
An Arbitrarily High Order Unfitted Finite Element Method

for Elliptic Interface Problems with Automatic Mesh

Generation∗

Zhiming Chen† Yong Liu‡

Abstract. We consider the reliable implementation of high-order unfitted finite element
methods on Cartesian meshes with hanging nodes for elliptic interface problems. We
construct a reliable algorithm to merge small interface elements with their surrounding
elements to automatically generate the finite element mesh whose elements are large with
respect to both domains. We propose new basis functions for the interface elements to
control the growth of the condition number of the stiffness matrix in terms of the finite
element approximation order, the number of elements of the mesh, and the interface
deviation which quantifies the mesh resolution of the geometry of the interface. Numerical
examples are presented to illustrate the competitive performance of the method.
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1 Introduction

Interface problems arise from diverse physical and engineering applications in which the
coefficients of the governing partial differential equations are discontinuous across material
interfaces that separate the physical domains. The body-fitted finite element methods
resolve the geometry of the interface by requiring the vertices of the finite element mesh
located on the interfaces [3, 23, 19]. For domains with complex geometry, the construction of
body-fitted shape regular finite element meshes may be difficult and time-consuming, which
is the main driving force of the study of unfitted finite element methods. In this paper we
will show that the shape regular body-fitted mesh can indeed be constructed for any shaped
smooth interface based on our new merging cell algorithm (see remarks below Theorem 3.1).
We emphasize, however, that even when the body-fitted shape regular mesh is available,
the construction of high-order finite element methods still requires substantial new ideas
including, for example, the isoparametric finite element method [24, 34] or unfitted finite
element methods which are the focus of this paper. We remark that the shape regularity
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assumption of the finite element mesh is not only fundamental in the mathematical theory
of finite element methods (see, e.g., [24]) but also essential in controlling the condition
number of the finite element stiffness matrix for elliptic equations (see, e.g. [10]).

Let Ω ⊂ R2 be a bounded Lipschitz domain which is divided by a C2-smooth interface
Γ into two nonintersecting subdomains Ω1 ⊂ Ω̄1 ⊂ Ω, Ω2 = Ω\ Ω̄1, see Fig.1.1. We consider
the following elliptic interface problem

− div(a∇u) = f in Ω1 ∪ Ω2, (1.1)

[[u]]Γ = 0, [[a∇u · n]]Γ = 0 on Γ, u = g on ∂Ω, (1.2)

where f ∈ L2(Ω), g ∈ H1/2(∂Ω), n is the unit outer normal to Ω1, and [[v]] := v|Ω1 − v|Ω2

stands for the jump of a function v across the interface Γ. We assume that the coefficient
a(x) is positive and piecewise constant, namely, a = a1χΩ1 + a2χΩ2 , a1, a2 > 0, where χΩi

denotes the characteristic function of Ωi, i = 1, 2.

Γ

Ω1

Ω

Figure 1.1: The setting of the elliptic interface problem and the unfitted mesh.

Unfitted finite element methods in the discontinuous Galerkin (DG) framework have
attracted considerable interests in the literature in the last twenty years starting from
the seminal work [31] in which an unfitted finite element method is proposed for elliptic
interface problems. The method is defined on a fixed background mesh and uses different
finite element functions in different cut cells which is the intersection of the mesh elements
and physical domains. The jump condition on the interface is enforced by penalties which
extends an earlier idea of Nitsche [41]. This unfitted finite element method can also be
viewed as the interior penalty discontinuous Galerkin method (see, e.g., [2]) defined on
meshes allowing curve-shaped elements. The main difficulty in using the unfitted finite
element methods is the so-called small cut cell problem: the cut cells can be arbitrarily small
and anisotropic, which can make the stiffness matrix extremely ill-conditioned, especially
for high-order finite element methods [44, 8]. For other approaches to design unfitted
discretization methods by constructing special finite element bases on interface elements or
finite difference stencils along the interface, we refer to the immersed boundary method [43],
the immersed interface method [35, 36], or the immersed finite element method [37, 22].

There are two approaches in the literature to attack the small cut cell problem. One is
by appropriate techniques of stabilization [16, 17, 47, 38, 48, 30]. Among them, for example,
the method of ghost penalty [16, 17, 30] adds additional penalties on the jumps of derivatives
across sides or facets of interface elements. The other approach is by merging the small cut
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cells with neighboring large elements [33, 32, 9, 21, 15] so that the merged macro-elements
have enough support. While the DG formulation is still used in [33, 32, 21], the aggregated
unfitted finite element method in [9] relies on the construction of stable extension operators
so that the finite element space is still C0. We refer to recent works [13, 18, 7, 8] for further
information about ghost penalty and the aggregated unfitted finite element method.

In [21] an adaptive high-order unfitted finite element method is proposed for elliptic
interface problems in which the hp a priori and a posteriori error estimates are derived
based on novel hp domain inverse estimates and the concept of interface deviation. The
interface deviation is a measure to quantify the mesh resolution of the geometry of the
interface. We remark that the study on hp inverse estimates on curved domains is not only
of mathematical interests, it is also essential to understand and control the exponential
growth on the finite element approximation order p of the condition number of the stiffness
matrix of the unfitted finite element method in this paper.

The macro-elements, which are the union of small interface elements and their sur-
rounding elements, are assumed to be rectangular in [21]. This assumption is different from
those in [33, 32, 9], see Fig.1.2. The macro-elements in [33, 32, 9] need not to be of rect-
angular shape, which makes the implementation simpler but the crucial inverse estimates
on extended elements in [33, 32] or the stability of the extension operators [9] are shown
without considering the dependence on the finite element approximation order p. The as-
sumption that the macro-elements should be rectangular in [21] raises the question of how
to construct the merging algorithm in practical applications.

(a) (b) (c)

Figure 1.2: Three different ways of generating macro-elements which are marked in dark.
The left, middle, and right figures illustrate the macro-elements used in [33, 15], [32, 9], and
[21], respectively.

The first objective of this paper is to propose a reliable algorithm to merge small
interface elements with their surrounding elements to generate the macro-elements. The
algorithm is based on the concept of admissible chain of interface elements, the classification
of patterns for merging elements, and appropriate ordering in generating macro-elements
from the patterns so that the reliability of the algorithm in the sense that it terminates in
finite number of steps can be proved. This algorithm also leads to a reliable algorithm of
automatically generating 2D shape regular body-fitted finite element meshes for arbitrarily
shaped smooth interfaces. To the authors’ best knowledge, this algorithm introduces a new
way to generate body-fitted finite element meshes and may be of independent interest.

The second objective of the paper is to study the condition number of the stiffness
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matrix of high-order unfitted finite element methods which are known to be of the order
O(h−2) in the literature [16, 33, 32, 9, 6] on quasi-uniform meshes with the mesh size h. For
high order methods, it is known [44] that the condition number of the stiffness matrix may
grow exponentially with the finite element approximation order p in terms of the measure
of cut cells. This indicates that the geometry of the cut cells is essential in controlling the
condition number of the stiffness matrix.

In this paper, we will take the basis functions of the spectral element, that is, the
Lagrangian interpolation functions at the Gauss-Lobatto points on elements not intersecting
with the interface. For the interface elements, extra care must be taken as the basis of the
spectral element on K is ill-conditioned on the subsets Ki = K ∩ Ωi, i = 1, 2, which is
similar to the observation in [27, P.346] for Legendre polynomials. Here we choose the
L2-orthogonal functions on some special polygons inside Ki, i = 1, 2, as the basis functions
for the interface elements K. We show that the condition number of the stiffness matrix is
bounded by Θ2(p3(N − NΓ) + p4NΓ) up to a logarithmic factor, where N is the number
of total elements, NΓ is the number of interface elements, and Θ depends on the interface
deviation and p. This bound is optimal and indicates that the mesh has to sufficiently resolve
the geometry of the interface to control the condition number of the stiffness matrix.

The results of this paper allow for extensions in several directions. Firstly, for the
ease of exposition, we consider in this paper the case when the domain Ω is a union of
rectangles and the interface is smooth. The extension to the general domains with smooth
boundary is straightforward. Secondly, the case when the interface is piecewise smooth will
be pursued in our forthcoming work by combining the ideas in [21] on large elements and
interface deviation for interfaces with singularities with the merging algorithm developed in
this paper. Thirdly, the theoretical results in this paper and in [21] including the hp domain
inverse estimates and the concept of the interface deviation can be extended to study three-
dimensional interface problems. The merging algorithm in the three-dimensional case is
more challenging. Nevertheless, we believe that with the new insights gained in this paper
for the two-dimensional case, reliable algorithms for constructing cubic macro-elements can
be achieved in future. Finally, we remark that our argument to analyze and control the
condition number of the stiffness matrix is fairly general, it can be used in other unfitted
finite element methods including three-dimensional cases.

The layout of the paper is as follows. In section 2 we introduce our unfitted finite
element method. In section 3 we construct the merging algorithm to generate the induced
mesh. In section 4 we prove the discrete Poincaré inequality and the hp estimate for the
condition number of the stiffness matrix. In section 5 we present several numerical examples
to confirm our theoretical results.

2 The unfitted finite element method

Let Ω ⊂ R2 be a domain which is a union of rectangles and T a Cartesian finite element
mesh of Ω with possible hanging nodes. This allows us to locally refine the mesh near the
interface to resolve the geometry to save the computational costs away from the interface.
The elements of the mesh are (open) rectangles whose sides are parallel to the coordinate
axes. We assume that the interface intersects the boundary of K twice at different sides
(including the end points).

4



For any element K, let hK stand for its diameter. Denote T Γ := {K ∈ T : K ∩Γ 6= ∅}
the set of interface elements. We recall the definition of large element in Chen et al [21,
Definition 2.1].

Definiton 2.1. (Large element) For i = 1, 2, an element K ∈ T is called a large element
with respect to Ωi if K ⊂ Ωi or K ∈ T Γ for which there exists a constant δ0 ∈ (0, 1/2) such
that |e ∩ Ωi| ≥ δ0|e| for each side e of K having nonempty intersection with Ωi. Specially,
K is called a large element if K ∈ T Γ is large with respect to both Ω1 and Ω2. Otherwise,
K is called a small element.

Note that it is possible that K ∈ T Γ may not be a large element. The following
assumption in [21] is inspired by Johansson and Larson [33] in which a fictitious boundary
method is considered.

