)
j = g(xj) and z

(3)
j = z

(1)
j z

(2)
j − f(xj), we rewrite (2.5) as

min
(z(1),z(2))∈R2NΩ

(z(1), g(x∂Ω), z
(2), z(1)z(2) − f(xΩ))(γI +Q(ψ,ψ))−1


z(1)

g(x∂Ω)
z(2)

z(1)z(2) − f(xΩ)

 , (2.6)

where z(1) = (z
(1)
j )NΩ

j=1, z
(2) = (z

(2)
j )NΩ

j=1, g(x∂Ω) = (g(xj))
N
j=NΩ+1, f(xΩ) = (f(xj))

NΩ
j=1, and z

(1)z(2) =

(z
(1)
j z

(2)
j )NΩ

j=1. Then, we obtain z† by solving (2.6) using the Gauss–Newton method and get u† by (2.4).

2.2. Computing (γI + Q(ψ,ψ))−1. The bottleneck of solving (2.6) is to calculate the inverse of γI +
Q(ψ,ψ), whose size is proportional to the number of sample points. The computational complexity of
standard Cholesky decomposition algorithms is O(N3) in general. Some fast algorithms [3, 31] are developed
by considering sparse inverse Cholesky factorizations. However, their works only consider the case where the
covariance matrix contains pointwise evaluations but not pointwise values of differential operators, which
are required in the SGP method. In a recent study by [5], a sparse Cholesky factorization algorithm was
proposed for kernel matrices, leveraging the sparsity of the Cholesky factor through a novel ordering of Diracs
and derivative measurements. Our approach, along with the algorithm described in [5], focuses on effectively
solving nonlinear PDEs. Our method accomplishes this objective by approximating representation functions
using a smaller set of bases. In contrast, their approach achieves the same goal by efficiently performing
computations with dense kernel matrices through a novel sparse Cholesky decomposition technique.

In this paper, by using the structure of Q(ψ,ψ), we show that the computational complexity can be
reduced and depends only on the number of inducing points. The technique is from Section 3.4.3 of [39] and
is well explained in the documents of GPflows∗. We provide the full details below for the sake of completeness.

Using the Woodbury identity, we get

(γI +Q(ψ,ψ))−1 =(γI +K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ))−1

=γ−1I − γ−2K(ψ,ϕ)(K(ϕ,ϕ) + γ−1K(ϕ,ψ)K(ψ,ϕ))−1K(ϕ,ψ).
(2.7)

The equation (2.7) is not numerically stable when γ is small. To get a better conditioned matrix, we perform
the Cholesky decomposition on K(ϕ,ϕ) and get K(ϕ,ϕ) = LLT (see Remark 2.1 below). Then, we consider

(γI +Q(ψ,ψ))−1 =γ−1I − γ−2K(ψ,ϕ)(K(ϕ,ϕ) + γ−1K(ϕ,ψ)K(ψ,ϕ))−1K(ϕ,ψ)

=γ−1I − γ−2K(ψ,ϕ)L−TLT (K(ϕ,ϕ) + γ−1K(ϕ,ψ)K(ψ,ϕ))−1LL−1K(ϕ,ψ)

=γ−1I − γ−2K(ψ,ϕ)L−T (L−1(K(ϕ,ϕ) + γ−1K(ϕ,ψ)K(ψ,ϕ))L−T )−1L−1K(ϕ,ψ)

=γ−1I − γ−2K(ψ,ϕ)L−T (I + γ−1L−1K(ϕ,ψ)K(ψ,ϕ)L−T )−1L−1K(ϕ,ψ).

(2.8)

Let A := γ−1/2L−1K(ϕ,ψ). Then, (2.8) gives

(γI +Q(ψ,ψ))−1 = γ−1I − γ−1AT (I +AAT )−1A. (2.9)

The identity (2.9) is the cornerstone for the SGP method to reduce the computational complexity. We note
that the dimension of the matrix needed to be inverted at the right-hand side of (2.9) depends only on the
length of ϕ, which is proportional to the number of inducing points. Hence, if M << N , using (2.9), we
are able to save computational time and memory storage. The numerical results in Section 4 show that a
small number of inducing points is sufficient for the SGP approach to achieve comparable accuracy to the
GP method in [4].

∗https://gpflow.github.io/GPflow/2.4.0/notebooks/theory/SGPR notes.html
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Remark 2.1. In general, K(ϕ,ϕ) is ill-conditioned. Thus, to deal with the inverse of K(ϕ,ϕ), we perform
the Cholesky decomposition on K(ϕ,ϕ) + ηR, where R is a block diagonal nugget built using the approach
in [4] and η > 0 is a small regularization parameter.

2.3. A Probabilistic Perspective of the SGP Method. Here, we give a probabilistic interpretation for
the SGP method. First, we put a Gaussian prior on the solution u∗ to (2.1), i.e., let u∗ ∼ N (0,K), where
K is the kernel associated with the RKHS U in Subsection 2.1. Let {xi}Ni=1 be the set of sample points in
Subsection 2.1. Define

u = (u∗(x1), . . . , u
∗(xN ), (∂x1 + ∂x2)u

∗(x1), . . . , (∂x1 + ∂x2)u
∗(xNΩ),∆u

∗(x1), . . . ,∆u
∗(xNΩ)).

Then, u is a multivariate Gaussian random variable following the distribution N (0,K(ψ,ψ)). Let z be a
noisy observation of u, i.e.,

z = u+ ϵ,

where ϵ is a noise following the distributionN (0, γI), which is independent with u∗. Thus, z ∼ N (0,K(ψ,ψ)+
γI) and the probability density of z is

p(z) =
1√

(2π)2(NΩ+N) det(K(ψ,ψ) + γI)
e−

1
2z

T (K(ψ,ψ)+γI)−1z.

Then, solving (2.1) by the GP method in [4] is equivalent to finding z with the maximum likelihood while
satisfying the PDE system. More precisely, the GP method seeks to find z solving

max
z

ln p(z)

s.t. z
(3)
j = z

(1)
j z

(2)
j +f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j,NΩ + 1 ⩽ j ⩽ N.

(2.10)

In our SGP method, we replace the log-likelihood in (2.10) with its lower bound. The derivation follows [37].
More precisely, let {x̂i}Mi=1 be the inducing points in Subsection 2.1 and define v(1) = (u(x̂1), . . . , u(x̂M )),
v(2) = ((∂x1

+∂x2
)u(x̂1), . . . , (∂x1

+∂x2
)u(x̂MΩ

)), and v(3) = (∆u(x̂1), . . . ,∆u(x̂MΩ
)). Let v = (v(1),v(2),v(3)).

Then, v and z are joint Gaussian random variables. Let q(v) be the variational distribution of v and let
q(u,v) = p(u|v)q(v) be the probability density function of the variational distribution of (u,v). Then, by
Jensen’s inequality, we have

ln p(z) = ln

∫ ∫
p(z,u,v) dudv = ln

∫ ∫
q(u,v)

p(z,u,v)

q(u,v)
dudv

⩾
∫ ∫

q(u,v) ln
p(z,u,v)

q(u,v)
dudv =

∫ ∫
p(u|v)q(v) ln p(z|u)p(v)

q(v)
dudv

=:F(z, q).

(2.11)

Thus, F(z, q) provides a lower bound for ln p(z). To get an optimal lower bound, we take the derivative of
F w.r.t. q and get

δF(z, q(v))

δq(v)
=

∫
p(u|v)(ln p(z|u)p(v)

q(v)
− 1) du.

Letting δF(q(v))/δq(v) = 0, we get the optimal variational distribution

q∗(v) =
p(v)

Z
exp

(∫
p(u|v) ln p(z|u) du

)
, (2.12)

where Z is a real number guaranteeing the unit mass of q∗. Then, plugging (2.12) into (2.11), we get

F(z, q) = −N +NΩ

2
ln 2π − 1

2
ln det(Q(ψ,ψ) + γI)− zT (Q(ψ,ψ) + γI)−1z − 1

2γ
Tr(K(ψ,ψ)−Q(ψ,ψ)).
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Hence, if we replace ln p(z) by F(z, q∗) in (2.10), we note that (2.5) is equivalent to
max
z

F(z, q∗)

s.t. z
(3)
j = z

(1)
j z

(2)
j +f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.13)

Remark 2.2. The probabilistic interpretation of the SGP method above suggests a way for hyperparameter
learning. Let θ be the parameter vector consisting of the positions of the inducing points and the kernel’s
parameters. Write q∗θ to emphasize the dependence of q∗ in (2.12) on θ. Then, the SGP method with
hyperparameter learning for solving (2.1) considers the maximization problem

max
z,θ

F(z, q∗θ)

s.t. z
(3)
j = z

(1)
j z

(2)
j +f(xj),∀j = 1, . . . , NΩ,

z
(1)
j = g(xj),∀j = NΩ + 1, . . . , N.

(2.14)

However, the objective function in (2.14) is highly nonlinear. Thus, the computation of (2.14) is very costly.
In the numerical experiments of Section 4, we fix the positions of inducing points. Then, we use the Gauss–
Newton method to solve (2.14) for different values of the parameters of the kernel on the uniform grid in the
domain of parameters and accept the result that achieves the largest value of the objective function in (2.14).
If we choose Gaussian kernels for solving PDEs, which contain only one or two lengthscale parameters,
the above grid search method for choosing hyperparameters is efficient. When the initial search interval
is appropriately chosen, the combination of the maximum likelihood approach and grid search typically
produces favorable outcomes. The optimal choice of hyperparameters depends on the underlying PDE’s
regularity, as a larger lengthscale tends to result in a smoother solution, while a smaller lengthscale tends to
favor solutions with lower regularity. Given our understanding of the regularity of PDEs in our experiments,
we search a lengthscale within the range of 0.01 to 1 using a step size of 0.01. We leave the full optimization
over z and θ in (2.14) to future work.

