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Abstract

In the framework of fusion energy research, divertor design and model calibration based on
plasma edge codes currently rely either on manual iterative tuning of parameters, or alternatively
on parameter scans. This, combined with the complex and computationally expensive nature
of plasma edge codes, makes these procedures extremely cumbersome. Gradient-based optimiza-
tion methods can signi�cantly reduce this e�ort, but require an e�cient strategy for sensitivity
calculation. Algorithmic Di�erentiation (AD) o�ers an e�cient and accurate solution, allowing
semi-automatic sensitivity computation in complex, continuously developed codes. The adjoint
AD mode is especially attractive, as its cost is independent of the number of input parameters. In
this paper, adjoint AD sensitivity calculation is deployed for the �rst time in plasma edge codes,
applying the TAPENADE AD tool to SOLPS-ITER. Adjoint AD results are veri�ed to be machine
precision accurate compared to tangent AD mode, and up to 10−9 compared to �nite di�erences.
Scalings of AD computational e�orts prove the advantages of adjoint compared to tangent AD,
while memory requirements rapidly increase for adjoint, showing the need for an improved check-
pointing strategy. With the new tool, a wealth of information becomes accessible to the modeler.
An adjoint sensitivity analysis for a COMPASS density scan identi�es the input parameters with
largest impact on the solution, and 2D sensitivity maps show their spatial dependence.

1 Introduction

Nuclear fusion has the potential for a sustainable, large scale electricity generation, thanks to its near-
zero CO2 emissions and a cheap, widely available, and almost unlimited fuel. However, key physical and
technological challenges remain to be dealt with to achieve reliable power generation in magnetically
con�ned fusion devices. Among these challenges stands the reliable power and particle exhaust through
the divertor component [1]. This component must handle heat loads of 10 MW/m2 and beyond in
normal steady-state operation, together with �uxes of highly energetic particles. This poses severe
challenges on divertor lifetime in terms of surface melting, material erosion, and cooling capabilities.
Therefore, accurate assessment of design and operational scenarios employing plasma edge simulations
is required.
Plasma edge simulations are typically carried out with mean-�eld codes such as SOLPS-ITER [2, 3],
SOLEDGE2D [4], UEDGE [5], and EDGE2D [6]. Especially SOLPS-ITER has been extensively used
for designing and assessing the ITER divertor [7�9], it is routinely used for analysis of present-day fusion
devices [10�12], and is currently supporting the design of next-step fusion reactors like DEMO [13].
SOLPS-ITER is a complex and computationally expensive multi-physics code. The plasma transport
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in the magnetic �eld is described by �uid equations based on the Braginskii equations [14]. Interactions
with neutral particles and solid walls, strongly a�ecting the plasma edge behavior, are accounted for by
coupling to a neutral transport model, solving either �uid or kinetic equations [15,16] and extensively
relying on reaction rates and re�ection databases.
Divertor design and model calibration is currently mostly based on expensive parameter scans or man-
ual iterative procedures [17]. The high computational cost of plasma edge codes combined with many
input parameters or design variables, makes these procedures excessively demanding. To alleviate this
problem, an e�cient adjoint-based optimization strategy has been recently developed for a simpli�ed
plasma edge model [18�20]. In this approach, sensitivities of the cost functional are e�ciently computed
using the (continuous) adjoint equations, at a cost comparable to only a few plasma edge simulations.
Moreover, the availability of adjoint sensitivities paves the way towards sensitivity-accelerated Uncer-
tainty Quanti�cation (UQ) methods [21], which are indispensable to reduce the otherwise unfeasible
burden of sampling-based UQ methods for thorough model validation with complex and expensive
plasma edge codes.
Implementation of the adjoint equations in state-of-the-art plasma edge codes like SOLPS-ITER, to
enable optimization and UQ methodologies, is however not straightforward. In fact, these are complex
and well-established codes, continuously developed by scientists spread across the globe. As such,
analytical derivation and manual implementation of (continuous) adjoint equations is practically un-
feasible and prone to programming errors. In this context, Algorithmic Di�erentiation (AD) o�ers a
viable alternative, allowing semi-automatic sensitivity calculation in computer codes [22].
We have recently applied AD for the �rst time in the �eld of nuclear fusion to SOLPS-ITER [23].
However, so far we exploited only the tangent mode of AD. In this paper, we apply adjoint AD to
SOLPS-ITER, providing adjoint sensitivity analysis for the �rst time in state-of-the-art plasma edge
codes.
The remainder of the paper is organized as follows. In section 2 we summarize the main features of
AD, and in section 3 we introduce the modeling approach of SOLPS-ITER and the AD strategies
adopted. In section 4 we prove the accuracy of adjoint AD sensitivities. Next, we assess AD e�ciency
on SOLPS-ITER in section 5, providing scalings of the required computational e�ort. Finally, in
section 6 we carry out an adjoint-sensitivity analysis for a density scan and results are discussed.

2 Algorithmic Di�erentiation

Algorithmic Di�erentiation, also known as Automatic Di�erentiation, is a methodology for computing
derivatives of numerical models, within �oating-point accuracy. The �rst tangent AD applications date
back to the 1960s [24, 25], and the adjoint mode was developed by several scientists in the following
decades [26�28]. Hand-in-hand with scienti�c computing, AD developments continued and came within
reach of several scienti�c domains, such as aerodynamic design [29], ice sheet modeling [30], and coil
design for nuclear fusion stellarators [31]. We give next a general overview of AD and its main features,
based on the thorough analysis available in [22].
Consider a function F : D ⊂ Rn → Rm, mapping the input vector X ∈ D ⊂ Rn into the output vector
Y ⊂ Rm. The computational model evaluating F is often referred to as the primal. The basic principle
of AD is that the primal of F is a chain of several elementary operations φi, for which the derivative
is simple and well-known. These elementary operations are the program instructions implemented in
the primal. Evaluation of F(X) can thus be written as a composition of p elementary operations

Y = F(X) = φp ◦ φp−1 ◦ · · · ◦ φ1(X) = φp(Vp−1)× φp−1(Vp−2)× · · · × φ1(X), (1)

where φi are possibly nonlinear operators, and Vi = φi(Vi−1) for all i > 0 are the successive vectors of
intermediate variables as evaluation proceeds, with V0 = X. To evaluate the Jacobian F ′ : D ⊂ Rn →
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Rm×n one can straightforwardly apply the chain rule

F ′(X) =


∂y1
∂x1

· · · ∂y1
∂xn

...
. . .

