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Abstract

In this paper, we propose a cusp-capturing physics-informed neural network (PINN)
to solve discontinuous-coefficient elliptic interface problems whose solution is contin-
uous but has discontinuous first derivatives on the interface. To find such a solution
using neural network representation, we introduce a cusp-enforced level set function
as an additional feature input to the network to retain the inherent solution proper-
ties; that is, capturing the solution cusps (where the derivatives are discontinuous)
sharply. In addition, the proposed neural network has the advantage of being mesh-
free, so it can easily handle problems in irregular domains. We train the network using
the physics-informed framework in which the loss function comprises the residual of
the differential equation together with certain interface and boundary conditions. We
conduct a series of numerical experiments to demonstrate the effectiveness of the cusp-
capturing technique and the accuracy of the present network model. Numerical results
show that even using a one-hidden-layer (shallow) network with a moderate number
of neurons and sufficient training data points, the present network model can achieve
prediction accuracy comparable with traditional methods. Besides, if the solution is
discontinuous across the interface, we can simply incorporate an additional supervised
learning task for solution jump approximation into the present network without much
difficulty.

1 Introduction

The study of fluid-structure interaction (FSI) problems has been an important research
topic in fluid dynamics for centuries, with applications ranging from, for example, funda-
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mental physics, engineering, geophysics, and biomedicine. Typical small-scale examples
include collisions between droplets in interfacial flows [28, 37], the dynamics of red blood
cells flowing in pulsating arteries [16, 36], and the electrophoretic motion of colloidal par-
ticles in electrically charged fluids [11, 27]. The key components in these examples are
fluid flow, deformable interfaces, and the complex mechanisms behind them. Moreover,
physical parameters (such as viscosity or density) for each subregion of the domain may be
different, resulting in lower regularity of the solution across the interfaces, thus requiring
additional treatments for accurate simulations.

For instance, when the no-slip boundary condition is applied to a fluid-structure inter-
face, the velocity field in the FSI problem is continuous in the entire domain, but its deriva-
tive is discontinuous across the interface. Among many classical numerical methods for
solving such problems, Peskin proposed the immersed boundary (IB) formulation [29, 31],
which transforms the core of solving the velocity field into an elliptic problem with sin-
gular forces. The IB method adopts a regularized version of the Dirac delta function to
discretize the singular forces directly, resulting in only first-order solution accuracy [23].
Another way to write the velocity equations is to impose jump conditions directly on the
interface. So the problem becomes an elliptic interface problem in which the solution is
continuous, but its normal derivative has jump discontinuity across the interface, which is
exactly the formulation we aim to solve in this work.

Since the introduction of the IB formulation, several jump-capturing and high-order
methods have been proposed for elliptic interface problems with discontinuous coefficients.
For instance, LeVeque and Li introduced the immersed interface method (IIM) [20], in-
corporating the jump conditions via local coordinates into the finite difference scheme to
achieve the overall second-order accuracy in maximum norm. A simple implementation
version of IIM that directly uses the jump conditions without introducing local coordi-
nates was developed in [13, 19] to achieve second-order accuracy in maximum norm as
well. Liu et al. [22] introduced a boundary condition capturing method (also known as
the ghost fluid method (GFM)) that is able to solve the elliptic interface problems in
a dimension-by-dimension manner, and can capture the solution and its normal deriva-
tive jumps sharply. However, the original GFM smoothes its tangential derivative, so the
method is only first-order accurate in the maximum norm. Egan and Gibou [6] extended
the original GFM by recovering the convergence of the gradients to achieve second-order
accuracy without modifying the resultant linear system. There are many other Cartesian
grid-based methods to solve the above elliptic interface problems accurately and robustly;
however, we do not intend to have an exhaustive review here.

Besides the grid-based methods described above, the scientific computing community
has shown an increased interest in solving elliptic interface problems using shallow or deep
neural networks. Notice that the neural network approach for solving the interface prob-
lems has one apparent advantage over the grid-based methods; namely, it is completely
mesh-free and can easily handle problems with complex interfaces or irregular domains.
One obstacle for the neural network approach is that most of the network has a smooth acti-
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vation function, so the resulting network is inherently smooth and is not a suitable ansatz
for the interface problem. We list some related works in literature as follows. A deep
Nitsche-type method [21] to solve elliptic interface problems with high-contrast discontin-
uous coefficients was developed in [39]. To deal with inhomogeneous boundary conditions,
a shallow neural network to approximate the boundary conditions must be employed in
advance. In [9], the authors proposed a deep unfitted Nitsche method for solving elliptic
interface problems with high contrasts in high dimensions. Unlike using a single network,
Wu and Lu [40] proposed an interfaced neural network that decomposes the computational
domain into two subdomains (one interface case), and each network is responsible for the
solution on each subdomain. Then an extended multiple-gradient descent method was in-
troduced to train the network. A similar piecewise deep neural network for elliptic interface
problems was also introduced earlier in [10]. In the above neural network approaches, the
network architectures usually have deep structures. Recently, the authors have proposed a
discontinuity capturing shallow neural network (DCSNN) [14] for solving elliptic interface
problems with discontinuous solutions. By augmenting a coordinate variable to label dif-
ferent pieces of each subdomain, the DCSNN can be trained in a single physics-informed
neural network (PINN) framework [34]. Meanwhile, we also used the idea proposed by E
and Yu [7] and developed a completely shallow Ritz network for solving the elliptic inter-
face problems by augmenting the level set function as an extra feature input in [18]. We
found that it significantly improves the training effectiveness and accuracy. Notice that the
major difference between DCSNN [14] and the shallow Ritz network [18] is that the former
inherently represents a discontinuous function while the latter represents a continuous one.

In this paper, we propose a cusp-capturing physics-informed neural network for solving
discontinuous-coefficient elliptic interface problems. The specific aim of this study is to
introduce a network that can present continuous solutions, but with discontinuous first
derivatives on interfaces. The smooth level set function augmented input in [18] cannot
capture the derivative discontinuity sharply; thus, we augment a cusp-enforced level set
function input to the network instead. Notice that, this new modified level set function does
not change the interface position (i.e., zero level set). The rest of the paper is organized
as follows. We present the formulation of the discontinuous-coefficient elliptic interface
problems in Section 2. In Section 3, we propose a cusp-capturing neural network to solve
the model problems. Numerical experiments are shown in Section 4 to demonstrate the
effectiveness of the proposed cusp-capturing technique and the accuracy of the present
network, followed by some concluding remarks in Section 5.