Remark 2.3. The log-determinant term in F will not introduce extra computational costs if the Cholesky
decomposition of I + AAT in (2.9) is computed beforehand. To see this, we first recall the Weinstein–
Aronszajn identity, which states that for n-by-m matrices U and V , and for an invertible m-by-m matrix
W , we have

det(I + UWV T ) = det(W−1 + V TU) det(W ),

where I is the identity matrix. In the following presentation of this remark, for ease of presentation, we
denote by n and by m the dimensions of Q(ψ,ψ) and AAT , separately, where A appears in (2.9). Thus,
using (2.9) and the Weinstein–Aronszajn identity, we have

det
(
(γI +Q(ψ,ψ))−1

)
=det

(
γ−1I − γ−1AT (I +AAT )−1A

)
=γ−n det

(
− (I +AAT ) +AAT

)
det

(
− (I +AAT )

)
=γ−n det

(
I +AAT

)
. (2.15)

Hence, if the Cholesky decomposition of I+AAT is computed in advance, i.e. I+AAT = JJT , we conclude
from (2.15) that

log det
(
γI +Q(ψ,ψ)

)
=− log det

(
(γI +Q(ψ,ψ))−1

)
=n log γ − log det(JJT ) = n log γ − 2 log det(J)

=n log γ − 2

m∑
i=1

log Jii. (2.16)
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Therefore, (2.16) implies that the computational cost of the log-determinant in F is not high once we get
the Cholesky decompositon of I +AAT , which is required for solving (2.5) in our current SGP method.

3. A General Framework for the SGP method

In this section, we provide a framework of the SGP method for solving a general PDE. Then, we give the
existence argument for a minimizer of the optimal recovery problem used to approximate the solution of the
PDE. Finally, we analyze the approximation errors.

3.1. A RKHS Generated by Linear Operators. In this subsection, we show the construction of a RKHS
generated by linear operators based on the abstract theory of RKHSs (see [24]). The RKHS forms a space
where we seek approximations for solutions to general PDEs.

Let U be a Banach space, let U∗ be its dual, and let [·, ·] be their duality paring. We assume further that
there exists a covariance operator K : U∗ 7→ U that is linear, bijective, symmetric ([Kϕ, φ] = [Kφ, ϕ]), and
positive ([Kϕ, ϕ] > 0 for ϕ ̸= 0), and suppose that the norm of U is given by

∥u∥U =
√

[K−1u, u],∀u ∈ U .

Meanwhile, the inner products of U and U∗ are given by

⟨u, v⟩ :=[K−1u, v],∀u, v ∈ U ,
⟨ϕ, φ⟩∗ :=[ϕ,Kφ],∀ϕ, φ ∈ U∗.

Then, U coincides with the RKHS space of the kernel K defined by

K(x,x′) = [δx,Kδx′ ],∀x,x′ ∈ Ω, (3.1)

where δx is the Dirac delta function centered at x. Let ξ ∼ N (0,K) be the canonical GP on U [24, Chapter
17.6] and let [ϕ, ξ] be the image of ϕ ∈ U∗ under ξ. Then, we have

E[ϕ, ξ] = 0 and E[ϕ, ξ][φ, ξ] = [ϕ,Kφ],∀ϕ, φ ∈ U∗.

The GP method proposed in [4] approximates a solution of a nonlinear PDE by a MAP point for the GP
ξ ∼ N (0,K) conditioned on PDE constraints at the collocation points. To reduce the computation time, we
consider a Gaussian prior with a different covariance operator generated by selected linear operators.

Let ϕ := {ϕi}Ri=1 be the collection of R non-trivial elements of U∗. For the canonical GP ξ ∼ N (0,K),
[ϕ, ξ] is a RR-valued Gaussian vector and [ϕ, ξ] ∼ N (0,Θ), where

Θ ∈ RR×R,Θi,n = [ϕi,Kϕn],∀1 ⩽ i, n ⩽ R. (3.2)

Suppose that Θ is invertible. We define the induced covariance operator Q as

[φ,Qφ] = K(φ,ϕ)Θ−1K(ϕ, φ),∀φ ∈ U∗. (3.3)

The next lemma guarantees that Q is a covariance operator and associates with a RKHS.

Lemma 3.1. Let ϕ := {ϕi}Ri=1 be the collection of R linearly independent non-trivial elements of U∗. Then,
the operator Q defined in (3.3) is linear, symmetric, and nonnegative. Hence, there exists a unique RKHS
UQ associated with the kernel Q defined by

Q(x,x′) = [δx,Qδx′ ],∀x,x′ ∈ Ω. (3.4)

Furthermore, UQ ⊂ U and

∥u∥UQ
= ∥u∥U ,∀u ∈ UQ. (3.5)
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Proof. It is easy to see that Q is linear and symmetric. Since K is positive, Θ is positive definite. Then,
[φ,Qφ] = K(φ,ϕ)Θ−1K(ϕ, φ) ⩾ 0,∀φ ∈ U∗. The equality holds if and only if φ is perpendicular to ϕ w.r.t.
K. Thus, Q is nonnegative. Hence, the kernel Q in (3.4) is symmetric and positive semi-definite. According
to the Moore–Aronszajn theorem, there exists a unique RKHS UQ associated with the kernel Q. Next, we
show the relation between UQ and U .

Since Q(x, ·) ∈ U for any x ∈ Ω, the linear span of {Q(x, ·),x ∈ Ω}, denoted by UQ0
, is a subset of U . By

the Moore–Aronszajn theorem, UQ is the completion of UQ0 . Thus, UQ ⊂ U . For any u ∈ UQ0 , there exist
sequences {xi}mi=1 and {αi}mi=1, m ∈ N, such that

∥u∥2UQ
=

m∑
i=1

m∑
j=1

αiαjQ(xi,xj) =

m∑
i=1

m∑
j=1

αiαjK(δxi
,ϕ)Θ−1K(ϕ, δxj

) = ∥u∥2U ,

where the last two equities follows by (3.3) and (3.4). Thus, we conclude (3.5). □

3.2. The SGP method. In this subsection, we present a general framework of the SGP method to solve
nonlinear PDEs. Let Ω ⊂ Rd be a bounded open domain with the boundary ∂Ω for d ⩾ 1. Let L1, . . . , LDb

∈
L(U ;C(∂Ω)) and LDb+1, . . . , LD ∈ L(U ;C(Ω)) be bounded linear operators for 1 ⩽ Db ⩽ D. We seek to
find a function u∗ solving the nonlinear PDE{

P (LDb+1(u
∗)(x), . . . , LD(u

∗)(x)) = f(x),∀x ∈ Ω,

B(L1(u
∗)(x), . . . , LDb

(u∗)(x)) = g(x),∀x ∈ ∂Ω,
(3.6)

where P,B represent nonlinear operators, and f , g are given data. Throughout this section, we assume that
(3.6) admits a unique strong solution in a quadratic Banach space U associated with the covariance operator
K, which means that u∗ has enough regularity for the linear operators to be well defined pointwisely in (3.6).

We propose to approximate the solution to (3.6) in a RKHS generated by linear operators associated

with inducing points. To do that, we take M inducing points {x̂j}Mj=1 in Ω such that {x̂j}MΩ
j=1 ⊂ Ω and

{x̂j}Mj=MΩ+1 ⊂ ∂Ω. Then, we define the functionals ϕ
(i)
j ∈ U∗ as

ϕ
(i)
j := δx̂j

◦ Li, and

{
MΩ + 1 ⩽ j ⩽M, if 1 ⩽ i ⩽ Db,

1 ⩽ j ⩽MΩ, if Db + 1 ⩽ i ⩽ D.

Let ϕ(i) be the vector concatenating the functionals ϕ
(i)
j for fixed i and define

ϕ := (ϕ(1), . . . ,ϕ(D)) ∈ (U∗)⊗R, where R = (M −MΩ)Db +MΩ(D −Db). (3.7)

The next corollary gives a RKHS generated by ϕ.

Corollary 3.2. Let ϕ be as in (3.7). Assume that the elements of ϕ are linearly independent in U∗. Define
Θ as in (3.2). Then, there exists a RKHS UQ associated with the kernel Q defined by

Q(x,x′) = K(x,ϕ)Θ−1K(ϕ,x′),∀x,x′ ∈ Ω,

such that UQ ⊂ U . Denote by ∥ · ∥UQ
the norm of UQ. Then,

∥u∥UQ
= ∥u∥U ,∀u ∈ UQ.

Proof. The claim is a direct result of Lemma 3.1. □

Corollary 3.2 implies that UQ is a “condensed” subspace of U and can be treated as a candidate solution
for Problem 1. Next, we propose to approximate the solution u∗ of (3.6) in the space UQ. More precisely,

we take N samples x := {xi}Ni=1 in Ω such that {xi}NΩ
i=1 ⊂ Ω and {xi}Ni=NΩ+1 ⊂ ∂Ω. Given a regularization
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parameter γ > 0, we approximate u∗ by the minimizer of the following optimization problem
min

z∈RR,u∈UQ

Db∑
i=1

N∑
j=NΩ+1

|Li(u)(xj)− z
(i)
j |2 +

D∑
i=Db+1

NΩ∑
j=1

|Li(u)(xj)− z
(i)
j |2 + γ∥u∥2UQ

s. t. P (z
(Db+1)
j , . . . , z

(D)
j ) = f(xj), for j = 1, . . . , NΩ,

B(z
(1)
j , . . . , z

(Db)
j ) = g(xj), for j = NΩ + 1, . . . , N,

(3.8)

where

R = (N −NΩ)Db +NΩ(D −Db) (3.9)

and

z := (z
(1)
NΩ+1, . . . , z

(1)
N , . . . , z

(Db)
NΩ+1, . . . , z

(Db)
N , z

(Db+1)
1 , . . . , z

(Db+1)
NΩ

, . . . , z
(D)
1 , . . . , z

(D)
NΩ

).

For ease of presentation, we rewrite (3.8) into a compact form. To do that, we define the functionals ψ
(i)
j ∈ U∗

as

ψ
(i)
j := δxj

◦ Li, and

{
NΩ + 1 ⩽ j ⩽ N, if 1 ⩽ i ⩽ Db,

1 ⩽ j ⩽ NΩ, if Db + 1 ⩽ i ⩽ D.

Meanwhile, let ψ(i) be the vector consisting of ψ
(i)
j for fixed i and define

ψ := (ψ(1), . . . ,ψ(D)) ∈ (U∗)⊗R. (3.10)

Next, we define the data vector y ∈ RN by

yi =

{
f(xi), if i ∈ {1, . . . , NΩ},
g(xi), if i ∈ {NΩ + 1, . . . , N}.

Furthermore, we define the nonlinear map

(F (z))j :=

{
P (z

(Db+1)
j , . . . , z

(D)
j ), for j = 1, . . . , NΩ,

B(z
(1)
j , . . . , z

(Db)
j ), for j = NΩ + 1, . . . , N.