...
∂ym
∂x1

· · · ∂ym
∂xn

 =
(
φ′
p ◦ φp−1 ◦ · · · ◦ φ1(X)

)
×
(
φ′
p−1 ◦ φp−2 ◦ · · · ◦ φ1(X)

)
×· · ·×φ′

1(X) =

= φ′
p(Vp−1)× φ′

p−1(Vp−2)× · · · × φ′
1(X), (2)

where φ′
k are the Jacobian matrices of the elementary operations. Note that each × operation is an

expensive matrix-matrix multiplication. AD aims at evaluating a cheaper version of Eq. 2, where
matrix-vector operations are employed.
For example, multiplying Eq. 2 to its right by a perturbation direction vector Ẋ, one obtains the
tangent or directional derivative vector

Ẏ = F ′(X)× Ẋ = Ḟ(X, Ẋ) = φ′
p(Vp−1)× φ′

p−1(Vp−2)× · · · × φ′
1(X)× Ẋ. (3)

In Eq. 3 going from right to left the × operations are cheaper matrix-vector multiplications. In
particular, choosing Ẋ as ei, the ith component of the Cartesian basis of the input space, provides

Ẏ = F ′(X)× ei =
(
∂y1
∂xi

∂y2
∂xi
· · · ∂ym

∂xi

)T
. The resulting Ẏ stores an entire column of the Jacobian. In

other words, Ẏ contains the sensitivity of each output with respect to a single input i. The tangent
mode of AD e�ectively implements Eq. 3, and the notation Ḟ indicates the tangent function or
program. This AD mode is also referred to as forward mode, as perturbations are propagated from the
input towards the output of F , in the same order as the primal. Clearly, evaluation of the full Jacobian
requires repeating Eq. 3 while perturbing separately each element in Ẋ, for a total of n evaluations.
This AD mode for obtaining the Jacobian is known as the tangent vector mode. This mode entails
evaluating the Jacobian in a column-by-column fashion, with a computational cost proportional to the
input dimension. The cost of tangent AD is thus about the same as that of �nite di�erences (FD), with
the advantageous absence of truncation error. For practical purposes, tangent AD is very e�cient when
the function F has many outputs and few inputs (m≫ n), in which case the Jacobian is �tall�. Indeed,
by careful exploitation of vectorial quantities and sparsity, the computational time for evaluating the
full Jacobian is bounded by

COST
{
F ′(X)

}
TGT

≤ (1 + 1.5ñ) COST {F(X)} , (4)

where ñ < n is a complexity measure of the domain of F [22]. The memory required by tangent AD
roughly follows the same proportionality.

Conversely, Eq. 2 can be multiplied on the left by any vector Y
T
, dimensioned after the space of

outputs, which can be seen as a set of weights attached to each output de�ning a single scalar composite
output. This yields the gradient or adjoint directional derivative vector

X = Y
T ×F ′(X) = F(X,Y ) = Y

T × φ′
p(Vp−1)× φ′

p−1(Vp−2)× · · · × φ′
1(X). (5)

In this case, the cheaper matrix-vector multiplications are retrieved in Eq. 5 going from left to right.
In particular, choosing Y as ej , the j

th component of the Cartesian basis of the output space, provides

X =
(

∂yj
∂x1

∂yj
∂x2
· · · ∂yj

∂xn

)
. The result X is an entire row of the Jacobian, storing the sensitivity of a

single output j with respect to all inputs. Because of the equivalence Y
T × F ′(X) = F∗(X) × Y ,

in which F∗(X) is the Hermitian transpose or adjoint of the Jacobian, the AD mode implementing
Eq. 5 is referred to as adjoint mode, with F indicating the adjoint program. It is also referred to as
reverse AD, as perturbations are propagated from the output towards the input of F , in reverse order
compared to the primal. Symmetrically to tangent AD, in adjoint AD the Jacobian is evaluated row-
by-row, repeating Eq. 5 for each of the m elements in Y , in the adjoint vector mode. Therefore, the

3



computational cost is independent of the input dimensionality, e�ciently evaluating a �fat� Jacobian
(n ≫ m). This is the major advantage of adjoint AD and of analytical adjoint equations. In several
optimal design and engineering applications such as shape and topology optimization, with few outputs
and up to millions of design variables, adjoint (AD) is the only viable option to obtain gradients. In
fact, an upper bound estimate of adjoint AD computational time is given by

COST
{
F ′(X)

}
ADJ

≤ (1.5 + 2.5m̃) COST {F(X)} , (6)

where m̃ < m is a complexity measure of the range of F [22]. Regarding adjoint AD memory require-
ments, these highly depends on the AD implementation, as will be elucidated in the next section.

2.1 AD implementations

The mechanical processing of the primal code and derivation of the tangent/adjoint instructions is
automatized by AD tools, for which an extensive list is available on the AD community website
for di�erent programming languages [32]. Irrespective of the language, AD tools can be grouped into
source transformation and operator overloading tools. The di�erence between them lies in the computer
science techniques employed to provide derivative instructions.
Source transformation tools like TAPENADE, ADIFOR, and TAF [33�35] parse source �les of a pro-
gram and internally build a representation of it. Next, they transform such internal representation,
producing a new set of source �les containing the supplementary derivative information, also called
the di�erentiated code. In this perspective, they can be seen as an additional preprocessing step before
compilation. Source transformation tools are complex and require a costly development, similar to the
cost of developing a compiler. In addition, the AD model they implement is more sophisticated for ad-
joint mode. In tangent mode, derivative instructions require intermediate variables with same ordering
as the primal, so that the AD tools write tangent instructions between the original ones. In adjoint
mode, intermediate variables are instead required in reverse order. Thus, the computation is split into
two phases: the forward sweep, which evaluates the primal, and the backward sweep, which evaluates
the adjoint. Intermediate variables through the backward sweep need to be retrieved if they have been
overwritten, either by recomputing or storing them. The �rst option leads to a higher computational
time, while the second option increases memory requirements (thus an estimate on the memory bound
for adjoint mode was previously not given). The optimal choice is case-dependent, and a balanced
strategy between the two approaches, known as checkpointing, provides the best results [36]. From a
user point of view, the advantage is that the backward sweep is fully available as a code and can be
tailored to speci�c needs.
The other group of AD tools, operator overloading tools such as CoDiPack and ADOL-C [37, 38],
essentially consist of a library that is compiled together with the primal code. This library augments
the primal variables' types with new types containing the sensitivities. At the same time, the library
overloads the elementary operations to deal with the new variable type and propagate the sensitivities
according to the chain rule. In forward mode for example, intermediate variables vi are augmented to
ṽi ≡ (vi, v̇i), while the product elementary operation �∗� is overloaded such that ṽ ∗̃ ũ ≡ (v ∗ u, u ∗
v̇ + v ∗ u̇). The advantage of these AD tools is that the core of the primal code remains essentially
untouched, with only few simple instructions to be inserted by the user. On the other hand, their model
for adjoint AD is radically di�erent: the augmented program �lls a so-called tape of all intermediate
operations and operands pointers, and at the end reads and interprets this tape in the reverse direction
to propagate the adjoint sensitivities. The storage cost of this model is obviously quite high and is
typically a factor 10 larger compared to source transformation AD [39]. Moreover, the backward sweep
is hardly accessible by the user and cannot be modi�ed.
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3 AD for SOLPS-ITER

In this section, we give the speci�c details of adjoint AD implementation in SOLPS-ITER using the
TAPENADE [33] tool, which we employed in a previous work to retrieve tangent derivatives [23].
We chose this source transformation tool to keep memory requirements low and for the �exibility
it allows in �ne-tuning the di�erentiated code. The optimal performance of AD-di�erentiated codes
highly depends on user's choices and insights. Knowledge of the underlying strategies for solving the
primal code is vital, and allows �ne-tuning the di�erentiated code, instead of simply employing it as a
black-box. Therefore, we �rst start presenting the plasma edge modeling approach of SOLPS-ITER,
and then describe the AD strategies adopted.

