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Abstract

We present two (a decoupled and a coupled) integral-equation-based methods
for the Morse-Ingard equations subject to Neumann boundary conditions on
the exterior domain. Both methods are based on second-kind integral equation
(SKIE) formulations. The coupled method is well-conditioned and can achieve
high accuracy. The decoupled method has lower computational cost and more
flexibility in dealing with the boundary layer; however, it is prone to the ill-
conditioning of the decoupling transform and cannot achieve as high accuracy
as the coupled method. We show numerical examples using a Nyström method
based on quadrature-by-expansion (QBX) with fast-multipole acceleration.
We demonstrate the accuracy and efficiency of the solvers in both two and
three dimensions with complex geometry.

Keywords: The Morse-Ingard Equations, Fast Multipole Method, Integral
Equation Method, Quadrature-by-Expansion

1. Introduction

The Morse-Ingard equations are time-harmonic, steady-state equations
derived from the linearized Navier-Stokes equations [4, 12]. They model the
pressure and the temperature variations of a fluid due to a heat source inside
the fluid, in a regime where both the acoustic wavelength and the thermal
boundary layer thickness are of interest. Specifically, we consider the following
nondimensionalized Morse-Ingard equations from [4]: in the fluid domain Dc
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with D ⊂ Rd bounded,
Ω∇2T + iT − iγ − 1

γ
P = S,

(1− iγΛ)∇2P +

[
γ

(
1− Λ

Ω

)
+

Λ

Ω

]
P − γ

(
1− Λ

Ω

)
T = −iγΛ

Ω
S,

(1)

where P is the pressure field, T is the temperature field, S is the heat source,
and Ω,Λ, γ are dimensionless parameters.

The application that motivated this work is to model trace gas sensors
that utilize optothermal and photoacoustic and effects to aid designing such
sensors. The quartz-enhanced photoacoustic spectroscopy (QEPAS) sensor,
for example, employs a quartz tuning fork to detect via the piezoelectric effect
the acoustic pressure waves that are generated when optical radiation from a
laser is periodically absorbed by molecules of a trace gas [6, 8]. The resonant
optothermoacoustic detection (ROTADE) sensor, on the other hand, uses
the same tuning fork to detect the thermal diffusion wave via the indirect
pyroelectric effect [7]. An efficient and accurate solver for the Morse-Ingard
equations on the exterior domain can be a key tool for the modeling and
design of both QEPAS and ROTADE sensors [4, 14, 17].

To suit this application, we consider the thermoacoustic scattering
problem, where the scattered waves obey the homogeneous Morse-Ingard
equations on the exterior domain (S = 0), coupled with sound-hard boundary
conditions in pressure and continuity in heat flux, leading to Neumann
boundary conditions in both T and P ,

∂T

∂n

∣∣∣∣
∂D

= gT ,

∂P

∂n

∣∣∣∣
∂D

= gP ,

(2)

where the volumetric source S in (1) is accounted for by the incoming waves
it induces in the boundary conditions above.

For solution uniqueness, we also require

T (x) <∞ and P (x) <∞, when |x| → ∞. (3)

As shown in [17], (3) ensures solution uniqueness by ruling out unphysical
waves from the infinity, similar to what the Sommerfeld radiation condition
does for the Helmholtz equation. In our applications, the wave number
has positive imaginary part. Therefore, boundedness at infinity is sufficient.
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For general wave numbers, we also provide a direct generalization of the
Sommerfeld condition in Section 2.3.

In this paper, we propose two integral-equation-based methods for (1)
to (3). For both methods, we derive representations of the solution in terms
of layer potentials involving unknown densities, leading to integral equations
that can be reduced to the form of a Fredholm integral equation of the second
kind

(I −A)ρ = f, (4)

where A is a compact integral operator; therefore, our methods are all based
on second-kind integral equation (SKIE) formulations. SKIEs are attractive
because both the condition number and the number of iterations required for
iterative solvers like GMRES [16] are bounded by constant when refining the
mesh. In fact, [11] gives rigorous superlineary GMRES convergence estimates
in this case. The first method is based on a direct SKIE formulation to the
original equations using the free-space Green’s functions. While deriving
the analytic formula for the free-space Green’s functions, we also obtain a
decoupling transform that converts the problem into two decoupled Helmholtz
equations, with decoupled Neumann data. Our second method takes advantage
of this transform and uses SKIEs for the Helmholtz equations to obtain the
solution. As such we refer to the first method the coupled method and the
second the decoupled method. We solve the SKIEs using a Nyström method
with GMRES, which requires evaluating layer potentials at the boundary
using a suitable singular quadrature scheme. For our numerical experiments,
we use quadrature-by-expansion (QBX) with fast-multipole acceleration
[5, 18]. Consequently, both methods have linear complexity with respect to
the number of degrees of freedoms. It is noteworthy that our methods are
agnostic of the singular quadrature scheme. Our methods are also capable
of using high order discretization and can handle complex geometries. We
demonstrate this through numerical examples in two and three dimensions.