Assumption (H1) For each K ∈ T Γ, there exists a rectangular macro-element M(K)
which is a union of K and its surrounding element (or elements) such that M(K) is a large
element. We assume hM(K) ≤ C0hK for some constant C0 > 0.

In section 3 we will construct a merging algorithm to find the macro-element for each
small element in an admissible chain of interface elements. This indicates that the assump-
tion (H1) can always be satisfied by using the algorithm. In the following, we will always
set M(K) = K if K ∈ T Γ is a large element. Then, the induced mesh of T is defined as

M = {M(K) : K ∈ T Γ} ∪ {K ∈ T : K 6⊂M(K ′) for some K ′ ∈ T Γ}.

We will writeM = Induced(T ). Note thatM is also a Cartesian mesh of Ω in the sense that
either M(K) ∩M(K ′) = ∅ or M(K) = M(K ′) for any two different elements K,K ′ ∈ T .
All elements in M are large elements.

For any K ∈MΓ := {K ∈M : K ∩Γ 6= ∅}, denote Ki = K ∩Ωi, i = 1, 2, ΓK = Γ∩K,
and ΓhK the open line segment connecting the two intersection points of Γ and ∂K. ΓhK
divides the element K into two polygons Kh

1 and Kh
2 which are the polygonal approximation

of K1 and K2, respectively. An important property of K being a large element is that Kh
i ,

i = 1, 2, is a strongly shape regular polygon in the sense that it is the union of shape regular
triangles in the sense of Ciarlet [24]. We remark that there are different definitions of shape
regular polygons in the literature, see, e.g., Ming and Shi [40] and Brenner and Sung [14].

The following concept of interface deviation is introduced in [21].

Definiton 2.2. For any K ∈MΓ, the interface deviation ηK is defined as ηK = max(η1
K , η

2
K),

where for i = 1, 2, if AiK ∈ Ωi is the vertex of K which has the maximum distance to ΓhK
among all vertices of K in Ωi,

ηiK =
distH(ΓK ,Γ

h
K)

dist(AiK ,Γ
h
K)

.

Here distH(Γ1,Γ2) = maxx∈Γ1(miny∈Γ2 |x− y|) and dist(A,Γ1) = miny∈Γ1 |A− y|.

The interface deviation is a measure on how well the mesh resolves the geometry of
the interface. We will show in section 4 that this concept also links to the control of the
condition number of the stiffness matrix.
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It is known that if ΓK is C2-smooth, distH(ΓK ,Γ
h
K) ≤ Ch2

K (see, e.g., Feistauer [29,
§3.3.2]) and thus ηK ≤ ChK for some constant C independent of hK . Therefore, the
interface deviation can be made arbitrarily small by locally refining the mesh near the
interface. When the interface Γ is Lipschitz and piecewise C2-smooth, the definition of the
large element and interface deviation has to be modified in the elements containing the
singular points of the interface, see [21] for the details.

For any integer p ≥ 1 and K ∈ M, denote Qp(K) the set of polynomials in K which
is of degree p in each variable. The following hp domain inverse estimate is proved in [21,
Lemma 2.4].

Lemma 2.1. Let ∆ be a triangle with vertices A = (a1, a2)T , B = (0, 0)T , C = (c1, 0)T ,
where a2, c1 > 0. Let δ ∈ (0, a2) and ∆δ = {x ∈ ∆ : dist(x,BC) > δ}. Then we have

‖v‖L2(∆) ≤ T

(
1 + δa−1

2

1− δa−1
2

)2p+3/2

‖v‖L2(∆δ) ∀v ∈ Qp(∆),

where T(t) = t+
√
t2 − 1 ∀t ≥ 1.

The proof of this lemma makes use of the following one-dimensional domain inverse
estimate in [21, Lemma 2.3]

‖g‖2L2(Iλ\Ī) ≤
1

2

[
(λ+

√
λ2 − 1)2p+1 − 1

]
‖g‖2L2(I) ∀g ∈ Qp(Iλ), (2.1)

where I = (−1, 1), Iλ = (−λ, λ), λ > 1, and Qp(Iλ) is the set of polynomials of order p
in Iλ. We remark that the growing factor (λ+

√
λ2 − 1)2p+1 is sharp which is attained by

the Chebyshev polynomials whose explicit expression is Cn(t) = 1
2 [(t +

√
t2 − 1)n + (t −√

t2 − 1)n], n ≥ 0, see DeVore and Lorentz [26, P.76].
Let δK := distH(ΓK ,Γ

h
K), We also define two polygons Kh−δK

i , i = 1, 2, as follows. Let

Γh−δKKi
⊂ Ki be the line segment which is parallel to ΓhK and its distance to ΓhK is δK . Let

Kh−δK
i be the polygon bounded by sides of K and Γh−δKKi

.

A1

K
Ω1 Ω2B′ B B′′

K
h−δK
2

K
h−δK
1

C ′

C

C ′′

A2

K

Figure 2.1: The figure used in the proof of Lemma 2.2.

Lemma 2.2. Let K ∈MΓ and ηK ≤ 1/2, Then for i = 1, 2, we have

‖vi‖L2(K
h−δK
i )

≤ ‖vi‖L2(Ki) ≤ CT
(

1 + 3ηK
1− ηK

)2p+3/2

‖vi‖L2(K
h−δK
i )

∀v ∈ Qp(K), (2.2)

where the constant C is independent of hK , p, and ηK .
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Proof. The left inequality (2.2) is trivial since Kh−δK
i ⊂ Ki. Here we prove the right

inequality in (2.2) when Γ intersects ∂K at neighboring sides. The other cases can be
proved similarly.

We use the notation in Fig.2.1 in which B′C ′, B′′C ′′ are parallel to ΓhK and the distances

of B′C ′, B′′C ′′ to ΓhK are δK . Then Kh−δK
1 = ∆A1

KB
′C ′ and Kh−δK

2 is the polygon bounded
by sides of K and B′′C ′′. Let di = dist(AiK ,Γ

h
K), i = 1, 2. By definition, the interface

deviation ηK ≥ δK/di, i = 1, 2. By Lemma 2.1, for any v ∈ Qp(K),

‖v‖L2(K1) ≤ ‖v‖L2(∆A1
KB
′′C′′) ≤ T

(
1 + 2δ/(d1 + δ)

1− 2δ/(d1 + δ)

)2p+3/2

‖v‖L2(∆A1
KB
′C′)

≤ T

(
1 + 3ηK
1− ηK

)2p+3/2

‖v‖
L2(K

h−δK
1 )

.

The case for K2 can be proved similarly. This completes the proof.

The numerical results in Example 1 in section 5 indicate that the bound in Lemma 2.2
is sharp. Now for any K ∈M, we denote

aK =

{
a1+a2

2 if K ∈MΓ,
ai if K ∈ Ωi.

, ΘK =

{
T
(

1+3ηK
1−ηK

)4p+3
if K ∈MΓ,

1 otherwise.

Based on the concept of interface deviation, the following hp inverse estimates on curved
domains are proved in [21, Lemma 2.8, (2.12)].

Lemma 2.3. Let K ∈MΓ and ηK ≤ 1/2, Then for i = 1, 2, we have

‖∇v‖L2(Ki) ≤ Cp
2h−1
K Θ

1/2
K ‖v‖L2(Ki) ∀v ∈ Qp(K),

‖v‖L2(∂Ki) ≤ Cph
−1/2
K Θ

1/2
K ‖v‖L2(Ki) ∀v ∈ Qp(K),

where the constant C is independent of hK , p, and ηK .

We remark that hp inverse estimates on star-shaped curve elements are studied in
Massjung [38], Wu and Xiao [47], and Cangiani et al [20] which can be viewed as different
forms of assumption on the mesh to resolve the geometry. Lemma 2.3 does not require
the locally star-shaped assumption on the interface and is robust with respect to small
variations of the interface as long as the interface deviation is the same.

Notice that if ηK ≤ 1
p(p+1) , for s = 1+3ηK

1−ηK = 1 +γK , where γK = 4ηK
1−ηK ≤ 4p−2, we have

T(s) = s+
√
s2 − 1 = 1+ρK with ρK = γK+

√
γ2
K + 2γK ≤ p−1(4p−1 +

√
16p−2 + 8). Thus

ΘK = e(4p+3) ln(T(s)) ≤ e(4p+3)ρK ≤ C for some constant C independent of p and ηK . This
motivates us to make the following assumption in the remainder of this paper which can be
easily satisfied for C2-smooth interfaces if the mesh is locally refined near the interface.

Assumption (H2) For any K ∈MΓ, ηK ≤ 1
p(p+1) .

Now we introduce some notation for DG methods. Let E = Eside ∪ EΓ ∪ Ebdy, where
Eside = {e = ∂K ∩ ∂K ′ : K,K ′ ∈ M}, EΓ = {ΓK : K ∈ M}, and Ebdy = {e = ∂K ∩ ∂Ω :
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K ∈ M}. For i = 1, 2, denote by Mi = {K ∈ M : K ∩ Ωi 6= ∅}. Then Ωi ⊂ Ωh
i = ∪{K :

K ∈ Mi}. We denote Eside
i the set of all sides of Mi interior to Ωh

i , that is, not on the
boundary ∂Ωh

i . Finally, we set Ē = Eside
1 ∪ Eside

2 ∪ EΓ ∪ Ebdy.
For any e ∈ E , we fix a unit normal vector ne of e with the convention that ne is the

unit outer normal to ∂Ω if e ∈ Ebdy and ne is the unit outer normal to ∂Ω1 if e ∈ EΓ. For
any v ∈ H1(M) := {v1χΩ1 + v2χΩ2 : vi|K ∈ H1(K),K ∈ M, i = 1, 2}, we define the jump
of v across e as

[[v]]e := v− − v+ ∀e ∈ Eside ∪ EΓ, [[v]]e := v− ∀e ∈ Ebdy,

where v± is the trace of v on e in the ±ne direction. We define the normal vector function
n ∈ L∞(E) by n|e = ne ∀e ∈ E .

For any subset M̂ ⊂M and Ê ⊂ Ē , we use the notation

(u, v)M̂ :=
∑
K∈M̂

(u, v)K , 〈u, v〉Ê :=
∑
e⊂Ê

〈u, v〉e,

where (u, v)K is the inner product of L2(K) and 〈u, v〉e is the inner product of L2(e).
The unfitted finite element method is based on the idea of “doubling of unknowns” in

Hansbo and Hansbo [31]. We define the unfitted finite element space as

Xp(M) = {v1χΩ1 + v2χΩ2 : vi|K ∈ Qp(K),K ∈M, i = 1, 2}.

