
A Dimension-Augmented Physics-Informed Neural Network
(DaPINN) with High Level Accuracy and Efficiency

Weilong Guan1, Kaihan Yang1, Yinsheng Chen1 and Zhong Guan∗1

1School of Microelectronics Science and Technology, Sun Yat-Sen University, Zhuhai, 519082,
China

Abstract

Physics-informed neural networks (PINNs) have been widely applied in different
fields due to their effectiveness in solving partial differential equations (PDEs). How-
ever, the accuracy and efficiency of PINNs need to be considerably improved for sci-
entific and commercial use. To address this issue, we systematically propose a novel
dimension-augmented physics-informed neural network (DaPINN), which simultane-
ously and significantly improves the accuracy and efficiency of the PINN. In the DaP-
INN model, we introduce inductive bias in the neural network to enhance network gen-
eralizability by adding a special regularization term to the loss function. Furthermore,
we manipulate the network input dimension by inserting additional sample features
and incorporating the expanded dimensionality in the loss function. Moreover, we
verify the effectiveness of power series augmentation, Fourier series augmentation and
replica augmentation, in both forward and backward problems. In most experiments,
the error of DaPINN is 1∼2 orders of magnitude lower than that of PINN. The results
show that the DaPINN outperforms the original PINN in terms of both accuracy and
efficiency with a reduced dependence on the number of sample points. We also discuss
the complexity of the DaPINN and its compatibility with other methods.
keywords: PINN, Dimension-augmented, Data Enhancement, PDEs

1 Introduction

Partial differential equations (PDEs) are commonly used to describe various phenomena
in science and engineering problems. PDE numerical solutions have received consider-
able attention from scholars, and many numerical methods have been proposed, including
the spectral method [1], variational iterative method [2], and finite element method [3].
However, these numerical methods still face enormous challenges in solving inverse and

∗Corresponding author:guanzh23@mail.sysu.edu.cn

1

ar
X

iv
:2

21
0.

13
21

2v
1

 [
cs

.L
G

]
 1

9
O

ct
 2

02
2

high-dimensional problems [4]. To overcome these issues, M. Razzi et al. [5, 6] proposed
the physics-informed neural network (PINN), which introduces deep learning to numerical
methods by using general approximations and powerful neural network representation.

The PINN has been applied in fluid mechanics [7], heat conduction [8], materials [9],
and wave fields [10]. However, the accuracy and efficiency of the PINN need to be increased.
Several aspects of the PINN can be enhanced, and many researchers have conducted work
on this topic. The hyperparameter settings have been improved through sampling methods
[11], loss functions [12, 13, 14, 15], and activation functions [16]. Moreover, some related
work has achieved improvements on high-dimensional disaster problems [17] and inverse
problems [18, 19, 20]. In terms of the network structure, specific boundary conditions
[21, 22, 23, 24] and feature information [25, 26, 27] have been incorporated. In terms of
training methods, the residual-based adaptive refinement (RAR) method proposed in the
literature [28] improves the accuracy by adding sample points in stages. Replacing the
network input with Fourier basis functions to impose periodicity has been shown to be an
effective optimization method for PDE systems with periodic boundary conditions [29, 23].
However, this approach is applicable only in systems with periodic bounds and has not been
generalized to more cases. Moreover, few studies have optimized neural networks from the
perspective of dimension augmentation.

The input dimension of the PINN usually depends on the number of equation vari-
ables, which is considerably lower than the number of variables in neural networks in other
fields, such as natural language processing and computer vision. The input dimension of
a network objectively affects the accuracy of the network. For example, in convolutional
neural networks (CNNs), degradation in the image resolution reduces model performance
[30]. Hence, the input dimension can be addressed by inserting more features into the input
vector to enhance the PINN.

In this work, we propose a dimension-augmented PINN (DaPINN) that improves the
accuracy and efficiency of the PINN by systematically manipulating the network input
dimension, with the extended dimension bounded by a loss function that considers partial
derivatives. The DaPINN model improves the solution accuracy by using power series
augmentation and Fourier series augmentation and replica augmentation. Moreover, the
DaPINN performs significantly better than the PINN, as the DaPINN requires less training
time to achieve the same accuracy and has considerably higher accuracy under the same
training conditions.

This paper is organized as follows. In Section 2, we introduce the PINN and DaPINN,
as well as several strategies for extending the input dimension. In Section 3, we first prove
the effectiveness of the proposed input dimension expansion approach and then show the
DaPINN performance and the impact of different expansion methods on model accuracy
for various positive and inverse problems. In Section 4, we discuss the computational
complexity, network size implications, and method compatibility of DaPINN. Finally, we
conclude the paper in Section 5.

2

2 Methods

2.1 Physics-informed neural networks (PINN)

The PINN is a neural network structure for solving partial differential equations that in-
corporates a network loss function based on the PDE , initial conditions and boundary
conditions of the problem. To approximate the PDE solution u(x), the PINN trains a neu-
ral network N (x) to minimize a loss function formulated according to the partial differential
equation, initial conditions and boundary conditions.

Consider the following differential equation:

f (x, t,N , ∂xN , ∂tN . . . , λ) = 0, x ∈ Ω, t ∈ [0, T] (1)

N (x, 0) = g0 (x) , x ∈ Ω (2)

N (x, t) = gΓ (t) , x ∈ ∂Ω, t ∈ [0, T] (3)

where x is a spatial coordinate; t is the time; f denotes the residual of the partial dif-
ferential equation, including the differential operator ([∂xu, ∂tu, . . .]) and the parameter
(λ = [λ1, λ2, . . .]); u(x, t) is the solution of the PDE with the given initial boundary value
condition, where the initial value condition is g0(x), and the boundary value condition is
gΓ (t) (can be type I, type II, or type III boundary conditions); Ω and ∂Ω denote the spatial
domain and boundary, respectively. The PINN uses a fully connected feedforward neural
network (FNN) with multiple hidden layers to approximate the solution of the PDE u. The
spatial and temporal coordinates (x,t) are used as inputs. The hidden layer parameters of
the kth layer are denoted as zk. A neural network with depth of L can be represented as:

z0 = (x, t) (4)

zk = σ
(
W kzk−1 + bk

)
, 1 ≤ k ≤ L− 1 (5)

zk = W kzk−1 + bk, k = L (6)

The PINN formulates the solution of the PDE system as an optimization problem by
iterating the neural network weights. Our objective is to minimize the loss function L by
optimizing trainable parameters θ:

L = ωfLf (θ,λ; Tf) + ωbLb (θ,λ; Tb) + ωiLi (θ,λ; Ti) (7)

In the above equation, Lf , Lb and Li are the residuals of the differential equation, initial
conditions and boundary conditions, respectively. Tf , Tb and Ti are the sample points
in the domain, initial state and on boundary. ω1, ω2, and ω3 are the weight coefficients
corresponding to the different loss terms.

3

(a) (b)

Figure 1: (a) Structure of conventional physics-informed neural networks (PINN). (b)
Structure of dimension-augmented physics-informed neural networks (DaPINN).

2.2 Dimension-augmentated PINN

In PINNs, we only use the physical coordinate x as the input to construct the neural
network N (x) to fit the objective function u (x). Here, we introduce a set of mappings:

t1, t2 . . . tn : X → T1, T2, . . . , Tn; τi = ti (x) , i = 1, . . . , n. (8)

Then, the same method can be applied with τ1, τ2, . . . , τn, the images of x under mapping
functions t1, t2, . . . , tn, used as the input to construct a new neural network N (τ1, τ2 . . . τn).
The new neural network has a input dimension of n, compared to PINN where the input
dimension is only related to the size of x. If the appropriate mapping is chosen, the
new network, which is denoted as N (τ) = N (t1 (x) , . . . , tn (x)) can also approximate the
original objective function u (x) after iterating (Fig. 1.).