The rest of this paper is organized as follows. We first present the deriva-
tion for the free-space Green’s functions and the decoupling transform in
Section 2. Then we give the SKIE formulations for both the decoupled and
coupled methods in Section 3, and present some details of our numerical
implementation in Section 4. After that, we present the numerical results in
Section 5, and give some concluding discussion in Section 6.
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2. Analysis of the problem

2.1. Thermal and acoustic modes
In order to obtain an integral equation formulation, we require the free-

space Green’s function for the Morse-Ingard equations (1). Following the
derivation for the analytic solution to the Morse-Ingard equations in a cylin-
drically symmetric geometry in [4], we first identify the eigenmodes by looking
for particular solutions where T is an eigenfunction of ∇2, s.t. ∇2T = −k2T .
Substituting into the first equation of (1) yields

P =
γ

γ − 1
[(1 + iΩk2)T + iS]. (5)

Consider the homogeneous case by letting S = 0, then P = mT is also an
eigenfunction of ∇2, where the constant m = γ

γ−1(1 + iΩk2). Substituting
(5) and P = mT into (1) yields

(1− iγΛ)(−k2mT ) +

[
γ

(
1− Λ

Ω

)
+

Λ

Ω

]
(mT )− γ

(
1− Λ

Ω

)
T = 0. (6)

For (6) to have nontrivial solution, the coefficient of T must vanish, so that

(iΩ + γΩΛ)k4 + (1− iγΩ− iΛ)k2 − 1 = 0. (7)

Let Q to be a complex constant such that Q2 = 4(iΩ+γΩΛ)+(1−iγΩ−iΛ)2.
Based on physical interpretation, we classify the roots of (7) into two groups:

1. kt corresponding to the thermal modes that attenuate rapidly:

k2
t =

i

2Ω

(
1− iγΩ− iΛ +Q

1− iγΛ

)
, mt :=

γ

γ − 1
(1 + iΩk2

t ). (8)

2. kp corresponding to the acoustic modes that attenuate slowly:

k2
p =

i

2Ω

(
1− iγΩ− iΛ−Q

1− iγΛ

)
, mp :=

γ

γ − 1
(1 + iΩk2

p). (9)

Since the eigenfunctions of ∇2 form a basis of H1, we obtain the funda-
mental set of solutions to the homogeneous problem under radial symmetry,
denoted Ud, (d = 2, 3), [

T (r)
P (r)

]
∈ Ud.
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In two dimensions (d = 2),

U2 = span

{[
J0(kpr)

mpJ0(kpr)

]
,

[
H

(1)
0 (kpr)

mpH
(1)
0 (kpr)

]
,

[
J0(ktr)
mtJ0(ktr)

]
,

[
H

(1)
0 (ktr)

mtH
(1)
0 (ktr)

]}
,

(10)
where J0 is the Bessel function of the first kind of order zero, H(1)

0 is the
Hankel function of the kind of order zero. Similarly, in three dimensions
(d = 3),

U3 = span

{[
j0(kpr)

mpj0(kpr)

]
,

[
h

(1)
0 (kpr)

mph
(1)
0 (kpr)

]
,

[
j0(ktr)
mtj0(ktr)

]
,

[
h

(1)
0 (ktr)

mth
(1)
0 (ktr)

]}
,

(11)
where j0 is the spherical Bessel function of the first kind of order zero, h(1)

0 is
the spherical Bessel function of the third kind of order zero. We also note
that h(1)

0 has simple closed form

h
(1)
0 (r) = j0(r) + iy0(r) =

sin r

r
− icos r

r
=
−i
r
eir. (12)

Note that the choice of basis is not unique. We deliberately chose the above
basis functions so that the condition in (3) can be easily enforced.