Thus, we reformulate (3.8) as  min
z∈RR,u∈UQ

|[ψ, u]− z|2 + γ∥u∥2UQ

s. t. F (z) = y.
(3.11)

We observe that the minimization on u in (3.11) is over the infinite dimensional function space UQ. Fortu-
nately, we can derive a representer formula for u and transform (3.11) into a finite dimensional minimization
problem. However, we are not able to use the representer theorem in [24, Section 17.8] directly, since the
inducing kernel Q in Corollary 3.2 is not positive definite. Instead, the arguments are based on the frame-
work in [33]. The basic idea is to define a sampling operator Sx (explained in more details below) such that
Sxu = [ψ, u],∀u ∈ UQ. Then, the objective function in (3.11) is reformulated as ⟨u, S∗

xSxu−S∗
xz⟩+γ∥u∥2UQ

,

where S∗
x is the adjoint operator of Sx and will be defined later. Then, by taking a functional derivative of

the objective function and setting the derivative to be zero, we obtain u = (S∗
xSx + γI)−1S∗

xz for fixed z.
Then, we plug u = (S∗

xSx + γI)−1S∗
xz back into (3.11) and get a finite dimensional minimization problem

over z. Next, we explain rigorously the definitions and the properties of Sx and its adjoint in more details.
Let ℓ2(x) be the set of sequences a = (ax)x∈x with ⟨a, b⟩ℓ2(x) =

∑
x∈x axbx defining the inner product.

Define the sampling operator Sx : UQ 7→ ℓ2(x) by

Sx(u) = [ψ, u],∀u ∈ UQ. (3.12)
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One can view Sx as a generalization of the sampling operator in [33], which only evaluates a function at
the sample points. Denote by ⟨·, ·⟩UQ

the inner product of UQ and by S∗
x the adjoint of Sx. Then, for each

c ∈ ℓ2(x) and u ∈ UQ, we have

⟨S∗
xc, u⟩UQ

= ⟨Sxu, c⟩ℓ2(x) = cT [ψ, u] = ⟨cTQψ, u⟩UQ
.

Thus, we obtain

S∗
xc = cTQψ,∀c ∈ ℓ2(x). (3.13)

The next lemma gives some basic properties of Sx and S∗
x. For a little abuse of notations, in the rest of this

section, we denote by I the identity map or the identity matrix, whose meaning is easy to recognize from
the context.

Lemma 3.3. Let Sx and S∗
x be as in (3.12) and (3.13). Then, for any γ > 0, S∗

xSx + γI and SxS
∗
x + γI

are bijective. Meanwhile,

S∗
x(SxS

∗
x + γI)−1 = (S∗

xSx + γI)−1S∗
x. (3.14)

For any c ∈ ℓ2(x), we have

(S∗
xSx + γI)−1S∗

xc = (Qψ)T (γI +Q(ψ,ψ))−1c. (3.15)

Furthermore,

I − Sx(S
∗
xSx + γI)−1S∗

x = γ(Q(ψ,ψ) + γI)−1. (3.16)

We refer the reader to Appendix A for the proof of Lemma 3.3. We note that (3.15) and (3.16) establishes
the relations between the operations of sampling operators Sx and the covariance matrix Q(ψ,ψ). With the
properties of the sampling operator at hand, we are able to prove the existence of minimizers to (3.11). The
following theorem is similar to Proposition 2.3 in [4]. A key difference is that the arguments of Proposition
2.3 in [4] rely on the representer theorem [24, Section 17.8], which requires the covariance operator to be
positive definite, but our proof here holds for general positive semi-definite covariance operators.

Theorem 3.4. Let Sx and S∗
x be defined in (3.12) and (3.13). Let R be as in (3.9). Given γ > 0, the

system (3.11) admits a solution

u† = (S∗
xSx + γI)−1S∗

xz
†, (3.17)

where z† is a solution to min
z∈RR

zT (Q(ψ,ψ) + γI)−1z

s. t. F (z) = y.
(3.18)

Proof. In (3.11), given z ∈ RR, we first consider the minimization problem over u

min
u∈UQ

|[ψ, u]− z|2 + γ∥u∥2UQ
. (3.19)

By the definition of Sx in (3.12), we get

|[ψ, u]− z|2 + γ∥u∥2UQ
=⟨Sxu− z, Sxu− z⟩ℓ2(x) + γ⟨u, u⟩UQ

=⟨S∗
xSxu− 2S∗

xz + γu, u⟩UQ
+ |z|2.

(3.20)

Taking the function derivative w.r.t. u, we obtain from (3.20) that

S∗
xSxu− S∗

xz + γu = 0,

which implies that the minimizer u† of (3.19) satisfies

u† = (S∗
xSx + γI)−1S∗

xz. (3.21)
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Thus, using (3.20) and (3.21), we have

|[ψ, u†]− z|2 + γ∥u†∥2UQ
=⟨(S∗

xSx − 2(S∗
xSx + γI) + γI)(S∗

xSx + γI)−1S∗
xz, u

†⟩UQ
+ |z|2

=− ⟨S∗
xz, u

†⟩UQ
+ |z|2 = −⟨z, Sxu†⟩ℓ2(x) + |z|2

=⟨(I − Sx(S
∗
xSx + γI)−1S∗

x)z, z⟩ℓ2(x) = γzT (γI +Q(ψ,ψ))−1z,

(3.22)

where the last equality results from (3.16). Thus, (3.22) implies that (3.11) is equivalent to (3.18). Using
a similar compactness argument as in the proof of Theorem 1.1 in [4], one can show that (3.18) admits a
minimizer z†. Therefore, we conclude (3.17) by (3.21). □

Remark 3.5. Theorem 3.4 implies that in order to find the solution u∗ of the PDE system (3.6), we need
to solve (3.18). To handle the constraints of (3.18), we use the methods of eliminating variables or relaxation
described in Subsection 3.3 of [4] when necessary.

Remark 3.6. To compute the inversion of Q(ψ,ψ) + γI, we use the techniques introduced in Subsection
2.2 and Remark 2.1.

Next, we estimate the error between the approximation solution u† given in (3.17) and the strong solution
u∗ of (3.6). The proof appears in Appendix A.

Theorem 3.7. Let u∗ be the strong solution of (3.6). Given γ > 0, let (u†, z†) be a solution of (3.11),
where u† is given in (3.17), and z† solves (3.18). Then,

∥u† − u∗∥U ⩽ inf
ψ∈span(ψ)

∥u∗ −Kψ∥U + γ
√
[ψ, u∗]TK(ψ,ψ)−3[ψ, u∗]

+
√
3|z†|

√
∥(γI +Q(ψ,ψ))−1 − (γI +K(ψ,ψ))−1∥

+
√
(z† − [ψ, u∗])TK(ψ,ψ)−1(z† − [ψ, u∗]). (3.23)

The first term at the right-hand side (RHS) of (3.23) measures the ability of span(Kψ) to approximate
u∗. Since u∗ ∈ U , we conclude that as the samples become dense enough, infψ∈span(ψ) ∥u∗ −Kψ∥U is small.
The second term at the RHS of (3.23) measures the effect of the nugget term γI, which converges to 0
as γ → 0 for a fixed number of samples. The magnitudes of the last two terms of (3.23) depend on how
well Q(ψ,ψ) approximates K(ψ,ψ). Indeed, when Q(ψ,ψ) = K(ψ,ψ), the SGP method recovers the GP
algorithm in [4]. Hence, |z†| is bounded in this case and the third term at the RHS of (3.23) equals 0.
Besides, z† converges to [ψ, u∗] as the number of samples, N , goes to infinity and γ → 0 by Theorem 3.3
of [4]. Thus, when Q = K, as the samples gets dense and γ → 0, z†K(ψ,ψ)−1z† and z†K(ψ,ψ)−1[ψ, u∗]
converge to ∥u∗∥2U . Hence, the last term of (3.23) converges to 0.

3.3. The Nyström Approximation Error. As mentioned above, the upper bound in (3.23) decreases
when Q(ψ,ψ) approximates K(ψ,ψ) well. In this subsection, we study the spectral norm of K(ψ,ψ) −
Q(ψ,ψ), denoted by ∥K(ψ,ψ)−Q(ψ,ψ)∥.

We recall that Q(ψ,ψ) = K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ). Thus, we can view Q(ψ,ψ) as the Nyström
approximation to K(ψ,ψ). Hence, we call ∥K(ψ,ψ) − Q(ψ,ψ)∥ the Nyström approximation error in the
SGP method. A typical Nyström approximation approximates a symmetric positive semi-definite matrix
G ∈ Rn×n, n ∈ N, by sampling m columns from G and does not assume that columns of G have close
relations with each other. The authors in [7] show that for any m uniformly sampled columns, with a
high probability, the approximation error is O(n/

√
m). Later, [14] improves the bound from O(n/

√
m) to

O(n/m1−ρ) for ρ ∈ (0, 1/2) under the assumption that the eigenvalues of G have a big eigengap. In our
setting, since ψ has linear operators corresponding to the same sample points, the columns of K(ψ,ψ) are
highly correlated. Thus, we approximate K(ψ,ψ) using a small number of inducing points instead of using
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columns from K(ψ,ψ). In general, instead of being taken from the samples, inducing points can be selected
anywhere in the input space [8]. The error analysis has been thoroughly studied in [43], which indicates
that the approximation error in the matrix Frobenious norm has an upper bound that is influenced by the
quantization error defined in [43]. Since that quantization error is the objective function in the k-means
clustering [10], the k-means algorithm is typically used for the initialization of inducing inputs. In our
settings, we assume that the inducing points are sampled from the set of samples. We adapt the framework
in [14] to our settings and show that the Nyström approximation error has an upper bound that depends
only on the numbers of samples and inducing points. In other words, though the dimension of K(ψ,ψ) is
proportional to the product of the size of samples and the number of linear operators, the error bound is
not influenced by the size of linear operators.

Our arguments are an adaptation to those in [14] to take into consideration of covariance matrices with
values of differential operators. The strategy is to turn ∥K(ψ,ψ) − K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥ into a
functional approximation problem, which is easier to bound. Define the sets

Ha = span{Kϕ} and Hb = {βTKψ, |β| ⩽ 1}. (3.24)

For h ∈ Hb, we define

E(h,Ha) = min
v∈Ha

∥v − h∥2U .

Then, E(h,Ha) is the minimum error for approximating a function h ∈ Hb by functions in Ha. Meanwhile,
define E(Ha) as the worst error in approximating any function h ∈ Hb by functions in Ha, i.e.

E(Ha) = max
h∈Hb

E(h,Ha). (3.25)

The next proposition shows the equivalence of ∥K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥ and E(Ha).