3.1 Plasma edge modeling approach

In the most common plasma edge modeling application, one models a tokamak, a fusion reactor where
the superposition of toroidal and poloidal magnetic �elds forms a helical �eld which con�nes the hot
plasma (ions and electrons) in nested torus-shaped �ux surfaces, as the one shown in Fig. 1a. However,
due to turbulence and collisions, plasma particles still escape this con�nement, and need to be safely
exhausted. This is achieved through the divertor magnetic geometry, as shown in Fig. 1b. In this
con�guration, a magnetic null is formed, the so-called X-point, which is intersected twice by the last
closed �ux surface, or separatrix. Within the separatrix, magnetic �ux surfaces are closed, con�ning
the core plasma. Outside of the separatrix, �ux surfaces are open and intersect solid structures called
divertor targets, which concentrate plasma-surface interactions away from the core. The region of open
magnetic �ux surfaces is also called the Scrape O� Layer (SOL). The SOL, together with a small core
region near the separatrix, and the private �ux region (PFR) below the X-point, form the plasma edge.
The plasma transport in such magnetic geometry is extremely fast (order of sound speed) along the
magnetic �eld lines, the so-called parallel direction, as charged particles are almost unimpeded along
this direction. On the other hand, turbulent and collisional transport across the magnetic �eld, in
the radial direction, is rather slow. SOLPS-ITER models multi-species transport of ions and electrons
in the plasma edge based on a set of coupled, nonlinear, partial di�erential equations (PDEs) based
on the Braginskii equations [14], closely resembling the Navier-Stokes ones. For ease of notation, we
provide hereafter a general form of the governing equations valid in any geometry, while a detailed
description is available in [40, 41]. In particular, SOLPS-ITER assumes toroidal symmetry, such that
the following equations are rewritten and discretized in the 2D radial-poloidal plane of Fig. 1b.

∂na

∂t
+∇ · (naV a) = Sn,a, (7)

ma
∂naV a

∂t
+∇ · (manaV aV a) = −∇pa −∇ · πa + Zaena (E + V a ×B)−R+ Sm,a, (8)

0 = −∇pe − ene (E + V e ×B) +R, (9)

3

2

∂neTe

∂t
+∇ · qe = −eneE · V e −R · V e +Q∆ + Sh,e, (10)

3

2

∂niTi

∂t
+∇ ·

(
qi +

∑
a

πa · V a

)
=
∑
a

(ZaenaE −R) · V a −Q∆ + Sh,i, (11)

∇ · j = 0. (12)

The �rst equation ensures the continuity for each ionized species a, namely each charged state of an
element contained in the plasma. In Eq. 7, na is the ion particle density, V a is the ion velocity vector,
and the term Sn,a includes sources and sinks of particles due to collisional processes between plasma
and neutral particles, as well as plasma-wall interactions.
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Figure 1: Sketch of the toroidal magnetic �eld geometry in a tokamak (a), and of the divertor geometry
(b). The dashed line represents an helical magnetic �eld line, which creates a �ux surface by revolving
around the toroidal ϕ direction. The symbol θ indicates the poloidal, r the radial, ∥ the parallel, and
⊥ the perpendicular directions.

The momentum conservation for each species is ensured through Eq. 8, where ma is the ion mass and
the partial pressure for ion a is de�ned as pa = naTi. Note that all ions are assumed to share the same
temperature Ti

1. Moreover, πa is the viscosity tensor. The third term on the r.h.s. of Eq. 8 is peculiar
of plasmas and represents the Lorentz force acting on charged particles due to the electric �eld E and
magnetic �eld B, where e is the elementary charge and Za is the charge state. The term R lumps
the momentum transfer between ions and electrons. The last term, Sm,a, describes again sources and
sinks due to plasma-neutral and plasma-wall interactions. The component of the momentum equation
parallel to the magnetic �eld is solved for the parallel ion velocity u∥a. Due to the highly anisotropic
transport, the components of the equation perpendicular to the �eld require special treatment, and
give rise to so-called plasma drifts perpendicular to the �eld. For details, we refer to [40].
The momentum balance for electrons is shown in Eq. 9, where pe = neTe is the electron pressure
and V e is the electron velocity. This equation is noticeably simpler compared to the ion momentum
equation, as terms proportional to the very small electron mass are neglected. When further elaborating
the equation, with the assumption of quasi-neutrality enforcing the local balance ne =

∑
a Zana, the

parallel component of the electron momentum equation is simply evaluated to obtain the parallel
current j∥, while the perpendicular components give rise to electron drifts.
Next, the two equations 10 and 11 impose conservation of internal energy for electrons and ions,
respectively. In there, ni =

∑
a na is the total ion density, qe/i represent the heat �uxes, including

both conduction and advection terms. Q∆ is the ion-electron temperature equilibration term, while
Sh,e/i lump all energy sources and sinks due to radiative processes, plasma-neutral, and plasma-wall
interactions.
Last, Eq. 12 imposes charge conservation, determining the plasma potential ϕ, and in turn the electric
�eld. The current is de�ned as j = e (

∑
a ZanaV a − neV e).

An important remark needs to be made regarding the turbulent transport across the magnetic �eld:
since turbulent �uctuations are not resolved by the mean-�eld �uid equations, an approximate di�usive
closure is assumed, where ad-hoc turbulent transport coe�cients are introduced for particles (D⊥),

1Plasma temperatures in the fusion community are generally expressed in Joules or electron volts (eV), and it is
understood that T = kBT , with kB Boltzmann's constant.
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momentum (η⊥), heat (χe,⊥ and χi,⊥), and current (σ⊥). These coe�cients are typically estimated
from experimental data and are, currently, one of the main sources of uncertainty in plasma edge codes.
Sources and sinks related to plasma-neutral and plasma-wall interactions are modeled using either
a �uid or a kinetic description. In the �uid approach, mass and momentum conservation for atoms
are imposed through equations similar to Eq. 7 and 8, solved together with the plasma equations.
In this approach it is also typically assumed that neutrals have the same temperature as the ions.
In the second approach, the kinetic Boltzmann equation for neutrals is solved with a Monte Carlo
method [15]. Clearly, the two approaches have pros and cons: while the �uid description is cheaper in
terms of computation, its accuracy decreases for low plasma-neutral collisionality regimes, where the
�uid approximation is no longer valid; on the other hand, a more accurate kinetic description requires
a larger computational e�ort and introduces statistical noise in the set of coupled plasma-neutrals
equations. In either case, plasma-neutral and plasma-wall interactions introduce various uncertain
parameters such as reaction rates and recycling coe�cients Rc

2.