2.2. The decoupled equations
From the above radial symmetry solutions, it is obvious that the Morse-

Ingard equations are a linear superposition of two Helmholtz-type equations.
To get the actual change of variables that decouples the PDE system, we
solve for t ∈ C such that the sum of the first equation and t times the second
equation in (1) reduces to a scalar Helmholtz-type PDE

a1(t)∇2T + a2(t)∇2P + a3(t)T + a4(t)P = a5(t)S, (13)

where a1 = Ω, a2 = (1 − iγΛ)t, a3 = i − γ
(
1− Λ

Ω

)
t, a4 = −iγ−1

γ +[
γ
(
1− Λ

Ω

)
+ Λ

Ω

]
t, a5 = 1 − iγ Λ

Ω t are all linear functions of t. The condi-
tion under which (13) becomes a scalar Helmholtz-type PDE is a1a4 = a2a3,
which is a quadratic equation of t and admits two roots

t± =
(2Λγ − Λ− Ωγ + i)Ω∓ iΩQ

2γ(Λ− Ω)(iΛγ − 1)
. (14)

Letting Vt = ΩT + t+(1 − iγΛ)P , Vp = ΩT + t−(1 − iγΛ)P , we find the
decoupled scalar PDEs,

∇2Vt + k2
t Vt = a5(t+)S,

∇2Vp + k2
pVp = a5(t−)S,

(15)
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as expected from the thermal and acoustic modes.

2.3. Sommerfeld radiation condition
Now we consider the boundary conditions for the decoupled equations

(15). The boundary conditions on ∂D are still decoupled Neumann,

∂Vt
∂n

∣∣∣∣
∂D

= ΩgT + t+(1− iγΛ)gP ,

∂Vp
∂n

∣∣∣∣
∂D

= ΩgT + t−(1− iγΛ)gP .

(16)

For the far-field conditions, we can either impose boundedness of Vt, Vp at
infinity, or apply the classical far-field conditions for the Helmholtz equation
due to Arnold Sommerfeld,

lim
|x|→∞

|x|
d−1
2

(
∂

∂|x|
− ikt

)
Vt = 0,

lim
|x|→∞

|x|
d−1
2

(
∂

∂|x|
− ikp

)
Vp = 0.

(17)

2.4. Free-space Green’s function
By letting S = δ(r) in (1), the free-space Green’s function satisfies the

following equations in the weak sense,
Ω∇2T + iT − iγ − 1

γ
P = δ,

(1− iγΛ)∇2P +

[
γ

(
1− Λ

Ω

)
+

Λ

Ω

]
P − γ

(
1− Λ

Ω

)
T = −iγΛ

Ω
δ.

(18)

We first seek for weak solutions [T (r), P (r)]T ∈ Ud that also satisfy the
far-field conditions in (3). In two dimensions, because when k has positive
imaginary part, solutions with nonzero J0 components are unbounded at
infinity, and represent a wave traveling from infinity towards 0, enforcing the
far-field conditions amounts to restricting the solution to the two-dimensional
subspace of U2 spanned by bases involving H(1)

0 . Similarly, we restrict the
solution to the two-dimensional subspace of U3 spanned by bases involving
h

(1)
0 in 3D.
We note that, in the weak sense, ∇2

2D

(
1

2π ln r
)

= ∇2
3D

(
− 1

4π
1
r

)
= δ(r).

The following asymptotic limits hold when r → 0 ([13]),

∇2
2DH

(1)
0 (kr) ∼ ∇2[(2i/π) ln(kr)] = 4iδ(r), (19)

∇2
3Dh

(1)
0 (kr) ∼ ∇2[−i/(kr)] = (4πi/k)δ(r). (20)
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When r 6= 0, any linear combination in the fundamental set Ud solves the
system. All we need is to match the leading order terms in the neighborhood of
0. Since we have restricted the solutions to a two-dimensional space, matching
the two coefficients on the right hand side of (18) uniquely determines the
Green’s function.

2.4.1. 2D
In two dimensions, we let

GT = b1H
(1)
0 (kpr) + b2H

(1)
0 (ktr),

GP = b1mpH
(1)
0 (kpr) + b2mtH

(1)
0 (ktr).

(21)

Substituting into (18) and matching the leading order terms yields

4iΩ(b1 + b2)δ = δ,

4i(1− iγΛ)(b1mp + b2mt)δ = −iγΛ

Ω
δ.

(22)

Solving this linear system, we have

b1 =
γ − 1

4γΩQ
[imt + (mt − 1)γΛ],

b2 = − γ − 1

4γΩQ
[imp + (mp − 1)γΛ].

(23)

2.4.2. 3D
Similarly, in three dimensions, we let

GT = c1h
(1)
0 (kpr) + c2h

(1)
0 (ktr),

GP = c1mph
(1)
0 (kpr) + c2mth

(1)
0 (ktr).

(24)

Substituting into (18) and matching the leading order terms yields

4πiΩ

(
c1

kp
+
c2

kt

)
δ = δ

4πi(1− iγΛ)

(
c1mp

kp
+
c2mt

kt

)
δ = −iγΛ

Ω
δ.