Proposition 3.8. Let E(Ha), ψ, and ϕ be as in (3.25), (3.10), and (3.7), respectively. Then,

∥K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥ = E(Ha). (3.26)

Proof. Let h ∈ Hb and v ∈ Ha. Then, there exists α and β such that v = αTKϕ and h = βTKψ. We have

E(h,Ha) =min
α
αTK(ϕ,ϕ)α− 2αTK(ϕ,ψ)β + βTK(ψ,ψ)β

=βT (K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ))β.

Hence, we obtain

E(Ha) = max
h∈Hb

E(h,Hb)

= max
|β|⩽1

βT (K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ))β

=∥K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥,

which concludes (3.26). □

Thus, Proposition 3.8 implies that estimating an upper bound for ∥K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥
is equivalent to bounding E(Ha). To proceed with the argument, we make the following assumptions about
the inducing points and the kernel associated with the RKHS U .

The first assumption assumes that the inducing points are uniformly sampled from the collection of sample
points.

Assumption 1. Let x := (x1,x2), where x1 is the set of interior sample points in Ω and x2 is the
collection of boundary samples, and let x̂ := (x̂1, x̂2) be the set of inducing points. Assume that x̂1 and x̂2

are uniformly sampled from x1 and x2, separately.

The next assumption supposes that the covariance operator K admits enough regularity.
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Assumption 2. Let ψ be as in (3.10). Let ψx⊂(δx ◦ L1, . . . , δx ◦ LD) be the vector of linear operators in
ψ that is associated with the sample point at x ∈ x. Assume that there exists a constant C > 0 such that

trace(K(ψx,ψx)) ⩽ C.

Remark 3.9. We note that if the kernel K in (3.1) generated by K is smooth enough and the domain Ω
is compact, Assumption 2 holds.

We provide an upper bound for E(Ha) using arguments based on the eigenvalue decomposition. To
do this, we define some notation. We denote ψ := (ψΩ,ψ∂Ω), where ψΩ represents linear operators for
interior points, and ψ∂Ω contains linear operators for boundary samples. We recall that x := (x1,x2)
contains all sample points, with x1 being the set of interior points in Ω and x2 representing the collection
of boundary points. We define NΩ as the size of x1 and N∂Ω as the length of x2. We also define R1 and
R2 as R1 = NΩ(D −Db) and R2 = (N −NΩ)Db, respectively, where D and Db are given in (3.6). We use

{λj}R1
j=1 and {τj}R2

j=1 to represent the set of eigenvalues of K(ψΩ,ψΩ) and K(ψ∂Ω,ψ∂Ω), respectively, sorted

in descending order. We denote [i] as the set of all non-negative integers less than or equal to i. Using
these notations, we establish an upper bound for E(Ha) in the following theorem. The proof is presented in
Appendix B.

Theorem 3.10. Suppose that Assumptions 1 and 2 hold. Let E(Ha) be as in (3.25). With a probability at
least 1− δ, δ ∈ (0, 1), for any r := (r1, r2) ∈ [R1]× [R2], there exists a constant C such that

E(Ha) ⩽max

{
CN2

Ω ln2(2/δ)

λr1MΩ
,
CN2

∂Ω ln2(2/δ)

τr2M∂Ω

}
+ 4λr1+1 + 4τr2+1, (3.27)

with the convention that λR1+1 = 0 and τR2+1 = 0.

Proposition 3.8 and Theorem 3.10 imply that ∥K(ψ,ψ)−K(ψ,ϕ)(K(ϕ,ϕ))−1K(ϕ,ψ)∥ admits an upper
bound that depends only on the size of sample points and is not influenced by the number of linear operators
in the PDE.

4. Numerical Results

In this section, we study numerically how much information the SGP method preserves for different choices
of numbers of inducing points. We demonstrate the efficacy of the SGP method by solving a nonlinear elliptic
equation in Subsection 4.1, a mean-field game system in Subsection 4.2, Burger’s equation in Subsection 4.3,
and a parabolic equation in Subsection 4.4. For all the experiments, we take N samples in the domain in
a way such that NΩ samples are in the interior. Besides, we randomly choose M points from the samples
and treat them as inducing points. To show the performance of the SGP method, we first plot samples,
inducing points, loss histories of the Gauss–Newton iterations, and contours of pointwise solution errors for
fixed values of N and M . Though we solve at a collection of uniform random samples, we compute the
solution errors by reevaluating the numerical approximation function at a 60× 60 equally spaced grid using
(3.17) and by comparing the results with the values of reference solutions. Then, we record the L∞ errors
of the GP method in [4] and the SGP algorithm for different values of N and M . Results are averaged over
10 realizations of random sample points.

Our implementation is based on the code† of [4], which leverages Python with the JAX package for
automatic differentiation. Our experiments are conducted only on CPUs. Additional performance speedups
can be obtained by considering accelerated hardware such as Graphics Processing Units (GPU).

†https://github.com/yifanc96/NonlinearPDEs-GPsolver.git
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4.1. A Nonlinear Elliptic Equation. In this example, we reconsider the nonlinear elliptic equation in
Subsection 2.1. More precisely, we consider (2.1) with Ω = (0, 3)2 and g(x) = 0. We prescribe the solution
u to be sin(πx1) sin(πx2) + 4 sin(4πx1) sin(4πx2) for x := (x1, x2) ∈ Ω and compute f accordingly. We use

the Gaussian kernel K(x,y) = exp(− |x−y|2
2σ2 ) with the lengthscale parameter σ = 0.2. Given N and M , we

set NΩ = 0.75×N and MΩ = 0.75×M . In this example, we choose γ = η = 10−12 (see Subsection 2.2 and
Remark 2.1). The algorithm stops once the error between two successive steps is less than 10−5.

Figure 2 shows the numerical results for N = 9600 and M = 1200. The uniform sample points used are
plotted in Figure 2a, from which we randomly choose M including points shown in Figure 2b. We solve
the unconstrained minimization problem in (2.6). The convergence history of the Gauss–Newton iteration
in Figure 2c shows that the SGP method converges in 5 iterations. In Figure 2d, we plot the contour of
pointwise errors between the numerical approximation and the true solution on a 60 × 60 equally spaced
grid.

(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

Fig. 2. Numerical results for the nonlinear elliptic equation: (a) a set of sample points; (b)
a collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors. The regularization parameters γ = η = 10−12. N =
9600, NΩ = 0.75×N , M = 1200,MΩ = 0.75×M .

To further explore the efficacy of our algorithm. We compare the L∞ errors of the SGP method and the
GP algorithm in [4] for different numbers of sample points and inducing points in Table 1. We see that
when N = M , both algorithms achieve accuracy of the same magnitude. Meanwhile, when N >> M , the
SGP method with N sample points and M inducing points is more accurate than the GP method with M
sample points. This phenomenon implies that for answering Problem 1, purely reducing the number of base
functions in a function space may not result in an efficient subspace. Furthermore, Table 1 implies that the
SGP method with N sample points, half of which are used as inducing points, achieves comparable accuracy
to the GP method with the same number of sample points. This is also confirmed in Figure 3, where we plot
the means and the standard variances of the maximum pointwise errors over 10 different realizations against
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different numbers of inducing points when the number of samples is fixed to be 4800. Figure 3 shows that
the accuracy is not deteriorated if the number of inducing points is larger than 2000, which is smaller than
half the number of samples. Hence, by using (2.9), the size of the matrix needed to be inverted in the SGP
method can be significantly reduced. In other words, the SGP approach consumes much less computational
time while retaining desirable accuracy compared to the GP method. Figure 3 also implies that if the
number of inducing points is too small, the induced space UQ cannot maintain sufficient information about
the approximated solution. Therefore, there is a trade-off between accuracy and efficiency. If the number of
inducing points is chosen properly, the subspace generated by the SGP method serves as a candidate answer
to Problem 1 in terms of the GP method.

N 1200 2400 4800 9600
GP, L∞ error 1.34× 10−1 1.01× 10−3 6.78× 10−5 4.46× 10−6

SGP(M = 600), L∞ error 1.46× 10−1 9.34× 10−3 2.55× 10−3 2.91× 10−3

SGP(M = 1200), L∞ error 1.40× 10−1 1.37× 10−3 7.58× 10−5 2.16× 10−5

SGP(M = 2400), L∞ error N/A 1.92× 10−3 2.62× 10−5 6.20× 10−6

SGP(M = 4800), L∞ error N/A N/A 3.15× 10−5 5.13× 10−6

Table 1. The nonlinear elliptic equation: L∞ errors of the SGP method and the GP
algorithm for different numbers of sample points and inducing points. The N/A means not
available. We set γ = η = 10−12.

Fig. 3. The nonlinear elliptic equation: L∞ errors for different numbers of inducing points
when the number of samples N equals to 4800.

4.2. A Stationary Mean Field Game. In this subsection, we explore the behavior of the SGP method by
solving a stationary mean field game (MFG) system, which consists of two coupled PDEs, a Hamilton–Jacobi
equation and a Fokker–Planck equation. MFGs model the behaviors of agents in a large population. To
learn more about the use of finite differences and machine learning methods for solving MFGs, we suggest
referring to the references [1, 2, 18, 30]. The GP method and a random Fourier feature algorithm for solving
MFG are presented in [21]. Following the same framework as in [21], our SGP method can be naturally
extended to solve PDE systems. In this example, we seek (u,m, λ) ∈ C∞(T2)× C∞(T2)× R solving

−ν∆u+ |∇u|2
2 + sin(4πx1)+cos(4πx1)+sin(4πx2)

2 = m2 + λ,∀x := (x1, x2) ∈ T2,

−ν∆m− div(m∇u) = 0,∀x := (x1, x2) ∈ T2,∫
T2 m dx = 1,

∫
T2 udx = 0,

(4.1)

where ν = 0.1 and T2 is the two-dimensional torus. In the computations, we identify T2 with [−0.5, 0.5]2.
Meanwhile, to deal with the periodic condition, we choose the kernel

K((x1, x2), (x
′
1, x

′
2)) = exp(cos(2π(x1 − x′1)) + cos(2π(x2 − x′2))− 2). (4.2)
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Then, we randomly select M inducing points from N uniform random samples. For simplicity, we approx-
imate both u and m in the same RKHS UQ generated by inducing points as described in Subsection 3.1.
More precisely, we consider the following minimization problem

minu,m∈UQ,λ∈R,z,ρ∈RN γ∥u∥2UQ
+ γ∥m∥2UQ

+ γλ2 +
∑N
j=1 |z

(1)
j − u(xj)|2 +

∑N
j=1 |z

(2)
j − ∂x1u(xj)|2

+
∑N
j=1 |z

(3)
j − ∂x2u(xj)|2 +

∑N
j=1 |z

(4)
j −∆u(xj)|2 +

∑N
j=1 |ρ

(1)
j −m(xj)|2

+
∑N
j=1 |ρ

(2)
j − ∂x1

m(xj)|2 +
∑N
j=1 |ρ

(3)
j − ∂x2

m(xj)|2 +
∑N
j=1 |ρ

(4)
j −∆m(xj)|2

+
∑N
j=1 |νz

(4)
j − (z

(2)
j +z

(3)
j )2

2 − sin(4πx1,j)+cos(4πx1,j)+sin(4πx2,j)
2 + (ρ

(1)
j )2 + λ|2

+
∑N
j=1 | − νρ

(4)
j − ρ

(2)
j z

(2)
j − ρ

(3)
j z

(3)
j − ρ

(1)
j z(4)|2,

s.t.
∑N
j=1 z

(1)
j = 0, 1

N

∑N
j=1 ρ

(1)
j = 1.