3.2 A �xed-point iterative solver

The governing equations described in the previous section are discretized using a �nite volume ap-
proach, and are then marched in time with an implicit Euler scheme. Several tens of thousands of
iterations are usually required for convergence, due to limitations on the time step caused by numeri-
cal instabilities. In this situation, the standard storing strategy of TAPENADE for adjoint AD needs
adaptation. In fact, this would by default store the entire plasma state at each iteration of the time
loop, requiring a prohibitive amount of memory. However, in a typical plasma edge simulation one is
interested in the �nal steady-state solution, with the (pseudo-)time stepping retained for stabilization
and to resolve nonlinearities. Therefore, the set of discretized equations can be reinterpreted as a �xed-
point iterator, for which the e�cient two-phase adjoint AD approach of Christianson is available [42]3.
The essence of this strategy is that in a �xed-point iterator only the �nal converged state matters.
As such, all intermediate states are irrelevant and do not need storing in the forward sweep, with the
backward sweep iteratively calculating the adjoints based on the converged �nal state.
To display this approach, we �rst introduce some notations. First, we succinctly denote the set of
governing equations 7 - 12 as C (Z,X) = 0, where Z =

(
na, u∥a, Te, Ti, ϕ

)
is the vector of (primal)

state variables, and X the vector of input variables, such as the turbulent transport coe�cients D⊥,
χe,⊥, etc. Second, we de�ne an output quantity of interest (QoI) or cost function J = f (Z,X), which
depends both on the state and input vectors. Note that for general sensitivity analysis J can be a
vector, while in an optimization context this is typically a scalar, with C (Z,X) = 0 acting as the
PDE constraint. Third, we de�ne the �xed-point iterator Zk+1 = G(Zk, X), with which the PDEs are

2Recycling refers to the process of ions hitting a solid surface, recombining with an electron, and being re-emitted
as neutrals. Rc is the fraction of impinging ions recycled as neutrals, with 1 − Rc the fraction of absorbed ions. For
neutrals, Rc is more precisely the fraction of re�ected particles.

3This approach is sometimes referred to as �reverse accumulation�. However, reverse accumulation is more generally
considered to be an alias for the adjoint mode of AD.
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solved. The general structure of the �xed-point operator G is as follows4:

G :



for a = 0, Ns − 1

solve momentum eq.→ u∥a

end

for a = 0, Ns − 1

solve continuity eq.→ na

end

solve potential eq.→ ϕ

solve ion energy eq.→ Ti

solve electron energy eq.→ Te

(13)

where Ns is the total number of plasma species, possibly including �uid neutrals.
The two-phase strategy of Christianson [42] is then implemented as displayed in Table 1, where some
variable initializations have been omitted for simplicity. During the forward sweep (top half of the
table), no value is stored in calls to G within the �xed-point loop, but an extra iteration shown as

Z∗ =
−→
G(Zk+1, X) is performed on the already converged state, this time storing the converged primal

state Z∗ and all intermediate variables required for the reverse evaluation of G. At the corresponding

location in the backward sweep (bottom half of the table), a new adjoint state Z
k
is converged by an

adapted �xed-point loop, employing the converged primal state Z∗ and its carefully preserved adjoint
Z

⋆
stemming from the adjoint cost function f . The iterations are stopped when the increment in

adjoint state sensitivities is su�ciently small. After the loop, the last instruction computes the �nal

sensitivity by accumulating the e�ect of the converged Z
k+1

into the adjoint cost function sensitivity

X. Notice that two di�erent adjoints of G(Z,X) are used:
←−
GZ , the adjoint of G with respect to the

state Z only, and
←−
GX , with respect to the input X only. Both of them use repeatedly the values stored

during
−→
G , and their general structure follows the inverse ordering of Eq. 13, as usual for adjoints:

←−
G :



solve adj. electron energy eq.→ T e

solve adj. ion energy eq.→ T i

solve adj. potential eq.→ ϕ

for a = Ns − 1, 0,−1
solve adj. continuity eq.→ na

end

for a = Ns − 1, 0,−1
solve adj. momentum eq.→ u∥a

end

(14)

3.3 Linear solvers

A �nal point of interest is the derivative of the solution of a linear system of equations, which takes
place when solving each of the discretized PDEs in Eq. 13. This can be signi�cantly simpli�ed both in
tangent and adjoint mode. In fact, it is more e�cient to directly provide the di�erentiated form of linear
solvers in a discrete setting than having the AD tool di�erentiating the whole solver method [43, 44].
Moreover, the source code of the solvers may not be available at all, for example when using external
libraries.

4In the actual code a total momentum equation is solved before the continuity ones, and a total energy equation is
solved before the ion energy one. These are omitted here for ease of notation.
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Table 1: Adjoint of �xed-point iterator by the two-phase method of Christianson

initialize Z0

while ∥Zk+1 − Zk∥ ≥ ϵ
Zk = Zk+1

Zk+1 = G
(
Zk, X

)
end

Z∗ =
−→
G
(
Zk+1, X

)
J = f (Z∗, X)

J = 1

[Z
⋆
, X] = f

(
Z∗, X,J

)
initialize Z

0

while ∥Zk+1 − Z
k∥ ≥ ϵ

Z
k
= Z

k+1

Z
k+1

=
←−
GZ

(
Z∗, X, Z

k
)
+ Z

⋆

end

X = X +
←−
GX

(
Z∗, X, Z

k+1
)

For a general linear system Ax = b, the discrete tangent counterpart follows the basic product chain
rule and yields

Aẋ = ḃ− Ȧx, (15)

which is solved for the sensitivity ẋ after the primal linear system is solved for x, employing the same
solver routine. In adjoint mode, by de�nition of adjoint variable and operator with its inner product,
the following result is obtained:

AT b = x, (16)

Ai,j = −xjbi. (17)

In this case, the linear system in Eq. 16 is �rst solved for b, employing again the same primal solver
routine and simply transposing the matrix A. Afterwards, the primal linear system is solved and x
fed to Eq. 17. We point out that, in the current implementation, both the matrix A and the primal

solution x are recomputed in the backward sweep of the �xed-point iterator
←−
G . In future work, we

will assess the advantage of storing A and/or x for each state variable along with the converged primal
state Z∗.

4 Adjoint AD veri�cation

Having applied the AD strategies just described, in this section we demonstrate the correctness of
adjoint AD sensitivities in SOLPS-ITER obtained through TAPENADE. Compared to our previous
work [23], we employ here the most recent SOLPS-ITER version, featuring a fully unstructured solver
[45], and a new discretization scheme correctly accounting for grid non-orthogonality, signi�cantly
improving the accuracy of �uid neutral models [46].
Furthermore, we adopt the recently developed Advanced Fluid Neutral models (AFNs) [16]. AFNs
provide neutral solutions close to kinetic ones, at a much lower computational cost. Moreover, AFNs
do not require additional free parameters compared to standard �uid neutral models [47], consistently
accounting for plasma-surface interactions and neutral transport.
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represented in black.