The loss function of the DaPINN model is defined as equation (7), where the residual
term and the boundary/initial error in the PDE can be re-expressed as

Lf (θ,λ; Tf) =
1

|Tf |
×
∑
x∈Tf

∣∣∣∣f (τ1, τ2, . . . ;
∂N
∂τ1

,
∂N
∂τ2

, . . . ;
∂2N
∂τ1∂τ1

,
∂2N
∂τ1∂τ2

, . . . ; . . . ;λ

)∣∣∣∣2 (9)

Lb,i (θ,λ; Tb,i) =
1

|Tb,i|
×
∑

x∈Tb,i

|N (τ1, τ2, . . . , τn;θ)− u (τ1, τ2, . . . , τn;θ)|2 (10)

4

For example, for the 1D Laplace equation: ∆u(x) = 0, by using mappings t1 : x→ x, t2 :
x→ x2, a two-input neural network can be constructed as N (τ1, τ2). It is straightforward
to express the residual term of the differential equation as

Lf =
1

|Tf |
∑
x∈Tf

∆N (τ1, τ2)

=
1

|Tf |
∑
x∈Tf

∣∣∣∣(∂2N (τ1, τ2)

∂τ1
2

+ 4τ1
∂2N (τ1, τ2)

∂τ1∂τ2
+ 4τ2

∂2N (τ1, τ2)

∂τ2
2 + 2

∂N (τ1, τ2)

∂τ2

)∣∣∣∣2 (11)

The residual terms Lb and Li of the boundary and initial conditions are consistent with
those of the conventional PINN.

On the one hand, this dimension augmentation approach provides a way to optimize the
topology of PINNs, making the width of the input and hidden layers more balanced. On
the other hand, DaPINN directly introduces physical coordinate features into the neural
network through the input layer rather than allowing the neural network to obtain these
features. With the same network structure, the dimension augmentation method theo-
retically increases the input layer width and thus the complexity of the network, which
guarantees a higher solution accuracy [31, 32]. In addition, the DaPINN training process is
simpler and faster than the training process in traditional methods since some features are
provided as input. From a higher-level perspective, we introduce an inductive bias to the
neural network by adding a special regularization term to the loss function, thus enhancing
network generalizability.

2.3 Several input dimension augmentation methods

There are several typical methods for augmenting DaPINNs:
1. Power series augmentation: As previously mentioned, power series augmentation

increases the dimensionality of the input quantity with a power series transformation. t1 :
x→ x, t2 : x→ x2 . . . This idea is derived from the Taylor expansion of the function:

f (x) = f (xk) + [∇f (xk)]T (x− xk) +
1

2
[x− xk]T H (xk′) [x− xk] ... (12)

where H (x) is the Hessian matrix of the function.
2. Fourier series augmentation: Another possible dimensional expansion method is

Fourier series augmentation, i.e., introducing the mappings t1 : x→ x, t2 : x→ sin
(

2πnx
T

)
,

t3 : x → cos
(

2πnx
T

)
, yielding the neural network N

(
x, sin(2πnx

T), cos(2πnx
T)

)
(where T

depends on the maximum period of the periodic function in the problem). Since any
periodic function can be written as a sum of trigonometric functions, the function can be
approximated by a trigonometric series through the Fourier series augmentation formula.
The Fourier series augmentation method can be used in problems with periodic boundary
conditions.

5

3. Replica augmentation: Simple copy-paste is a powerful data augmentation method
[33] that introduces the mapping t1 : x → x, t2 : x → x, yielding the neural network
N (x1, x2) . This expansion method introduces mirrored inputs to provide multiple paths
for network approximation, thereby improving model accuracy.

3 Results

We present several examples of solving forward and inverse PDE problems using the pro-
posed DaPINN model, in which tanh function is used to activate the network and Adam
algorithm is used to train it. In Section 3.1, we use replica and second-order power series
augmentation to enhance the PINN input vector to verify the validity of the input augmen-
tation approach. In Section 3.2, we show the effectiveness of our method in solving inverse
problems. In Section 3.3, we discuss the high order power series augmentation method.
Finally, in Section 3.4, we apply a DaPINN with Fourier series augmentation.

3.1 Validity of DaPINN

We first demonstrate the validity of the dimension augmentation approaches using a simple
1D Poisson equation and a pedagogical example of a 2D Poisson equation.

In these two problems, we use replica augmentation and second-order power series aug-
mentation.

3.1.1 1D Poisson equation

We first consider the following 1D Poisson equation:

−∆u =

3∑
i=1

isinix+ 7sin7x+ 8sin8x, xε [0, π] (13)

with Dirichlet boundary conditions, namely, u (x = 0) = 0 and u (x = π) = π. The analyt-
ical solutions is

u (x) = x+

3∑
i=1

sinix

i
+
sin7x

7
+
sin8x

8
(14)

We construct the neural network N(x), expand the input and change the loss function as
follows:

L = ωfLf + ωbLb (15)

For replica augmentation, which introduces τ1 = τ2 = x, Lf and Lb are defined as

6

Lf =
1

|Tf |
∑
x∈Tf

|(∂
2N (τ1, τ2)

∂τ1
2

+ 2
∂2N (τ1, τ2)

∂τ1∂τ2
+
∂2N (τ1, τ2)

∂τ2
2

+
3∑
i=1

isinix+ 7sin7x+ 8sin8x)|2 (16)

Lb =
1

|Tb|
∑
x∈Tb

|N (τ1, τ2)|2 (17)

For second-order power series augmentation, which introduces τ1 = x, τ2 = x2, Lf and Lb
are defined as

Lf =
1

|Tf |
∑
x∈Tf

|(∂
2N (τ1, τ2)

∂τ2
+ 4x

∂2N (τ1, τ2)

∂x∂x2
+ 4x2∂

2N (τ1, τ2)

∂τ2
2 + 2

∂N (τ1, τ2)

∂τ2

+
3∑
i=1

isinix+ 7sin7x+ 8sin8x)|2 (18)

Lb =
1

|Tb|
∑
x∈Tb

|N (τ1, τ2)|2 (19)

Here, we set ωf = ωb = 1
We compare the performance of DaPINN and PINN with respect to the number of

training points and the number of epochs in this experiment, and the results are shown in
Fig. 2(a) and (b). When the number of sample points is increased from 11 to 23, the L2
relative error decreases from 12.1% to 4.0% with the PINN method, while the L2 relative
error of the DaPINN method decreases from 13.2% to 0.38% using replica augmentation(x)
and 13.5% to 0.2% using second-order power series augmentation(x2). At 32 training points,
the L2 relative error of the PINN method decreases from 31% to 0.75% when the number of
training epochs is increased from 2000 to 15000, while the L2 relative error of the DaPINN
method decreases from 24% to 0.09% with the x approach and 4.6% to 0.04% with x2.

We find that the DaPINN with x and the DaPINN with x2 both have significantly
smaller L2 relative errors than the PINN. The DaPINN models outperform the PINN be-
cause the DaPINNs expands the network input dimension, thereby allowing the neural
network to extract features with more information, resulting in a substantially faster con-
vergence rate than PINN. When 26 sample points were used, the results of the PINN and
two DaPINNs are shown in Fig. 2(c). The DaPINN with x2 model has better accuracy
than the DaPINN with x model in this problem.

7

We note that the PINN method has a poor fit in the nonlinear region of the function,
while the DaPINN with second-order power series augmentation: approach achieves good
results because x2 was introduced as an augmentation feature, which enhances the fitting
in the nonlinear region.