For any v ∈ H1(M), we denote ∇hv|K := ∇v1χK1 +∇v2χK2 , where χKi is the characteristic
function of Ki, i = 1, 2. For any v ∈ H1(M), g ∈ L2(∂Ω), we define the liftings L(v) ∈
[Xp(M)]2, L1(g) ∈ [Xp(M)]2 such that

(w, L(v))M = 〈w− · n, [[v]]〉E , (w, L1(g))M = 〈w · n, g〉Ebdy ∀w ∈ [Xp(M)]2 (2.3)

Our unfitted finite element method is to find U ∈ Xp(M) such that

ah(U, v) = Fh(v) ∀v ∈ Xp(M), (2.4)

where the bilinear form ah : H1(M) ×H1(M) → R, and the functional Fh : H1(M) → R
are given by

ah(v, w) =(a(∇hv − L(v)),∇hw − L(w))M + 〈α[[v]], [[w]]〉Ē + 〈p−2h∇T [[v]],∇T [[w]]〉EΓ , (2.5)

Fh(v) =(f, v)M − (aL1(g),∇hv − L(v))M + 〈αg, v〉Ebdy , (2.6)

where ∇T is the surface gradient on Γ. For any v = v1χΩ1 + v2χΩ2 , w = w1χΩ1 + w2χΩ2 ∈
H1(M),

〈α[[v]], [[w]]〉Ē :=

2∑
i=1

〈α[[vi]], [[wi]]〉Eside
i

+ 〈α[[v]], [[w]]〉EΓ∪Ebdy .

The interface penalty function α ∈ L∞(E) is

α|e = α0aeΘeh
−1
e p2 ∀e ∈ E , (2.7)
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where α0 > 0 is a fixed constant, ae = max{aK : e ∩ K̄ 6= ∅} ∀e ∈ E , Θe = max{ΘK :
e∩ K̄ 6= ∅} ∀e ∈ E , and the mesh function h|e = (hK + hK′)/2 if e = ∂K ∩ ∂K ′ ∈ Eside and
h|e = hK if e = K ∩ Γ ∈ EΓ or e = ∂K ∩ ∂Ω ∈ Ebdy.

We remark that our unfitted finite element method (2.4) is the so-called local discontin-
uous Galerkin (LDG) method in Cockburn and Shu [25] which is different from the interior
penalty discontinuous Galerkin (IPDG) method used in [31]. We choose the LDG method
because the penalty constant α0 in (2.7) can be any fixed constant, while the corresponding
penalty constant in the IPDG method has to be sufficiently large to ensure the stability.
We refer to Arnold et al [2] for a review of different DG methods for elliptic equations.

Notice that the last term 〈p−2h∇T [[v]],∇T [[w]]〉EΓ in the bilinear form (2.5) is not present
in [21]. It is included in this paper in order to show the discrete Poincaré inequality for
unfitted finite element functions in Lemma 4.2 which is crucial for us to study the condition
number of the stiffness matrix. We also remark that 〈p−2h∇T [[v]],∇T [[w]]〉EΓ penalizes the
tangential gradient of the finite element solution, not the normal flux of the solution as in
Burman and Hansbo [16], Xiao and Wu [47].

For any v ∈ H2(M), we introduce the DG norm

‖v‖2DG := ‖a1/2∇v‖2M + ‖α1/2[[v]]‖2Ē + ‖p−1h1/2∇T [[v]]‖2EΓ ,

where ‖α1/2[[v]]‖2Ē = 〈α[[v]], [[v]]〉Ē and ‖p−1h1/2∇T [[v]]‖2EΓ = 〈p−2h∇T [[v]],∇T [[v]]〉EΓ . By
Lemma 2.3, it is easy to show that

ah(v, v) ≤ C‖v‖2DG ∀v ∈ Xp(M).

Moreover, by [21, Theorem 2.1] we know that

ah(v, v) ≥ cstab‖v‖2DG ∀v ∈ Xp(M),

where cstab > 0 is a constant independent of the mesh sizes, p, and the interface deviations
ηK for all K ∈MΓ.

Theorem 2.1. Let the solution of the problem (1.1)-(1.2) u ∈ Hk(Ω1 ∪ Ω2), k ≥ 2, and
U ∈ Xp(M) be the solution of the problem (2.4). Then we have

‖u− U‖DG ≤ CΘ1/2h
min(p+1,k)−1

pk−3/2
‖u‖Hk(Ω1∪Ω2),

where h = maxK∈M hK , Θ = maxK∈MΘK , and the constant C is independent of the mesh
sizes, p, and the interface deviations ηK for all K ∈MΓ.

Proof. For the sake of completeness, we sketch a proof by using the argument in e.g.,
Perugia and Schötzau [42], Wu and Xiao [47]. For i = 1, 2, let ũi ∈ Hk(R2) be the
Stein extension (cf., e.g., Adams and Fournier [1, Theorem 5.14]) of ui = u|Ωi ∈ Hk(Ωi),
which is available for any Lipschitz domains, such that ‖ũi‖Hk(R2) ≤ C‖ui‖Hk(Ωi). Let

uI = Ihp(ũ1)χΩ1 + Ihp(ũ2)χΩ2 , where Ihp : H1(M) → Vp(M) = ΠK∈MQp(K) is the
interpolation operator defined in Babuška and Suri [5, Lemma 4.5]. For any K ∈ M, it
satisfies that for any 0 ≤ j ≤ k,

‖w − Ihp(w)‖Hj(K) ≤ C
h

min(p+1,k)−j
K

pk−j
‖v‖Hk(K) ∀v ∈ Hk(K), (2.8)
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where the constant C is independent of hK , p, but may depend on k. By the multiplicative
trace inequality, we have

‖w‖L2(∂K) ≤ Ch
−1/2
K ‖w‖L2(K) + C‖w‖1/2

L2(K)
‖∇w‖1/2

L2(K)
∀w ∈ H1(K).

For any K ∈MΓ, by Xiao et al [48, Lemma 3.1], [21, Lemma 2.6], we have that for i = 1, 2,

‖w‖L2(ΓK) ≤ C‖w‖
1/2
L2(Ki)

‖∇w‖1/2
L2(Ki)

+ ‖w‖L2(∂Ki\Γ̄K) ∀w ∈ H1(K). (2.9)

Thus we obtain by using (2.8) that for any K ∈M, j = 0, 1,

‖w − Ihp(w)‖Hj(∂Ki) ≤ C
hmin(p+1,k)−j−1/2

pk−j−1/2
‖w‖Hk(K) ∀w ∈ Hk(K).

This implies easily that

‖u− uI‖DG ≤ CΘ1/2h
min(p+1,k)−1

pk−3/2
‖u‖Hk(Ω1∪Ω2). (2.10)

On the other hand, since ah(u, v) = Fh(v) ∀v ∈ Xp(M), we use (2.4) to conclude that

‖uI − U‖2DG ≤ c−1
stabah(uI − U, uI − U) = c−1

stabah(uI − u, uI − U)

≤ C‖uI − u‖DG‖uI − U‖DG.

This completes the proof by (2.10) and the triangle inequality.

To conclude this section, we remark that the same a posteriori error estimate in [21,
Theorem 3.1] also holds for the solution U ∈ Xp(M) in (2.4). Here we omit the details.

3 The merging algorithm

In this section, we construct a merging algorithm for the admissible chain of interface
elements so that each small interface element in the chain is included in some macro-element
which is a large element. We first introduce the concept of admissible chain in §3.1 and
five types of patterns of merging small interface elements with their surrounding elements
in §3.2. We propose our merging algorithm and prove its reliability in §3.3.

3.1 The admissible chain of interface elements

A chain of interface elements C = {G1 → G2 → · · · → Gn} orderly consists of n interface
elements Gi ∈ T Γ, i = 1, · · · , n, such that Γ̄Gi ∪ Γ̄Gi+1 is a continuous curve, 1 ≤ i ≤ n− 1.
We call n the length of C and denote C{i} = Gi, i = 1, · · · , n.

For any element K ∈ T , we call N(K) ∈ T a neighboring element of K if K and
N(K) share a common side, and D(K) ∈ T a diagonal element of K if K and D(K) only
share one common vertex. Set S(K)0 = {K}, and for j ≥ 1, denote S(K)j = {K ′′ ∈ T :
∃K ′ ∈ S(K)j−1 such that K̄ ′′ ∩ K̄ ′ 6= ∅}, that is, S(K)j is the set of all k-th layer elements
surrounding K, 0 ≤ k ≤ j. Obviously, S(K)0 ⊂ S(K)1 ⊂ · · · ⊂ S(K)j for any j ≥ 1.
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Definiton 3.1. A chain of interface elements C is called admissible if the following rules
are satisfied.

1. For any K ∈ C, all elements in S(K)2 have the same size as that of K.

2. If K ∈ C has a side e such that ē ⊂ Ωi, then e must be a side of some neighboring
element N(K) ⊂ Ωi, i = 1, 2.

3. Any elements K ∈ T \T Γ can be neighboring at most two elements in C.

4. For any K ⊂ Ωi, the interface elements in S(K)j, j = 1, 2, must be connected in the
sense that the interior of the closed set ∪{Ḡ : G ∈ S(K)j∩T Γ} is a connected domain.

K

e

KN(K)1

N(K)2

N(K)3

Figure 3.1: The patch of elements not allowed by Rule 2 (left) and Rule 3 (right) in Definition
3.1.

Γ

Γ

K

Γ

Γ

KK

Γ

Figure 3.2: The patch of elements not allowed by Rule 4 in Definition 3.1.

We remark that the four rules of the admissible chains can be easily satisfied if the
mesh is well refined near the interface. The purpose of Rules 2 and 3 is to exclude the
situations illustrated in Fig.3.1, in which refinements are required to resolve the geometry
of the interface. By the Rule 4, the three cases illustrated in Fig.3.2 are not allowed since the
interface elements in S(K)1 in the left figure and in S(K)2 in the middle and right figures
are not connected, where K is the dark element. We notice that the interface elements in
S(K)2 in the left figure of Fig.3.2 is however connected.

3.2 The patterns

Since the interface intersects the boundary of K twice at different sides (including the
end points), the interface intersects any element only in four possible ways as shown in
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K K K K

Γ

Γ

Γ Γ

(a) (b) (c) (d)

Figure 3.3: Different types of interface elements. The type 2 elements include elements
illustrated in (b) and (c).