(25)

The solution is
c1 =

kp(γ − 1)

4πγΩQ
[imt + (mt − 1)γΛ],

c2 = −kt(γ − 1)

4πγΩQ
[imp + (mp − 1)γΛ].

(26)
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2.5. Green’s representation formula
Since the solution to the Helmholtz equation satisfies Green’s repre-

sentation formula, we expect a similar relation holds for solution to the
Morse-Ingard equations as well. Let Gp, Gt be the Helmholtz kernels of wave
number kp, kt, respectively. Given a density ρ ∈ C(∂D), define the single-layer
potential operators

St[ρ](x) =

∫
∂D

Gt(x, y)ρ(y)dsy,

Sp[ρ](x) =

∫
∂D

Gp(x, y)ρ(y)dsy,

(27)

and the double-layer potential operators

Dt[ρ](x) =

∫
∂D

∂nyGt(x, y)ρ(y)dsy,

Dp[ρ](x) =

∫
∂D

∂nyGp(x, y)ρ(y)dsy.

(28)

If x ∈ ∂D, the integrals above are to be understood in the principal-value
sense.

Let D be a bounded region in Rn, and ∂D is piecewise C2. Then from
Green’s representation formula for the Helmholtz equation [3, Theorem 12],
for all x ∈ D,

Dt[Vt]− St[∂nVt] = −Vt,
Dp[Vp]− Sp[∂nVp] = −Vp.

(29)

Denote the left hand sides of (29) as Lt[Vt] and Lp[Vp], respectively. Recalling
that Vt,p = ΩT + t±(1− iγΛ)P , we have

ΩLt[T ] + t+(1− iγΛ)Lt[P ] = −ΩT − t+(1− γΛ)P,

ΩLp[T ] + t−(1− iγΛ)Lp[P ] = −ΩT − t−(1− γΛ)P,
(30)

inside D. (30) gives representations of P and T in terms of layer potentials.
Lastly, we note that since all layer potentials above are zero at infinity, the
assumption that D is bounded can be removed and (30) still holds.

3. SKIE formulations

3.1. The decoupled method
As demonstrated above, the Morse-Ingard equations can be decoupled into

two Helmholtz-like PDEs that have decoupled Neumann boundary conditions
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on ∂D. The most straightforward scheme is to solve the decoupled PDEs
separately and recombine the results. Both decoupled equations have the
form {

∇2V + k2V = 0, in Dc,

∂nV = h, on ∂D,
(31)

where V ∈ {Vt, Vp}, k ∈ {kt, kp}, h = ΩgT + t±(1− iγΛ)gP , respectively.
We solve (31) using a single-layer potential representation. For x ∈ ∂D,

let
Vt(x) = St[σt](x) = PV

∫
∂D

G(kt|x− y|)σt(y)dsy,

Vp(x) = Sp[σp](x) = PV

∫
∂D

G(kp|x− y|)σp(y)dsy,

(32)

where σt,p ∈ L2(∂D), G(r) = 1
2π ln r in 2D and G(r) = − 1

4πr in 3D. This
leads to the following SKIE for each decoupled component [1],

− 1

2
σ(x) + PV

∫
∂D

∂nG(k|x− y|)σ(y)dsy = h(x), on ∂D. (33)

After obtaining Vt, Vp, we then recover T, P by applying the inverse change
of variables [

T
P

]
=

[
Ω t+(1− iγΛ)
Ω t−(1− iγΛ)

]−1 [
Vt
Vp

]
. (34)

3.2. The coupled method
Alternatively, we can also use the Green’s function for the Morse-Ingard

equations to directly formulate a coupled SKIE. Denote the free-space Green’s
functions in 2/3D by

G(r) =

[
GT (r)
GP (r)

]
. (35)

We assume that k2
t − k2

p = − Q
Ω(i+γΛ) 6= 0, which is well-justified on physi-

cal grounds (the thermal and acoustic waves have fundamentally different
properties). Then,

G1(r) = −α1Ω(1− iγΛ)

4b2Q
(∇2 + k2

p)G(r), (36)

where α1 = 1 in 2D, and α1 = kt
π in 3D. And let

G2(r) =
α2Ω(1− iγΛ)

4b1Q
(∇2 + k2

t )G(r), (37)

9



where α2 = 1 in 2D, and α2 =
kp
π in 3D.