4.1 Case description

The veri�cation is based on the realistic case of the COMPASS tokamak presented in [48], for which
the 2D geometry in the radial-poloidal plane is shown in Figure 2. In this �gure we also identify the
boundaries of the simulation domain, which will be addressed in the remainder of the work: the core,
the SOL, the inner and outer targets (IT and OT) of the divertor, and the PFR. Note that in the
following we split the PFR into its inner and outer part, PFRi and PFRo respectively. The plasma
consists of deuterium neutral atoms D0 and ions D+. Full details of the simulation setup are given in
A.
The OT peak heat load q⊥ is taken as output QoI J , since it is among the critical quantities a�ecting
the divertor performance, and can be directly linked to engineering limits for surface melting, cooling,
and safe operation of this component. The computation of J is done according to

J = max
s

q⊥ = max
s

[ΓeTe + qe + qi + Γi (Ti + Eion +Ki) + Γn(Tn +Kn)] /A⊥, (18)

where Γ is the poloidal particle �ux, q is the internal energy �ux, T is the temperature, and K
the particle kinetic energy. The subscripts e/i/n refer to electrons, ions, and neutrals respectively.
Finally, Eion = 13.6 eV is the D ionization energy, A⊥ the perpendicular area of contact, and s is the
curvilinear coordinate along the target. Note that in principle the �max� function is non-di�erentiable.
In practice, TAPENADE computes the sensitivity of the r.h.s. of Eq. 18 without the max statement,
at the coordinate where the maximum of the primal is located.
The relative sensitivity S of J with respect to an input parameter x is then evaluated as

S =
∂J
∂x

x

J
. (19)

Such sensitivity can be interpreted as the relative change in J for a given relative change in the input x,
while other inputs are unchanged. A positive sensitivity thus means an increase in J when x increases,
while a negative sensitivity means that increasing x leads to a reduction in J .
In the following we will consider input parameters with the strongest impact on the solution, and for
which sensitivity information was so far hardly available. Moreover, these parameters often a�ect the
simulation in a non obvious way, and di�erently across plasma regimes, as will be shown in section
6. The parameters considered include boundary conditions (BCs), anomalous transport coe�cients,
and recycling coe�cients Rc. The latter in�uence the role of neutral particles and in turn the plasma
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regime. Turbulent transport coe�cients strongly a�ect plasma �ow across the magnetic �eld. They are
mostly uncertain and needs tuning to match experimental data. Lastly, among BCs the core density
and temperature ones have the main role in determining the plasma regime.

4.2 Veri�cation results

At �rst, we carry out the veri�cation by checking the second-order Taylor remainder for adjoint AD
sensitivities, de�ned as ∣∣∣∣J (xi + h)− J (xi)− h

∂J (xi)
∂xi

∣∣∣∣ , (20)

where xi + h means a perturbation of element i of the input vector X, with h the perturbation that
is repeatedly decreased. We evaluate the Taylor remainder in Eq. 20 for three speci�c parameters:
the particles di�usion coe�cient D⊥, the core electron temperature BC Te,core, and the OT recycling
coe�cient Rc for D0. Figure 3 displays the Taylor remainder when these parameters are perturbed
with respect to their reference value, proving that adjoint AD sensitivities are correct, as they follow a
second order convergence rate. Since the largest primal residual stagnates just below 10−8, the Taylor
remainder cannot be reduced below this level and reach machine precision.
In a second step, we compare sensitivities for all BCs, transport, and recycling coe�cients to central
FD adopting relative perturbations hFD ∼ 10−6-10−7, providing the optimal results according to the
Taylor test. Tangent AD provides results as accurate as adjoint AD, up to roundo�, and we therefore
use it as additional cross-check. The results are listed in Table 2 in terms of relative error of adjoint AD
sensitivities with respect to central FD, εFD = (SADJ − SFD)/SADJ , and relative error of adjoint AD
sensitivities with respect to tangent AD, εTGT = (SADJ−STGT )/SADJ , for parameters with S ≥ 10−4.
A good agreement is found between FD and adjoint AD, with relative di�erences in the range 10−5-
10−9. As expected, adjoint and tangent AD agreement is excellent, with relative di�erences among
the two methods reaching machine precision. For parameters with S < 10−4, not listed in Table 2, the
agreement between adjoint and tangent AD is still excellent and near machine precision. Instead, FD
results degrade, with relative errors up to 10−2, likely caused by roundo� errors.
The results provided in this section, complemented with additional veri�cation tests available in the
online repository [49], prove the reliability of adjoint AD sensitivities obtained by applying TAPENADE
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to SOLPS-ITER.

5 AD code e�ciency

Now that we have proven correctness of adjoint AD derivatives, we study their computational e�ciency
to probe if further improvements are required. Hence, in this section we compare the computational
e�ort estimates from Eq. 4 and Eq. 6 in section 2 to empirical computational time and memory
scalings for the COMPASS case described previously, which is taken as reference. These scalings are
obtained for two sets of simulations, one in which the grid is re�ned, and the second in which the
number of species Ns is increased. For the grid, radial and poloidal directions are alternatively re�ned
by a factor of two, starting with the radial. For Ns, the increase is obtained by adding He (Ns = 5),
He+N (Ns = 13), He+Ar (Ns = 24), He+N+Kr (Ns = 50), and He+Ar+W (Ns = 99) to the reference
scenario, employing similar BCs, transport, and recycling coe�cients as for D. Note that these multi-
species cases are not representative of COMPASS operation, but are simply a way of obtaining scalings
as a function of Ns.
Three code bases have been used to compute the scalings:

� the primal, i.e. the standalone B2.5 solver in the standard SOLPS-ITER code distribution;

� the tangent AD code, obtained by di�erentiating the primal in vector mode with respect to 2, 4,
8, and 16 parameters;

� the adjoint AD code, obtained by di�erentiating the primal with respect to the same 2 and 16
parameters as for tangent AD.

The results in the following sections have been obtained on the Genius cluster of the Flemish Super-
computer Centre using computing nodes with 2 Intel® Xeon® Gold 6240 CPUs, 192 GB RAM, and
200 GB SSD local disk.

5.1 Computational time

We estimate �rst the computational time scaling, by running several times the primal, tangent, and
adjoint AD code for a �xed amount of time, and averaging the number of iterations performed. The
ratio of primal over AD iterations, at the same grid re�nement and number of species, provides the
time increase estimate. Note that for adjoint AD we also include the time for executing the �rst half
of Table 1 with a single primal iteration. This is needed for correct initialization of the problem but is
negligible compared to the remainder of the adjoint computation. The scalings are shown in Figure 4,
where the �xed cost of adjoint AD is between �ve and nine times the primal, clearly advantageous for
many input parameters, albeit slightly larger than the theoretical value given by Eq. 6. Tangent AD is
instead more e�cient than the theoretical bound ∝ (1+1.5n) as expected from Eq. 4, and is preferable
up to about ten parameters. For larger grid sizes, adjoint AD e�ciency seems to improve, while tangent
AD is less a�ected, as can be deduced from Figure 4a. In contrast, for increased number of species
both adjoint and tangent AD e�ciencies reduce. This is likely a consequence of the signi�cant increase
in memory required when the number of species is increased, as will be shown in the next section.
Furthermore, we note that the di�erences between results for adjoint AD with 2 and 16 parameters
are negligible (∼2% in average). In fact, most of the computational e�ort is put in the adjoint �xed

point iterator loop of Table 1, employing
←−
GZ , which is the same for all parameter sets. The e�ect of

di�erent parameters comes into play only in the adjoint cost function f and the last operation in Table

1, employing
←−
GX , both of which are negligible compared to the �xed point iterator part.

A scaling based on converging both AD modes to the same level accuracy would provide roughly the
same results, as convergence rates of tangent and adjoint are similar and only slightly lagging behind
the primal [50].
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Table 2: Relative error of adjoint AD against central FD (εFD) and tangent AD (εTGT). O(hFD)
indicates the order of magnitude of the FD relative perturbation.