(4.3)

Then, we derive the representer formulas for u and m as what we did in Section 3. To study the efficacy of
our SGP method, for clarification, we only compare the pointwise errors between a minimizer m† of (4.3)
and a reference solution m∗ on a 60 × 60 uniform grid. To get m∗, we use the proximal method proposed
in [2] to compute (4.1) on a 120×120 uniform grid and linearly interpolate the solution on the coarser 60×60
grid.

Figure 4 illustrates the numerical results when we take N = 800 samples and M = 50 inducing points.
Here, we set γ = 10−10 and η = 10−4. Figures 4a and 4b plot the samples and inducing points, respectively.
Figure 4c shows the loss history of the Gauss–Newton iterations and Figure 4d presents the contour of
pointwise errors. Table 2 compares the L∞ errors of m∗ and m† for different values of N and M . We
see that for solving the MFG system (4.1), the SGP method exhibits similar efficacy as in the previous
experiments for solving a single nonlinear elliptic equation. That is, the SGP method which takes half of
the samples as inducing points, achieves comparable accuracy to the GP method using the same number of
samples.

N 100 200 400 800
GP, L∞ error 1.09× 10−1 2.31× 10−2 1.05× 10−2 4.36× 10−3

SGP(M = 50), L∞ error 1.16× 10−1 2.61× 10−2 1.10× 10−2 6.20× 10−3

SGP(M = 100), L∞ error 1.18× 10−1 2.31× 10−2 1.25× 10−2 5.32× 10−3

SGP(M = 200), L∞ error N/A 2.26× 10−2 1.15× 10−2 6.97× 10−3

SGP(M = 400), L∞ error N/A N/A 1.12× 10−2 4.04× 10−3

Table 2. The stationary MFG: The L∞ errors of the SGP method and the GP algorithm
are analyzed under varying sample point and inducing point configurations. The N/A means
not available. We set γ = 10−10 and η = 10−4.

4.3. Burgers’ equation. In this example, we consider the same Burger’s equation as in [4]. More precisely,
given ν = 0.02, we seek to find u solving

∂tu+ u∂xu+ ν∂2xu = 0,∀(t, x) ∈ (0, 1]× (−1, 1),

u(0, x) = − sin(πx),∀x ∈ [−1, 1],

u(t,−1) = u(t, 1) = 0,∀t ∈ [0, 1].

We uniformly sample N points in the space-time domain, from which M samples are randomly chosen as
inducing points. All experiments in this example use a fixed ratio of interior points, NΩ/N =MΩ/M = 5/6.
To take into consideration the space and time variability of the solution to Burger’s equation, as in [4], we
choose the anisotropic kernel

K((t, x), (t′, x′)) = exp(−(t− t′)2/σ2
1 − (x− x′)2/σ2

2), (4.4)
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(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

Fig. 4. Numerical results for the stationary MFG: (a) a set of sample points; (b) a collection
of inducing points; (c) the convergence history of the Gauss–Newton iterations; (d) contours
of pointwise errors. The regularization parameters γ = 10−10 and η = 10−4. N = 800 and
M = 50.

with (σ1, σ2) = (0.3, 0.05). For comparison, as in [4], the true solution is calculated from the Cole–Hopf
transformation and the numerical quadrature. We use the technique of eliminating variables to deal with
the constraints in (3.18) (see Subsection 3.3 in [4]) and use the Gauss–Newton method to solve the resulting
unconstrained minimization problem. All the experiments in this example stop once the errors between two
successive steps are less than 10−5.

Figure 5 shows the numerical results for N = 2400 and M = 600 with parameters γ = η = 10−6. The
samples and the inducing points are given in Figures 5a and 5b. The history of Gauss–Newton iterations
is plotted in Figure 5c, which implies the fast convergence of the SGP method. The absolute values of the
pointwise errors between the numerical solution and the true solution are shown in Figure 5d. Similar to the
results of the GP method given in [4], the maximum errors occurred close to the shock. In Figures 5e-5g, we
compare the numerical and true solutions at times t = 0.25, 0.5, 0.75 to highlight the accuracy of our SGP
method.

In Table 3, we present the L∞ errors of the SGP method and the GP algorithm in [4] for different choices
of N and M . Similar to the nonlinear elliptic example, the SGP algorithm yields comparable accurate
numerical solutions to the GP method by using half of the samples as inducing points.

4.4. A Nonlinear Parabolic Equation. We consider the numerical solution of the parabolic equation
∂tu− ∂2xu+ 1

2 |∂xu|
2 + u+ x∂ux = f, ∀(t, x) ∈ (0, 1]× (0, 3/2),

u(0, x) = g(x),∀x ∈ (0, 3/2),

u(t,−1) = h1(x), u(t, 1) = h2(x),∀t ∈ (0, 1).
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(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

(e) u† v.s. u∗ at t = 0.25. (f) u† v.s. u∗ at t = 0.5. (g) u† v.s. u∗ at t = 0.75.

Fig. 5. Numerical results for the Burger’s equation: (a) a set of sample points; (b) a
collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors; (e)-(g) time slices of the numerical approximation u† and the
true solution u∗ at t = 0.25, 0.5, 0.75. The parameters γ = η = 10−6, N = 2400, NΩ = 5N/6,
M = 600, and MΩ = 5M/6.

We prescribe the true solution u(t, x) = (sin(πx)+2 cos(2πx))e−t and compute f , g, h1, and h2 accordingly.
We fix the ratios NΩ/N = MΩ/M = 6/7. Meanwhile, we use the anisotropic kernel in (4.4) with the
same lengthscales, i.e., (σ1, σ2) = (0.3, 0.05). We use the technique of eliminating variables to handle the
constraints in (3.18) (see Subsection 3.3 of [4]). All the experiments in this example stop once the errors
between two successive steps are less than 10−5 or the iteration numbers exceed 20.

Figure 6 plots the numerical results when N = 2800, M = 700, and γ = η = 10−10. Figures 6a and 6b
depict the samples and the inducing points. The history of Gauss–Newton iterations is plotted in Figure 6c,
which shows that the algorithm converges within 6 iterations. The absolute values of the pointwise errors
between the numerical solution and the true solution are given in Figure 6d. Table 4 records the L∞ errors
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N 600 1200 2400 4800
GP, L∞ error 6.29× 10−1 4.66× 10−2 4.92× 10−3 4.60× 10−4

SGP(M = 300), L∞ error 6.80× 10−1 7.10× 10−2 1.72× 10−2 1.15× 10−2

SGP(M = 600), L∞ error 7.15× 10−1 7.56× 10−2 4.60× 10−3 1.30× 10−3

SGP(M = 1200), L∞ error N/A 5.83× 10−2 4.24× 10−3 1.13× 10−3

SGP(M = 2400), L∞ error N/A N/A 3.53× 10−3 4.47× 10−4

Table 3. Burger’s equation: L∞ errors of the SGP method and the GP algorithm for
different numbers of sample points and inducing points. The N/A means not available. We
set γ = η = 10−6 for N ⩽ 1200 and choose γ = η = 10−8 for N = 2400.

of the SGP method and the GP algorithm in [4] for different values of N and M , which justifies the efficacy
of the SGP method.

(a) Sample points. (b) Inducing points.

(c) Loss history. (d) Pointwise errors.

Fig. 6. Numerical results for the parabolic equation: (a) a set of sample points; (b) a
collection of inducing points; (c) the convergence history of the Gauss–Newton iterations;
(d) contours of pointwise errors. The regularization parameters γ = η = 10−10. N =
2800, NΩ = 6/7×N , M = 700,MΩ = 6/7×M .

5. Conclusion and Future Work

In general, numerical techniques used to solve nonlinear PDEs provide an estimation of the solution within
a specific function space. The function space may contain redundant information in terms of PDE solutions
if it is not chosen properly. In this paper, we formulate the problem of finding a “compressed” subspace, in
which we seek an approximated solution to a nonlinear PDE with a negligible loss in accuracy compared to
the result of using the original function space. In particular, we examine the GP method that approximates
functions in the span of base functions formulated by evaluating derivatives of different orders of kernels
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N 700 1400 2800 5600
GP, L∞ error 2.75× 10−1 6.42× 10−3 5.13× 10−4 7.25× 10−5

SGP(M = 350), L∞ error 3.09× 10−1 2.92× 10−2 2.67× 10−2 3.63× 10−3

SGP(M = 700), L∞ error 2.79× 10−1 1.50× 10−2 6.93× 10−4 1.00× 10−4

SGP(M = 1400), L∞ error N/A 9.47× 10−3 5.22× 10−4 4.70× 10−5

SGP(M = 2800), L∞ error N/A N/A 3.36× 10−4 4.32× 10−5

Table 4. The parabolic PDE: L∞ errors of the SGP method and the GP algorithm for
different numbers of sample points and inducing points. The N/A means not available. We
set γ = η = 10−10.

at random samples. We present a SGP method which seeks solutions for nonlinear PDEs in “condensed”
RKHSs. Specifically, the SGP method finds a numerical solution to a PDE in the RKHS associated with
a low-rank kernel generated by inducing points. Meanwhile, the approximation solution can be viewed as
a maximum a posteriori probability estimator of a SGP conditioned a noisy observation of values of linear
operators satisfying the PDE at a finite set of samples. Our numerical experiments imply that if the number
of inducing points is chosen properly, the SGP algorithm produces a subspace that holds sufficient enough
information about the approximated solution. Hence, the SGP method consumes less computational time
than the GP method in [4] and achieves comparable accuracy when both methods use uniform samples.
We notice that the positions of inducing points greatly influence the performance of our algorithm. Hence,
a potential future work is to investigate a better way to put inducing points. Meanwhile, the choice of
hyperparameters has a profound impact on the performance of our method. The probabilistic interpretation
of the SGP approach in Subsection 2.3 provides a way for hyperparameter learning in future work.
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[5] Y. Chen, H. Owhadi, and F. Schäfer. Sparse Cholesky factorization for solving nonlinear PDEs via Gaussian processes.

arXiv preprint arXiv:2304.01294, 2023.