Obviously, G1, G2 satisfy the homogeneous PDE when r 6= 0 because they
consist of G and its derivatives. In fact, they are constructed to have very
simple explicit formulae:

G1(r) = − 1

4i

[
H

(1)
0 (ktr)

mtH
(1)
0 (ktr)

]
, G2(r) = − 1

4i

[
H

(1)
0 (kpr)

mpH
(1)
0 (kpr)

]
in 2D,

(38)
and

G1(r) = − kt
4πi

[
h

(1)
0 (ktr)

mth
(1)
0 (ktr)

]
, G2(r) = − kp

4πi

[
h

(1)
0 (kpr)

mph
(1)
0 (kpr)

]
in 3D.

(39)
To account for the two boundary conditions in (2), we need two scalar

densities. Let σ = [σ1, σ2]T , σi ∈ L2(∂D). Define the (vector-valued) single-
layer potentials of a scalar density ρ to be

Si[ρ](x) = PV

∫
∂D

Gi(|x− y|)ρ(y)dsy, x ∈ ∂D, and i = 1, 2. (40)

We consider the following solution representation

u = S1[σ1] + S2[σ2]. (41)

We claim that (41) gives an SKIE for the Morse-Ingard equation. To show
that, we first present the jump relations of the layer potential operators used
in the construction.

Proposition 1 (Jump relations). Si[σi] is continuous across ∂D, and its
normal derivative satisfies the following jump relations: for z ∈ ∂D,

∂

∂nz
Si(z)± := lim

x→z±

∂

∂nz
Si[σi](x) =

∂

∂nz
Si[σi](z)∓

1

2

[
ci
di

]
σi(z), (42)

where
c1 = c2 = 1, d1 = mt, d2 = mp in 2D,

c1 =
1

kt
, c2 =

1

kp
, d1 =

mt

kt
, d2 =

mp

kp
in 3D.

(43)

Since in our construction, the layer potential operators are standard single-
layer potentials of the Helmholtz equation (up to constant multiplications),
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the proof of (1) follows the same exact steps as in [1, Chapter 2.4-2.5] for
the Helmholtz equation.

Substituting the representation of u into (2) yields the following boundary
integral equation(

−1

2

[
c1 c2

d1 d2

]
+

[
∂nS1T ∂nS2T

∂nS1P ∂nS2P

])[
σ1

σ2

]
(z) =

[
∂nT
∂nP

]
(z), ∀z ∈ ∂D.

(44)
Note that under the current assumption of k2

t 6= k2
p, we have

det

([
c1 c2

d1 d2

])
= c1d2 − c2d1 6= 0. (45)

To supply smoothness for our proofs of numerical accuracy, we note a
compactness result for the operators in (44).

Proposition 2. If ∂D ∈ C2, for 0 < α < 1, the operator

L :

[
σ1

σ2

]
7→
[
∂nS1T ∂nS2T

∂nS1P ∂nS2P

] [
σ1

σ2

]
is a compact operator from C0,α × C0,α into itself.

Proof. Since L is a 2× 2 operator matrix, we only need to show that each
entry is compact. Being adjoint operators of the double layer potentials (i.e.,
derivatives of rescaled Helmholtz single layer potentials), ∂nSi∗ are compact
operators from Hölder space C0,α(∂D) into itself ([9, Theorem 7.5]). Therefore,
(44) is an SKIE.

Regarding analytical properties of the operator, the most relevant results
we found in the literature are for layer potentials with Laplace kernels, which
admit the following regularity estimates:

Proposition 3 (Layer potential regularity [10, Prop. 4.2]). Let d ≥ 2,
p ∈ (1,∞), and p(` − 1) > d − 1, where ` is a noninteger, ` > 1. And let
α = 1 − {`} − 1/p. Suppose that ∂D is connected and satisfies the Sobolev
graph property ∂D ∈ W `

p , that is, for every point O ∈ ∂D there exists a
neighbourhood U and f ∈W `

p(Rd−1) such that

U ∩ Ω = U ∩ {(x, y)|x ∈ Rd−1, y > f(x)}.

Then
‖(Sρ)+‖W b`c+1,α

p (D)
≤ c‖ρ‖W `−1

p (∂D),

‖(Sρ)−‖W b`c+1,α
p (D)

≤ c(D)‖ρ‖W `−1
p (∂D),

11



where the weighted Sobolev norm is defined as

‖u‖Wm,α
p (D) =

(∫
D

(dist(z, ∂D))pα|∇mu(z)|pdz
)1/p

+ ‖u‖Lp(D),

and (Sρ)± are the limits of the Laplace single layer potentials from the outside
and the inside, respectively. In particular, for the adjoint operator,

‖D?ρ‖W `−1
p (∂D) ≤ c‖ρ‖W `−1

p (∂D).