Fig.3.3. We denote T1 the set of interface elements shown in Fig.3.3(a), T2 the set of
interface elements shown in Fig.3.3(b) and (c), and T3 the set of interface elements shown
in Fig.3.3(d). By Definition 2.1, each element in T3 is a large element. Thus we only need
to consider the merging of type T1 and T2 elements.

A pattern is a set of interface elements and their neighboring and diagonal elements
whose union consists of a macro-element. We introduce five types of patterns according to
the combination of different types of interface elements, which will be used in our merging
algorithm for the admissible chain of interface elements. In the following, for any K ∈ T ,
hi(K) stands for its length of the side of K which is parallel to the xi-axis, i = 1, 2.

Pattern 1: K ∈ T1 has two neighboring elements N(K)1, N(K)2 ∈ T2, see Fig.3.4. e1

and e2 are respectively the thick part of the sides of N(K)1 and N(K)2 in the figure. We
use Algorithm 1 to obtain the macro-elements M(K), M(N(K)1), and M(N(K)2). Here
for any closed set T ⊂ R2, T ◦ stands for the interior of T .

Algorithm 1: Pattern 1

Input: (N(K)1,K,N(K)2)
Output: (M(N(K)1),M(K),M(N(K)2))
if K, N(K)1, and N(K)2 are large elements then

M(N(K)1) = N(K)1, M(K) = K, M(N(K)2) = N(K)2;
else

if |e1|/h2(K) ≥ 2δ0 and |e2|/h1(K) < 2δ0 then
let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1 ∪N(K)2 ∪D(K))◦;

else if |e1|/h2(K) ≥ 2δ0 and |e2|/h1(K) < 2δ0 then
let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1∪N(K)2∪D(K)∪G4∪

G5)◦;
else if |e1|/h2(K) < 2δ0 and |e2|/h1(K) ≥ 2δ0 then

let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1∪N(K)2∪D(K)∪G1∪
G2)◦;

else if |e1|/h2(K) < 2δ0 and |e2|/h1(K) < 2δ0 then
let M(K) = M(N(K)1) = M(N(K)2) = (K ∪ N(K)1 ∪ N(K)2 ∪ D(K) ∪

(∪5
j=1Gj))

◦.
end
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K

G3G2

G4

G1

G5

N(K)1

N(K)2D(K)

e1

e2

Γ

D(K)

G3G2

G4

G1

G5

N(K)1

N(K)2K

e1

e2

Γ

Figure 3.4: Illustration of type 1 (left) and type 2 (right) patterns.

KN(K)G1 G2

Γ

e1

e2

KN(K)1 N(K)2G1 G2

Γ

e1

e2

KG1 G2

Γ

e1

e2

Figure 3.5: Illustration of type 3 (left), type 4 (middle) and type 5 (right) patterns.

end

Lemma 3.1. Let δ0 ∈ (0, 1/3 ]. The macro-elements M(K), M(N(K)1), M(N(K)2) of
the output of Algorithm 1 are large elements.

Proof. We only proveM(K) is a large element when |e1|/h2(K) < 2δ0 and |e2|/h1(K) < 2δ0.
The other cases can be proved analogously. Since δ0 ∈ (0, 1/3 ], we have

|e1|+ h2(K)

3h2(K)
≥ 1

3
≥ δ0,

2h2(K)− |e1|
3h2(K)

≥ 1

3
≥ δ0.

Similar inequalities hold for |e2|. Thus |e ∩ Ωi| ≥ δ0|e| for each side e of M(K) having
nonempty intersection with Ωi, i = 1, 2. This implies that M(K) is a large element.

Pattern 2: K ∈ T1 has two neighboring elements N(K)1, N(K)2 ∈ T1, see Fig.3.4. e1

and e2 are respectively the thick part of the side of N(K)1 and N(K)2 in the figure. We
use Algorithm 2 to obtain M(K), M(N(K)1), and M(N(K)2).

Algorithm 2: Pattern 2

Input: (N(K)1,K,N(K)2)
Output: (M(N(K)1),M(K),M(N(K)2))
if K,N(K)1, and N(K)2 are large elements then

let M(N(K)1) = N(K)1, M(K) = K, M(N(K)2) = N(K)2;
else

if |e1|/h2(K) ≥ 2δ0 and |e2|/h1(K) ≥ 2δ0 then

13



let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1 ∪N(K)2 ∪D(K))◦;
else if |e1|/h2(K) ≥ 2δ0 and |e2|/h1(K) < 2δ0 then

let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1∪N(K)2∪D(K)∪G4∪
G5)◦;

else if |e1|/h2(K) < 2δ0 and |e2|/h1(K) ≥ 2δ0 then
let M(K) = M(N(K)1) = M(N(K)2) = (K ∪N(K)1∪N(K)2∪D(K)∪G1∪

G2)◦;
else if |e1|/h2(K) < 2δ0 and |e2|/h1(K) < 2δ0 then

let M(K) = M(N(K)1) = M(N(K)2) = (K ∪ N(K)1 ∪ N(K)2 ∪ D(K) ∪
(∪5

j=1Gj))
◦.
end

end

Pattern 3: K ∈ T1 has one neighboring element N(K) ∈ T1, see Fig. 3.5. e1 and e2

are respectively the thick part of the side of K and N(K) in the figure. We use Algorithm
3 to obtain M(K), M(N(K)).

Algorithm 3: Pattern 3

Input: (K,N(K))
Output: (M(K),M(N(K)))
if K and N(K) are both large elements then

let M(K) = K, M(N(K)) = N(K)
else

if |e1|/h1(K) ≥ 2δ0 and |e2|/h1(K) ≥ 2δ0 then
let M(K) = M(N(K)) = (K ∪N(K))◦;

else if |e1|/h1(K) ≥ 3δ0 then
let M(K) = M(N(K)) = (K ∪N(K) ∪G1)◦;

else if |e2|/h1(K) ≥ 3δ0 then
let M(K) = M(N(K)) = (K ∪N(K) ∪G2)◦;

else
let M(K) = M(N(K)) = (K ∪N(K) ∪G1 ∪G2)◦.

end
end

Pattern 4: K ∈ T2 has two neighboring elements N(K)1, N(K)2 ∈ T1, see Fig. 3.5.
e1 and e2 are respectively the thick part of the side of N(K)1 and N(K)2 in the figure. We
use Algorithm 4 to obtain M(K), M(N(K)1), M(N(K)2).

Algorithm 4: Pattern 4

Input: (N(K)1,K,N(K)2)
Output: (M(N(K)1),M(K),M(N(K)2))
if K, N(K)1, and N(K)2 are all large elements then
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let M(K) = K, M(N(K)1) = N(K)1, M(N(K)2) = N(K)2;
else

if |e1|/h1(K) ≥ 3δ0 and |e2|/h1(K) ≥ 3δ0 then
let M(N(K)1) = M(K) = M(N(K)2) = (N(K)1 ∪K ∪N(K)2)◦;

else if |e2|/h1(K) ≥ 4δ0 then
let M(N(K)1) = M(K) = M(N(K)2) = (N(K)1 ∪K ∪N(K)2 ∪G1)◦;

else if |e1|/h1(K) ≥ 4δ0 then
let M(N(K)1) = M(K) = M(N(K)2) = (N(K)1 ∪K ∪N(K)2 ∪G2)◦;

else
let M(N(K)1) = M(K) = M(N(K)2) = (N(K)1 ∪K ∪N(K)2 ∪G1 ∪G2)◦.

end
end

Pattern 5: K ∈ T2, see Figure 3.5. e1 and e2 are respectively the thick part of the
sides of K in the figure. We use Algorithm 5 to obtain M(K).

Algorithm 5: Pattern 5

Input: K
Output: M(K)
if K is a large element then

let M(K) = K;
else

if |e1|/h1(K) < 1− 2δ0 and |e2|/h1(K) < 1− 2δ0 then
let M(K) = (K ∪G1)◦;

else if |e1|/h1(K) ≥ 2δ0 and |e2|/h1(K) ≥ 2δ0 then
let M(K) = (K ∪G2)◦;

else
let M(K) = (K ∪G1 ∪G2)◦.

end
end

The following lemma can be proved by the same argument as that in Lemma 3.1. Here
we omit the details.

Lemma 3.2. The output macro-elements of Algorithm 2, Algorithm 3, Algorithm 4, and
Algorithm 5 are large elements if δ0 ∈ (0, 1/3 ], δ0 ∈ (0, 1/4 ], δ0 ∈ (0, 1/5 ], and δ0 ∈ (0, 1/3 ],
respectively.

To conclude this subsection, we make the following observations which can be easily
checked from the construction of the patterns.

Remark 3.1. Only elements in {S(K)2 : K ∈ T Γ} can be possibly merged with small
interface elements. The elements two layers away from the interface will not be touched in
the merging algorithm.
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Remark 3.2. An element G ∈ T2 is merged with some element K ∈ T1 if and only if there
exists an element G′ ∈ T2 such that G,K,G′ form a pattern of type 1 or there exists an
element G′ ∈ T1 such that G,K,G′ form a pattern of type 4.

Remark 3.3. An element G ⊂ Ωi, i = 1, 2, is merged with some element K ∈ T1 such that
K and G has only one common vertex, then G,K, and two neighboring elements of K are
in the same pattern of type 1 or type 2.

Remark 3.4. If an element G ⊂ Ωi, i = 1, 2, is merged with some element K ∈ T Γ such
that K and G has only one common vertex, then K and G are in the same pattern of type
1 or type 2. If K and G are in the same pattern of type 2, then G can be any one of
the elements G2, G4, D(K) which has only one common vertex with some interface element
in Fig.3.4 (right). Since the interface elements in S(G)1 must be connected by the rule 4
of the admissible chain, G cannot have any neighboring element in T2. Thus, if G has a
neighboring element N(G) ∈ T2 which is neighboring to K, then K,N(G), G are in the same
pattern of type 1, which implies, in particular, that N(G) is merged with K.

3.3 The merging algorithm

Let C be an admissible chain of interface elements. The following algorithm constructs a
locally induced mesh from C which consists of the large interface elements of C and macro-
elements including all small elements of C so that the elements in the induced mesh are all
large elements.