2 Discontinuous-coefficient elliptic interface problems

We consider a d-dimensional discontinuous-coefficient second-order elliptic interface prob-
lem [2]. Let Ω ⊂ R

d be a bounded domain and Γ be an embedded (d − 1)-dimensional
C1-interface separating Ω into two subdomains, Ω− and Ω+, so Ω = Ω− ∪ Ω+ ∪ Γ. The
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equations of the problem subjected to the interface and boundary conditions are given as
follows:

∇ · (β(x)∇u(x)) − α(x)u(x) = f(x), x ∈ Ω− ∪ Ω+, (1)

JuK(xΓ) = 0, Jβ∂nuK(xΓ) = ρ(xΓ), xΓ ∈ Γ, (2)

u(xB) = g(xB), xB ∈ ∂Ω, (3)

where u(x) is the function to be solved, ρ(xΓ) and g(xB) are given smooth functions,
α(x) ≥ 0, f(x) and β(x) > 0 are also given but defined in a piecewise smooth manner
across the interface Γ. We use ∂nu to denote the shorthand of normal derivative ∇u · n,
where n is the unit normal vector pointing from Ω− to Ω+ along the interface Γ. The
notation J·K represents the jump of a quantity across the interface (the one-sided limiting
value approaching from Ω+ minus the one from Ω−). For example,

JβK(xΓ) = lim
x∈Ω+,x→xΓ

β(x)− lim
x∈Ω−,x→xΓ

β(x) = β+(xΓ)− β−(xΓ), (4)

where the superscripts “±” represent the limits of the function value on the interface.
Under this notation, the second interface condition in Eq. (2) can be written explicitly as

Jβ∂nuK(xΓ) = β+(xΓ)∂nu
+(xΓ)− β−(xΓ)∂nu

−(xΓ)

= β+(xΓ)∂nu
+(xΓ)− β−(xΓ)∂nu

+(xΓ) + β−(xΓ)∂nu
+(xΓ)− β−(xΓ)∂nu

−(xΓ)

= JβK(xΓ)∂nu
+(xΓ) + β−(xΓ)J∂nuK(xΓ) = ρ(xΓ). (5)

One can immediately see that even with the case of JβK(xΓ) = 0, the solution u always
has the property of J∂nuK(xΓ) 6= 0 as long as ρ(xΓ) 6= 0. Along with the first interface
condition JuK(xΓ) = 0 in Eq. (2), we can conclude that the solution u is continuous over
the domain Ω but its normal derivative has jump discontinuity across the interface Γ.

We would also like to point out that although here we focus only on the Dirichlet-type
boundary condition (3), one can apply the present method to the Neumann or Robin-
type boundary condition with no difficulty. In this paper, we aim to find the solution
to Eqs. (1)-(3) using machine learning techniques in the spirit of physics-informed neural
networks [34], as introduced in the next section.

3 A cusp-capturing physics-informed neural network

As mentioned before, the solution of Eqs. (1)-(3) is continuous in the domain Ω but has a
jump discontinuity to its normal derivative on the interface Γ. The universal approximation
theorems [4, 12, 32] guarantee the applicability of approximating such continuous solutions
using artificial neural networks. However, a neural network with differentiable activation
functions is undoubtedly smooth, thus it is unlikely to capture the present solution with
cusps (the partial derivatives are not continuous) in an accurate manner. More precisely,
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locating and fitting derivative discontinuities in neural network solutions is challenging.
Since the partial derivative jumps occur at the interface, it is natural to include the interface
position as a feature input in the network architecture. In [18], we proposed a shallow Ritz-
type method to solve similar interface problems (taking β = 1) as Eqs. (1)-(3) in which
we add the level set function of the interface as a feature input to the network. That is,
we use a neural network of the form U(x, z = φ(x)) to approximate the solution u(x) of
the problem, where φ(x) is the level set function defined in the whole domain Ω. Here,
the interior and exterior region are defined as Ω− = {x ∈ R

d |φ(x) < 0} and Ω+ = {x ∈
R
d |φ(x) > 0}, respectively, and the zero level set gives the position of the interface Γ,

i.e., Γ = {x ∈ R
d |φ(x) = 0}. With this level set function augmentation, we found that it

significantly improves the training effectiveness and accuracy. However, since the level set
function is smooth, and the neural network function U is smooth due to the use of a smooth
activation function, the resulting neural network solution u(x) = U(x, z) = U(x, φ(x))
remains smooth. That is, the gradient of u

∇u = ∇xU + ∂zU ∇φ, (6)

is continuous so the normal derivative jump J∂nuK = 0 across the interface Γ. Here,
∇xU ∈ R

d represents a vector with partial derivatives of U with respect to the components
in x, and ∂zU is the partial derivative of U with respect to z. We also suppress the notation
of x in the gradients of u and φ since they both are functions of x. Thus, if we want to
require ∇u to be discontinuous across the interface then ∇φ should be discontinuous too.
Therefore, we need to modify the original smooth level set function accordingly.

3.1 Cusp-enforced level set function augmentation

As mentioned above, we need to modify the level set function so that its gradient is discon-
tinuous across the interface without changing the zero level set. This can be done easily
by taking the absolute value of the level set function; that is, we define φa(x) = |φ(x)|. We
therefore call this φa as a cusp-enforced level set function since it is non-differentiable at
the interface Γ. Furthermore, one can immediately derive that this cusp-enforced level set
function has the gradient jump as J∇φaK(xΓ) = 2∇φ(xΓ),xΓ ∈ Γ. Note that, the above
jump condition is evaluated by the limiting values from both sides of the interface where
∇φa is well-defined. With this modified level set function, we now define a new neural
network solution in the form as u(x) = U(x, z) = U(x, φa(x)). Since the neural network
function U is smooth, calculating the derivatives of the network U with respect to its input
variables x and z via automatic differentiation [8] has no problem at all. Thus, the gradient
jump of u across the interface can be computed directly from Eq. (6) as

J∇uK(xΓ) = ∂zUJ∇φaK(xΓ) = 2∂zU∇φ(xΓ). (7)

Notice that, in the above implementation we have used J∇xUK(xΓ) = 0 since U is smooth.
By multiplying the normal vector n = ∇φ/‖∇φ‖ to the above equation, we obtain the
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following normal derivative jump of u as

J∂nuK(xΓ) = 2∂zU‖∇φ(xΓ)‖. (8)

Therefore, the neural network solution U is capable of capturing the cusp behavior of the
solution in Eqs. (1)-(3) even if the network function U(x, z) is smooth across its entire
R
d+1 domain.
By using the relation ∇u = ∇xU+∂zU ∇φa in Ω±, one can explicitly write the following

equation after careful calculations

∇ · (β∇u) = β
(

∆xU + 2∇φa · ∇x (∂zU) + ‖∇φ‖2∂zzU + ∂zU∆φa

)

(9)

+ ∇β · (∇xU + ∂zU∇φa) ,

where ∆x is the Laplace operator concerning only the variable x.
Now, Eqs. (1)-(3) can be rewritten in terms of U as follows. For succinctness, we

introduce the notation Lβ,φa
U to represent the right-hand side of Eq. (9) so that Eq. (1)

is rewritten to the following

Lβ,φa
U(x, φa(x)) − α(x)U(x, φa(x)) = f(x), x ∈ Ω+ ∪ Ω−. (10)

Using the fact that J∂nφaK(xΓ) = 2∇φ(xΓ) · n = 2‖∇φ(xΓ)‖, we can also rewrite the
interface condition Jβ∂nuK(xΓ) = ρ(xΓ) in Eq. (5) as

JβK(xΓ)∂nU + (β+(xΓ) + β−(xΓ))∂zU ‖∇φ(xΓ)‖ = ρ(xΓ) xΓ ∈ Γ, (11)

where ∂nU = ∇xU · n. Notice that JuK(xΓ) = 0 is automatically satisfied since U is a
continuous function. The associated boundary condition (3) reads

U(xB , φa(xB)) = g(xB) xB ∈ ∂Ω. (12)

The remaining task is to train the network to simultaneously satisfy Eq. (10), the jump
condition (11), and the boundary condition (12) with appropriate loss function.