Parameter O(hFD) εFD εTGT

Electron energy BC

Core 10−7 3× 10−8 2× 10−14

PFRi 10−6 7× 10−6 4× 10−14

PFRo 10−6 3× 10−6 1× 10−13

SOL 10−6 6× 10−9 2× 10−14

Ion energy BC

Core 10−7 7× 10−8 2× 10−14

IT 10−7 2× 10−5 1× 10−13

OT 10−7 1× 10−5 4× 10−12

PFRi 10−6 5× 10−6 3× 10−14

SOL 10−6 1× 10−8 2× 10−14

Continuity BC D+

Core 10−6 2× 10−8 1× 10−13

IT 10−6 4× 10−7 3× 10−13

OT 10−6 2× 10−7 6× 10−14

PFRi 10−6 3× 10−6 0
PFRo 10−6 1× 10−6 2× 10−13

SOL 10−6 9× 10−8 2× 10−13

Momentum BC D+

IT* 10−6 2× 10−6 2× 10−14

OT* 10−6 7× 10−8 3× 10−14

*These parameters are equal to zero, therefore the absolute

and not the relative perturbation is shown.

Parameter O(hFD) εFD εTGT

Potential BC

IT* 10−6 9× 10−7 6× 10−15

OT* 10−6 3× 10−7 2× 10−14

Transport coe�cients

D⊥ 10−7 5× 10−7 2× 10−13

χe,⊥ 10−7 1× 10−7 9× 10−15

χi,⊥ 10−7 3× 10−7 2× 10−14

η⊥ 10−6 4× 10−6 7× 10−13

σ⊥ 10−7 3× 10−6 3× 10−14

Recycling D0

IT 10−7 2× 10−8 2× 10−14

OT 10−7 2× 10−8 2× 10−14

PFRi 10−7 2× 10−7 2× 10−14

PFRo 10−7 1× 10−7 3× 10−13

SOL 10−7 5× 10−8 2× 10−14

Recycling D+

IT 10−7 2× 10−7 2× 10−14

OT 10−7 6× 10−8 2× 10−14

PFRi 10−7 5× 10−6 3× 10−14

PFRo 10−7 7× 10−7 3× 10−13

SOL 10−7 2× 10−7 3× 10−14
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Figure 4: Increase in computational time of the di�erentiated AD code compared to primal, plotted
against the number of input parameters n for: di�erent grid re�nements with �xed number of species
Ns = 2 (a); di�erent Ns with �xed grid re�nement ×1 (b). Adjoint AD is identi�ed with solid lines
in shades of red while tangent vector AD with dash-dotted lines in shades of blue. The theoretical
tangent AD scaling is identi�ed with a gray dashed line.

We also point out that tangent AD in vector mode could in principle be parallelized, splitting the
input range in di�erent subsets and computing them in parallel, e.g. four tangent simulations with
four inputs each, instead of one simulation with 16.

5.2 Memory requirement

We analyze next the memory footprint, employing the Arm® MAP pro�ler to assess memory require-
ments of AD code compared to primal. The resulting scalings are shown in Figure 5, where we display
only one curve for adjoint AD, since memory requirements for 2 and 16 parameters are essentially the
same. This con�rms that the main computational bottleneck is indeed the adjoint �xed point iterator.
From Figure 5 it is clear that adjoint AD memory requirements grow more rapidly compared to tangent
vector AD, either when the grid is re�ned or species are added. In fact, primal and tangent AD roughly
follow a linear scaling, at least for larger case sizes, as internal variables are de�ned on the grid itself and
for each species. In adjoint AD, the standard checkpointing strategy of TAPENADE stores variables
at each procedure call within the �xed-point iterator, thus causing a more-than-linear growth. The
sharper increase visible for increasing number of species is due to more frequent checkpoints within for-
loops on species at the high levels of the call tree. An example are the for-loops solving the momentum
and continuity equations in Eq. 14. This superlinear growth in adjoint AD memory requirements
could signi�cantly hamper adjoint AD applicability for reactor-scale simulations. First of all, the
memory footprint increases sharply with increasing number of species, and reactor-scale scenarios
often include many high-Z impurities such as krypton or even tungsten (+36 and +74 plasma species
respectively). Moreover, simulations up to the vessel walls, enabled by the new unstructured solver in
SOLPS-ITER, require grids with signi�cantly more cells than typical structured meshes. In addition to
that, computational meshes �ner than typically used in the community should be employed, to reduce
discretization error. Lastly, the adjoint of the kinetic neutral code that is not considered in this paper,
could contribute signi�cantly to the total memory consumption.
To cap memory requirements, in future work we will tune the procedure-oriented checkpointing strategy
to make it less systematic. Experience shows that it is often detrimental to apply checkpointing
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on �small� calls near the bottom leaves of the call tree. Added directives in the source code can
trigger an alternative mode known as �split adjoint�, where small calls are treated as inlined code,
thus providing a better trade-o� between storage and duplicate execution. Similarly, some procedure
checkpoints can be replaced with recomputation, potentially leading to reductions in computational
time, as recomputation may occur from a memory level with faster access, e.g. cache instead of RAM.
Another potential improvement is to identify gather-scatter loops in the code, and more generally loops
whose iterations are independent and could be executed in any order. Adjoint AD of these loops can
take advantage of this, reducing the peak amount of memory used to store intermediate values.
From Figure 5 it can also be noticed that increasing the number of input parameters in tangent
AD linearly shifts the curves upwards by roughly the same amount, as could be expected from Eq.
4. Finally, adjoint AD proves more e�cient than tangent also in terms of memory for many input
parameters and small case size. Indeed, in Figure 5 tangent AD shows lower requirements only up to
eight parameters for typical grid sizes and number of species.

6 Application to sensitivity analysis

We now apply adjoint AD sensitivity analysis to the typical way of performing plasma edge simula-
tions, namely a core density scan at �xed input power. This allows analyzing how divertor target
quantities, characteristic for the power exhaust problem, are a�ected by the changing density regime.
In particular, we will consider heat load, plasma (electron) temperature, and ion particle �ux pro�les.
While we already identi�ed the �rst in section 4.1 as the key quantity linked to engineering and ma-
terial constraints, the other two are linked to surface erosion, which in turn a�ects thermo mechanical
properties and divertor lifetime.
Interpretation of plasma pro�les and sensitivities requires the concept of detachment [51, 52]. This
is a favorable operating condition in which a signi�cant fraction of plasma particle, momentum, and
energy �ux in the parallel direction is dissipated before reaching the divertor targets. Detachment is
often achieved by increasing plasma density, by which a cloud of recycled neutral particles forms in
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front of the targets, e�ectively protecting them from the hot plasma. At �rst, increasing the density
also increases particle and energy �uxes towards the targets (attached regime). For further density
increases, these �uxes �atten and subsequently decrease, in what is called the rollover, with plasma
temperature dropping to relatively low values in detached regime (<5 eV).
We employ three cases for the density scan, with core density set to ne,core = [0.8, 1.5, 2.0]× 1019 m-3.
These three cases are identi�ed as Low, Medium, and High (L, M, H respectively) density. Pro�les
of OT heat load q⊥ and electron temperature Te are shown in Figure 6a and 6b respectively, for
the three cases. Both pro�les decrease with increasing density, with the heat load �attening and the
peak moving further away from the separatrix. This indicates attached conditions for the low density
case, given the high separatrix temperature, while the medium density case is in partially detached
conditions, with Te < 5 eV around the separatrix. Finally, the high density case goes deeper into
detachment, with temperatures well below 5 eV on the entire target. Next, we show with the relative
adjoint sensitivities how the same input parameter di�erently a�ects the outer target peak heat load
J for varying operating conditions.