3.1.2 2D Poisson equation

Next, we discuss a 2D Poisson equation problem:

−∇u = f(x, y), (x, y) ε [0, 1]2 (20)

with Dirichlet boundary conditions of u (x, y = 0 or x, y = 1) = 0 In addition, f can be
described as

f (x, y) =
16aa

(
a (1− 2x)2 − 2x2 + 2x− 1

)
((x− 1)x (y − 1) y)a

(x− 1)2 x2

+
16aa

(
a (1− 2y)2 − 2y2 + 2y − 1

)
((x− 1)x (y − 1) y)a

(y − 1)2 y2
(21)

The analytical solution of the PDE is u (x, y) = 24axa (1− x)a ya (1− y)a , a = 10
In this two-dimensional Poisson equation problem, we construct the neural network

N(x) and apply replica augmentation and power series augmentation approach to expand
the input dimension.

For replica augmentation, where τ1 = x, τ2 = x, τ3 = y, τ4 = y, the loss function is

L = ωfLf + ωbLb (22)

in which Lf and Lb are the PDE residual term and the boundary condition residual term,
respectively:

Lf =
1

Tf

∑
x∈Tf

|(∂
2N (τ1, τ2, τ3, τ4)

∂τ1
2

+ 2
∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ2
+
∂2N (τ1, τ2, τ3, τ4)

∂τ2
2

+
∂2N (τ1, τ2, τ3, τ4)

∂τ3
2

+ 2
∂2N (τ1, τ2, τ3, τ4)

∂τ3∂τ4
+
∂2N (τ1, τ2, τ3, τ4)

∂τ4
2 + f (τ1, τ3))|2 (23)

Lb =
1

Tb

∑
x∈Tb

|N (τ1, τ2, τ3, τ4)|2 (24)

For the second-order power series augmentation, where τ1 = x, τ2 = x2, τ3 = y, τ4 = y2, the
loss function is

L = ωfLf + ωbLb (25)

8

5 10 15 20 25 30
No. of Sample Points

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN
DaPINN with x
DaPINN with x^2
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

(a)

0 20000 40000 60000 80000 100000
training epoch

10
5

10
4

10
3

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN with x
DaPINN with x^2

(b)

0.8 1.0 1.2 1.4 1.6 1.8 2.0

x

1.8

2.0

2.2

2.4

2.6

u

Train
ture
PINN
DaPINN with x
DaPINN with x^2

(c)

Figure 2: Examples in Section 3.1.1: comparison of the PINN, DaPINN with x and DaPINN
with x2 models. A network size of [I, 20, 20, 20, 20, 1] and 10000 epochs with a learning rate
of 0.001 are used, where I = 1 for the PINN and I = 2 for the DaPINN models.(a) L2
relative error of u versus the number of samples. (b) L2 relative error of u versus the number
of training epochs. (c) PINN, DaPINN with x, and DaPINN with x2 prediction function
when the sample points are 26.

9

in which Lf and Lb are the PDE residual term and boundary condition residual term,
respectively:

Lf =
1

Tf

∑
x∈Tf

|(∂
2N (τ1, τ2, τ3, τ4)

∂τ2
1

+ 4τ1
∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ2

+ 4τ2
∂2N (τ1, τ2, τ3, τ4)

∂τ2
2 + 2

∂N (τ1, τ2, τ3, τ4)

∂τ2
+
∂2N (τ1, τ2, τ3, τ4)

∂τ2
3

+ 4τ3
∂2N (τ1, τ2, τ3, τ4)

∂τ3∂τ4

+ 4τ4
∂2N (τ1, τ2, τ3, τ4)

∂τ4
2 + 2

∂N (τ1, τ2, τ3, τ4)

∂τ4
+ f (τ1, τ3))|2 (26)

Lb =
1

Tb

∑
x∈Tb

|N (τ1, τ2, τ3, τ4)|2 (27)

Here, we set ωf = ωb = 1 As shown in Fig. 3, DaPINN demonstrates excellent performance.
The L2 error of the DaPINN with x decreases to 0.8% at 450 training points, while the
DaPINN with x2 and PINN require 550 and 575 training points, respectively, to achieve
the same accuracy. As shown in Fig. 3(b), the DaPINN with x outperforms the DaPINN
with x2 at 500 sample points, while the DaPINN with x2 outperforms the PINN. However,
when the number of sample points reaches 1000, the DaPINN with x2 outperforms the
replica-augmented DaPINN.

300 350 400 450 500 550 600
No. of Sample Points

10
3

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN with x
DaPINN with x^2
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

(a)

0 20000 40000 60000 80000 100000
training epoch

10
4

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN 500
DaPINN with x 500
DaPINN with x^2 500
PINN 1000
DaPINN with x 1000
DaPINN with x^2 1000

(b)

Figure 3: Example in Section 3.1.2: comparison of the PINN, DaPINN with x and DaPINN
with x2 models. A network size of [I, 50, 50, 1] and 10000 epochs with a learning rate of
0.001 are used, where I = 2 for the PINN and I = 4 for the DaPINN. (a) Variation in the
L2 relative error of u with the number of samples. (b) Variation in L2 relative error of u
with the number of training epochs at 500 and 1000 sample points.

10

Here, we find replica augmentation performs better than the second-order power series
augmentation approach when less than 575 sample points are used. With fewer sample
points, the network is prone to overfitting, and replica aug increases the training difficulty
by introducing exactly mirrored inputs so that the results can be obtained from two identical
inputs, while the randomness of the weight parameters ensures the two inputs do not
contribute equally to the results. Thus, the model cannot overfit all samples, improving
the generalizability. The power series augmentation approach has a weaker generalizability
than the replica augmentation method due to the lack of symmetry in the inputs. However,
when a sufficient number of sample points is considered, the power series augmentation
approach shows better performance in the nonlinear region fitting.

On the one hand, the accuracy of the fully computed DaPINN is significantly better
than that of the PINN; on the other hand, the DaPINN requires fewer training epochs than
the PINN to achieve the same accuracy. This result demonstrates the generalizability of
the DaPINN with replica augmentation approach as well as the good fitting performance of
the DaPINN with power series augmentation approach, demonstrating that these DaPINNs
achieved higher accuracy with reduced computational costs.

3.2 Input dimension expansion in inverse problems

In the previous experiment, we verified the effectiveness of the dimensional expansion
method in solving partial differential equation problems, demonstrating that the proposed
approaches show significantly better performance than the PINN.

In this subsection, we compare the performance of the DaPINN and PINN models
on inverse problems with the 1-dimensional Poisson equation and the diffusion reaction
equation to show that DaPINN has higher accuracy and lower computational cost than
PINN.

3.2.1 Poisson (inverse)

Returning to the 1D Poisson equation in Section 3.1.1, in the following inverse problem,
the source function f is no longer given to the neural network. Instead, we compute f by
solving the function for a series of points.

−∆u = f(x), x ∈ (0, π) (28)

Consider a system with the boundary conditions u(0) = 0, u(π) = π where the source f has
the form

f (x) =

4∑
i=1

i sin (ix) (29)

The analytic solution of u is

u (x) = x+

4∑
i=1

1

i
sin (ix) (30)

11

After selecting a uniform number of measurement points in (0, π), we use two parallel
neural networks to approximate f and u and compare the training results of the PINN and
DaPINN methods.

Increasing the number of sampling points from 10 to 80 reduces the average error of
f by only approximately 30% (Fig. 4(c) and (d)), while the result still has intolerable
computational errors (Fig. 4(a) and (b)). Analogously, increasing the complexity of the
network often means increasing the number of neurons, which make it more difficult to
train the network so that the result may get worse in many cases (Fig. 4(e)). In fact, the
PINN has poor performance when solving this kind of nonlinear inverse problem and its
accurancy is hard to be improved by using conventional methods described above.

After applying the DaPINN with x2, the training time reduces as the complexity of the
network increases. Not only does the DaPINN have faster convergence rate, but also the
DaPINN accuracy exceeds the PINN accuracy (Fig. 4(e)). Furthermore, the error in the
DaPINN model is satisfactorily small when only 20 sample points are selected, with a large
error only in the steep region near x = 0 (Fig. 4(a) and (b)). The calculated L2 error of
the parameter function f is approximately 1/3 of that in the PINN model. And for the
objective function u , the error obtained by the DaPINN is an order of magnitude smaller
than that obtained by the PINN (Fig. 4(c) and (d)).