3.2 Physics-informed neural networks

In this subsection, we present a physics-informed neural network to approximate the solu-
tion U(x, φa(x)) for Eqs .(10)-(12). The convergence of PINNs for linear elliptic PDEs was
studied recently in [35]. Figure 1 presents the structure of a L-hidden-layer feed-forward
fully connected neural network where (x, φa(x))

T ∈ R
d+1 represents the d+1 feature input

of the network (recall that φa(x) is the cusp-enforced level set function). We label the
input layer as layer 0 and denote the feature input as v[0] = (x, φa(x))

T . The output at
the ℓ-th hidden layer with Nℓ neurons, denoted as v[ℓ] ∈ R

Nℓ , presents an affine mapping
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of the output of layer ℓ− 1 (i.e., v[ℓ−1]) followed by an action of the activation function σ
in a componentwise manner as

v[ℓ] = σ
(

W [ℓ]v[ℓ−1] + b[ℓ]
)

, ℓ = 1, · · · , L, (13)

where the matrix W [ℓ] ∈ R
Nℓ×Nℓ−1 contains the weights connecting the structure from layer

ℓ− 1 to layer ℓ, and b[ℓ] ∈ R
Nℓ is the bias vector at layer ℓ. Finally, we denote the output

of this multiple-hidden-layer network as

UN (x, φa(x); θ) = W [L+1]v[L], (14)

where W [L+1] ∈ R
1×NL . The notation θ denotes the vector collecting all trainable param-

eters (including all the weights and biases) so the dimension of θ is the total number of
parameters in the network that can be easily counted as Nθ = NL +ΣL

ℓ=1(Nℓ−1 + 1)Nℓ.

Figure 1: Diagram of the L-hidden-layer network structure.

In the training process, we select MI points in the region of Ω− ∪ Ω+,
{

xi
}MI

i=1
, MΓ

points on the interface Γ,
{

xi
Γ

}MΓ

i=1
, and MB points on the domain boundary ∂Ω,

{

xi
B

}MB

i=1
,

so totally M = MI + MΓ +MB training points. Under the physics-informed framework,
we hereby define the loss function as the mean squared error of the residual of differential
equation (10), the jump condition (11), and the boundary condition (12) as

Loss(θ) =
1

MI

MI
∑

i=1

∣

∣LI(x
i, φa(x

i); θ)
∣

∣

2
+

cΓ
MΓ

MΓ
∑

i=1

∣

∣LΓ(x
i
Γ, 0; θ)

∣

∣

2

+
cB
MB

MB
∑

i=1

∣

∣LB(x
i
B , φa(x

i
B); θ)

∣

∣

2
. (15)
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where the residual error LI , interface condition error LΓ, and boundary condition error
LB , are shown respectively as follows:

LI(x, φa(x); θ) = Lβ,φa
UN (x, φa(x); θ)− α(x)UN (x, φa(x); θ)− f(x), (16)

LΓ(xΓ, 0; θ) = JβK(xΓ)∂nUN (xΓ, 0; θ) + (β+(xΓ) + β−(xΓ))∂zUN (xΓ, 0; θ) ‖∇φ(xΓ)‖

−ρ(xΓ), (17)

LB(xB , φa(xB); θ) = UN (xB , φa(xB); θ)− g(xB). (18)

The constants cΓ and cB appeared in the loss function (15) are chosen to balance the
contribution of the terms related to the interface jump condition (11) and boundary con-
dition (12), respectively. In latter numerical experiments, we might need to use network
with smooth level set function φ augmentation UN (x, φ(x); θ) for comparison purpose. In
that case, the interface error loss in Eq. (17) should be replaced (can be easily derived) by

LΓ(xΓ, 0; θ) = JβK(xΓ) (∂nUN (xΓ, 0; θ) + ∂zUN (xΓ, 0; θ)‖∇φ(xΓ)‖)− ρ(xΓ). (19)

Meanwhile, throughout the rest of paper, we use the Levenberg-Marquardt (LM) algo-
rithm [25] as the optimizer to train the network, and use the notation uN to denote the
network prediction solution.

Remark. The cusp-capturing PINN is designed for solving elliptic interface problems
where the solution is continuous but the derivatives have jumps. The present method can
be easily extended to handle problems with non-zero solution jumps. If the solution is
discontinuous across the interface, we can incorporate an additional supervised learning
task for solution jump approximation and the remaining part of the solution can be found
by the cusp-capturing PINN. To see this, suppose we want to solve Eqs. (1)-(3) but with
nonzero solution jump JuK(xΓ) = λ(xΓ),∀xΓ ∈ Γ instead. We first write the solution as
u(x) = v(x) + w(x) in which we assume v(x) has the jump discontinuity JvK(xΓ) = λ(xΓ)
so w(x) is continuous (JwK(xΓ) = 0). We further assume v(x) has the form

v(x) =

{

V (x) x ∈ Ω−,
0 x ∈ Ω+,

(20)

so the jump JvK(xΓ) = −V (xΓ) = λ(xΓ) for xΓ ∈ Γ. The construction of V (x) will become
clear later. Substituting the expression of u(x) into Eqs. (1)-(3), one can immediately
obtain the equations for w(x) as

∇ · (β(x)∇w(x)) − α(x)w(x) =

{

f(x)−∇ · (β(x)∇V (x)) + α(x)V (x), x ∈ Ω−,
f(x), x ∈ Ω+(21)

JwK(xΓ) = 0, Jβ∂nwK(xΓ) = ρ(xΓ) + β−(xΓ)∂nV (xΓ), xΓ ∈ Γ, (22)

w(xB) = g(xB), xB ∈ ∂Ω. (23)
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Note that, the flux jump in Eq. (22) is obtained by the fact Jβ∂nvK(xΓ) = −β−(xΓ)∂nV (xΓ).
The above equations (21)-(23) can be solved by the present cusp-capturing PINN since the
solution w(x) now is continuous.