6.1 Results and interpretation

Figure 7 summarizes the largest sensitivities among BCs, transport, and recycling coe�cients. Starting
with BCs, ne,core shows a signi�cant in�uence on the peak heat load. While for the M and H cases the
sensitivity is negative, in accordance to the heat load reduction shown in Figure 6a, the L case exhibits
a positive sensitivity, meaning that it would increase the peak. This is typical of the rollover caused
by detachment. This e�ect is con�rmed by the L* heat load pro�le in Figure 6a, obtained by slightly
increasing the L density to ne,core = 1.0 × 1019 m-3. The input power BC Pcore trivially increases
the target heat load, thus shows a positive sensitivity, albeit more pronounced for electrons than ions.
This can be explained by separating the electron and ion contributions to the total target heat load,
as displayed in Figure 8a. In fact, for low and medium densities, the electron contribution dominates
the heat load, hence the larger sensitivity when heat is introduced through electrons. At these low
and intermediate densities, the ion contribution is smaller, hence the lower Pi,core sensitivity. For high
densities instead, Pi,core still has a relatively small e�ect because target temperature is low and the ion
contribution is dominated by the large recombination term ΓiEion in Eq. 18, see the target particle
�ux increase in Figure 8b.
The sensitivities in Figure 7b show that turbulent transport coe�cients drive heat load reduction,
although their e�ect is about 80% smaller compared to the BCs just analyzed. Larger particle and
heat di�usivities increase the cross-�eld transport and essentially allow spreading the heat load over
a wider area before this is convected-conducted along the magnetic �eld towards the target. The role
of particle di�usivity D⊥ increases with density, which is explained by the larger and more peaked ion
particle �ux Γi at the target shown in Figure 8b: increasing the di�usivity would �atten the particle
�ux and, as a consequence, the heat load. Regarding χe,⊥, its spreading e�ect reduces with increasing
density, as the electron heat �ux contribution reduces and �attens, as visible in Figure 8a. Finally, the
ion heat di�usivity χi,⊥ has a small e�ect due to the same reasoning provided for Pi,core: either the
ions only partially contribute to the heat load (L-M cases), or their contribution mainly arises from
the recombination term (H case).
Lastly, the sensitivity of recycling coe�cients for D0 is shown in Figure 7c (for D+ the behavior is
essentially the same). Clearly, Rc at the OT has an enormous e�ect on reducing the peak heat load at
medium-high densities. Since the neutral density in front of the target increases with ne,core, driving
detachment, a larger Rc at the OT essentially means more neutrals are locally available to further
drive detachment, and the overall density in the domain increases with an e�ect similar to ne,core. This
high sensitivity is also related to Rc being close to 1 at the OT. In this case, the target over upstream
particle �ux scales as ∼ 1/(1 − Rc) in a 0D �ux tube balance. Thus, small Rc perturbations lead to
a large increase in target particle �ux. In the same way, an increased recycling at the IT and SOL
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Figure 6: Outer target pro�les of the heat load (a) and electron temperature (b). The color shades
indicate the L (light blue), M (medium blue), and H (dark blue) case. The dash-dotted black line in
(a) refers to the perturbed L* density. The separatrix position is identi�ed with a vertical dashed line.

boundaries e�ectively produces a density increase in the domain. The less pronounced e�ect for IT is
primarily due to the distance between IT and OT, so that there is little direct impact on OT plasma
pro�les, while close to the corner between SOL and OT, see Figure 2, neutrals are recycled near to or
in front of the OT, thus having a stronger impact.
Large sensitivities put in the spotlight parameters potentially requiring better characterization: it is
well known for example that recycling coe�cients strongly in�uence simulation results, while their
actual value is often uncertain [53,54]. In the cases at hand, the sensitivity on Rc at the OT turns out
to be dominating that of transport coe�cients in all regimes. Remarkably, in the high density case
even the inner target Rc has a larger e�ect on the outer target peak heat load than D⊥. The turbulent
transport coe�cients are also amongst the main sources of uncertainty in plasma edge simulations given
their empirical nature [55], although so far no attempt has been made to estimate this uncertainty.
Despite that their sensitivity is smaller than that of other parameters in the analyzed cases, this
potentially leads to large uncertainties on simulation outputs.

6.1.1 Sensitivity maps

Adjoint AD enables for the �rst time assessing the e�ect on J of parameters in each speci�c domain
location (grid cell). This leads to sensitivity maps, informing modelers on where their solution is more
sensitive to an input perturbation. To display this, the sensitivity of the OT peak heat load on electron
heat di�usion χe,⊥ in each grid cell is shown in Figure 9, for the three density cases. Accessing this
kind of information through brute-force FD is practically impossible, as each sensitivity map would
require 48× 24 = 1152 perturbed simulations, one for each grid cell, while it requires only one adjoint
AD computation. The di�erence in computational e�ort proves once more the advantage of adjoint
AD.
In Figure 9, the �ux tube delimited by the two �ux surfaces in black indicates where the OT peak
heat load is located, hereafter referred to as the peak �ux tube. Note that χe,⊥, as other transport
coe�cients, is assumed constant on the entire domain in our test case. However, its local e�ect is
noticeably diverse, and signi�cantly varies with density regimes, as the maps clearly show.
Interpretation is straightforward considering that χe,⊥ drives heat di�usion in the cross-�eld direction,
which is then transported towards the target in the parallel direction, along �ux tubes: a larger
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coe�cient on the left of the peak �ux tube increases heat transport towards that �ux tube, thus
showing a positive sensitivity. Vice-versa, on the right of the peak �ux tube an increase in χe,⊥ drives
heat transport away from that �ux tube, thus the negative sensitivity. It can also be noticed that the
e�ect of χe,⊥ is stronger upstream, as closer to the target heat di�usion towards the peak �ux tube is
simply not fast enough to compensate the more rapid parallel transport.

7 Conclusions

In this work, we provided for the �rst time adjoint AD sensitivity calculation in plasma edge codes,
employing the AD tool TAPENADE on SOLPS-ITER. Adjoint AD provides sensitivities of a single
output QoI with respect to all input parameters, at a cost comparable to only a small multiple of
primal SOLPS-ITER simulations. Moreover, AD sensitivities are accurate to �oating-point precision
and do not su�er from truncation error.
We demonstrated accuracy of adjoint AD on a COMPASS case employing the OT peak heat load as
QoI with respect to which we calculated the sensitivities of input parameters such as BCs, transport,
and recycling coe�cients. The Taylor remainder test proved that adjoint AD sensitivities are correct,
following the expected second order convergence. Comparison against FD resulted in relative di�erences
in the range 10−5-10−9, while against tangent AD these di�erences reduced to machine precision.
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H (right) density cases. Red and blue indicate respectively positive and negative sensitivities, with
darker shades for larger absolute values. The separatrix is indicated with a gray line. The two �ux
surfaces with black lines delimit the �ux tube with the OT peak heat load.