3.2.2 Thermal diffusion (inverse)

We next consider another inverse problem in which the unknown parameter is a constant.
In a one-dimensional heat conduction model x ∈ (−1, 1) , t ∈ (0, 1) the diffusion equation
is known:

∂u

∂t
= C

∂2u

∂x2 + k (x, t) (31)

Here, the heat source k(x, t) has the form:

k (x, t) = e−t
(
π2 − 1

)
sin(πx). (32)

We choose thermal diffusivity C = 1, the boundary condition k(1, t) = k(−1, t) = 0, and
the initial condition k(x, 0) = sin(πx) . In addition, the analytical solution of the equation
at this point is

u (x, t) = e−tsin(πx) (33)

We next determine the thermal diffusivity C of this system, which can be calculated using
several measurement points on the boundary and in the initial (final) state (Fig. 5(a)).

When 80 training points were used for training, the error of parameter C obtained by
the DaPINN model quickly converged to within 0.1%, while the error of the PINN approach
was always greater than 1%. Moreover, when no final state measurement points were used,
the computational error of the DaPINN approach was less than the computational error
of the PINN model. The PINN computational error was always greater than 10%, and

12

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

4

2

0

2

4

6

8

10

12

f(x
)

f_true
f_DaPINN
f_PINN

(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
x

0.0

0.5

1.0

1.5

2.0

2.5

3.0

u(
x)

u_true
u_DaPINN
u_PINN

(b)

10 20 30 40 50 60 70 80
No. of Sample Points

10
1

10
0

L2
 e

rro
r

PINN
DaPINN
PINN 95%CI
DaPINN 95%CI

(c)

10 20 30 40 50 60 70 80
No. of Sample Points

10
3

10
2

10
1

L2
 e

rro
r

PINN
DaPINN
PINN 95%CI
DaPINN 95%CI

(d)

0 10000 20000 30000 40000 50000 60000 70000 80000
training epoch

10
5

10
4

10
3

10
2

10
1

10
0

10
1

To
ta

l L
os

s

PINN
PINN*2
DaPINN

(e)

Figure 4: Example in Section 3.2.1: comparison of the PINN and DaPINN with x2 methods.
A network size of [I, 30, 30, 30, 30, 1] and 20000 epochs with a learning rate of 0.001 are used,
with I = 1 for PINN and I = 2 for DaPINN. (a) Analytic and predictive solutions of the
PDE with 80 sample and training points. (b) Analytic and predictive solutions of the
parametric function f(x). (c, d) Prediction source f̂ versus the predicted solution N of the
L2 error. (e) The number of training epochs for the loss function to reach 1E-5, where
PINN*2 represents a PINN with twice the number of neurons.

13

the results were basically unusable (Fig. 5(b)). When the number of training points was
increased from 30 to 114, the PINN parameter error decreased from 26.3% to 0.9%, and
the L2 error decreased from 24.7% to 1.2%. For the DaPINN model, the parameter error
decreased from 0.27% to 0.01%, and the L2 error decreased from 1.6% to 0.28%. In this
process, the gap between the two neural networks gradually decreases; however, until the
error converges, the advantage of the DaPINN approach is apparent (Fig. 5(c) and (d)).

However, although the total error is reduced, the error of the DaPINN with x2 model
is concentrated in the steep region near t = 0 (Fig. 5(g) and (h)), which implies a flaw in
augmenting the input features with x2 in this problem. Some improvements are provided
in Section 3.3.3.

3.3 Higher-order power series augmentation methods

We demonstrated the validity of using dimension augmentation in the PINN model through
several problems. It is worth noting that the DaPINN with second-order power series
augmentation model achieves the best performance in all of the above examples, which
demonstrates the generalizability of our method. However, whether better performance
can be achieved using higher-order power series augmentation must be investigated. The
following examples imply that third-order power series augmentation have better potential
than second-order power series augmentation. The impact of introducing third-order power
series augmentation is discussed in the following section.

3.3.1 Heat

Here, we discuss a 1D heat conduction problem:

∂u

∂t
= a

∂2u

∂x2
, xε [0, 1] , tε [0, 1] (34)

The initial and boundary conditions are defined as follows:

u (0, t) = u (1, t) = 0 (35)

u (x, 0) = sinπx (36)

Where, a = 0.4 is the thermal diffusion coefficient.
The analytical solution is

u (x, y) = e−(aπ2t)sin (πx) (37)

In this experiment, we use higher-order power series augmentation in the DaPINN model
and introduce x2 and x3 for input augmentation to discuss the effects of introducing more
dimensions on the DaPINN model.

14

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

(a)

0 5000 10000 15000 20000 25000 30000
training epoch

10
4

10
3

10
2

10
1

10
0

M
AE

 o
f p

ar
am

et
er

 C

PINN
PINN*
DaPINN
DaPINN*

(b)

30 40 50 60 70 80 90 100 110
No. of Sample Points

10
4

10
3

10
2

10
1

10
0

M
AE

 o
f p

ar
am

et
er

 C

PINN
DaPINN
PINN 95%CI
DAPINN 95%CI

(c)

30 40 50 60 70 80 90 100 110
No. of Sample Points

10
3

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN
PINN 95%CI
DaPINN 95%CI

(d)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

t)

(e)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

t)

(f)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.00

0.02

0.04

0.06

0.08

er
ro

r(x
,t)

(g)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.03

0.02

0.01

0.00

0.01

0.02

0.03

er
ro

r(x
,t)

(h)

Figure 5: Example in Section 3.2.2: comparison of the PINN and DaPINN with x2 models.
A network size of [I, 20, 20, 20, 1] and 10000 epochs with a learning rate of 0.001 are used,
with I = 2 for the PINN and I = 3 for the DaPINN. (a) Analytic solution of the PDE;
the black squares represent the initial measurement points at the boundary, and the white
squares represent the measurement points in the final state. (b) Calculated relative error
in the target parameter C. The dashed line ’(Da)PINN*’ is the case without using the end
state measurement points, and 80 training points were used. (c) The relative error in the
target parameter C. (d) The calculated N of the L2 error. (e, f) The predicted solutions
NPINN (x) and NDaPINN (x, x2) (g, h) The absolute error distributions of the predicted
solutions.

15

The second-order power series augmentation approach is similar to the method applied
in Section 3.1, and the third-order power series augmentation is introduced below. And for
this example, we have τ1 = x, τ2 = x2, τ3 = x3, τ4 = t.

We construct neural network with the loss function:

L = ωfLf + ωbLb + ωiLi (38)

where Lf and Lb are the PDE residual term and boundary condition residual term,
respectively:

Lf =
1

|Tf |
∑
x∈Tf

|(∂N (τ1, τ2, τ3, τ4)

∂τ4

− a(
∂2N (τ1, τ2, τ3, τ4)

∂τ1
2 + 4τ2

∂2N (τ1, τ2, τ3, τ4)

∂τ2
2 + 9τ2

2

∂2N (τ1, τ2, τ3, τ4)

∂τ3
2

+ 4τ1
∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ2
+ 6τ2

∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ3
+ 12τ3

∂2N (τ1, τ2, τ3, τ4)

∂τ2∂τ3

+ 2
∂N (τ1, τ2, τ3, τ4)

∂τ2
+ 6x

∂N (τ1, τ2, τ3, τ4)

∂τ3
)|2 (39)

Lb =
1

|Tb|
∑
x∈Tb

|N (τ1, τ2, τ3, τ4)|2 (40)

Li =
1

|Ti|
∑
x∈Ti

|N (τ1, τ2, τ3, τ4)− sinπx|2 (41)