The remaining question is how to construct the function V (x) so that V (xΓ) = −λ(xΓ)
for xΓ ∈ Γ. Here, we simply adopt a shallow (one-hidden-layer) fully-connected feedforward
neural network to approximate V by supervised learning. That is, we randomly choose MΓ

points
{

xi
Γ

}MΓ

i=1
on the interface Γ, and minimize the corresponding mean squared error

loss as

Loss(θ̃) =
1

MΓ

MΓ
∑

i=1

(

V (xi
Γ; θ̃) + λ(xi

Γ)
)2

, (24)

where θ̃ denotes the vector collecting the trainable weights and biases used in the network.

4 Numerical results

In this section, we aim to demonstrate the capability of the present neural network method
for solving elliptic interface problems, Eqs. (1)-(3). We set the penalty constants in the
loss function cB = cΓ = 1 to focus on the accuracy check of the present cusp-capturing
technique. The merit of the proposed cusp-capturing PINN is to allow one to use a smooth
neural network U(x, z) to learn the non-smooth solution, u(x), through the relation u(x) =
U(x, z = φa(x)). The only requirement of the choice of activation function is subject to the
C2-regularity of u(x) in each subdomain. Thus, we simply choose the sigmoid function,
σ(x) = 1

1+e−x as our activation function. For the following numerical examples, we employ
different depth networks (from 1 to L hidden layers) with equal number of neurons in each
hidden layer N1 = N2 = · · · = NL = N . The training and test data points are generated
by the Latin hypercube sampling algorithm [24], which effectively avoids the clustering
of data points at some specific locations so resulting in a nearly random sampling. To
measure the accuracy of the network solution, we choose Mtest points (different from the
training points) in Ω to calculate the relative L∞ and L2 errors defined respectively as
‖uN − u‖∞/‖u‖∞ and ‖uN − u‖2/‖u‖2, where

‖u‖∞ = max
1≤i≤Mtest

|u(xi)|, ‖u‖2 =

√

√

√

√

1

Mtest

Mtest
∑

i=1

(u(xi))2.

In general, we set Mtest = 100M , where M is the total number of training points. Since the
predicted results will vary slightly for each experiment (it is affected by the randomness of
the training and test data points, and the initialization of trainable parameters), we show
the average value of the errors and losses over 5 trial runs.

In the training procedure, we use the Levenberg-Marquardt (LM) algorithm as our opti-
mizer and update the damping parameter µ by the strategies introduced in [38]. The train-
ing is stopped when the loss value Loss(θ) is below a threshold ǫθ (problem dependent) or
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the maximum iteration (training) step epoch = 3000 is reached. All trials are run on a desk-
top equipped with one NVIDIA GeForce RTX3060 GPU. We implement the cusp-capturing
PINN architecture using Pytorch (v1.13) [33] and all trainable parameters (weights and bi-
ases) are initialized using Pytorch default settings. The source codes used throughout this
paper are available on GitHub at https://github.com/teshenglin/cusp capturing PINN.

Example 1. As the first example, we demonstrate the cusp-capturing capability for
the present network by considering the following one-dimensional Poisson equation on an
interval Ω = [0, 1] with an interface point at xΓ = 1

3 :

d2u

dx2
= 0, x ∈ (0, 1)\{xΓ}, (25)

JuK(xΓ) = 0, J
du

dx
K(xΓ) = 1, (26)

u(0) = u(1) = 0. (27)

The exact solution of the above problem can be easily derived as

u(x) =

{

(xΓ − 1)x, x ∈ [0, xΓ),
xΓ(x− 1), x ∈ [xΓ, 1],

(28)

where the cusp appears exactly at the interface xΓ. We thus choose φ(x) = x− xΓ as the
smooth level set function so that φa(x) = |x− xΓ| represents the cusp-enforced level set
function.

For the neural network in this test, we use a completely shallow network structure
(L = 1) with N neurons in the hidden layer; here, the input dimension is two, one for x
and the other for the augmented feature input φa. The number of overall training data
points is M = MI + 3, including MI points in the interval (0, 1), two points (MB = 2)
at the boundary, and one point (MΓ = 1) at the interface. We use only 2 neurons in
the hidden layer and 13 training points, that is, (N,M) = (2, 13). After completing the
training process, we use Mtest = 1000 test points to examine the predicted accuracy of the
network solution.

Figure 2(a) shows the profiles of the exact solution u (denoted by the red-dashed line)
and the network-predicted solution uN with augmented input φa (solid line). One can
immediately see that the φa input network solution captures the cusp sharply where the
L∞ error achieves ‖u − uN ‖∞ = 7.01 × 10−8. Meanwhile, the corresponding loss drops
significantly within just 40 epochs, as shown in panel (b) of the figure.

Then we test to see if the solution can be learned by using a level set function augmented
input (not the cusp-enforced one); that is, we assume uN = UN (x, φ(x)). We train the
network with (N,M) = (20, 103). The learned solution is shown in Figure 2(a) (denoted by
“◦”) and the corresponding loss is presented in (b). It turns out that the φ input network
learns a completely wrong solution uN ≈ 0. This result is not surprising, since this network
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Figure 2: (a) The profiles of the exact solution u, the network solutions uN with augmented
input φ and φa, and the network solution using ReLU activation function with φ augmented
input. (b) The corresponding losses in (a).

solution is inherently smooth, so all the jumps are zero, which gives LΓ(xΓ, 0; θ) = −ρ(xΓ)
that is independent of the trainable parameters θ. So this smooth neural network tries to
minimize only the residual error and boundary error, that is, to learn a solution with zero
second-order derivative and zero boundary condition. The loss for this φ input network
shown in panel (b) is dominated by the interface loss LΓ that gives an O(1) value throughout
the whole training process.

Meanwhile, one may wonder if a feed-forward network using the ReLU activation func-
tion with augmented smooth level set function φ can work due to the cusp-like profile of
the ReLU function. Notice that, the ReLU function is linear so a shallow network (one
hidden layer) with ReLU activation can learn the differential equation (25) with zero loss
(i.e LI(x, φ(x), θ) = 0). However, it seems to be difficult to locate the cusp singularity for
such a network which we can see from the solution profile (denote by “△”) in Figure 2(a).
Again, like the sigmoid activation function with φ augmented input, the corresponding loss
(also see in Figure 2(b)) remains to be O(1) which leads to unsuccessful training. As dis-
cussed in [40], a single network with non-differentiable activation usually does not satisfy
the differential requirement in high-dimensional interface problems. As a result, the cusp
singularity obtained by the network does not coincide with the given interface. This is
exactly what we see from Figure 2(a) even in a one-dimensional case.