Algorithm 6: The merging algorithm for the admissible chain of interface elements

Input: The admissible chain C
Output: The induced mesh Induced(C)
1◦ Find all subchains S of length n ≥ 2 of C such that S{i} ∈ T1, i = 1, . . . , n;
if n = 2k + 1 is odd then

for i = 1, 2, . . . , k − 1 do
call the Algorithm 3 with the input (S{2i},S{2i+ 1});

end
call the Algorithm 2 with the input (S{2k − 1},S{2k},S{2k + 1})
else if n = 2k is even then

for i = 1, 2, . . . , k do
call the Algorithm 3 with the input (S{2i− 1},S{2i});

end
end
2◦ Find all subchains S of length n = 3 in the remaining interface elements such that

S{1} ∈ T1, S{2} ∈ T2, S{3} ∈ T1;
call the Algorithm 4 with the input (S{1},S{2},S{3});
3◦ Find all subchains S of length n = 3 in the remaining interface elements such that

S{1} ∈ T2, S{2} ∈ T1, S{3} ∈ T2;
call the Algorithm 1 with the input (S{1},S{2},S{3});
4◦ Find all elements K ∈ T2 in the remaining interface elements;
call the Algorithm 5 with the input K.
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(a) initial mesh (b) step 1 (c) step 2

(d) step 3 (e) step 4

interface element non-interface element elements’ boundary the interface

Figure 3.6: Illustration of the merging algorithm of the admissible chain of interface elements

Figure 3.6 illustrates each step in Algorithm 6 starting from an admissible chain of
interface elements. The black thin lines represent the boundaries of the elements. We
remove the lines which are shared by adjacent elements in steps 1◦ to 4◦, meaning that two
adjacent elements have been merged in the same macro-element.

We notice that for any K ∈ T \T Γ, the Rule 4 of the admissible chain requires that
the interface elements in S(K)1 must be connected. These interface elements may belong
to different patterns. The following lemma shows that the interface elements in S(K)1

belonging to the union of different patterns must be connected ifK belongs to these patterns.
The proof indicates that the order of merging different types of patterns in Algorithm 6 is
crucial. The lemma will be used in our proof of the reliability of Algorithm 6.

Lemma 3.3. Let C be an admissible chain of interface elements of length n ≥ 2. If
K ∈ T \T Γ is merged with interface elements in S(K)1 which belong to two different patterns
P1 and P2 by Algorithm 6, then the interface elements in (P1 ∪P2)∩S(K)1 are connected.

Proof. Denote PΓ
j := Pj∩(S(K)1∩T Γ), j = 1, 2, the interface elements of Pj in S(K)1. Let

dist(PΓ
1 ,PΓ

2 ) = minD1∈PΓ
1 ,D2∈PΓ

2
dist(D1, D2), where dist(D1, D2) is the minimum number of

non-interface elements connecting D1, D2 in S(K)1\S(K)0. Clearly, 0 ≤ dist(PΓ
1 ,PΓ

2 ) ≤ 3
and dist(PΓ

1 ,PΓ
2 ) = 0 implies the interface elements in (P1 ∪ P2) ∩ S(K)1 are connected.

We now show that dist(PΓ
1 ,PΓ

2 ) 6= 0 is impossible in three steps.
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D3 D2

(a)

KD1

D3 D2

D5D7

D6

D8

(b)

KD1

D3 D2

(c)

Figure 3.7: The element K and D1, D2 ∈ N(K).

1◦ dist(PΓ
1 ,PΓ

2 ) = 1. Let D1 ∈ PΓ
1 , D2 ∈ PΓ

2 , dist(D1, D2) = 1. By S(K)1 ∩ T Γ is
connected and the Rule 3 of the admissible chain, we know that D3, which is the neighboring
element to D1 and D2, is in T Γ and D3 can be either neighboring to K or diagonal to K.

(1) If D3 is diagonal to K, by the Rule 2 of the admissible chain, D3 ∈ T1, see Fig. 3.7.
Firstly assume D1, D2 ∈ T1, see Fig. 3.7 (a), then there are three elements D1 → D3 → D2

forming a chain and all elements belong to T1. By our merging Algorithm, D1, D3 or D2, D3

will form a pattern of type 3 which will be merged by Algorithm 3 before they can be merged
with other interface elements forming a pattern of type 2. But these type 3 patterns will
not use K, which contradicts to the assumption that K is merged with D1 and D2.

Secondly assume D1, D2 ∈ T2, see Fig. 3.7 (b). By the Rule 3 of the admissible chain,
D5, D6 ∈ T \T Γ. If K is merged with its neighboring element D1 ∈ T2 then D1 and K will
be in a pattern of type 1 or 5. When P1 is a pattern of type 1, since D3 is not merged
with K, then D7 ∈ T1, D8 ∈ T2, D1, D7, D8 can form a pattern of type 1 and merged with
K. However, in this case, D7, D1, D3 will form a pattern of type 4 which will be merged
by Algorithm 4 before D1, D7, D8 are merged by Algorithm 1 in the second step of our
merging Algorithm. Thus P1 cannot be of type 1. Similarly, P2 also cannot be of type
1. The remaining case is that P1 and P2 are both patterns of type 5. But this case is
also impossible because D1, D3, D2 will form a pattern of type 1 which will be merged by
Algorithm 1 before D1, D2 can possibly be merged with K by Algorithm 5 in the third step
of our merging Algorithm.

Finally assume D1 ∈ T2, D2 ∈ T1, see Fig. 3.7 (c). In this case D3 and D2 will be in
a pattern of type 2 or 3 which will be merged by Algorithm 2 or 3 in the first step of our
merging Algorithm. In both cases, they will not use the element K, which contradicts to
the assumption that K is merged with D2.

(2) If D3 is neighboring to D1, D2, again since S(K)1 ∩ T Γ is connected and by the
Rule 3 of the admissible chain, D3 ∈ T2, see Fig.3.8 (a). Since K is merged with its diagonal
elements D1, and K has a neighboring element D3 ∈ T2, by Remark 3.4, D3 is merged with
K. This contradicts to dist(P1,P2) = 1.

2◦ dist(PΓ
1 ,PΓ

2 ) = 2, see Fig. 3.8 (b). Since S(K)1∩T Γ is connected, we have D3 ∈ T2,
D4 ∈ T1. Again by Remark 3.4, D3 is merged with K, which contradicts to dist(P1,P2) = 2.

4◦ dist(PΓ
1 ,PΓ

2 ) = 3, see Fig. 3.9. There are two possibilities:
(1) D1, D2 are diagonal to K, see Fig. 3.9 (a). Then D3 ∈ T2, D4 ∈ T1, and D5 ∈ T2.
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Figure 3.8: The element K and D1, D2 ∈ D(K) (left); The element K and dist(D1, D2) = 2
(right).

K

D4D1 D3

D5

D2

(a)

K

D1

D2

(b)

Figure 3.9: The element K and D1, D2 ∈ D(K), dist(D1, D2) = 3 (left); The element K
and D1, D2 ∈ N(K), dist(D1, D2) = 3 (right).

By Remark 3.4, D3, D5 are merged with K, which contradicts to dist(PΓ
1 ,PΓ

2 ) = 3.
(2) D1, D2 are neighboring to K, see Fig. 3.9 (b). This case is also impossible because

S(K)1 ∩ T Γ is connected, then it will lead to K has 3 neighboring elements in T Γ which
contradicts to the Rule 3 of the admissible chain. This completes the proof.

We attach any chain of interface elements C of length n ≥ 1 an accompany chain
N(C) = {N1 → N2 → · · · → Nn} with Ni = 1 or 2 according to C{i} ∈ T1 or T2,
i = 1, · · · , n. The following theorem shows the reliability of the merging algorithm.

Theorem 3.1. Let δ0 ∈ (0, 1/5 ]. For any admissible chain of interface elements C with
length n ≥ 2, if C(1),C(n) ∈ T2 or C(1) = C(n), then Algorithm 6 terminates in finite
number of steps with input C. All elements of the locally induced mesh Induced(C) are large
elements.

Proof. By the step 1◦ of the algorithm, any two consecutive elements of type T1 are merged.
Thus in the remaining elements of the chain, the type T1 elements must be interlaced if
they are present. The step 2◦ merges all remaining elements in the chain which consists
of a subchain of length 3 of the type 1 → 2 → 1. The remaining type T1 elements in the
chain of length 3 can appear only in the form 2 → 1 → 2 which are merged by the step

19



3◦. Thus the first three steps of the algorithm merge all elements in T1. Here we have
used the assumption that the first and last elements in C both belong to T2 or the first
and last elements are the same interface elements. The left type T2 elements are treated
in the step 4◦ of the algorithm. The elements in T3 are all large elements and thus need
not be merged. This shows that Algorithm 6 will merge all interface elements in the chain
to output a locally induced mesh Induced(C) which consists of the large elements of C and
the macro-elements containing all small elements of the chain C. By Lemmas 3.1-3.2, the
elements in Induced(C) are all large elements since δ0 ∈ (0, 1/5 ].

It remains to show that the non-interface elements of the mesh T will not be used twice
in the merging Algorithm 6 to guarantee the success of the algorithm. Let K ∈ T \T Γ. We
first assume K is merged with interface elements in S(K)1 which belong to two patterns
P1 and P2. By Lemma 3.3, the elements in (P1 ∪P2)∩S(K)1 must be connected. Assume
D1 ∈ P1, D2 ∈ P2 are connected, then one of D1 and D2 must be diagonal to K. Without
loss of generality, we assume D1 = D(K). If D1 ∈ T2, then by Remark 3.2 the element D′

neighboring K and D1 must be in T1 so that K,D′1, D1 form a pattern of type 1. Thus by
Rule 2 of the admissible chain, D2, as an interface element, cannot be neighboring D1, see
Fig.3.10 (top left). This is a contradiction. Therefore, D1 can only be of type T1. There
are three possibilities illustrated in Fig.3.10.

(1) In the case of Fig.3.10 (top right), Rule 2 implies D2 must be in T2. By Remark 3.2,
K,D1, and D2 form a pattern of type 1, which contradicts to the assumption that D1, D2

belong to different patterns.
(2) In the case of Fig.3.10 (bottom left), Rule 2 implies D2 cannot be neighboring D1.
(3) In the case of Fig.3.10 (bottom middle), D1 has only one common vertex with K.