[6] J. Cockayne, C. Oates, T. Sullivan, and M. Girolami. Probabilistic numerical methods for PDE-constrained Bayesian
inverse problems. In AIP Conference Proceedings, volume 1853, page 060001. AIP Publishing LLC, 2017.

[7] P. Drineas, M. W. Mahoney, and N. Cristianini. On the Nyström method for approximating a gram matrix for improved
kernel-based learning. journal of machine learning research, 6(12), 2005.

[8] C. Fowlkes, S. Belongie, F. Chung, and J. Malik. Spectral grouping using the Nyström method. IEEE transactions on

pattern analysis and machine intelligence, 26(2):214–225, 2004.
[9] J. Gardner, G. Pleiss, K. Q. Weinberger, D. Bindel, and A. G. Wilson. GPytorch: Blackbox matrix-matrix Gaussian

process inference with GPU acceleration. Advances in neural information processing systems, 31, 2018.

[10] A. Gersho and R. M. Gray. Vector quantization and signal compression, volume 159. Springer Science & Business Media,
2012.

[11] J. Hensman, N. Durrande, and A. Solin. Variational Fourier features for Gaussian processes. J. Mach. Learn. Res.,

18(1):5537–5588, 2017.
[12] J. Hensman, N. Fusi, and N. D. Lawrence. Gaussian processes for big data. In Proceedings of the Twenty-Ninth Conference

on Uncertainty in Artificial Intelligence, UAI’13, pages 282–290, Arlington, Virginia, United States, 2013. AUAI Press.

[13] T. J. Hughes. The finite element method: linear static and dynamic finite element analysis. Courier Corporation, 2012.
[14] R. Jin, T. Yang, M. Mahdavi, Y. Li, and Z. Zhou. Improved bounds for the Nyström method with application to kernel

classification. IEEE Transactions on Information Theory, 59(10):6939–6949, 2013.
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[31] F. Schäfer, M. Katzfuss, and H. Owhadi. Sparse Cholesky factorization by Kullback–Leibler minimization. SIAM Journal

on scientific computing, 43(3):A2019–A2046, 2021.

[32] M. Seeger. PAC-Bayesian generalisation error bounds for Gaussian process classification. J. Mach. Learn. Res., 3:233–269,
March 2003.

[33] S. Smale and D. Zhou. Shannon sampling II: Connections to learning theory. Applied and Computational Harmonic

Analysis, 19(3):285–302, 2005.
[34] S. Smale and D. Zhou. Geometry on probability spaces. Constructive Approximation, 30(3):311–323, 2009.

[35] E. Snelson and Z. Ghahramani. Sparse Gaussian processes using pseudo-inputs. Advances in neural information processing
systems, 18, 2005.

[36] J. W. Thomas. Numerical partial differential equations: finite difference methods, volume 22. Springer Science and Business

Media, 2013.
[37] M. Titsias. Variational learning of inducing variables in sparse Gaussian processes. In Artificial intelligence and statistics,

pages 567–574. PMLR, 2009.

[38] J. Wang, J. Cockayne, O. Chkrebtii, T. J. Sullivan, and C. J. Oates. Bayesian numerical methods for nonlinear partial
differential equations. Statistics and Computing, 31(5):1–20, 2021.

[39] C. K. Williams and C. E. Rasmussen. Gaussian processes for machine learning. MIT press Cambridge, MA., 2006.

[40] A. Wilson and H. Nickisch. Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In International
conference on machine learning, pages 1775–1784. PMLR, 2015.

[41] F. X. Yu, A. T. Suresh, K. M. Choromanski, D. N. Holtmann-Rice, and S. Kumar. Orthogonal random features. Advances

in neural information processing systems, 29:1975–1983, 2016.
[42] Y. Zang, G. Bao, X. Ye, and H. Zhou. Weak adversarial networks for high-dimensional partial differential equations.

Journal of Computational Physics, 411, 2020.
[43] K. Zhang, I. W. Tsang, and J. T. Kwok. Improved Nyström low-rank approximation and error analysis. In Proceedings of

the 25th international conference on Machine learning, pages 1232–1239, 2008.



24 SPARSE GAUSSIAN PROCESSES FOR SOLVING NONLINEAR PDES

A. Proof for The Error of The SGP Method

We first give a proof for Lemma 3.3.

Proof of Lemma 3.3. We first show that S∗
xSx + γI is invertible for any γ > 0. Let u, v ∈ UQ and S∗

xSxu+
γu = v. Then, according to (3.12) and (3.13), we have

[ψ, u]TQψ + γu = v. (A.1)

Acting ψ on both sides of (A.1), we get

Q(ψ,ψ)[ψ, u] + γ[ψ, u] = [ψ, v].

Since Q(ψ,ψ) is positive semi-definite, Q(ψ,ψ) + γI is invertible. Thus,

[ψ, u] = (γI +Q(ψ,ψ))−1[ψ, v]. (A.2)

We get from (A.1) and (A.2) that

u =
1

γ
v − 1

γ
[ψ, v]T (γI +Q(ψ,ψ))−1Qψ,

which implies that S∗
xSx + γI is bijective. Furthermore,

(S∗
xSx + γI)−1v =

1

γ
v − 1

γ
[ψ, v]T (γI +Q(ψ,ψ))−1Qψ,∀v ∈ UQ. (A.3)

Similarly, one can show that SxS
∗
x + γI is bijective.

To prove (3.14), we see that

(S∗
xSx + γI)S∗

x(SxS
∗
x + γI)−1 =(S∗

xSxS
∗
x + γS∗

x)(SxS
∗
x + γI)−1

=S∗
x(SxS

∗
x + γI)(SxS

∗
x + γI)−1 = S∗

x,

which yields (3.14).
For any c ∈ ℓ2(x), using (A.3) and (3.13), we get

(S∗
xSx + γI)−1S∗

xc =
1

γ
cTQψ − 1

γ
[ψ, cTQψ](γI +Q(ψ, ,ψ))−1Qψ

=
1

γ
cTQψ − 1

γ
cTQ(ψ,ψ)(γI +Q(ψ,ψ))−1Qψ

=
1

γ
cTQψ − 1

γ
cT (Q(ψ,ψ) + γI − γI)(γI +Q(ψ,ψ))−1Qψ

=cT (γI +Q(ψ,ψ))−1Qψ,

which concludes (3.15).
For any c ∈ ℓ2(x), we use (3.15) and obtain

(I − Sx(S
∗
xSx + γI)−1S∗

x)c =c− Sx((Qψ)T (γI +Q(ψ,ψ))−1c)

=c−Q(ψ,ψ)(γI +Q(ψ,ψ))−1c

=c− (γI +Q(ψ,ψ)− γI)(γI +Q(ψ,ψ))−1c

=γ(γI +Q(ψ,ψ))−1c.

(A.4)

Since (A.4) holds for any c ∈ ℓ2(x), we conclude (3.16). □

The next lemma is similar to Lemma 3.3, in which we establish the properties of a sampling operator
leveraging the information of all the samples.
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Lemma A.1. Define the sampling operator Ŝx : U 7→ ℓ2(x) by

Ŝx = [ψ, u].

Denote Ŝ∗
x as the adjoint of Ŝx in the sense that for any c ∈ ℓ2(x), ⟨Ŝ∗

xc, u⟩ = ⟨Ŝxu, c⟩ℓ2(x). Then,

Ŝ∗
xc = cTKψ,∀c ∈ ℓ2(x). (A.5)

Besides,

Ŝ∗
x(ŜxŜ

∗
x + γI)−1 = (Ŝ∗

xŜx + γI)−1Ŝ∗
x, (A.6)

and

(Ŝ∗
xŜx + γI)−1Ŝ∗

xc = (Kψ)T (γI +K(ψ,ψ))−1c,∀c ∈ ℓ2(x). (A.7)

Proof. Since Ŝ∗
x is the adjoint of Ŝx, for each c ∈ ℓ2(x), we have

⟨Ŝ∗
xc, u⟩ = ⟨Ŝxu, c⟩ℓ2(x) = cT [ψ, u] = ⟨cTK(ψ), u⟩,∀u ∈ U .

Thus, we conclude (A.5). Meanwhile, for γ > 0, by the same arguments as the proof of Lemma 3.3, Ŝx
admits similar properties to those of Sx, i.e., (A.6) and (A.7) holds. □

Next, we give arguments for our main result, Theorem 3.7.

Proof of Theorem 3.7. Let Ŝx and Ŝ∗
x be defined as in Lemma A.1. To estimate the norm of u† − u∗, we

introduce intermediate functions,

v :=(Ŝ∗
xŜx + γI)−1Ŝ∗

xz
†, (A.8)

û :=(Ŝ∗
xŜx + γI)−1Ŝ∗

xŜxu
∗. (A.9)

and

u := (Kψ)TK(ψ,ψ)−1[ψ, u∗]. (A.10)

Next, we use the triangle inequality and obtain

∥u† − u∗∥U ⩽ ∥u† − v∥U + ∥v − û|U + ∥û− u∥U + ∥u− u∗∥U . (A.11)

The accuracy of the approximation of Q to K is measured by ∥u† − v∥U , while ∥v− û∥U represents the error
between the values of linear operators of u∗ and z†. The effect of the nugget term γI is captured by ∥û−u∥U ,
and the extent to which the span of Kψ can approximate the true solution u∗ is reflected in ∥u − u∗∥U .
Next, we split the arguments for bounding terms at the right-hand side of (A.11) into different steps.

Step 1. Here, we give an upper bound for ∥u† − v∥U , where v is defined in (A.8). Given γ > 0, let u† be
as in (3.17) and let z† be a solution to (3.18). Then, we have{

S∗
xSxu

† + γu† = S∗
xz

†,

Ŝ∗
xŜxv + γv = Ŝ∗

xz
†.