Example 2. As the second example, we consider an elliptic equation with a piecewise-
constant coefficient defined in the two-dimensional domain Ω = [−1, 1] × [−1, 1]. The
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embedded interface Γ is described by the zero level set of the function φ(x, y) = x2

0.52
+

y2

0.52
− 1, separating Ω into the inner (Ω−) and outer (Ω+) regions. We choose the exact

solution u and the coefficient β, respectively, as

u(x, y) =







1− exp
(

1
η

(

x2

0.52
+ y2

0.52
− 1
))

, (x, y) ∈ Ω−,

−γ ln
(

x2

0.52 + y2

0.52

)

, (x, y) ∈ Ω+,
(29)

and

β(x, y) =

{

β−, (x, y) ∈ Ω−,
β+, (x, y) ∈ Ω+,

where the parameter η = β−/β+ represents the ratio of β− to β+. (Here, we fix β+ = 1
and adjust η to control the contrast of the coefficients.) One can immediately see that the
solution is continuous across the interface Γ but its normal derivative has jump discontinuity
as Jβ∂nuK = −4(γ − 1). The corresponding right-hand side function f can be calculated
directly from Eq. (1) and the boundary condition g is given by the exact solution u on ∂Ω.
We introduce a number M0 which can be regarded as the grid number used in each spatial
dimension as in traditional grid-based methods so the training data set includes MI = M2

0

points in Ω− ∪ Ω+, MΓ = 3M0 points on the interface Γ, and MB = 4M0 points on the
boundary ∂Ω, respectively. Thus, the total training points M = M2

0 + 3M0 + 4M0.
Next, we will discuss some numerical issues about the implementation of cusp-capturing

strategy, including the accuracy study of shallow neural networks with different number
of neurons and training points, and the comparisons of different optimizers and different
augmented inputs.

Accuracy check: shallow neural networks with different number of neurons and

training points. The first experiment aims to study the number of neurons and training
points needed to get satisfactory results. To test whether the proposed method works
for different types of boundary condition, we impose the Dirichlet boundary condition at
x = ±1 and the Neumann boundary condition at y = ±1. We choose α = 1, η = 10,
γ = 2, and fix L = 1 such that the neural network is completely shallow. Table 1 shows
the relative L∞ and L2 errors between the network solution uN and the exact solution
u when using different numbers of neurons N and training points M . Also, we examine
the relative L∞ error of ∇uN by the formula ‖∇uN − ∇u‖∞/‖∇u‖∞ with the definition

‖∇u‖∞ = 1
2

(

‖∂u
∂x

‖∞ + ‖∂u
∂y

‖∞

)

. Notice that since the network has only one hidden layer,

the overall number of trainable parameters is Nθ = N(d+3) = 5N for this two-dimensional
problem. The corresponding final loss values are also shown in the table. One can see that
the present model can achieve a prediction accuracy of about 0.1% in relative L∞ and
L2 errors even using one hidden layer with merely N = 20 neurons. As we increase
the number of neurons from N = 20 to N = 50, the relative error decreases from the
magnitude O(10−3) to O(10−6), and the loss drops from O(10−4) to O(10−10) accordingly.
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(M0,M) (N,Nθ)
‖uN−u‖∞

‖u‖∞
‖uN−u‖2

‖u‖2

‖∇uN−∇u‖∞
‖∇u‖∞

Loss(θ)

(20, 100) 1.13 × 10−3 2.82 × 10−3 2.48 × 10−3 2.23 × 10−4

(20, 540) (30, 150) 4.41 × 10−5 2.33 × 10−4 2.08 × 10−4 1.61 × 10−7

(40, 200) 1.14 × 10−5 4.56 × 10−5 4.10 × 10−5 2.29 × 10−9

(50, 250) 5.17 × 10−6 3.69 × 10−5 3.09 × 10−5 1.04 × 10−10

(20, 100) 7.75 × 10−4 4.47 × 10−4 1.17 × 10−3 7.12 × 10−5

(30, 1110) (30, 150) 2.77 × 10−5 2.21 × 10−5 7.73 × 10−5 8.79 × 10−8

(40, 200) 4.40 × 10−6 4.30 × 10−6 1.75 × 10−5 2.97 × 10−9

(50, 250) 1.13 × 10−6 1.07 × 10−6 4.33 × 10−6 1.17 × 10−10

Table 1: Relative errors of u and ∇u, and training losses for the shallow network solution
with different number of neurons N and training points M . Here, α = 1, η = 10, and
γ = 2 in Example 2.

In addition, one can also see that all relative errors decrease by increasing the number
M0 = 20 to M0 = 30 (same as increasing the number of total training points M). From
this numerical experiment, we conclude that the solution errors can indeed be reduced by
increasing the number of neurons or training points, which provides an informal evidence
for the numerical convergence of the present method. The errors for the solution gradient
show a similar convergence trend as the solution errors. In addition, since the derivatives
are computed by automatic differentiation, the relative L∞ errors of the gradient seem to
have almost the same order of magnitude as the ones of the solution itself. We also present
the error bar plots of 5 trail runs associated with Table 1 in Figure 3.

We depict the solution profile uN in Figure 4(a), the corresponding absolute error
|uN − u| in Figure 4(b), and the cross-sectional view of uN and u along the line y = 0 in
Figure 4(c). One can clearly see that the cusps on the interface are accurately captured
and the largest error occurs at the domain boundary rather than on the interface, which
indicates the effectiveness of the present network model.

Comparison of different optimizers. The reasons why we choose Levenberg-Marquardt
algorithm as our optimizer are two-fold. First, the LM algorithm is a combination of
Gauss-Newton and gradient descent method which is suitable for nonlinear least squares
problems. (The minimization of the loss function in the present paper is a nonlinear least
square problem.) Meanwhile, the number of parameters to be trained in our proposed
neural network is moderate (a few hundreds), so the cost per epoch for LM algorithm is
acceptable. Second, the LM algorithm usually converges faster than commonly used opti-
mizers such as Adam [15] and L-BFGS [17]. Here, we compare the training performance
for three different optimizers (Adam, L-BFGS, LM) by showing the corresponding training
loss evolutions in Figure 5. We use the previous setup and fix the number of training points
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Figure 3: Error bar plots associated with Table 1. Each bar represents the errors over 5
trial runs. (a) Relative L∞ error of uN ; (b) Relative L2 error of uN ; (c) Relative L∞ error
of ∇uN .

Figure 4: (a) The solution profile of uN ; (b) Absolute error |uN − u|; (c) Cross-sectional
view of uN (blue-solid line) and u (red-dashed line) along the line y = 0. The figure is the
case when (M0,M) = (30, 1110) and (N,Nθ) = (50, 250) in Table 1.
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Figure 5: Comparison of loss evolutions using different optimizers: Adam (dashed line),
L-BFGS (dashed-dotted line), and LM (solid line). (a) N = 30; (b) N = 40; (c) N = 50.
All cases use 1110 training data points.

M = 1110 but vary the number of neurons from N = 30 to 50. One can see that, the LM
optimizer can effectively reduce the loss to O(10−10) within 3000 epochs when the number
of neurons increases. In contrast, the Adam and L-BFGS optimizers reduce the loss values
more slowly, and barely achieve the losses of the magnitude O(10−2) and O(10−4) even up
to 105 epochs. Although not shown here, the final relative errors of LM algorithm show
about three orders of magnitude smaller than the ones obtained by the Adam or L-BFGS.