By Remark 3.3 the neighboring elements of D1, D
′
1, D

′′
1 both must be of type T1 or T2 and

K,D1, D
′
1, D

′′
1 form a pattern of type 1 or 2. If K,D1, D

′
1, D

′′
1 form a pattern of type 1, then

this case belongs to (1). If K,D1, D
′
1, D

′′
1 form a pattern of type 2, D2 must be equal to

one of D′1 or D′′1 , which contradicts that D1, D2 are in different patterns.
In conclusion, K cannot be merged with two interface elements in S(K)1 belonging

to different patterns. It remains to show that K cannot be merged with different interface
elements in S(K)2 belonging to two patterns P1,P2 of which one pattern, e.g., P1, consists
of only interface elements in S(K)2\S(K)1. By the construction of the patterns in §3.2, P1

must be a pattern of type 2 and all interface elements D,D′, D′′ in P1 are in the second
layer of elements surrounding K, see Fig.3.10 (bottom right). In this case, we know by the
Rule 4 of the admissible chain that K cannot be merged with elements in S(K)2 other than
D,D′, D′′, that is, K cannot be merged with interface elements belonging to the second
pattern P2. This completes the proof.

To conclude this section, we show that the merging Algorithm 6 leads to a reliable
algorithm to automatically construct a body-fitted shape regular mesh for arbitrarily shaped
smooth interface. We start from a conforming uniform mesh T0 of the domain Ω. We
refine the interface elements of T0 by quad refinements and their surrounding elements to
generate a Cartesian mesh T with hanging nodes such that all interface elements of T form
an admissible chain C. This is possible because the interface Γ is C2-smooth. Now we use
Algorithm 6 to obtain an induced mesh M = Induced(C). Since each interface element
K ∈ MΓ is a large element, Kh

i , i = 1, 2, is strongly shape regular in the sense that it is
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Figure 3.10: The element K and D1 ∈ S(K)1 is a type T2 element (top left). The element
K and D1 ∈ S(K)1 is a type T1 element (top right, bottom left, and bottom middle). The
element K and D,D′, D′′ in S(K)2\S(K)1 (bottom right).

the union of shape regular triangles which we denote as T ijK , 1 ≤ j ≤ mK . Then the mesh

M̃ = {T ijK : i = 1, 2, j = 1 · · · ,mK ,K ∈MΓ} ∪ {K : K ∈M\MΓ}

is a triangular-rectangular mixed finite element mesh of the domain Ω. {T ijK : i = 1, 2, j =
1 · · · ,mK ,K ∈MΓ} is a body-fitted shape regular triangular mesh that covers the interface
and {K : K ∈ M\MΓ} consists of a rectangular mesh whose elements are similar to the
elements of the initial mesh T0. Fig.3.11 shows a mixed mesh constructed from the unfitted
finite element mesh in Fig.3.6(e).

4 The condition number of the stiffness matrix

In this section we study the condition number of the stiffness matrix of the unfitted finite
element method defined in (2.4). Since we allow the Cartesian mesh T having hanging nodes,
which is a nonconforming mesh in the classical sense, we recall an important concept of the
K-mesh in Babuška and Miller [4]. It is introduced to control the undesirable excessive local
refinements so that the local mesh sizes around each vertex of the elements are comparable.
This concept is further developed in Bonito and Nochetto [12] as the control of the local
level of incompatibility of the nonconforming meshes.

Let N 0 be the set of conforming nodes of the mesh T . A conforming node of T is a
vertex of the elements in T which either locates on the boundary ∂Ω or is shared by the four
elements to which it belongs. For each conforming node P , we define ψP ∈ X1(T )∩H1(Ω),
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Figure 3.11: Illustration of a mixed triangular-rectangular body-fitted shape regular finite
element mesh.

which is bilinear in each element and satisfies ψP (Q) = δPQ for any Q ∈ N 0. Here δPQ
is the Kronecker delta. It is proved in [4] that {ψP : P ∈ N 0} consists of a basis of
X1(T ) ∩H1(Ω) and satisfies the property of the partition of unity

∑
P∈N 0 ψP = 1. In the

rest of the paper, we impose the following assumption on the finite element mesh T which
is called the K-mesh in [4].

Assumption (H3) There exists a constant C > 0 uniform on the level of discretization
of T such that for any conforming node P ∈ N 0,

diam(supp(ψP )) ≤ C min
K∈TP

hK ,

where TP := {K ∈ T , K ⊂ supp(ψP )}.

One can find further properties of K-meshes in [4]. We refer to [12, §6] for a refinement
algorithm to enforce the assumption (H3) in practical computations.

The following lemma on the continuous approximation of discontinuous piecewise poly-
nomials on K-meshes is proved in [21, Lemma 3.2].

Lemma 4.1. Let VP (T ) = ΠK∈TQp(K). There exists an interpolation operator πh :
Vp(T )→ Vp(T ) ∩H1(Ω) such that for any v ∈ Vp(T ),

‖v − πhv‖L2(K) ≤ C‖p−1h1/2[[v]]‖L2(σ(K)),

‖∇(v − πhv)‖L2(K) ≤ C‖ph−1/2[[v]]‖L2(σ(K)),

where σ(K) = {e ∈ Eside : e ⊂ ω̃(K)}, ω̃(K) is a set of elements including K such that
diam(ω̃(K)) ≤ ChK . The constant C is independent of hK , p. Moreover, πhv ∈ H1

0 (Ω) if
v = 0 on ∂Ω.

Since the induced meshM = Induced(T ) is obtained by merging some of the elements
of T , Vp(M) ⊂ Vp(T ). Thus Lemma 4.1 is also valid for any functions v ∈ Vp(M). We
have the following discrete Poincaré inequality.

Lemma 4.2. For any v ∈ Xp(M), we have ‖v‖L2(Ω) ≤ C‖v‖DG, where C > 0 is a constant

independent of the mesh sizes, p, and the interface deviations ηK for all K ∈MΓ.
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Proof. Let v = v1χΩ1 + v2χΩ2 ∈ Xp(M). By Lemma 4.1, for vi ∈ Vp(Mi), i = 1, 2, there
exists πhvi ∈ VP (Mi) ∩H1(Ωh

i ) such that

‖vi − πhvi‖Mi ≤ C‖p−1h1/2[[vi]]‖Esidei
, ‖∇(vi − πhvi)‖Mi ≤ C‖ph−1/2[[vi]]‖Esidei

. (4.1)

Recall that we have assumed Ω̄1 ⊂ Ω. Let wi ∈ H1(Ωi), i = 1, 2, satisfy

−∆w1 = 0 in Ω1, w1 = [[πhv]]Γ on Γ = ∂Ω1,

−∆w2 = 0 in Ω2, w2 = 0 on Γ, w2 = πhv2 on ∂Ω.

Then wi ∈ H1(Ωi) satisfies ‖w1‖H1(Ω1) ≤ C‖[[πhv]]‖H1/2(Γ), ‖w2‖H1(Ω2) ≤ C‖πhv‖H1/2(∂Ω).
From the proof of [21, Lemma 3.4] we know that

‖[[πhv]]‖2
H1/2(Γ)

≤ C(‖ph−1/2[[v]]‖EΓ∪Eside
1 ∪Eside

2
+ ‖p−1h1/2∇T [[v]]‖EΓ). (4.2)

Now we use a similare argument to bound ‖πhv‖H1/2(∂Ω). By the the localization lemma of

the H1/2 semi-norm in Faermann [28, Lemm 2.3] and the Gagliardo-Nirenberg type estimate
for the H1/2 semi-norm, we obtain as in [21, (3.13)] that

‖πhv2‖2H1/2(∂Ω)
≤ C

∑
K∈M2

(‖πhv2‖L2(ΣK)‖∇T (πhv2)‖L2(ΣK) + h−1
K ‖πhv2‖2L2(ΣK)),(4.3)

where ΣK = ∂K ∩ ∂Ω. By the hp-inverse estimate and Lemma 4.1, we obtain

‖∇T (πhv2)‖L2(ΣK) ≤ ‖∇T v2‖L2(ΣK) + ‖∇T (v2 − πhv2)‖L2(ΣK)

≤ Cp2h−1
K ‖v2‖L2(ΣK) + Cph

−1/2
K ‖∇(v2 − πhv2)‖L2(K)

≤ Cp2h−1
K ‖v2‖L2(ΣK) + Cph

−1/2
K ‖ph−1/2[[v2]]‖L2(σ(K)).

Similarly, one can prove ‖πhv2‖L2(ΣK) ≤ ‖v2‖L2(ΣK) + ‖[[v2]]‖L2(σ(K)). Recall that [[v2]] = v2

on ∂Ω. This implies by (4.3) that

‖πhv2‖H1/2(∂Ω) ≤ C‖ph
−1/2[[v2]]‖Ebdy∪Eside

2
.

Therefore, by combining with (4.2) we have

‖w1‖H1(Ω1) + ‖w2‖H1(Ω2) ≤ C‖v‖DG. (4.4)

Let πchv = (πhv1 − w1)χΩ1 + (πhv2 − w2)χΩ2 . Then πchv ∈ H1
0 (Ω) and by using Poincaré

inequality for πchv, we have

‖v‖L2(Ω) ≤ ‖v − πchv‖L2(Ω) + ‖πchv‖L2(Ω)

≤
2∑
i=1

(‖vi − πhvi‖Mi + ‖wi‖L2(Ωi)) + C‖∇πchv‖L2(Ω)

≤
2∑
i=1

(‖vi − πhvi‖Mi + ‖wi‖L2(Ωi)) + C(‖∇h(πchv − v)‖M + ‖∇hv‖M)

≤ C

2∑
i=1

(‖vi − πhvi‖H1(Mi) + ‖wi‖H1(Ωi)) + C‖∇hv‖M.

Here for i = 1, 2, ‖w‖2H1(Mi)
= ‖w‖2Mi

+ ‖∇hw‖2Mi
∀w ∈ H1(Mi). This completes the

proof by using (4.1) and (4.4).
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Now we consider the condition number of the stiffness matrix. We start by introducing
the basis functions we use in each element. If K ∈ M\MΓ is not an interface element, we
will use a set of basis functions which are Lagrangian interpolation functions corresponding
to Gauss-Lobatto points. We first recall some facts about spectral method and refer to
Bernardi and Maday [11] for the details.

Let I = (−1, 1) and {Li}pi=0 the set of Legendre polynomials of Qp(I) which is the
set of polynomials of degree p in I. Let {li}pi=0 be the set of Lagrangian interpolation
functions in Qp(I) corresponding to the Gauss-Lobatto points {ξi}pi=0 which are the zeros
of (1− ξ2)L′p(ξ) in I.