Here, we set ωf = ωb = ωi = 1
The results are shown in Fig. 6(a), and the errors of all three methods are greater than

100% when 9 training points are used. When the number of training points is increased
to 45, the error in the DaPINN with the third-order power series augmentation(x3) model
decreases to 0.5%, while the errors in the DaPINN with x2 and PINN models are 0.9% and
2.3%, respectively. When the number of training points is increased to 117, the error in the
DaPINN with x3 model decreases to 0.04%, while the errors in the DaPINN with x2 and
PINN models are 0.16% and 0.32%, respectively. As shown in Fig. 6(b), the error in the
DaPINN with x3 model decreases to 1.4% when the number of training epochs reaches 4000,
while the error in the DaPINN with x2 and PINN models are 2.4% and 4.3%, respectively.
When the number of training epochs is increased to 40,000, the error in the DaPINN with
x3 model decreases to 0.08%, while the errors in the DaPINN with x2 and PINN models are
0.12% and 0.18%. We find that the DaPINN with x3 model performs significantly better
than the DaPINN with x2 model. Taking into account the model conditions and the fact

16

that the analytic solution contains a sine term, the power series augmentation of sinx is
given by

sin (x) =
∑
n≥0

(−1)n x2n+1

(2n+ 1)!
(42)

The solution to this problem is more sensitive to odd power terms of x; thus, the coefficient
of x2 is smaller, and the DaPINN model easily degrades to the PINN approach, while
the DaPINN with higher-order power series terms has better generalizability and higher
accuracy. Therefore, we infer that introducing higher-order power series terms can improve
the DaPINN performance.

20 40 60 80 100 120
No. of Sample Points

10
4

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN
DaPINN with x^2
DaPINN with x^3
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

(a)

0 20000 40000 60000 80000 100000
training epoch

10
4

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN
DaPINN with x
DaPINN with x^2

(b)

Figure 6: Example in Section 3.3.1: comparison of the PINN, DaPINN with x2 and DaPINN
with x3 models. A network size of [I, 20, 20, 20, 20, 1] and 10000 epochs with a learning rate
of 0.001 are used, with I = 2 for the PINN, I = 3 for the DaPINN with x2 and I = 4 for the
DaPINN with x3. (a) Variation in the L2 relative error of the prediction function u with
the number of samples for the PINN, DaPINN (second-order power series), and DaPINN
(third-order power series) models. (b) Variation in the loss with the number of training
epochs when the number of sample points is fixed at 135.

3.3.2 Burgers’ problem

In this section, we discuss a Burgers’ problem We consider the 1D Burgers’ equation:

∂u

∂t
+ u

∂u

∂x
− 0.01

π

∂2u

∂x2
= 0, xε [−1, 1] , tε [0, 1] (43)

The initial boundary conditions are

u (x, 0) = sinπx (44)

17

u (−1, t) = u (1, t) = 0 (45)

We also use the DaPINN with third-order power series augmentation, and the results are
shown in Fig. 7(a). In the Burgers’ problem, the advantage of the DaPINN model is still
apparent. The error of the DaPINN model using the third-order power series augmentation
is one order of magnitude less than that of the PINN model. Fig. 7(b)(c)(d) shows DaPINN
prediction functions when the number of sample points is 3500. The PINN results are shown
in Fig. 7 (e)(f)(g). The DaPINN still has high accuracy in regions with drastic changes,
while the PINN fails. This result implies that the input dimension expansion makes it
easier for the neural network to extract the target problem features; thus, the DaPINN
uses required resources to obtain better results.

3.3.3 Diffusion (inverse)

We return to the problem discussed at the end of Section 3.2.2. We resolve this problem
using the DaPINN with third-order power series augmentation.

Although the error characteristics due to dimension augmentation still exist, the intro-
duction of the cubic term in the DaPINN model successfully resolves the concentration in
the error distribution in the previous DaPINN model: the peak absolute error is reduced
to averagely 10% of its original value, and the error band near the steep region at t = 0 is
largely flattened (Fig. 8).

3.4 Fourier series augmentation method

In the previous experiments, we discussed the role of replica augmentation and power series
augmentation and verified their effectiveness. In this section, we discuss the role of Fourier
series augmentation and compare this approach with power series augmentation and the
PINN model.

3.4.1 Diffsion

Here, we choose the following diffusion reaction equation:

∂u

∂t
− ∂2u

∂x2
= f (x, t) , xε [−π, π] , tε [0, 1] (46)

where
f (x, t) = e−t

[
3

2
sin 2x+

8

3
sin 3x+

15

4
sin 4x+

63

8
sin 8x

]
(47)

The initial edge value condition is

u (x, 0) =
4∑
i=1

sinx

i
+

sin 8x

8
, u (−π, t) = u (π, t) = 0 (48)

18

1500 2000 2500 3000 3500 4000
No. of Sample Points

10
3

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN with x^2
DaPINN with x^3
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

(a)

t=0.25

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

True
Prediction

(b)

t=0.50

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

True
Prediction

(c)

t=0.75

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

y

True
Prediction

(d)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

True
Prediction

(e)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

True
Prediction

(f)

−1.00 −0.75 −0.50 −0.25 0.00 0.25 0.50 0.75 1.00
x

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

y

True
Prediction

(g)

Figure 7: Example in Section 3.3.2: comparison of the PINN, DaPINN with x2 and DaPINN
with x3 models. A network size of [I, 32, 32, 32, 1] and 10000 epochs with a learning rate of
0.001 are used, with I = 2 for the PINN, I = 3 for the DaPINN with x2 and I = 4 for the
DaPINN with x3. (a) L2 relative error of the prediction function u for the PINN, DaPINN
with x2, and DaPINN with x3 models versus the number of samples. (b)(c)(d) DaPINN
prediction function when t=0.25, 0.5, and 0.75. (e)(f)(g) PINN prediction function when
t=0.25, 0.5, and 0.75

19

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0
t

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

t)

(a)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.03

0.02

0.01

0.00

0.01

0.02

0.03

er
ro

r(x
,t)

(b)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8

1.0

t

0.003

0.002

0.001

0.000

0.001

0.002

er
ro

r(x
,t)

(c)

Figure 8: Example in Section 3.3.3: (a) Absolute error distribution of the predicted solutions
of the forward analytic solution of the objective function, using PINN model. (b, c) From
left to right, the error distribution using DaPINN with x2, DaPINN with x2&x3.

The analytical solution of this equation is

u (x, t) = e−t
4∑
i=1

sinx

i
+

sin 8x

8
(49)

We compare the DaPINN with third-order power series augmentation and the DaPINN
with Fourier series augmentation with the PINN.

In this problem, the trigonometric function in the equation has a period of 2π. As
a Fourier series augmentation, we introduce τ1 = x, τ2 = sinx, τ3 = cosx, τ4 = t as the
augmented inputs with the following loss function:

Lf =
1

|Tf |
∑
x∈Tf

(
∂N (τ1, τ2, τ3, τ4)

∂τ4

−(
∂2N (τ1, τ2, τ3, τ4)

∂τ1
2 +τ3

2∂
2N (τ1, τ2, τ3, τ4)

∂τ2
2 +τ2

2∂
2N (τ1, τ2, τ3, τ4)

∂τ3
2 +2τ3

∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ2

− 2τ2
∂2N (τ1, τ2, τ3, τ4)

∂τ1∂τ3
− 2τ2τ3

∂2N (τ1, τ2, τ3, τ4)

∂τ2∂τ3
− τ2

∂N (τ1, τ2, τ3, τ4)

∂τ2

− τ3
∂N (τ1, τ2, τ3, τ4)

∂τ3
)− f (τ1, τ4)) (50)

As shown in Fig. 9(a), when the number of training points is 65, the L2 relative error
of the PINN is 103%, the L2 relative error of both DaPINNs is about 1%; thus, the errors
of the two methods differ by two orders of magnitude. As shown in Fig. 9(b), when the
number of training epochs is 5000, the L2 error of the DaPINN with x3 is 0.9%, the L2
error of the DaPINN with Fourier series augmentation is 1.5%, and the L2 error of the
PINN is 7.8%. When the number of training epochs is 10000, the L2 errors of the DaPINN

20

with x3 and the DaPINN with Fourier series augmentation decrease to 0.2% and 0.3%,
respectively, and the PINN L2 error decreases to 2.5%. Thus, we find that the Fourier
series augmentation in this problem has similar properties to the third-order power series
augmentation.