Comparison of different augmented inputs. In the third experiment, we demon-
strate the robustness of present cusp-enforced level set function augmented input φa = |φ|.
Here, we keep η = 10 but choose α = 0 and impose Dirichlet boundary condition on ∂Ω
for simplicity. We also set γ = 1 so the flux jump Jβ∂nuK is zero while the solution u still
has discontinuous first derivatives to focus on the expressibility of the present network. We
compare the relative errors and the losses of using either φ or φa as the augmented input
in a fixed shallow neural network with the number of neurons N = 40. The total training
points used is M = 1110 (or M0 = 30). The results are shown in Table 2 where the used
augmented input is listed in the first column. One can see that the prediction accuracy
for the level set function input φ is quite poor. The relative errors for φ and φa input
are O(10−1) and O(10−5), respectively, so the latter significantly outperforms the former.
Therefore, the present cusp-enforced augmented feature input is indeed more accurate and
capable of tackling the interface problem with discontinuous first derivatives.

We also show the evolutionary plots of training loss for the two cases in Figure 6(a).
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Augmented input ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

φ 8.01 × 10−1 9.13 × 10−1 5.57 × 10−2

φa 2.98 × 10−5 3.32 × 10−5 9.17 × 10−9

Table 2: Relative errors and training loss for the shallow network with different augmented
inputs, φ and φa. Here, α = 0, η = 10, and γ = 1 in Example 2. (M0,M) = (30, 1110),
(L,N,Nθ) = (1, 40, 200)
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Figure 6: (a)The evolutions of training Loss(θ) corresponding to Table 2. (b) The evolu-
tions of training Loss(θ) corresponding to Table 3.

After a few hundreds of epochs, the training loss for the case with augmented input φ
becomes sluggish while the one with φa input continues to go down afterwards and reaches
to the order of 10−8 eventually.

To further investigate the power of function expressibility on the proposed cusp-enforced
level set function augmentation, we consider a special case with η = 1 (β− = β+ = 1) and
γ = 1 so that the jumps JβK = 0 and Jβ∂nuK = 0 simultaneously. One can immediately
see from Eq. (5) that the normal derivative jump of u equals to zero too, i.e., J∂nuK = 0.
In this case, the solution u is continuously differentiable across the interface Γ so one
might wonder if the level set function augmentation makes any differences. Table 3 shows
the results for a shallow network with φ, φa and without augmented input (denoted by
“None”). For the one without augmented variable, the input is solely the position x. To
have the same number of parameters used in the network, the one without augmented
input uses N = 50 neurons while the ones with augmented level set function input use
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N = 40 neurons. Despite the fact that the solution is C1, the network with solely x input
cannot train the solution properly as the training loss remains O(1) (see Figure 6(b)) so the
relative errors are greater than 5%. Again, the errors with φa augmented input are smaller
than the ones with φ input in two orders of magnitude; that is, O(10−5) versus O(10−3).
One can perceive that the network with cusp-enforced level set function augmentation still
can predict the solution more accurately even though it is designed to capture the first-
order derivatives correctly while the second-order derivatives are discontinuous across the
interface in this example.

We also show the overall training time in the last column of Table 3. Under the same
setting, the training time per epoch using cusp-capturing PINN is indeed more costly than
the one using the PINN (without any augmented input). However, as discussed earlier,
if we use merely PINN, we are unable to train the network successfully even though the
solution has the zero flux jump.

Augmented input ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ) Elapsed time

None (PINN) 1.59× 10−1 9.15 × 10−2 4.34× 100 10.9(s)
φ 8.55× 10−3 5.43 × 10−3 9.07 × 10−9 17.8(s)
φa 1.65× 10−5 1.91 × 10−5 4.61× 10−10 22.1(s)

Table 3: Relative errors, training losses, and total training time for the shallow network
with an augmented input (φ or φa) or without augmented input. Here, α = 0, η = 1, and
γ = 1 in Example 2. (M0,M) = (30, 1110).

Example 3. The third example illustrates that the present method is applicable for
solving interface problems with high-contrast coefficients defined on irregular domains. We
consider a five-fold flower region Ω = {(x(r, θ), y(r, θ)) ∈ R

2 | r(θ) ≤ 1− 0.2 cos(5θ)} with
an embedded interface, Γ = {(x, y) ∈ R

2 | x2 + y2 = 1
4}. As in Example 2, the coefficient

β is defined in a piecewise-constant manner. The exact solution u is defined as

u(x, y) =







1
β−

(

(

x2 + y2
)

3

2 − 1
8

)

, (x, y) ∈ Ω−,

3
β+

(

(

x2 + y2
)

3

2 − 1
8

)

, (x, y) ∈ Ω+,
(30)

and the Dirichlet boundary condition is imposed for simplicity. This problem was similarly
studied by Wang et. al. [39] using deep Ritz method on a square domain with an embedded
circular interface. Again, the contrast ratio is defined by η = β−/β+, and we fix β+ = 1
so η = β−. Here, we consider two high-contrast ratios; namely η = 10−4 and 104. The
cusp-enforced level set function is chosen as φa(x, y) =

∣

∣4(x2 + y2)− 1
∣

∣. We generate
M = 1498 training data (MI = 1138, MB = 240, and MΓ = 120) for the case of η = 104,
and employ the networks comprising from single to three hidden layers. The number of
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neurons for each network is chosen such that the number of trainable parameters Nθ is
almost the same. As shown in Table 4, for the contrast ratio η = 104, all network solutions
can achieve accurate prediction with relative L2 errors ranging from O(10−4) to O(10−5),
which outperform the results obtained in [39]. However, for the contrast ratio η = 10−4,
the magnitude of exact solution u in Ω− is of the order O(103) which is much larger than
the solution in Ω+ of O(1) (see also in Figure 7(d)). So we have to use more neurons
and training points (M = 2959 with MI = 2519, MB = 240, and MΓ = 200) to train the
networks. In this case, the relative errors range from O(10−3) to O(10−4). In addition, we
depict the network solution profile, absolute point-wise error, and the cross-sectional view
along y = x in Fig. 7. The upper and lower panels are for the contrast ratio η = 104 and
10−4, respectively. One can see that, without paying extra numerical efforts, the present
model is able to tackle the interface problems in irregular domains thanks to the mesh-free
advantage of neural network approximation. On the other hand, it could be quite tedious
in implementation for traditional grid-based methods to handle such problems.

η = β−/β+ (L,N,Nθ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(1, 63, 315) 3.29 × 10−5 3.29 × 10−5 1.35 × 10−9

104 (2, 15, 315) 3.65 × 10−5 3.82 × 10−5 7.29 × 10−10

(3, 11, 319) 8.73 × 10−5 1.24 × 10−4 3.32 × 10−9

(1, 190, 950) 4.25 × 10−3 1.42 × 10−3 6.25 × 10−9

10−4 (2, 28, 952) 3.88 × 10−4 1.28 × 10−4 1.82 × 10−11

(3, 20, 940) 1.50 × 10−3 5.07 × 10−4 3.05 × 10−10

Table 4: Relative errors and training losses in Example 3.