Now let K̂ = I × I and {(ξi, ξj) : 0 ≤ i, j ≤ p} be the Gauss-Lobatto grid of K̂. Any
function v̂ ∈ Qp(K̂) can be written as v̂ =

∑p
i,j=0 v̂ijli(x̂1)lj(x̂2). The following important

result is proved in Melenk [39, Proposition 2.8, Theorem 4.1].

Lemma 4.3. There exists a constant C independent of p such that for any function v̂ =∑p
i,j=0 v̂ijli(x̂1)lj(x̂2), there holds

C−1p−2
p∑

i,j=0

v̂2
ij ≤ ‖v̂‖2H1(K̂)

≤ Cp
p∑

i,j=0

v̂2
ij ,

and

‖v̂‖2
L2(∂K̂)

≤ Cp−1

∑
i=0,p

p∑
j=0

v̂2
ij +

∑
j=0,p

p∑
i=0

v̂2
ij

 .

For any K ∈ M, let FK : K̂ → K be the one-to-one and surjective affine mapping.
Denote φijK = φ̂ij ◦ F−1

K , where φ̂ij = li(x̂1)lj(x̂2), 0 ≤ i, j ≤ p. For any v ∈ Qp(K), v =∑p
i,j=0 v

ij
Kφ

ij
K , we have by Lemma 4.3 and the standard scaling argument that

C−1p−2‖V K‖2`2 ≤ ‖∇v‖
2
L2(K) + h−2

K ‖v‖
2
L2(K) ≤ Cp‖V K‖2`2 , (4.5)

‖v‖2L2(∂K) ≤ Cp
−1hK‖V K‖2`2 , (4.6)

where V K = (vT0 , · · · ,vTp )T , vi = (vi0 , · · · , vip)T is the coefficient vector corresponding to
v ∈ Qp(K).

For the interface element K ∈ MΓ, we have Kh−δK
1 ⊂ K1 and Kh−δK

2 ⊂ K2. We also

have K̂h−δK
1 ⊂ K̂1 and K̂h−δK

2 ⊂ K̂2, where K̂h−δK
i = F−1

K (Kh−δK
i ), K̂i = F−1

K (Ki), i =

1, 2. Let {ψ̂j
K̂h
i

}(p+1)2

j=1 the L2-orthonormal basis of Qp(K̂
h−δK
i ), that is, (ψ̂j

K̂h
i

, ψ̂k
K̂h
i

)
K̂
h−δK
i

=

δkj . Denote by ψj
Kh
i

= p−3/2(ψ̂j
K̂h
i

◦ F−1
K ). Then {ψj

Kh
i

}(p+1)2

j=1 is an L2-orthogonal basis of

Qp(K
h−δK
i ), that is,

(ψj
Kh
i

, ψk
Kh
i
)
K
h−δK
i

= p−3 |K|
|K̂|

δjk. (4.7)

The scaling constant p−3 in (4.7) is important for us to balance the contribution of different
basis functions used in interface and non-interface elements in the estimation of the condition

24



number of the stiffness matrix. Now for any v ∈ Xp(M), K ∈MΓ,

v|K =

(p+1)2∑
j=1

(vjK1
ψj
Kh

1
χK1 + vjK2

ψj
Kh

2
χK2) := v1χK1 + v2χK2 . (4.8)

Let V K = (v1
K1
, · · · , v(p+1)2

K1
, v1
K2
, · · · , v(p+1)2

K2
)T the coefficient vector corresponding to v,

then by (4.7) we have

‖v1‖2
L2(K

h−δK
1 )

+ ‖v2‖2
L2(K

h−δK
2 )

= p−3 |K|
|K̂|
‖V K‖2`2 . (4.9)

By Lemma 2.2 we obtain

Cp−3h2
K‖V K‖2`2 ≤ ‖v‖

2
L2(K) ≤ CΘKp

−3h2
K‖V K‖2`2 ∀K ∈MΓ. (4.10)

Now, by the construction, any function v ∈ Xp(M) can be written as

v =
∑

K∈M\MΓ

p∑
i,j=0

vijKφ
ij
K +

∑
K∈MΓ

(p+1)2∑
j=1

(vjK1
ψj
Kh

1
χK1 + vjK2

ψj
Kh

2
χK2). (4.11)

Let N = #M be the number of elements of the mesh M, {G1, · · · , GN} the elements of
M, and V Gi the coefficient vector of v|Gi , i = 1, · · · , N . We denote V = (V T

G1
, · · · ,V T

GN
)T

the vector of coefficients of v. The dimension of the vector V is Np = (p+ 1)2N . We write
V = Φ(v), where Φ : Xp(M)→ RNp is the mapping between functions in Xp(M) and their
coefficient vectors.

Let V = Φ(v),W = Φ(w) ∈ RNp for v, w ∈ Xp(M). Then the stiffness matrix

A = (aij)
Np
i,j=1 is defined by

(AV ,W )`2 = ah(v, w).

Recall that Θ = maxK∈MΘK . The following theorem is the main result of this section.

Theorem 4.1. Denote NΓ = #MΓ the number of elements of MΓ and M = min(N −
NΓ, NΓ). Then the following bound of the condition number of the stiffness matrix holds

κ(A) ≤ CΘ2(1 + | ln(h2
minM)|)

(
p3(N −NΓ) + p4NΓ

)
,

where hmin = minK∈M hK and the constant C > 0 is independent of the mesh sizes, p, and
the interface deviations ηK for all K ∈MΓ.

We note that N −NΓ is the number of non-interface elements. For elliptic equations,
it is well-known that the condition number of the stiffness matrix of standard finite element
methods grows linearly in terms of the number of elements (see, e.g., Bank and Scott [10]).
The condition number of the stiffness matrix of the hp finite element method using Gauss-
Lobatto shape functions is studied in [39], which in particular generalizes earlier results
that the condition number grows as O(p3) of the spectral method. Thus the estimate in
Theorem 4.1 is optimal in terms of the number of elements and p. Our numerical results in
Example 1 of section 5 show that the bound is also sharp in terms of the growth factor Θ2.
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Proof. For any v = v1χΩ1 + v2χΩ2 ∈ Xp(M), denote w = (πhv1)χΩ1 + (πhv2)χΩ2 and
W = Φ(w) the coefficient vector corresponding to w. By (4.5), (4.10) and Lemma 2.3 we
know that

‖V −W ‖2`2 ≤ Cp2
∑

K∈M\MΓ

(‖∇(v − w)‖2L2(K) + h−2
K ‖v − w‖

2
L2(K))

+C
∑

K∈MΓ

p3h−2
K ‖v − w‖

2
L2(K)

≤ Cp2‖ph−1/2[[v]]‖2Eside
1 ∪Eside

2
.

Thus by the triangle inequality

‖V ‖2`2 ≤ Cp
2‖ph−1/2[[v]]‖2Eside

1 ∪Eside
2

+ 2‖W ‖2`2 . (4.12)

Again by (4.5), (4.10) we have

‖W ‖2`2 ≤ Cp
2

∑
K∈M\MΓ

(
‖∇w‖2L2(K) + h−2

K ‖w‖
2
L2(K)

)
+ C

∑
K∈MΓ

p3h−2
K ‖w‖

2
L2(K).

Now we use an argument in [10]. By Hölder inequality, for any r ≥ 2,∑
K∈M\MΓ

h−2
K ‖w‖

2
L2(K) ≤ C

∑
K∈M\MΓ

h
−4/r
K ‖w‖2Lr(K)

≤ C

 ∑
K∈M\MΓ

h
−4/(r−2)
K

 r−2
r

‖w‖2Lr(Ω1∪Ω2)

≤ Ch
−4/r
min (N −NΓ)

r−2
r ‖w‖2Lr(Ω1∪Ω2).

Similarly, ∑
K∈MΓ

p3h−2
K ‖w‖

2
L2(K) ≤ Cp

3h
−4/r
min (NΓ)

r−2
r ‖w‖2Lr(Ω1∪Ω2).

Therefore,

‖W ‖2`2 ≤ Cp2‖∇w‖2M\MΓ + C(p2(N −NΓ) + p3NΓ)h
−4/r
min M−2/r‖w‖2Lr(Ω1∪Ω2)

≤ C(p2(N −NΓ) + p3NΓ)(h2
minM)−2/rr‖w‖2H1(Ω1∪Ω2),

where we have used the embedding inequality, ‖w‖Lr(D) ≤ Cr1/2‖w‖H1(D) for any w ∈
H1(D), r ≥ 1, on any Lipschitz domain D. Notice that for any ζ > 0, ζ−2/r = e−2 ln ζ/r =
e−2 if r = ln ζ, by taking r = max(2, | ln(h2

minM)|) we obtain

‖W ‖2`2 ≤ C(p2(N −NΓ) + p3NΓ)(1 + | ln(h2
minM)|)‖w‖2H1(Ω1∪Ω2). (4.13)

By Lemma 2.3 and the discrete Poincaré inequality in Lemma 4.2

‖w‖2H1(Ω1∪Ω2) ≤ 2‖w − v‖2H1(Ω1∪Ω2) + 2(‖∇hv‖2L2(Ω) + ‖v‖2L2(Ω))
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≤ C(‖ph−1/2[[v]]‖2Eside
1 ∪Eside

2
+ ‖∇hv‖2L2(Ω) + ‖v‖2L2(Ω))

≤ Cah(v, v).

This yields by (4.12)-(4.13) that

‖V ‖2`2 ≤ C(p2(N −NΓ) + p3NΓ)(1 + | ln(h2
minM)|)ah(v, v). (4.14)

On the other hand, since ah(v, v) ≤ C‖v‖2DG, we have

ah(v, v) ≤ C
∑

K∈M\MΓ

(
‖∇v‖2L2(K) + ΘK‖ph−1/2v‖2L2(∂K)

)

+
∑

K∈MΓ

2∑
i=1

(
‖∇vi‖2L2(Ki)

+ ΘK‖ph−1/2vi‖2L2(∂Ki)
+ ‖p−1h1/2∇T vi‖2L2(ΓK)

)
:= I + II. (4.15)

By (4.5)-(4.6)

I ≤ CΘ
∑

K∈M\MΓ

(
‖∇v‖2L2(K) + ‖ph−1/2v‖2L2(∂K)

)
≤ CΘp

∑
K∈M\MΓ

‖V K‖2`2 . (4.16)

For K ∈MΓ, by Lemma 2.3 and (4.10), for i = 1, 2,

‖∇vi‖2L2(Ki)
≤ CΘKp

4h−2
K ‖vi‖

2
L2(Ki)

≤ CΘ2
Kp‖V K‖2`2 .