4. Numerical implementation and error analysis

For the coupled method, the left hand side operator of the SKIE is a
compact perturbation to a block-constant operator. This structure inspires
us to try to use the inverse of the constant part in (44) as a left block
preconditioner

P =

(
−1

2

[
c1 c2

d1 d2

])−1

. (46)

The idea is to make the preconditioned operator “almost” block-diagonal in
the sense that its spectrum only has one cluster point in the complex plane,
as will be shown in the numerical tests. Doing so empirically reduces the
number of GMRES iterations needed by up-to one half.

As will be shown in the next section, for the realistic parameters used in
our tests, the thermal modes decay rapidly relative to the acoustic modes,
leading to two widely separated spatial scales. This may lead to numerical
difficulties for the coupled method. Due to the fast decay of thermal modes,
however, if we are only interested in the solution in the bulk region away from
the boundary, we can solve only for Vp in (31) using a single-layer potential
representation

Vp(x) = Sp[σp](x) = PV

∫
∂D

G(kp|x− y|)σp(y)dsy, x ∈ ∂D, (47)

and then obtain T and P by fixing thermal mode to be zero and applying
the inverse change of variables[

T
P

]
=

[
Ω t+(1− iγΛ)
Ω t−(1− iγΛ)

]−1 [
0
Vp

]
. (48)

Since doing so equates to projecting the problem to include only the acoustic
modes, we will refer to this modified version of the decoupled method as the
projection method.

12



The recasting of the Morse-Ingard system (1) in second-kind integral
equations presented thus far is independent of the specific means by which it
is discretized.

We discretize the SKIEs using the Nyström’s approach, that is, we dis-
cretize (44) by replacing the (singular) integrals in the layer potential opera-
tors by appropriate quadrature schemes. To evaluate the singular quadratures
efficiently, we use the GIGAQBX algorithm, a quadrature-by-expansion
method with FMM acceleration [5, 15, 18]. With efficient algorithms for
the left hand side operators, we solve the discretized linear systems using
GMRES.

Loosely, for Nyström discretizations of second-kind systems, Anselone’s
theorem (e.g. [9, Theorem 10.12]) states that the error in the computed density
is bounded by the sum of the discretization error in the right-hand side and
the quadrature error in the evaluation of the layer potential operators. Given
our use of QBX discretization, our quadrature error behaves as described by
the following theorem:

Theorem 4 (QBX error estimate [5, Thm. 1]). Suppose that ∂D is a smooth,
bounded curve embedded in R2, that Br(c) is the ball of radius r about c, and
that Br(c) ∩ ∂D = {x}. Let ∂D be divided into M panels, each of length
h and let p, q be non-negative integers that define the QBX order and the
number of nodes of the smooth Gaussian quadrature used to compute the
QBX coefficients, respectively. For 0 < β < 1, there are constants Cp,β and
C̃p,q,β so that if φ lies in the Hölder space Cp,β(∂D) ∩ Cq,β(∂D), then the
components of QBX discretization error admit the following bounds

‖EQBX,trunc(φ)‖∞ ≤ C∂D,p,βrp+1‖φ‖Cp,β(∂D), (49)

‖EQBX,quad(φ)‖∞ ≤ C̃∂D,p,q,β
(
h

4r

)q
‖φ‖Cq,β(∂D). (50)

The use of layer potentials (such as ∂nS) with more derivatives as well as
the use of FMM approximation incurs additional (controlled) error. See, for
example, [2] as well as the FMM error analysis in [19] for details.

5. Numerical results

In this section, we present several numerical examples that demonstrate
the accuracy and efficiency of our method. The dimensionless parameter
values used for all our tests are listed in Table 1, which are derived from
the physical parameters from [4]. This set of parameters assumes that the
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fluid is nitrogen gas at a temperature of 300 K and a pressure of 1 bar. It
is noteworthy that the parameter values we use closely correspond to the
modeling of laboratory experiments of trace gas sensors [14].

Symbol Value
Ω 3.664152973215096× 10−5

γ 1.399999976158142
Λ 5.370572762330994× 10−5

Table 1: Dimensionless parameters.

Using these dimensionless parameters to solve (6) yields the two wavenum-
bers

kt ≈ 116.81 + 116.81i,

kp ≈ 1 + 3.42× 10−5i.

We note that kt is the wavenumber corresponding to the fast-decaying thermal
modes, which gives rise to a boundary layer with thickness at the scale of

1
| Im kt| ≈ 0.01. On the other hand, kp corresponds to the slowly-decaying
acoustic modes that have characteristic length at the scale of 1.