Example 4. In the fourth examples, we deal with the three-dimensional discontinuous
variable-coefficient case and compare the accuracy of the present network solution with
one of the immersed interface method (IIM) in [5]. The domain is set as the cube Ω =
[−1, 1] × [−1, 1] × [−1, 1] in which the embedded interface is given by Γ = {(x, y, z) ∈
R
3 | x2 + y2 + z2 = r20}. The exact solution u and the variable-coefficient β are chosen the

same as in [5],

u(x, y, z) =

{

r2, r < r0,

r20 +
1
b

(

r4

2 + r2 −
r4
0

2 − r20

)

, r ≥ r0,

and

β(x, y, z) =

{

r2 + 1, r < r0,
b, r ≥ r0,

where r0 = 1/2, r =
√

x2 + y2 + z2, and the source term f(x, y, z) = 10r2 + 6. The
solution satisfies the homogeneous jump conditions JuK = 0 and Jβ∂nuK = 0. However,
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Figure 7: (a) and (d): The profile of uN ; (b) and (e): Absolute point-wise error |uN − u|;
(c) and (f): Cross-sectional view of uN (blue solid line) and u (red dashed line) along the
line y = x. The upper panel is for η = 104 with (L,N,Nθ) = (2, 15, 315), and the lower
panel is for η = 10−4 with (L,N,Nθ) = (2, 28, 952) in Example 3.

the variable coefficient β controlled by the parameter b implies the discontinuity of the
normal derivative J∂nuK at the interface Γ. The cusp-enforced level set function is chosen
as φa(x, y, z) =

∣

∣4(x2 + y2 + z2)− 1
∣

∣.
For the sampling of training data points, we generate MI data points in the region

Ω+ ∪ Ω−, and MB on the domain boundary (MB/6 uniformly distributed training points
on each face), while MΓ data points on the surface Γ are generated by DistMesh [30].
In each of the following tests, the number of overall training points used is M = 3360
(MI = 800, MB = 2400, and MΓ = 160).

Table 5 shows the relative errors and losses of the present method for three cases of
b = 1, 10 and 1000. Surprisingly, no matter how large the parameter b is, the present
method with single- or multiple-hidden-layer structure gives accurate network predictions
with the relative L∞ and L2 errors of the magnitude O(10−6). Here, we also present the
results produced by IIM [5] using 104 × 104 × 104 uniformly distributed grid points. It
should be noted that, in 3D IIM, the total number of degree of freedom (unknowns) is 1043
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while the number of trainable parameters is just about 240 for the present method. One
can clearly see that our results outperform the ones obtained by IIM in almost two orders
of magnitude in the relative L∞ error.

b (L,N,Nθ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(1, 40, 240) 1.90 × 10−6 2.17 × 10−6 7.13 × 10−11

1 (2, 12, 228) 1.15 × 10−6 1.77 × 10−6 7.53 × 10−11

(3, 9, 234) 1.49 × 10−6 1.52 × 10−6 5.86 × 10−11

IIM 9.59 × 10−5

(1, 40, 240) 2.48 × 10−6 1.92 × 10−6 3.68 × 10−11

10 (2, 12, 228) 3.82 × 10−6 1.84 × 10−6 5.59 × 10−11

(3, 9, 234) 3.95 × 10−6 3.11 × 10−6 3.46 × 10−11

IIM 1.01 × 10−4

(1, 40, 240) 5.04 × 10−6 3.51 × 10−7 7.83 × 10−11

1000 (2, 12, 228) 5.89 × 10−6 6.38 × 10−7 1.43 × 10−10

(3, 9, 234) 4.40 × 10−6 5.95 × 10−7 2.21 × 10−10

IIM 1.61 × 10−4

Table 5: Relative errors and training losses in Example 4. The results produced by IIM
use 104 × 104× 104 grid points.

Example 5. In this example, we consider a problem of dimension d = 6 to show that
the present method is able to solve high-dimensional problems. Same problem was also
solved in [18] using a shallow Ritz method. Here we consider the domain Ω as a 6-sphere
of radius 0.6 enclosing a smaller 6-sphere of radius 0.5 as Ω−. The cusp-enforced level set

function is chosen as φa(x) =
∣

∣

∣(‖x‖2/0.5)
2 − 1

∣

∣

∣, where x = (x1, x2, x3, x4, x5, x6). We fix

α = 0, a constant coefficient β(x) = 1, and the exact solution is defined as

u(x) =

{

exp(0.52 − ‖x‖22) +
∑5

i=1 sin(xi) x ∈ Ω+,

1 + 2 sin(0.52 − ‖x‖22) +
∑5

i=1 sin(xi) x ∈ Ω−.
(31)

The right-hand side functions can be obtained using Eqs. (1)-(3).
We use a shallow network (L = 1) structure with M = 2628 points to train the network.

The results are shown in Table 6. Using 40 neurons in the hidden layer (and correspondingly
360 trainable parameters), the relative L∞ and L2 errors are in the order of O(10−6) and
O(10−7), respectively. This example shows that the present method is applicable to solve
high-dimensional elliptic interface problems.

Example 6. Next, we take an example in [1] that has its solution being discontinuous
and make an accuracy comparison with the recent mesh-free methods [1, 26]. We consider
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(N,Nθ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(10, 90) 2.16 × 10−3 1.37 × 10−3 1.08 × 10−4

(20, 180) 7.69 × 10−4 2.45 × 10−4 1.48 × 10−6

(30, 270) 9.54 × 10−5 3.79 × 10−5 1.51 × 10−8

(40, 360) 1.86 × 10−6 6.90 × 10−7 5.77 × 10−11

Table 6: Relative errors and losses with M = 2628 training data points where
(MI ,MB ,MΓ) = (500, 1064, 1064) in Example 5.

a two-dimensional computational domain Ω = [−1, 1] × [−1, 1] with an embedded circular

interface Γ represented by the zero level set function φ(x, y) = x2 + y2 −
(

2
3

)2
. The exact

solution is expressed as

u(x, y) =

{

sin(4πx) sin(4πy) + 7, (x, y) ∈ Ω−,
5 exp(−x2 − y2), (x, y) ∈ Ω+,

and the coefficient β is a piecewise constant with β− = 2 and β+ = 3 in Ω− and Ω+,
respectively. This example also aims to demonstrate the applicability of the proposed
method presented in the Remark since the above analytic solution is discontinuous across
the interface. Following the procedures in the Remark, we use a shallow network with 100
neurons and 1000 random points xΓ on the interface to train the function V (x) satisfying
V (xΓ) = −JuK(xΓ). Once V is available (thus v is obtained), we apply the present cusp-
capturing PINN to solve Eqs (21)-(23) to obtain the solution w. Then we can recover
the solution u = v + w. Table 7 presents the L∞ errors of the proposed method and two
other non-neural network mesh-free methods, including the local mesh-free method based
on LMM2P in [1] and the Pascal polynomials-based multiple-scale approach in [26].