By (2.9), Lemma 2.3, the hp trace inequality, and inverse estimate

‖vi‖2L2(∂Ki)
≤ C‖vi‖L2(Ki)‖∇vi‖L2(Ki) + C‖vi‖2L2(∂Kh

i )

≤ CΘK‖vi‖L2(K
h−δK
i )

‖∇vi‖L2(K
h−δK
i )

+ Cp2h−1
K ‖vi‖

2
L2(Kh

i )

≤ CΘKp
2h−1
K ‖vi‖

2

L2(K
h−δK
i )

,

where we used the fact ‖vi‖2L2(Kh
i )
≤ CΘK‖vi‖2

L2(K
h−δK
i )

, which follows directly from Lemma

2.1, in the last inequality. Thus by (4.9)

ΘK‖ph−1/2vi‖2L2(∂Ki)
≤ CΘ2

Kp
4h−2
K ‖vi‖

2

L2(K
h−δK
i )

≤ CΘ2
Kp‖V K‖2`2 .

Similarly, one can prove ‖p−1h1/2∇T vi‖2L2(ΓK) ≤ CΘ2
Kp‖V K‖2`2 . Therefore, we have

II ≤ CΘ2p
∑

K∈MΓ

‖V K‖2`2 . (4.17)

Combining (4.15)-(4.17) we obtain

ah(v, v) ≤ CΘ2p‖V ‖2`2 .

This completes the proof by using (4.14).

To conclude this section, we remark that since ΘK = T(1+3ηK
1−ηK )4p+3, Theorem 4.1

indicates that to control the condition number of the stiffness matrix, one should choose
ηK � 1, that is, one should have the interface being well resolved by the mesh.
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5 Numerical examples

In this section we provide some numerical examples to verify our theoretical results. In
order to construct the orthogonal polynomials on the polygons K̂h−δK

i for the interface

elements K, we adopt the Gram-Schmidt process starting from the basis functions of Qp(K̂)
which are the Lagrange interpolation polynomials through the Gauss-Lobatto integration
points on K̂. The details can be found in Sommariva and Vianello [45]. The algorithms
are implemented in MATLAB on a workstation with Intel(R) Core(TM) i9-10885H CPU
2.40GHz and 64GB memory.

Example 1. In this example we show that the growth factor Θ2 in the bound of the condition
number of the stiffness matrix in Theorem 4.1 is sharp. For this purpose, we consider the
case of one interface element. Let K = (−2, 2)2 and the interface Γ = {(x(t), y(t)) ∈ R2 :

t ∈ (−
√

2
2 ,
√

2
2 )}, where x(t) and y(t) are defined as follows:

x(t) =
√

2 cos(α+
π

4
)t+
√

2 sin(α+
π

4
)(100t3 − βt)− 1,

y(t) = −
√

2 sin(α+
π

4
)t+
√

2 cos(α+
π

4
)(100t3 − βt)− 1,

where cos(α) = 1√
µ2+1

, sin(α) = µ
µ2+1

, β = 100√
µ2+1

− µ and µ = 3.8.

The domain and the interface are shown in Fig.5.1 (left) in which Kh−δK
1 = ∆AE′F ′

and Kh−δK
2 is the polygon with vertices F ′′, E′′, B,C,D. The interface deviation is ηK =

200
3
√

3(µ2+1)2 ≈ 0.16. We first consider the condition number of the mass matrix to verify

our analysis in Lemma 2.2. For v ∈ Xp(K), in the notation of (4.8), the mass matrix

M ∈ R(p+1)2×(p+1)2
is defined as (MV K ,WK)`2 = (v, w)K ∀v, w ∈ Xp(K). Then (4.10)

implies that the condition number κ(M) ≤ CΘ for some constant C independent of p and
ηK . We plot κ(M) vs. Θ via different degrees of polynomials with loglog scaling in Fig.5.1
(right). It is clear that the condition number of M grows as Θ which agrees with our
theoretical bound.

We plot the curve κ(A) vs. Θ2p4 via different degrees of polynomials with loglog scaling
in Fig.5.2 (left). We observe that the condition number grows as Θ2p4 which confirms our
analysis in Theorem 4.1. We also observe that the κ(A) increases very fast with the increase
of polynomial degree. One can reduce the interface deviation to reduce the κ(A). We change
µ to reduce ηK such that ηK ≤ 0.1

p(p+1) and plot the curve p4 vs. κ(A) in Fig.5.2 (right). We

can find the κ(A) is significantly reduced and the κ(A) has p4 increasing rates.
This example shows clearly the importance of reducing the interface deviation to control

the condition number of the stiffness matrix. In the following we always require

max
K∈M

ηK ≤
0.1

p(p+ 1)
, (5.1)

which is stronger than that in Assumption (H2). The finite element meshes in our following
numerical examples are constructed as follows.

Algorithm 7: The algorithm for generating the induced mesh satisfying Assumption (H3)
and (5.1)
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Figure 5.1: Example 1: The geometry setting of Example 1 (left) and the growth rate of
the condition number of the mass matrix (right).
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Figure 5.2: Example 1: The growth rate of the condition number of A with ηK = 0.16 (left)
and the condition number of A with ηK ≤ 0.1

p(p+1) (right).

Input: A uniform initial Cartesian mesh T0 of mesh size h
Output: The induced mesh M = Induced(C)
1◦ Set T = T0;
2◦ Refine the elements of T near the interface by quad refinements to generate a

Cartesian mesh (still denoted by) T with possible handing nodes such that all interface
elements of T form an admissible chain C;

3◦ Call the refinement procedure in [12, §6.3] such that T satisfies Assumption (H3);
4◦ Use Algorithm 6 to generate an induced mesh M = Induced(C);
5◦ If the interface elements inM do not satisfy (5.1), release all merged elements in C,

go to 2◦.

We remark that after step 2◦ in Algorithm 7, the interface elements are of the same
size which is smaller than the sizes of non-interface elements. Thus when implementing the
refinement procedure in [12, §6.3] in our situation, only non-interface elements are refined
and consequently, the interface elements still form an admissible chain.

Example 2. Let the interface Γ be the circle centered at (0, 0)T with radius r0 = 1.1. We
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set Ω = (−2, 2)2, Ω1 = {(x, y) ∈ R2 :
√
x2 + y2 < r0} and Ω2 = Ω \ Ω̄1. Set a1 = 10 and

a2 = 1. The right-hand side f and boundary condition g are computed such that the exact
solution is

u(x, y) =

{
ex

2+y2−r2
0 + 10r2

0 − 1 + (x2 + y2 − r2
0)2 sin(2πx) sin(2πy) in Ω1,

10(x2 + y2) + (x2 + y2 − r2
0)2 sin(2πx) sin(2πy) in Ω2.

Table 1: Example 2: numerical errors ‖u− U‖DG and orders for p = 1, 2, 3, 4, 5.
p = 1 p = 2 p = 3 p = 4 p = 5

h error order error order error order error order error order

1/4 1.13E+00 – 4.00E-01 – 1.20E-01 – 3.21E-02 – 2.09E-03 –
1/8 6.72E-01 0.75 1.08E-01 1.89 2.01E-02 2.58 1.55E-03 4.37 1.62E-04 3.69
1/16 3.57E-01 0.91 2.89E-02 1.90 2.49E-03 3.01 1.03E-04 3.91 5.18E-06 4.97
1/32 1.79E-01 0.99 7.32E-03 1.98 3.12E-04 3.00 6.56E-06 3.98 1.62E-07 5.00

In Table 1, we show the errors ‖u − U‖DG and the corresponding convergence orders
for p = 1, 2, 3, 4, 5. We clearly observe the optimal p-th order convergence and the superior
performance of high order methods. Fig. 5.3 shows the induced mesh when h = 1/4 and
the corresponding numerical solution.

Figure 5.3: Example 2: The induced mesh of 940 elements when h = 1/4 (left) and the
corresponding numerical solution (right).

Example 3. In this example we consider geometrically more complex interface. Let the
interface Γ be defined as follows:

Γ = {(x, y) ∈ R2 : r =
2

9
(3 + 4sin(5θ))},

where (r, θ) are the polar coordinates. The domain Ω is divided to Ω1 and Ω2 by Γ, that is,

Ω1 = {(x, y) ∈ (−2, 2)2 : r <
2

9
(3 + 4sin(5θ))},

Ω2 = {(x, y) ∈ (−2, 2)2 : r >
2

9
(3 + 4sin(5θ))}.

We set a1 = 10, a2 = 1, the right-hand side f = 1, and the boundary condition g = 0.
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The exact solution of this example is unknown. We use the a posteriori error estimate
in [21] to measure the accuracy of computation. In Table 2, we observe the optimal p-th
order convergence. The induced mesh when h = 1/4 is shown in Fig. 5.4 which has 2654
elements. The discrete solution is depicted in Fig. 5.5.

Table 2: Example 3: A posterior error estimates and the convergence orders for p =
1, 2, 3, 4, 5.

p = 1 p = 2 p = 3 p = 4 p = 5

h error order error order error order error order error order

1/4 1.38E+00 – 1.08E-01 – 3.96E-02 – 2.85E-03 – 1.02E-04 –
1/8 7.31E-01 0.92 2.93E-02 1.88 5.13E-03 2.95 1.83E-04 3.96 3.35E-06 4.93
1/16 3.79E-01 0.95 8.13E-03 1.85 6.46E-04 2.99 1.15E-05 3.99 1.08E-07 4.95
1/32 1.90E-01 0.99 2.09E-03 1.96 8.12E-05 2.99 7.25E-07 3.99 3.41E-09 4.99

Figure 5.4: Example 3: The induced mesh of 2654 elements when h = 1/4 (left) and the
corresponding zoomed local mesh (right).

Figure 5.5: Example 3: The discrete solution on the mesh of 2654 elements.

Acknowledgement
The authors are grateful to Haijun Wu in Nanjing University for inspiring discussions.

31



References

[1] R.A. Adams and J.J.F. Fournier, Sobolev Spaces, second edition, Elsevier, Singapore
(2009)

[2] D.N. Arnold, F. Brezzi, B. Cockburn, and L. Marini, Unified analysis of discontinuous
Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39, 1749-1779 (2002)
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[41] J. Nitsche, Über ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Ver-
wendung von Teilraumen, die keinen Randbedingungen unterworfen sind, Abh. Math.
Sem. Univ. Hamburg 36, 9-15 (1970)
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