(A.12)

which yields {
Sxu

† = (SxS
∗
x + γI)−1SxS

∗
xz

†,

Ŝxv = (ŜxŜ
∗
x + γI)−1ŜxŜ

∗
xz

†.
(A.13)

Taking the difference of the two equations in (A.12) and using (A.13), we get

γ(u† − v) =S∗
x(z

† − Sxu
†)− Ŝ∗

x(z
† − Ŝxv)

=γS∗
x(SxS

∗
x + γI)−1z† − γŜ∗

x(ŜxŜ
∗
x + γI)−1z†. (A.14)
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By (3.14), (3.15), (A.6), (A.7), and (A.14), we have

u† − v =(S∗
xSx + γI)−1S∗

xz
† − (Ŝ∗

xŜx + γI)−1Ŝ∗
xz

†

=(Qψ)T (γI +Q(ψ,ψ))−1z† − (Kψ)T (γI +K(ψ,ψ))−1z†.

Thus, we obtain

∥u† − v∥2U =(z†)T (γI +Q(ψ,ψ))−1z† − (z†)T (γI +K(ψ,ψ))−1z†

+ 2γ(z†)T (γI +Q(ψ,ψ))−1(γI +K(ψ,ψ))−1z†

− γ(z†)T (γI +Q(ψ,ψ))−2z† − γ(z†)T (γI +K(ψ,ψ))−2z†

⩽3∥(γI +Q(ψ,ψ))−1 − (γI +K(ψ,ψ))−1∥|z†|2, (A.15)

where we use ∥(γI +Q(ψ,ψ))−1∥ ⩽ 1/γ and ∥(γI +K(ψ,ψ))−1∥ ⩽ 1/γ in the last inequality.
Step 2. Next, we bound v − û, where û is given in (A.9). Using (A.7) and the definitions (A.8)-(A.9),

we get

v =(Kψ)T (γI +K(ψ,ψ))−1z†, (A.16)

û =(Kψ)T (γI +K(ψ,ψ))−1[ψ, u∗]. (A.17)

Thus, we have

∥v − û∥2U =(z† − [ψ, u∗])T (γI +K(ψ,ψ))−1K(ψ,ψ)(γI +K(ψ,ψ))−1(z† − [ψ, u∗])

=(z† − [ψ, u∗])T (γI +K(ψ,ψ))−1(z† − [ψ, u∗])

− γ(z† − [ψ, u∗])T (γI +K(ψ,ψ))−2(z† − [ψ, u∗])

⩽(z† − [ψ, u∗])TK(ψ,ψ)−1(z† − [ψ, u∗]),

where the last inequality results from the fact that K(ψ,ψ)−1 − (γI + K(ψ,ψ))−1 and (γI + K(ψ,ψ))−2

are positive definite. Hence, we obtain

∥v − û∥U ⩽
√
(z† − [ψ, u∗])TK(ψ,ψ)−1(z† − [ψ, u∗]). (A.18)

Step 3. Then, we estimate the norm of û− u. Using (A.17), we get

u− û =(Kψ)T (K(ψ,ψ)−1 − (γI +K(ψ,ψ))−1)[ψ, u∗]

=γ(Kψ)TK(ψ,ψ)−1(γI +K(ψ,ψ))−1[ψ, u∗] (A.19)

where we use K(ψ,ψ)−1 − (γI + K(ψ,ψ))−1 = γK(ψ,ψ)−1(γI + K(ψ,ψ))−1 in the last equality. Thus,
using (A.19) and the fact that K(ψ,ψ)−3−(γI+K(ψ,ψ))−1K(ψ,ψ)−1(γI+K(ψ,ψ))−1 is positive definite,
we have

∥û− u∥2U =γ2[ψ, u∗]T (γI +K(ψ,ψ))−1K(ψ,ψ)−1(γI +K(ψ,ψ))−1[ψ, u∗]

⩽γ2[ψ, u∗]TK(ψ,ψ)−3[ψ, u∗]. (A.20)

Step 4. In the last step, we bound u−u∗, where u is given in (A.10). We observe that u is the projection
of u∗ onto the span of Kψ [24, Theorem 12.3]. Thus,

∥u∗ − u∥U = inf
ψ∈span(ψ)

∥u∗ −Kψ∥U (A.21)

Therefore, (A.11), (A.15), (A.18), (A.20), and (A.21) imply that (3.23) holds. □
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B. Proofs for the Nyström Approximation Error

In this section, we give a detailed proof for estimating the upper bound for E(Ha). For simplification, we
write ψ := (ψΩ,ψ∂Ω), where ψΩ represents the collection of linear operators for interior points and ψ∂Ω
consists of linear operators for boundary samples. We write x := (x1,x2), where we recall that x contains
all the sample points, x1 is the set of interior points in Ω, and x2 stands for the collection of boundary
points. We define the operators Lx1

and Lx2
such that for any function v ∈ U ,

Lx1 [v] =
1

NΩ
(KψΩ)

T [ψΩ, v] and Lx2 [v] =
1

N∂Ω
(Kψ∂Ω)T [ψ∂Ω, v], (B.1)

where NΩ is the size of x1 and N∂Ω is the length of x2. The next proposition connects the eigenvalues and
the eigenfunctions of Lx1

and Lx2
to the eigenvalues and the eigenvectors of K(ψΩ,ψΩ) and K(ψ∂Ω,ψ∂Ω).

Proposition B.1. Let R1 = NΩ(D − Db) and R2 = (N − NΩ)Db, where D and Db are given in (3.6).

Let {λj}R1
j=1 be the set of eigenvalues of K(ψΩ,ψΩ), which are ranked in the descending order. Define the

operator Lx1 as in (B.1). Then, the eigenvalues of Lx1 are {λj/NΩ}R1
j=1. Moreover, let φ1, . . . , φR1 be the

corresponding eigenfunctions of Lx1
that have normalized functional norms, i.e. ⟨φi, φj⟩ = δij , 1 ⩽ i, j ⩽ R1.

Let V = [v1, . . . ,vR1
] be the orthonormal eigenvector matrix of K(ψΩ,ψΩ). Then, we have√

λjvj = [ψΩ, φj ],∀1 ⩽ j ⩽ R1, (B.2)√
λjφj = v

T
j KψΩ,∀1 ⩽ j ⩽ R1, (B.3)

KψΩ = V [
√
λ1φ1, . . . ,

√
λR1

φR1
]T , (B.4)

and

K(ψΩ,j , ψΩ,j) =

R1∑
i=1

[ψΩ,j , φi]
2,∀1 ≤ j ⩽ R1, (B.5)

where ψΩ,j is the j
th component of ψΩ. Similarly, let {τj}R2

j=1 be the set of eigenvalues of K(ψ∂Ω,ψ∂Ω) sorted

in the descending order and let Lx2
be as in (B.1). Then, the eigenvalues of Lx2

are {τj/N∂Ω}R2
j=1. Meanwhile,

let ζ1, . . . , ζR2 be the eigenfunctions of Lx2 that have normalized functional norms. Let W = [w1, . . . ,wR2 ]
be the orthonormal eigenvector matrix of K(ψ∂Ω,ψ∂Ω). Then, we obtain

√
τjwj = [ψ∂Ω, ζj ],∀1 ⩽ j ⩽ R2, (B.6)

√
τjζj = w

T
j Kψ∂Ω,∀1 ⩽ j ⩽ R2, (B.7)

Kψ∂Ω =W [
√
τ1ζ1, . . . ,

√
τR2

ζR2
]T , (B.8)

and

K(ψ∂Ω,j , ψ∂Ω,j) =

R2∑
i=1

[ψ∂Ω,j , ζi]
2,∀1 ⩽ j ⩽ R2, (B.9)

where ψ∂Ω,j is the j
th element of ψ∂Ω.

Proof. We only give proofs related to Lx1 since the arguments for Lx2 are similar. Let λ̃j be j
th eigenvalue

of Lx1 and let φj be the corresponding eigenfunction with a normalized norm. Then, we have

Lx1 [φj ] =
1

NΩ
(KψΩ)

T [ψΩ, φj ] = λ̃jφj . (B.10)

Acting ψΩ on both sides of (B.10), we get

K(ψΩ,ψΩ)[ψΩ, φj ] = NΩλ̃j [ψΩ, φj ], (B.11)
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which implies that NΩλ̃j is the jth eigenvalue of K(ψΩ,ψΩ) and [ψΩ, φj ] is the corresponding eigenvector.

Hence, we confirm that if {λj}R1
j=1 contains the eigenvalues of K(ψΩ,ψΩ), {λj/NΩ}R1

j=1 is the set of the

eigenvalues of Lx1
. Furthermore, let V = [v1, . . . ,vR1

] be the orthonormal eigenvector matrix of K(ψΩ,ψΩ).
Then, (B.11) implies that

vj =
[ψΩ, φj ]

|[ψΩ, φj ]|
. (B.12)

From (B.10), we get

(KψΩ)
T [ψΩ, φj ] = λjφj , (B.13)

which yields

⟨(KψΩ)
T [ψΩ, φj ], (KψΩ)

T [ψΩ, φj ]⟩ = λ2j ⟨φj , φj⟩. (B.14)

Since φj is normalized, we obtain from (B.13) and (B.14) that

λj |[ψΩ, φj ]|2 = [ψΩ, φj ]
TK(ψΩ,ψΩ)[ψΩ, φj ] = λ2j ,

which gives

|[ψΩ, φj ]| =
√
λj . (B.15)

Hence, (B.12) and (B.15) imply that
√
λjvj = [ψΩ, φj ], which confirms (B.2). Then, the equality (B.3) fol-

lows directly from (B.13) and (B.2). Meanwhile, (B.4) results from (B.3) and the fact that V is orthonormal.
Let ψΩ,j be the jth element of ψΩ. Denote by Vji the component of V at the jth row and the ith column.