The present networks with the number of hidden layer L = 1, 2 use exactly same number
of trainable parameters Nθ = 775 and same number of total training points M = 3150
(MI = 2550, MB = 400, and MΓ = 200) which give the L∞ errors ranging from the
magnitude O(10−3) to O(10−4). Here, using a deeper network seems to predict more
accurate results than the shallow one under the same number of trainable parameters used.
Therefore, we use a deep network (L,N,Nθ) = (3, 20, 940) with M = 4535 (MI = 3635,
MB = 600, and MΓ = 300) training points to reduce the L∞ error to the magnitude of
O(10−5), where the solution profile uN and its cross-sectional view along the line y = x are
shown in Figure 8. In the Table, the number of nodes indicates the number of mesh-free
points used in these methods which works like the number of training points M used in
the present method. One can immediately see that our numerical results are slightly more
accurate than the ones in [1] and less accurate than the ones obtained in [26].

Example 7. The last example is taken from [3], in which we consider a spherical shell
Ω = {(x, y, z) ∈ R

3 | 0.1512 ≤ x2 + y2 + z2 ≤ 0.9112} where a complex embedded interface
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(L,N,Nθ,M) Present No. nodes Ahmad et al. [1] No. nodes Oruç [26]

(1, 155, 775, 3150) 4.31 × 10−3 1600 8.75 × 10−3 1365 (23) 1.54 × 10−3

(2, 25, 775, 3150) 3.78 × 10−4 6400 1.52 × 10−3 2490 (25) 1.04 × 10−4

(3, 20, 940, 4535) 3.72 × 10−5 25600 - 4065 (27) 4.08 × 10−6

Table 7: Comparison of L∞ errors using the present method and two recent mesh-free
methods [1, 26] in Example 6. The number in the parentheses represents the number of m
with the highest degree of polynomial m− 1 used in [26].

Γ is represented by the zero level set of the level set function

φ(x, y, z) =
√

x2 + y2 + z2−r0

(

1 +

(

x2 + y2

x2 + y2 + z2

)2 3
∑

k=1

ak cos
(

nk

(

tan−1
(y

x

)

− θk

))

)

,

and the setup of parameters is shown as follows:

r0 = 0.483,





a1
a2
a3



 =





0.1
−0.1
0.15



 ,





n1

n2

n3



 =





3
4
7



 , and





θ1
θ2
θ3



 =





0.5
1.8
0



 .

The illustration of domain and interface geometry can be found in Figure 9(a). Note that,
the dark-shading region enclosed in the interface is the inner boundary of the domain Ω.
We choose the following same solution u and the coefficient β as in [3]

u(x, y, z) =







sin(2x) cos(2y)ez , (x, y, z) ∈ Ω−,
(

16
(

(y−x)
3

)5
− 20

(

(y−x)
3

)3
+ 5

(

(y−x)
3

)

)

log(x+ y + 3) cos(z), (x, y, z) ∈ Ω+,

β(x, y, z) =

{

10
(

1 + 1
5 cos (2π(x+ y)) sin (2π(x− y)) cos(z)

)

, (x, y, z) ∈ Ω−,
1, (x, y, z) ∈ Ω+.

The right-hand side functions can be obtained using Eqs. (1)-(3).
Again, the above analytic solution is obviously discontinuous across the interface so we

have to follow the solution procedures discussed in the Remark to obtain the approximate
network solution. First, we use a shallow network with 100 neurons and 752 training points
(generated by DistMesh [30]) xΓ on the interface to train the function V (x) satisfying
V (xΓ) = −JuK(xΓ). Once V is available (thus v is obtained), we solve Eqs (21)-(23) by
applying the present cusp-capturing PINN with one-hidden-layer and 2460 training data
points (MI = 801, MB = 907, andMΓ = 752) to train the solution w. After that, we obtain
the network approximate solution u = v+w. Table 8 shows the relative L∞ and L2 errors
for different number of neurons N used in the hidden layer. One can see that, using merely
25 neurons in the hidden layer (correspondingly 150 trainable parameters), the relative
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Figure 8: The corresponding network solution plots in Example 6. (L,N,Nθ) = (3, 20, 940),
(MI ,MB ,MΓ) = (3635, 600, 300). (a) The profile of the network solution uN ; (b) Cross-
sectional view of uN (blue solid line) and u (red dashed line) along the line y = x.

errors and training losses are of the magnitudes O(10−4) and O(10−7), respectively. The
relative errors can be reduced to the magnitude O(10−6) when the number of neurons
increases to 100. Figure 9(b) shows the cross-sectional profile of the network solution on
the hyperplane z = 0. As a result, the present method is indeed applicable for solving
elliptic interface problems in irregular domain with complex interface subject to nonzero
solution jump condition.

(N,Nθ) ‖uN − u‖∞/‖u‖∞ ‖uN − u‖2/‖u‖2 Loss(θ)

(25, 150) 7.55× 10−4 5.03× 10−4 1.16 × 10−7

(50, 300) 3.04× 10−5 1.09× 10−5 1.54 × 10−9

(100, 600) 3.07× 10−6 1.05× 10−6 1.36 × 10−11

Table 8: Relative errors and training losses in Example 7.

5 Conclusion

We propose a cusp-capturing physics-informed neural network for solving the discontinuous-
coefficient elliptic interface problems. By introducing a cusp-enforced level set function as
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Figure 9: (a) The illustration of domain and interface geometries in Example 7. (b) The
cross-sectional view of the network solution uN on z = 0. The red and grey curves indicate
the corresponding cross-sectional interface and domain boundaries, respectively.

an additional feature input to the network, the predicted solution by the network can retain
the inherent properties of the solution which is continuous but the normal derivative has a
jump discontinuity on the interface. The training procedure uses the LM-based optimizer
to minimize the loss function comprising mean squared errors of the equation residual, the
interface condition, and the boundary condition in the same spirit as the physics-informed
neural networks. We conduct a series of numerical tests to show the accuracy of the present
network, with particular emphasis on the number of neurons and training points, and the
effectiveness of the cusp-capturing technique. A high-contrast coefficient interface problem
is included in our numerical experiments, and the accuracy outperforms the one obtained
in previous work. The present network is efficient in terms of network structure since one
hidden layer with a moderate number of neurons and sufficiently enough training data
points can achieve quite accurate predictions. The results are also comparable to tradi-
tional grid-based methods, such as the immersed interface method. Besides, if the solution
is discontinuous across the interface, we can simply incorporate an additional supervised
learning task for solution jump approximation into the present network without much dif-
ficulty. In the future, we shall apply the present network method to practical applications
where traditional grid-based methods are difficult to implement and extend to the time-
dependent discontinuous-coefficient interface problems. Meanwhile, using functions other
than level sets to represent interfaces for handling the C0-interfaces and considering mul-
tiple interfaces is beyond the scope of this paper and is certainly worthy exploring in the
future.
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