In all our tests, the GMRES tolerance is set to 10−14. We denote the
computed temperature field Th and the pressure field Ph, respectively, and
let

ET (x) =
|Th(x)− T (x)|
|T (x)|

, EP (x) =
|Ph(x)− P (x)|
|P (x)|

. (51)

5.1. The coupled method and preconditioning
We perform convergence tests on a two-dimensional circular geometry with

radius 3.5 centered at (5.25, 5.25). The manufactured solution is obtained by
evaluating a point potential using the free-space Green’s function in Section
2.4 from sources inside the circle. We use piecewise polynomials up to order
p to discretize over each panel. For each test, we measure the error in the
infinity norm on the boundary discretization points as well as some volume
points in [0, 10.5]2 \D.

We first perform p-convergence tests by splitting the circle into 100 equal-
sized panels and increase p. For this test, we set the values for the FMM order
and the QBX order to also be p for simplicity. Note that both the FMM order
and the QBX order are linear functions of the number of accurate digits, and
setting them to be equal is by no means the optimal choice, but does not
affect the asymptotic convergence behavior. Results for the coupled method
are shown in Figure 1. In the first place, we see similar convergence curves
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for different ways to measure the error norm, while the error data measured
over the boundary is less noisy. Therefore, from now on, we will only measure
the error over the boundary. We also see similar convergence curves when we
solve with or without the block preconditioner.

5 10 15 20 25
Order p

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

tiv
e 

er
ro

r

ET D,
EP D,
ET Dc,
EP Dc,

5 10 15 20 25
Order p

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

tiv
e 

er
ro

r

ET D,  (preconditioned)
EP D,  (preconditioned)
ET D,  (unpreconditioned)
EP D,  (unpreconditioned)

Figure 1: p-convergence using the coupled method. (Left: comparing the error norms
measured over the boundary versus the volume. Right: comparing the errors with and
without using the block preconditioner.)

We also perform h-convergence tests by fixing p and shrinking panel sizes.
For this test, we set the QBX order to be p+ 4 and fix FMM order to be 15.
The goal for such choices is to make the QBX truncation error and FMM
error much smaller than the discretization error; therefore, we should have
convergence order of p+ 1 as h→ 0. The results are shown in Figure 2, where
the data confirms our expected convergence order.
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Figure 2: h-convergence using the coupled method. (Left: p = 2. Right: p = 4.)
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5.2. The coupled method vs the decoupled method
Using the same problem setup as in Section 5.1, we compare the coupled

method and the decoupled method. We present the results in Figure 3. For
low order cases, the decoupled method yields accuracy comparable to the
coupled method; however, as we increase resolution, the coupled method can
achieve 10−12 accuracy, while convergence for the decoupled method stalls
at around 10−7. This phenomenon can be explained by the large condition
number of the decoupling transform,

κ

([
Ω t+(1− iγΛ)
Ω t−(1− iγΛ)

])
≈ 4.19× 104.

For all three methods, the number of iterations needed does not increase as
we increase the resolution, which is as expected due to our formulations being
second-kind. Furthermore, the block preconditioner reduces the iteration
count significantly with little added cost. Roughly speaking, the decoupled
method requires similar number of GMRES iterations as the preconditioned
coupled method.

5 10 15 20 25
Order p

10 12

10 10

10 8

10 6

10 4

10 2

Re
la

tiv
e 

er
ro

r

ET D,  (coupled)
EP D,  (coupled)
ET D,  (decoupled)
EP D,  (decoupled)

5 10 15 20 25
Order p

10

12

14

16

18

20

22

Ite
ra

tio
n 

co
un

t

Coupled (unpreconditioned)
Coupled (preconditioned)
Decoupled (total of two solves)

Figure 3: The coupled vs the decoupled method. (Left: convergence when increasing order.
Right: total number of GMRES iterations.)

To further illustrate the effects of the left block preconditioner, we plot
the spectrum of the linear system with and without it in Figure 4, all other
parameters fixed. As expected, we see that the preconditioner causes the
spectrum to cluster at one location in the complex plane instead of two. This
effect explains the reduction factor of iteration counts.

5.3. The projection method for solution in the bulk region
The projection method (48) is a variant of the decoupled method for

solution away from the boundary. To test how it performs, we use it to find
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Figure 4: Spectrum plots of the coupled method over the complex plane where the x axis
is the real part and y axis is the imaginary part. (Left: without left block preconditioning.
Right: with left block preconditioning.)

the solution over [0, 10.5]2 \D, where D is as shown in the left plot of Figure
5. The red dots marks the point sources used to produce the manufactured
solution. The lower-left half shows the relative error of the temperature field
ET , while the upper-right half shows the relative error of the pressure field
EP . As expected, the solution away from the boundary is accurate.