To deploy adjoint AD for SOLPS-ITER, we applied the two-phase �xed-point iterator strategy of
Christianson for steady-state simulations, and provided a discrete version of the linear solvers. With
these e�ciency improvements, we assessed empirical scalings of AD computational time and memory
requirements for di�erent case sizes while varying grid re�nement and the number of plasma species
involved. The scalings agree with the expected performance of AD, and show that adjoint AD com-
putational time is only �ve to nine times larger than that of the primal, irrespective of the number of
input parameters. Instead, tangent AD cost linearly grows with the number of inputs, being more e�-
cient than adjoint only up to around ten parameters. Even if memory requirements of adjoint appear
similar to tangent AD for the smaller case size in Figure 5, they increase faster with the case size, due
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to storage of intermediate values and the checkpointing mechanism. Tangent AD memory is observed
to scale linearly, as a function of both case size and number of inputs.
Finally, we applied adjoint AD for sensitivity analysis on a COMPASS density scan, to assess the
e�ect of key input parameters across plasma regimes. Three operating conditions have been achieved
varying the core density BC. The OT recycling coe�cient has been shown to be the most sensitive
parameter for the OT peak heat load in (partially-)detached conditions, followed by the SOL boundary
recycling. As expected, the core ions density and electrons energy BC also signi�cantly a�ect the peak
heat load. Despite being among the main sources of uncertainty in plasma edge codes, particles and
heat turbulent di�usivities showed instead smaller sensitivities compared to target recycling and core
BCs. Finally, we e�ciently obtained for the �rst time sensitivity maps in plasma edge codes, showing
that a large amount of new sensitivity information is now available for the community through adjoint
AD.
Several plasma edge applications will bene�t from adjoint AD sensitivity calculation now available
in SOLPS-ITER. First and foremost, gradient-based optimizations with large sets of design variables
are now feasible by replacing tangent AD gradient calculation with adjoint AD in the optimization
framework recently deployed [56]. This enables divertor design with high-�delity codes in terms of
optimal shape and magnetic �eld [19,20], and model calibration based on experimental data of several
unknown input parameters and their uncertainty in a Bayesian setting [56]. Furthermore, also UQ
e�orts bene�t from an e�cient sensitivity analysis, starting from simple �rst order moment methods
to more accurate sensitivity-accelerated Monte Carlo methods [21]. Moreover, sensitivity analysis
provides indication on parameters which need careful uncertainty characterization due to their large
sensitivity, while others could be neglected given their small impact on the simulation output.
The next steps concerning application of AD to SOLPS-ITER involve two separate tracks, addressing
the main limitations of this study: �rst, optimization of adjoint AD performance has not been fully
explored; second, the sensitivity calculation is currently based on a �uid neutral model, while the
more accurate kinetic neutral model has not been considered. The �rst track of developments will
therefore focus on e�ciency improvements in terms of memory requirement for adjoint AD, since its
fast growth for increasing case size may preclude reactor-scale simulations, such as a realistic impurity
mix, computational grids up to the vessel walls, or �ner grids to reduce discretization error. Reduction
of memory usage requires �ne-tuning the checkpointing strategy, to reach a reasonable trade-o� with
computational time, and possibly its reduction. Moreover, both tangent and adjoint modes can bene�t
from another advantage: the largest cost for solving a linear system is typically the matrix factorization,
and since this linear system is also self-adjoint, the same (transposed) matrix is employed for the adjoint
solution. Thus, the same factorization can be re-used at almost no cost to speed-up the solution of
Eq. 15 and 16 [57].
The second track of developments will target sensitivity calculation when the Monte Carlo kinetic
neutral model of SOLPS-ITER is employed. This introduces statistical noise in the simulation chain,
hampering gradient's accuracy. The discrete adjoint method has proven robust in case of statistical
noise, albeit in a simpli�ed 1D setting, by ensuring exact correlation between the particle trajectories
of primal and adjoint simulations [58]. However, correlation in higher dimensional settings is hard to
maintain. This correlation is automatically ensured in tangent AD, since tangent sensitivity calculation
is performed at the same time as the primal, and thus can employ the same random seed. For adjoint
AD instead, brute-force di�erentiation would require storing all particle trajectories to ensure such
correlation, which is infeasible due to memory limitations. The challenge is thus devising an ad-
hoc adjoint strategy at the particle level, requiring limited storage while ensuring exact correlation
between primal and adjoint trajectories. Alternatively, one could act at the level of the random
number generator, as recently proposed in [59]. The development of the adjoint strategy is additionally
challenged by the large computational e�ort typically required by Monte Carlo methods, to keep
sensitivity calculation and optimization costs feasible.
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The scripts to reproduce the �gures of this paper using such data are also available online [60].

A COMPASS case setup

For the COMPASS case adopted in this work, we employ a coarse 48×24 grid to speed-up convergence.
The following BCs are applied:

� Core: Dirichlet BCs are applied to continuity and momentum equations of D+ ions, and electron
and ion energy equations, imposing plasma density ne,core = 3.25 × 1019 m−3, zero parallel
velocity, and electron and ion temperature Te,core = 33 eV and Ti,core = 44 eV, respectively.
Zero drift-current BC for the potential equation is employed. For D0 neutral atoms, zero parallel
velocity gradient is imposed, together with zero particle �ux.

� IT and OT: standard Bohm-Chodura BC [61].

� SOL, PFRi, and PFRo boundaries: an outward particle �ow is imposed for D+ continuity equa-
tion, de�ned as a fraction of the local sound speed �ux Γout = αcsnD+ , with α = −1.5 × 10−3.
A similar BC is also enforced for energy equations, with �ux Γout = αcsni/eTi/e, with factor
α = −1.5 × 10−2 both for ions and electrons. Zero-gradient BC is applied both to D+ parallel
velocity and to the potential. For D0, zero particle and momentum �ux is imposed.

AFNs are employed for D0, assuming Maxwellian distributions at all boundaries and a Franck-Condon
dissociation energy equal to 3 eV. Moreover, the following values of anomalous transport coe�cients
are employed: particle di�usivity D⊥ = 3.5 m2/s, electrons heat di�usivity χe,⊥ = 5 m2/s, ions
heat di�usivity χi,⊥ = 3.5 m2/s, viscosity η⊥ = 0.2 kg/m/s, current conductivity σ⊥ = 2 × 10−4ene

S/m (with e the elementary charge and ne electron density). The parallel heat transport coe�cients
for electrons and ions are �ux-limited, while for neutrals an isotropic �ux-limit is applied to heat
conductivity and viscosity. Finally, for both deuterium species a recycling coe�cient Rc = 0.99 is
employed at the targets, and Rc = 1 elsewhere.
Note that for the results shown in section 6 we modify the core Dirichlet temperature BC into �xed
power BC both for ions and electrons, with Pi,core = Pe,core = 172 kW.
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