However, when Figs. 9(g), 9(i) and 9(h) are compared, we find that the DaPINN errors
are not only smaller but also more uniformly distributed than the PINN errors, and the
error peaks are not obvious. This result occurs because the DaPINN with higher-order
power series augmentation better fits nonlinearities, thus making it possible to solve the
problem of accuracy degradation in the PINN for complex functions.

Periodicity can be introduced by expanding the input with Fourier series, and the pe-
riod in the expansion is determined based on the equation. In this diffusion problem, the
equation contains sinx, sin 2x and other periodic functions; thus, the expansion uses sinx
and cosx to ensure the validity of the period. This is equivalent to the period of the solution
provided to the neural network. Moreover, the learning effect clearly improves when using
Fourier series to expand the dimension of the DaPINN model.

3.4.2 Allen Cahnn equation

Here, we investigate the Allen Cahn equation:

∂u

∂t
= d

∂2u

∂x2 + 5(u− u3), x ∈ [−1, 1], t ∈ [0, 1] (51)

The initial edge value condition is

u(x, 0) = x2 cosπx (52)

u(−1, t) = u(1, t) = −1 (53)

We compare DaPINNs with third-order power series augmentation and Fourier series aug-
mentation with the PINN. In the Fourier series augmentation, we introduce sinπx and
cosπx because we know the period information from the initial condition.

The results are shown in Fig. 10. The PINN error is 11.2% when the number of training
points reaches 540, the L2 error is 1.5% for the DaPINN with x3, and the L2 error is 2.1%
for the DaPINN with Fourier series augmentation.

4 Discussion

We showed that the DaPINN with power series augmentation outperforms the PINN in
solving partial differential equations under the same training conditions (number of training
points and number of epochs), especially for complex equations with steep solutions. In the
following section, we discuss the improvement in the computational complexity with the

21

30 40 50 60 70 80 90 100
No. of Sample Points

10
4

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN
DaPINN with Fourier
DaPINN with x^3
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

(a)

0 20000 40000 60000 80000 100000
training epoch

10
4

10
3

10
2

10
1

10
0

10
1

L2
 e

rro
r

PINN
DaPINN with Fourier
DaPINN with x^3

(b)

�� �� �� � � � �
x

���

���

���

���

���

���

t

−1.5

−1.0

−0.5

0.0

0.5

1.0

u

(c)

�� �� �� � � � �
x

���

���

���

���

���

���

t

−1.0

−0.5

0.0

0.5

1.0

u

(d)

�� �� �� � � � �
x

���

���

���

���

���

���

t

−1.0

−0.5

0.0

0.5

1.0

u

(e)

�� �� �� � � � �
x

���

���

���

���

���

���

t

−1.0

−0.5

0.0

0.5

1.0

u

(f)

22

�� �� �� � � � �
x

���

���

���

���

���

���

t

0.15

0.30

0.45

0.60

0.75

error

(g)

�� �� �� � � � �
x

���

���

���

���

���

���

t

0.008

0.016

0.024

0.032

error

(h)

�� �� �� � � � �
x

���

���

���

���

���

���

t

0.006

0.012

0.018

0.024

0.030

error

(i)

Figure 9: Example in Section 3.3.1: comparison of the PINN, DaPINN with Fourier series
augmentation and DaPINN with x3 models. A network size of [I, 20, 20, 20, 1] and 20000
epochs with a learning rate of 0.001 are used, with I = 2 for the PINN and I = 4 for the
DaPINNs. (a) Variation in the L2 relative error of the prediction functions u of the PINN
and DaPINN models versus the number of samples. (b) L2 relative error of the prediction
functions u of the PINN and DaPINN models with 115 sample points as a function of
the number of training epochs. (c)(d)(e)(f)(g)(h)(i) Comparison between the PINN and
DaPINN models trained using 60 residuals. (c) Analytic solution results. (d)(g) PINN
results and their absolute errors. (e)(h) Power series augmentation DaPINN results and
their absolute errors. (f)(i) Fourier series augmentation DaPINN results and their absolute
errors.

23

100 200 300 400 500
No. of Sample Points

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN with Fourier
DaPINN with x^3
PINN 95%CI
DAPINN 95%CI
DAPINN 95%CI

Figure 10: Example in Section 3.4.2: comparison of the PINN, DaPINN with Fourier series
augmentation and DaPINN with x3 Models. A network size of [I, 20, 20, 20, 1] and 20000
epochs with a learning rate of 0.001 are used, with I = 2 for the PINN and I = 4 for the
DaPINNs. The L2 relative errors of the prediction functions u of the PINN and DaPINN
models with respect to the number of samples are shown.

24

DaPINN approach and the compatibility of the proposed network with other optimization
methods.

4.1 Computational complexity

We investigated the increase in the computational complexity of the DaPINN. While the
PINN and DaPINN models in this work both use the FNN architecture, the DaPINN
changes the network, mainly by increasing the network input width.

The number of model parameters is an important measure of space complexity. Consider
an FNN with an input dimension of i, an output dimension of o and n hidden layers with
widths of mj . The number of model parameters is

Param = (i+ 1)m1 +

n−1∑
j=1

(mj + 1)mj+1 + (mn + 1) o (54)

It is clear that the number of model parameters is more sensitive to m and n than to
i. In Section 3.3, we solved the Burgers’ equation with a PINN with i=2, m=32, and n=4;
thus, the number of model parameters was 3297. After the DaPINN doubles the input
width, the number of model parameters increases to 3361. Thus, the number of model
parameters increases by approximately 1.9%.

The number of floating point operations (FLOPs) in a model is an important measure
of the time complexity. The number of FLOPs in an FNN can be calculated with the
following equation, where α is the number of FLOPs required by the activation function.
For tanh, α varies from 2 to 20 depending on the input value.

Flop = 2

im1 +
n−1∑
j=1

mjmj+1 +mno

+ ᾱ
n∑
j=1

mj (55)

In Section 3.3, the number of FLOPs was 7616 for the PINN and 7747 for the DaPINN;
thus, the number of FLOPs increased by approximately 1.6%. Here, ᾱ is roughly estimated
to be 10.

The results indicate that the DaPINN model has essentially the same complexity as the
PINN model. Moreover, the larger the number of neurons in the network, the closer the
complexity of the two methods.

The above discussion of the time complexity does not take training into account. Since
the time complexity is difficult to quantify, the time complexity is shown in terms of the
actual operation time in Table 1. The test platform CPU is an Intel Core i9-10900K, and the
GPU is an NVIDIA Ge RTX 3090. The computational cost of the DaPINN is approximately
40% higher than that of PINN after completing the same number of training epochs.

However, as demonstrated above, the DaPINN achieves the same accuracy with fewer
training sessions than the PINN. Table 2 compares the time consumed by the DaPINN and

25

Question PINN(s) DaPINN(s) Relative Cost

1dpossion 27.82 37.49 1.35
2dpossion 32.43 44.4 1.41

heat 137.95 191.33 1.39
diffusion 137.16 188.05 1.37
burgers 58.74 85.31 1.45

Table1.Training time and relative relationship between PINN and DaPINN with the same
hyperparameters

PINN models to achieve the same accuracy. The DaPINN requires significantly less time
than the PINN to achieve the same precision, although the DaPINN takes more time to
complete each epoch. Therefore, even considering the additional computational cost of the
DaPINN, the training cost of the DaPINN is significantly smaller than that of the PINN.