To see how the error decays with respect to the distance from boundary,
in the right plot of Figure 5, we plot the l∞ norms of the relative errors
over a set of equidistant curves against the curves’ distance from ∂D. We
observe that the errors decay exponentially with respect to the distance from
boundary. For this example, the projected solution is indistinguishable from
the non-projected solution where the distance is greater than 0.1, which is
only 1.6% of the acoustic wave length. Therefore, if the goal is to obtain
solution in the bulk region, the projection method can be very advantageous
because it does not need to resolve the length scale of the thermal boundary
layer.

It is worth pointing out that because Vp is a linear combination of tem-
perature and pressure, by projecting the solution into only acoustic modes,
we are still solving a model with thermoacoustic coupling.

5.4. Torus with the coupled method
We apply the preconditioned coupled method to solve on a torus geometry

with major radius 0.7 and minor radius 0.07 as shown in Figure 6. For the
discretization, we set the mesh size h = 0.02, discretization order p = 4, QBX
order 10, and FMM order 15. Note that when computing layer potentials, it
is unusual to set the QBX order to be much higher than the discretization
order like this. The reason for the excessive QBX order here is to resolve the
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Figure 5: Error using the projection method. (Left: showing the geometry and relative
error ET (lower-left), EP (upper-right). Right: showing that error decays exponentially
w.r.t. the distance from the boundary.)

boundary layer. The discrete system has roughly 1.97 million unknowns. The
errors over the boundary are ‖ET ‖∂D = 3.20× 10−3, ‖EP ‖∂D = 1.74× 10−3.
In Figure 6, part of the torus surface is shown in a “cut-off” manner to reveal
the source point that gives rise to the manufactured solution. The rest of
the torus surface shows a color map of the residual. And the plane surfaces
behind the torus show a color map of max(ET , EP ) in the volume.

Figure 6: Torus with the coupled method.

5.5. A tuning fork geometry with the projection method
When only the solution away from the boundary is needed, the projection

method allows solving for large problems that are otherwise too expensive to
be solved with the coupled method by circumventing the need to resolve the
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boundary layer. In this test, we solve over a tuning fork geometry as shown in
Figure 7 using the projection method. The size of the tuning fork is roughly
1.5× 0.34× 6.23. Since there is no boundary layer in the acoustic modes, we
use a QBX order of 2 and FMM order 15. The discrete system has roughly
2.7 million unknowns. In Figure 7, part of the tuning fork surface is made
transparent to reveal the source points that give rise to the manufactured
solution. The remaining part of the tuning fork is colored by the residual
magnitude. Also, the plane surfaces behind the tuning fork show a color map
of max(ET , EP ) in the volume. Although the error is large on the boundary
surface (‖ET ‖∂D = 1.00, ‖EP ‖∂D = 0.01), the solution in the bulk region
has five digits of accuracy, as shown in Figure 8.

Figure 7: Tuning fork with the projection method.
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Figure 8: Error of the tuning fork solution decays with increasing distance from the
boundary.
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6. Conclusion

In this work, we have derived the free-space Green’s function and the
decoupled PDE form of the Morse-Ingard equations. Our results are an
extension of the analysis in [4]. Using the obtained relation between the
Morse-Ingard equations and the Helmholtz equations, we have provided
analogs of the Sommerfeld radiation conditions and Green’s representation
formulae for the Morse-Ingard equations. Based on our analysis, we have
developed three integral equations methods for the Neumann problem of the
Morse-Ingard equations in the exterior domain: the (preconditioned) coupled
method, the decoupled method, and the projection method. All three methods
are based on SKIE formulations, and can be solved with linear complexity
in the number of discretization nodes, as demonstrated in our numerical
experiments using the GIGAQBX algorithm.

Through numerical tests using realistic parameter values, we have shown
that for all three methods, the number of GMRES iterations does not grow
with the problem size. Of the three methods, the coupled method is the best-
conditioned and can achieve more than 11 digits of accuracy with sufficient
resolution. In comparison, the decoupled method requires less computational
cost, but it is prone to the ill-conditioning of the decoupling transform,
which depends on the equation parameters. The projection method represents
a trick applied to the decoupled method that can be used to circumvent
the need to resolve the boundary layer when only the solution away from
the boundary is desired. This is similar to the workaround used in [20] for
long-time simulations.

It has been repeatedly observed that layer potentials with boundary
layers are resolution-hungry and pose challenges in developing more efficient
integral-equation-based solvers for such problems. For future research, we will
look to improve the QBX method to more efficiently resolve boundary layers.
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