From (B.4), we get

KψΩ,j =

R1∑
i=1

Vji
√
λiφi. (B.16)

Thus, we get from (B.16) that

[ψΩ,j ,KψΩ,j ] = ⟨KψΩ,j ,KψΩ,j⟩ =
R1∑
i=1

λiV
2
ji =

R1∑
i=1

[ψΩ,j , φi]
2,

where the last equality follows (B.2). Thus, we conclude (B.5). □

Using (B.4) and (B.8), Hb in (3.24) can be rewritten in the basis of the eigenfunctions {φi}R1
i=1 and {ζi}R2

i=1,
i.e.,

Hb =

{
f =

R1∑
i=1

b1,i
√
λiφi +

R2∑
i=1

b2,i
√
τiζi,

R1∑
i=1

b21,i +

R2∑
i=1

b22,i ⩽ 1

}
. (B.17)

For any r := (r1, r2) ∈ [R1]× [R2], we define

Hrb =

{
f =

r1∑
i=1

b1,i
√
λiφi +

r2∑
i=1

b2,i
√
τiζi,

r∑
i=1

b21,i + b22,i ⩽ 1

}
,

Hrb =

{
f =

R1−r1∑
i=1

b1,i
√
λi+r1φi+r1 +

R2−r2∑
i=1

b2,i
√
τi+r2ζi+r2 ,

R1−r1∑
i=1

b21,i +

R2−r2∑
i=1

b22,i ⩽ 1

}
.

(B.18)

Define

E(Ha, r) = max
h∈Hr

b

E(h,Ha), (B.19)

which is the worst error in approximating any h ∈ Hrb by functions in Ha. The next proposition bounds
E(Ha) by E(Ha, r).
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Proposition B.2. Let r := (r1, r2) ∈ [R1] × [R2] and E(Ha, r) be as in (B.19). Under the conditions of
Proposition B.1, for any r ∈ [R1]× [R2], we have

E(Ha) ⩽ 2E(Ha, r) + 4λr1+1 + 4τr2+1, (B.20)

with the convention that λR1+1 = 0 and τR2+1 = 0.

Proof. Let Hrb and Hrb be defined in (B.18). For any h ∈ Hb, there exist h1 ∈ Hrb and h2 ∈ Hrb such that
h = h1 + h2. Thus, we have

E(Ha) = max
h1∈Hr

b

h2∈Hr
b

min
v∈Ha

∥v − h1 − h2∥2U

⩽2 max
h1∈Hr

b

min
v∈Ha

∥v − h1∥2U + 2 max
h2∈Hr

b

∥h2∥2U ⩽ 2E(Ha, r) + 4λr1+1 + 4τr2+1,

which concludes (B.20). □

The above proposition implies that it is sufficient to bound E(Ha, r) in order to estimate the Nyström
approximation error. Let ϕ be as in (3.7). For clarification, we denote by ϕ := (ϕΩ,ϕ∂Ω), where ϕΩ

represents the set of linear operators for interior points and ϕ∂Ω includes boundary linear operators. Let
x̂ := (x̂1, x̂2) be as in Assumption 1, let MΩ be the size of x̂1, and let M∂Ω be the length of x̂2. We define
the operators Lx̂1

and Lx̂2
such that for any function v ∈ U ,

Lx̂1
[v] =

1

MΩ
(KϕΩ)

T [ϕΩ, v] and Lx̂2
[v] =

1

M∂Ω
(Kϕ∂Ω)T [ϕ∂Ω, v]. (B.21)

The following proposition provides upper bounds for the Hilbert–Schmidt norms of Lx1 −Lx̂1
and Lx2 −

Lx̂2
. We recall that for any linear operator L : H 7→ H, where H is a Hilbert space, we denote by ∥L∥HS

and ∥L∥2 the Hilbert–Schmidt norm and the spectral norm, respectively, i.e.

∥L∥HS =

√∑
i,j

⟨ei, Lej⟩2H and ∥L∥2 = max
∥v∥H⩽1

∥Lv∥H. (B.22)

where {ei, i = 1, . . . } is a complete orthogonal basis of H. We note that for any linear operator L : H 7→ H,
∥L∥2 ⩽ ∥L∥HS .

Proposition B.3. Suppose that Assumptions 1 and 2 hold. Let Lx1 , Lx2 be as in (B.1) and let Lx̂1
, Lx̂2

be given in (B.21). Then, with a probability 1− δ, 0 < δ < 1, there exists a constant C > 0 such that

∥Lx1 − Lx̂1
∥HS ⩽

4C ln(2/δ)√
MΩ

and ∥Lx2 − Lx̂2
∥HS ⩽

4C ln(2/δ)√
M∂Ω

. (B.23)

Proof. Here, we adapt the proof of Corollary 8 in [14]. Let ψx be given in Assumption 2 for x ∈ x. For any
v ∈ U , we define

ξ(x)[v] =

D∑
i=Db+1

Kψxi [ψ
x
i , v],∀x ∈ x1, and ξ̂(x)[v] =

Db∑
i=1

Kψxi [ψ
x
i , v],∀x ∈ x2.

Then, Lx̂1
= 1

MΩ

∑MΩ

i=1 ξ(x̂i), and Lx̂2
= 1

M∂Ω

∑M
i=MΩ+1 ξ̂(x̂i). According to Assumption 1, E[ξ(x)] = Lx1

and E[ξ̂(x)] = Lx2 . Denote by H1 the span of {φi}R1
i=1 and by H2 the span of {ζi}R2

i=1, which are endowed
with the norm of U . Under Assumption 1, we observe that Lx1 and Lx̂1

map H1 to H1, and that Lx2 and
Lx̂2

map H2 to H2. Thus, by the definition of the Hilbert–Schmidt norm in (B.22), there exists a constant
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C such that

∥ξ(x)∥HS =

√√√√ R1∑
j,k

〈 D∑
i=Db+1

Kψxi [ψ
x
i , φj ], φk

〉2

=

√√√√ R1∑
j,k

( D∑
i=Db+1

[ψxi , φj ][ψ
x
i , φk]

)2

⩽C

√√√√ R1∑
j,k

D∑
i=Db+1

[ψxi , φj ]
2[ψxi , φk]

2 = C

√√√√ D∑
i=Db+1

( R1∑
j

[ψxi , φj ]
2

)2

⩽C
D∑

i=Db+1

R1∑
j=1

[ψxi , φj ]
2 = C

D∑
i=Db+1

[ψxi ,Kψxi ] ⩽ C,

(B.24)

where the last equality follows by (B.5) and we use Assumption 2 in the last inequality. Similarly, we get

∥ξ̂(x)∥HS ⩽ C

Db∑
i=1

[ψxi ,Kψxi ] ⩽ C. (B.25)

Hence, using (B.24), (B.25), and Proposition 1 of [34] (see also Proposition 6 of [14]), we conclude (B.23).
□

The following proposition gives an upper bound for E(Ha, r).

Proposition B.4. Suppose that Assumptions 1 and 2 hold. Let E(Ha, r) be as in (B.19). Let M∂Ω =
M −MΩ and let N∂Ω = N −NΩ. Then, for any r := (r1, r2) ∈ [R1]× [R2], with a probability at least 1− δ,
0 < δ < 1, there exists a constant C such that

E(Ha, r) ⩽max

{
CN2

Ω ln2(2/δ)

λr1MΩ
,
CN2

∂Ω ln2(2/δ)

τr2M∂Ω

}
. (B.26)

Proof. The proof is an adaption of the arguments of Theorem 7 in [14]. Let {λi}R1
i=1, {τi}

R2
i=1, {φi}

R1
i=1, and

{ζi}R2
i=1 be the eigenvalues and the eigenfunctions in Proposition B.1. Given δ ∈ [0, 1] and r := (r1, r2) ∈

[R1]× [R2], we define

Hrc,δ =
{
h =

r1∑
i=1

c1,i
√
λiφi,

1

N2
Ω

r1∑
i=1

c21,iλ
2
i ⩽ δ

}
and Hrc,δ =

{
h =

r2∑
i=1

c2,i
√
τiζi,

1

N2
∂Ω

r2∑
i=1

c22,iτ
2
i ⩽ 1− δ

}
,

Hrd,δ ={v ∈ U , ∥v∥2U ⩽ δN2
Ω/λr1}, and Hrd,δ = {v ∈ U , ∥v∥2U ⩽ (1− δ)N2

∂Ω/τr2}.

Thus, Hrc,δ ⊂ Hrd,δ and Hrc,δ ⊂ Hrd,δ. Meanwhile, for h1 ∈ Hrc,δ and h2 ∈ Hrc,δ, using Proposition B.1, we
have

Lx1
[h1] + Lx2

[h2] =
1

NΩ

r1∑
i=1

c1,i
√
λi(KψΩ)

T [ψΩ, φi] +
1

N∂Ω

r2∑
i=1

c2,i
√
τi(Kψ∂Ω)T [ψ∂Ω, ζi]

=
1

NΩ

r1∑
i=1

c1,iλi(KψΩ)
Tvi +

1

N∂Ω

r2∑
i=1

c2,iτi(Kψ∂Ω)Twi

=
1

NΩ

r1∑
i=1

c1,iλi
√
λiφi +

1

N∂Ω

r2∑
i=1

c2,iτi
√
τiζi.

(B.27)
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Thus, (B.27) implies that for any h ∈ Hr
b , there exist δ ∈ [0, 1], h1 ∈ Hrc,δ, and h2 ∈ Hrc,δ such that

h = Lx1 [h1] + Lx2 [h2]. Hence, we have

E(Ha, r) = max
h∈Hr

b

E(g,Ha) = max
h1∈Hr

c,δ

h2∈Hr
c,δ

min
v∈Ha

∥Lx1 [h1] + Lx2 [h2]− v∥2U

⩽ max
h1∈Hr

d,δ

h2∈Hr
d,δ

min
v∈Ha

∥Lx1
[h1] + Lx2

[h2]− v∥2U .

By the definitions of Lx̂1
and Lx̂2

, we have Lx̂1
[h1] + Lx̂2

[h2] ∈ Ha. Thus, we get

E(Ha, r) ⩽ max
h1∈Hr

d,δ

h2∈Hr
d,δ

min
v∈Ha

∥Lx1
[h1] + Lx2

[h2]− v∥2U

⩽ max
h1∈Hr

d,δ

h2∈Hr
d,δ

∥Lx1 [h1] + Lx2 [h2]− Lx̂1
[h1]− Lx̂2

[h2]∥2U

⩽ max
δ∈[0,1]

{
2δN2

Ω

λr1
∥Lx1 − Lx̂1

∥22 +
2(1− δ)N2

∂Ω

τr2
∥Lx2 − Lx̂2

∥22
}

⩽max

{
2N2

Ω

λr1
∥Lx1 − Lx̂1

∥2HS ,
2N2

∂Ω

τr2
∥Lx2 − Lx̂2

∥2HS
}
.

(B.28)

Thus, (B.28) together with Proposition B.3 implies that (B.26) holds. □

Finally, we are ready to give a bound for E(Ha).

Proof of Theorem 3.10. The inequality (3.27) follows directly from Propositions B.2 and B.4. □
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