Error 2d Poison Diffusion

PINN (s) DaPINN (s) Relative Time PINN (s) DaPINN (s) Relative Time

10% 8.0 8.8 110% 5.8 1.1 18%
5% 9.3 9.7 104% 11.6 2.1 18%
1% 12.0 13.2 110% 18.9 10.7 57%
0.5% 22.6 15.8 70% 23.9 15.0 63%
0.1% \ 82.7 145.1 34.3 24%
0.05% \ \ \ 88.0

Table2.The training time required for the DaPINN and PINN models to reach the same
precision. ” \ ” indicates that the model cannot reach that level of precision.

4.2 Effect of the width and depth of the neural network on the DaPINN
performance

Because the hyperparameters in a neural network affect the performance of the network,
it is important to determine the effect of the hyperparameters on the model. Previously,
we investigated the effects of the number of training points and number of epochs on the
DaPINN and PINN performance. Next, we discuss the effect of the width (number of
neurons in each hidden layer) and depth (number of hidden layers) of the neural network
on the network performance. In the PINN, small and large networks may lead to poor
reproducibility or overfitting [34]. We used 400 sample points and 10,000 epochs to test
DaPINN and PINN models with different widths and depths in the example discussed in
Section 3.4.1, as shown in FIG. 11. The PINN and DaPINN both achieved the best results

26

with a depth of 4 and a width of 10. Thus, the optimal network is moderate in size. We also
found that the DaPINN is insensitive to the network size, which indicates that the DaPINN
can use a smaller network and achieve the same accuracy, thereby reducing computational
costs.

5 10 15 20 25 30 35 40
Network width

10
4

10
3

10
2

10
1

L2
 e

rro
r

PINN depth 3
PINN depth 4
PINN depth 5
DaPINN depth 3
DaPINN depth 4
DaPINN depth 5

Figure 11: Problems in Section 3.4.1 with 400 sample points and 10,000 epochs: L2 relative
errors of DaPINN and PINN models with different widths and depths.

4.3 Compatibility with other methods

The DaPINN modifies only the input layer and loss function of the network; thus, many
PINN optimization methods are also applicable to the DaPINN.

We improved the accuracy and training efficiency of the DaPINN for solving PDEs
by introducing the residual-based adaptive refinement (RAR) method, and we apply the
RAR method to adaptively improve the distributions of the residuals during the training
process. This method has a significant effect when solving problems with drastic changes
in the function. Considering that the solution of the 1D Burgers’ equation is very steep
near x = 0 and that the error is concentrated in this region, the additive adaptive residual
method is suitable in this problem.

In Section 3.3.2, we solved the problem using the PINN, DaPINN with x2 and DaPINN
with x3 models. Here, we apply the RAR method to the PINN and DaPINN with x3 models
and compare the results. For the RAR method, we use 1500 training points in the first

27

training epoch and add 20 residual points in each subsequent training epoch.
The results are shown as the green and yellow lines in Fig. 12(a). To reduce the L2 error

to 0.5%, the original PINN and DaPINN models need 3600 and 2400 points, respectively.
With the RAR method, the PINN and DaPINN methods require only 1960 and 1660 points
to achieve the same accuracy. In particular, the DaPINN uses only a quarter of the training
points used by the PINN.

The solution to this problem has dramatic changes near x = 0 (Fig. 12(b)); thus, the
PINN error is mainly concentrated near this area (Fig. 12(g)(i)). After adding 300 residual
points, the maximum error in the PINN model decreases from 125% to 75%, while the
DaPINN’s maximum error decreases from 100% to 2.5%. In contrast, the DaPINN error
(Fig. 12(h)) is more scattered than the PINN error (Fig. 12(j)).

When we combine the DaPINN with the RAR method, we obtain excellent results,
showing that the DaPINN approach is versatile and can be used with other methods without
conflicts to achieve better accuracy.

5 Summary and Conclusion

In this paper, we systematically propose the DaPINN, a new scheme for enhancing the
original PINN by introducing an inductive bias such as an augmented input dimension
to the neural network. Moreover, we demonstrate the effectiveness of our scheme, showing
that the power series, Fourier series and replica augmentation methods dramatically improve
the network performance. The results show that the DaPINN significantly outperforms the
PINN for the same number of training points and epochs and that the DaPINN requires
less time to achieve the same accuracy. We also prove that the introduction of higher-order
terms continuously increases the DaPINN accuracy by using the power series augmentation
approach. Furthermore, we discuss the effect of the network size on the DaPINN and
conclude that while excessively large and small networks deteriorate network performance,
smaller networks tend to have better results. In addition, we combine the DaPINN with the
residual-based adaptive refinement (RAR) method to further improve model performance.
We achieve excellent results with fewer sample points in solving the drastically varying
Burgers’ equation, demonstrating the compatibility of the DaPINN with other methods.

Although the results suggest that our proposed scheme is effective, detailed imple-
mentations do not work equally well for different scenarios. In general, the power series
augmentation method is simple and effective and does not require the introduction of addi-
tional parameters, which are considerable advantages. However, the replica augmentation
method can be used for problems with very few sample points because its mirror input
feature reduces overfitting. For PDEs containing periodic functions (either in the equation
or definite condition), better results will be obtained using Fourier series augmentation.

28

1500 2000 2500 3000 3500 4000
No. of Sample Points

10
4

10
3

10
2

10
1

10
0

L2
 e

rro
r

PINN
DaPINN with x^3
PINN RAR
DaPINN RAR with x^3

(a)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

−0.8

−0.4

0.0

0.4

0.8

u

(b)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

−0.8

−0.4

0.0

0.4

0.8

u

(c)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

−0.8

−0.4

0.0

0.4

0.8

u

(d)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

−0.8

−0.4

0.0

0.4

0.8

u

(e)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

−0.8

−0.4

0.0

0.4

0.8

u

(f)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

0.2

0.4

0.6

0.8

1.0

error

(g)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

0.005

0.010

0.015

0.020

0.025
error

(h)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

0.25

0.50

0.75

1.00

1.25
error

(i)

��� ��� ��� ��� ��� ���
t

����

����

����

����

����

���

���

���

���

���

���

x

0.15

0.30

0.45

0.60

0.75

error

(j)

Figure 12: Example in Section 4.2: (a) L2 relative errors in the prediction functions u of the
PINN and DaPINN models with respect to the number of samples. (b) Analytical solution
results. (c) (g) DaPINN results before adding sample points and their absolute error. (d)
(h) DaPINN results before adding 300 sample points using the RAR method. (e) (i) PINN
results before adding sample points and their absolute error results. (f) (j) PINN results
before adding 300 sample points using the RAR method and their absolute errors.

29

6 Further Work

The DaPINN can be implemented with other methods where further studies could be
performed to reveal more general conclusions. Also in this paper, we do not test the per-
formance of DaPINN for high-dimensional problems, which remains a meaningful area to
discover.

References

[1] M Javidi. A numerical solution of the generalized burger’s–huxley equation by spectral
collocation method. Applied mathematics and computation, 178(2):338–344, 2006.

[2] Mahdi Moghimi and Fatemeh SA Hejazi. Variational iteration method for solving gen-
eralized burger–fisher and burger equations. Chaos, Solitons & Fractals, 33(5):1756–
1761, 2007.

[3] Alexey Y Chernyshenko and Maxim A Olshanskii. An adaptive octree finite element
method for pdes posed on surfaces. Computer Methods in Applied Mechanics and
Engineering, 291:146–172, 2015.

[4] William F Ames. Numerical methods for partial differential equations. Academic press,
2014.

[5] MWMG Dissanayake and Nhan Phan-Thien. Neural-network-based approximations
for solving partial differential equations. communications in Numerical Methods in
Engineering, 10(3):195–201, 1994.

[6] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neu-
ral networks: A deep learning framework for solving forward and inverse problems
involving nonlinear partial differential equations. Journal of Computational physics,
378:686–707, 2019.

[7] Donglin Chen, Xiang Gao, Chuanfu Xu, Siqi Wang, Shizhao Chen, Jianbin Fang, and
Zheng Wang. Flowdnn: a physics-informed deep neural network for fast and accu-

30

rate flow prediction. Frontiers of Information Technology & Electronic Engineering,
23(2):207–219, 2022.

[8] Shengze Cai, Zhicheng Wang, Sifan Wang, Paris Perdikaris, and George Em Karni-
adakis. Physics-informed neural networks for heat transfer problems. Journal of Heat
Transfer, 143(6), 2021.

[9] Xiaotian Jiang, Danshi Wang, Qirui Fan, Min Zhang, Chao Lu, and Alan Pak Tao
Lau. Physics-informed neural network for nonlinear dynamics in fiber optics. arXiv
preprint arXiv:2109.00526, 2021.

[10] Khemraj Shukla, Patricio Clark Di Leoni, James Blackshire, Daniel Sparkman, and
George Em Karniadakis. Physics-informed neural network for ultrasound nondestruc-
tive quantification of surface breaking cracks. Journal of Nondestructive Evaluation,
39(3):1–20, 2020.

[11] Ehsan Kharazmi, Zhongqiang Zhang, and George Em Karniadakis. hp-vpinns: Varia-
tional physics-informed neural networks with domain decomposition. Computer Meth-
ods in Applied Mechanics and Engineering, 374:113547, 2021.

[12] Rafael Bischof and Michael Kraus. Multi-objective loss balancing for physics-informed
deep learning. arXiv preprint arXiv:2110.09813, 2021.

[13] Gang-Zhou Wu, Yin Fang, Yue-Yue Wang, and Chao-Qing Dai. Modified physics-
informed neural network method based on the conservation law constraint and its
prediction of optical solitons. arXiv preprint arXiv:2108.13192, 2021.

[14] Zixue Xiang, Wei Peng, Xiaohu Zheng, Xiaoyu Zhao, and Wen Yao. Self-adaptive
loss balanced physics-informed neural networks for the incompressible navier-stokes
equations. arXiv preprint arXiv:2104.06217, 2021.

[15] Jeremy Yu, Lu Lu, Xuhui Meng, and George Em Karniadakis. Gradient-enhanced
physics-informed neural networks for forward and inverse pde problems. Computer
Methods in Applied Mechanics and Engineering, 393:114823, 2022.

[16] Ameya D Jagtap, Kenji Kawaguchi, and George Em Karniadakis. Adaptive activa-
tion functions accelerate convergence in deep and physics-informed neural networks.
Journal of Computational Physics, 404:109136, 2020.

[17] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for
solving partial differential equations. Journal of computational physics, 375:1339–1364,
2018.

[18] Vladimir I Gorbachenko, Tatiana V Lazovskaya, Dmitriy A Tarkhov, Alexander N
Vasilyev, and Maxim V Zhukov. Neural network technique in some inverse problems

31

of mathematical physics. In International Symposium on Neural Networks, pages 310–
316. Springer, 2016.

[19] Hyeontae Jo, Hwijae Son, Hyung Ju Hwang, and Eunheui Kim. Deep neural network
approach to forward-inverse problems. arXiv preprint arXiv:1907.12925, 2019.

[20] Siddhartha Mishra and Roberto Molinaro. Estimates on the generalization error of
physics-informed neural networks for approximating a class of inverse problems for
pdes. IMA Journal of Numerical Analysis, 42(2):981–1022, 2022.

[21] Isaac E Lagaris, Aristidis Likas, and Dimitrios I Fotiadis. Artificial neural networks
for solving ordinary and partial differential equations. IEEE transactions on neural
networks, 9(5):987–1000, 1998.

[22] Kevin Stanley McFall and James Robert Mahan. Artificial neural network method
for solution of boundary value problems with exact satisfaction of arbitrary boundary
conditions. IEEE Transactions on Neural Networks, 20(8):1221–1233, 2009.

[23] Suchuan Dong and Naxian Ni. A method for representing periodic functions and
enforcing exactly periodic boundary conditions with deep neural networks. Journal of
Computational Physics, 435:110242, 2021.

[24] Pola Lydia Lagari, Lefteri H Tsoukalas, Salar Safarkhani, and Isaac E Lagaris. Sys-
tematic construction of neural forms for solving partial differential equations inside
rectangular domains, subject to initial, boundary and interface conditions. Interna-
tional Journal on Artificial Intelligence Tools, 29(05):2050009, 2020.

[25] Alireza Yazdani, Lu Lu, Maziar Raissi, and George Em Karniadakis. Systems biology
informed deep learning for inferring parameters and hidden dynamics. PLoS compu-
tational biology, 16(11):e1007575, 2020.

[26] Wei Cai, Xiaoguang Li, and Lizuo Liu. A phase shift deep neural network for high
frequency approximation and wave problems. SIAM Journal on Scientific Computing,
42(5):A3285–A3312, 2020.

[27] Ziqi Liu, Wei Cai, and Zhi-Qin John Xu. Multi-scale deep neural network
(mscalednn) for solving poisson-boltzmann equation in complex domains. arXiv
preprint arXiv:2007.11207, 2020.

[28] Lu Lu, Xuhui Meng, Zhiping Mao, and George Em Karniadakis. Deepxde: A deep
learning library for solving differential equations. SIAM Review, 63(1):208–228, 2021.

[29] Lu Lu, Raphael Pestourie, Wenjie Yao, Zhicheng Wang, Francesc Verdugo, and
Steven G Johnson. Physics-informed neural networks with hard constraints for in-
verse design. SIAM Journal on Scientific Computing, 43(6):B1105–B1132, 2021.

32

[30] Suresh Prasad Kannojia and Gaurav Jaiswal. Effects of varying resolution on perfor-
mance of cnn based image classification: An experimental study. Int. J. Comput. Sci.
Eng, 6(9):451–456, 2018.

[31] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli, and Jascha Sohl-Dickstein.
On the expressive power of deep neural networks. In international conference on ma-
chine learning, pages 2847–2854. PMLR, 2017.

[32] Razvan Pascanu, Guido Montufar, and Yoshua Bengio. On the number of response
regions of deep feed forward networks with piece-wise linear activations. arXiv preprint
arXiv:1312.6098, 2013.

[33] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-Yi Lin, Ekin D Cubuk,
Quoc V Le, and Barret Zoph. Simple copy-paste is a strong data augmentation method
for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 2918–2928, 2021.

[34] QiZhi He, David Barajas-Solano, Guzel Tartakovsky, and Alexandre M. Tartakovsky.
Physics-informed neural networks for multiphysics data assimilation with application
to subsurface transport. Advances in Water Resources, 141:103610, 2020.

33

	1 Introduction
	2 Methods
	2.1 Physics-informed neural networks (PINN)
	2.2 Dimension-augmentated PINN
	2.3 Several input dimension augmentation methods

	3 Results
	3.1 Validity of DaPINN
	3.1.1 1D Poisson equation
	3.1.2 2D Poisson equation

	3.2 Input dimension expansion in inverse problems
	3.2.1 Poisson (inverse)
	3.2.2 Thermal diffusion (inverse)

	3.3 Higher-order power series augmentation methods
	3.3.1 Heat
	3.3.2 Burgers' problem
	3.3.3 Diffusion (inverse)

	3.4 Fourier series augmentation method
	3.4.1 Diffsion
	3.4.2 Allen Cahnn equation

	4 Discussion
	4.1 Computational complexity
	4.2 Effect of the width and depth of the neural network on the DaPINN performance
	4.3 Compatibility with other methods

	5 Summary and Conclusion
	6 Further Work

