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Abstract

This paper continues to study linear and unconditionally modified-energy stable (abbreviated

as SAV-GL) schemes for the gradient flows. The schemes are built on the SAV technique and

the general linear time discretizations (GLTD) as well as the extrapolation for the nonlinear

term. Different from [44], the GLTDs with three parameters discussed here are not necessarily

algebraically stable. Some algebraic identities are derived by using the method of undetermined

coefficients and further used to establish the modified-energy inequalities for the unconditional

modified-energy stability of the semi-discrete-in-time SAV-GL schemes. It is worth emphasizing

that those algebraic identities or energy inequalities are not necessarily unique for some choices

of three parameters in the GLTDs. Numerical experiments on the Allen-Cahn, the Cahn-

Hilliard and the phase field crystal models with the periodic boundary conditions are conducted

to validate the unconditional modified-energy stability of the SAV-GL schemes, where the

Fourier pseudo-spectral method is employed in space with the zero-padding to eliminate the

aliasing error and the time stepsizes for ensuring the original-energy decay are estimated by

using the stability regions of our SAV-GL schemes for the test equation. The resulting time

stepsize constraints for the SAV-GL schemes are almost consistent with the numerical results

on the above gradient flow models.
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1. Introduction

Many practical problems could be modeled by the gradient flows, e.g., the interface dynamics

[1, 57], the liquid crystallization [31, 32], the thin films [30, 46], the polymers [18, 19], and the

the tumor growth [35, 49]. For a given free energy E(u), the gradient flow model can be given

by

∂u

∂t
= G δE

δu
, (x, t) ∈ Ω× (0, T ], (1.1)

supplemented with suitable initial and boundary conditions, where Ω ⊂ Rd, d = 1, 2, 3, u =

u(x, t) ∈ R, the operator G is negative, δE/δu denotes the variational derivative of the free en-

ergy functional E(u) with respect to the variable u, known as the chemical potential. Obviously,

(1.1) implies that the free energy is monotonically non-increasing, that is,

dE
dt

=

(
δE
δu
,
∂u

∂t

)
=

(
δE
δu
,G δE
δu

)
≤ 0, (1.2)

and the triple {u,G, E} determines the gradient flow uniquely, where (·, ·) is the L2 inner product

defined by (φ, ψ) =
∫

Ω
φψdx for any φ, ψ ∈ L2(Ω). It is worth noting that (1.2) holds only

for the boundary conditions such as periodic or homogeneous Neumann boundary conditions

which can make the boundary integrals resulted from the integration by parts vanish.

In the last few decades, many high-order accurate and unconditionally energy stable schemes

have been developed for various nonlinear gradient flow models. Those include, but are not

limited to, the convex splitting method [16, 17, 39], the stabilization method [37, 45, 47], the

Lagrange multiplier method [4, 23], the exponential time differencing method [14, 48], and

more recently, the invariant energy quadratization method [51–53, 55], the scalar auxiliary

variable (SAV) method [40–42] and its extensions, such as the exponential SAV [33, 34], the

generalized SAV (G-SAV) [26, 27] and the SAV with relaxation [28], etc. Among those, the

SAV approach and its variants become a particular powerful tool to construct modified-energy

stable numerical schemes and has been successfully applied to many existing gradient flow

models, see e.g. [3, 10, 11, 22, 25, 28, 54, 56, 58]. Its main idea is to reformulate the gradient

flow model into an equivalent form with the help of some SAVs, and then to develop efficient
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numerical schemes by approximating the reformulated system instead of the original gradient

flow model. Based on those SAV approaches, it is convenient to construct second- or higher-

order unconditionally modified-energy stable schemes, and the derived schemes are easy to be

implemented and only need to solve several linear equations at each time step if the nonlinear

term is explicitly approximated by the extrapolation etc.

Recently, in [44], the authors studied a general class of linear unconditionally modified-

energy stable schemes for the gradient flows. Those schemes (abbreviated as SAV-GL) are

built on the (original) SAV approach and the general linear time discretizations (GLTD) as

well as the linearization based on the extrapolation for the nonlinear term. The proof of their

unconditional modified-energy stability uses the algebraical stability of the GLTDs. This paper

continues to study the SAV-GL schemes for the gradient flows, and will mainly addresses three

issues: 1) How the modified-energy inequality of the SAV-GL is derived if the GLTDs are not

necessarily algebraically stable? 2) Whether the modified-energy inequality is unique? 3) How

a suitable time stepsize is chosen to ensure the original-energy decay because the unconditional

modified-energy stability does not imply the unconditional original-energy stability generally?

The main contributions are as follows: Different from [44], the GLTDs with three parameters

discussed here are not necessarily algebraically stable. Some algebraic identities are first derived

by using the method of undetermined coefficients and are then used to establish the modified-

energy inequalities for the unconditional modified-energy stability of the semi-discrete-in-time

SAV-GL schemes. Those algebraic identities or energy inequalities are not necessarily unique

for some choices of three parameters in the GLTDs. In order to validate the energy stabilities

of the SAV-GL schemes, numerical experiments on the Allen-Cahn, the Cahn-Hilliard and the

phase field crystal models with the periodic boundary conditions are conducted, the Fourier

pseudo-spectral method is employed in space with the zero-padding to eliminate the aliasing

error, and the restrictions on the time stepsize for preserving the original-energy stability are

estimated by studying the stability regions of our SAV-GL schemes for the test equation.

The rest of this paper is organized as follows. Section 2 presents our new linear uncondi-

tionally modified-energy stable schemes (still abbreviated as SAV-GL) for the gradient flows,

built on the GLTDs with three parameters and the SAV approach. Here the GLTDs are not

3



necessarily algebraically stable. Some algebraic identities are derived for the modified-energy

inequality of the SAV-GL, and they may not be necessarily unique for some choices of three

parameters in the GLTDs. Section 3 conducts some numerical experiments to validate the theo-

retical analysis of the SAV-GL schemes in comparison to another SAV-GL schemes built on the

generalized SAV [26, 27], where the Allen-Cahn, Cahn-Hilliard and phase field crystal models

with the periodic boundary conditions are considered, the Fourier pseudo-spectral method is

employed in space with the de-aliasing by zero-padding, and the time stepsizes for ensuring the

original-energy decay are also estimated by the stability regions of our SAV-GL schemes for the

test equation. Some concluding remarks are given in Section 4.

2. SAV-GL schemes for the gradient flows

This section studies the general linear time discretizations (GLTDs) with three parameters,

which are not necessarily algebraically stable, and develops the semi-discrete-in-time linear SAV

schemes (still abbreviated as SAV-GL) for the gradient flow model (1.1) with the help of the

original SAV approach [40–42]. Their unconditional modified-energy stability will be derived

with some algebraic identities, established by using the method of undetermined coefficients.

Assume that the free energy E(u) contains some quadratic terms such as

E(u) =
1

2
(Lu, u) + E1(u), (2.1)

where L is a linear, positive and self-adjoint operator, and E1(u) denotes other nonlinear parts.

Following the SAV approach [40–42], introduce the SAV z(t) :=
√
E1(u) + C0 with C0 being a

positive constant so that z is real-valued, and then to rewrite the gradient flow model (1.1) as

∂u

∂t
= Gµ, µ = Lu+ zW (u),

dz

dt
=

1

2

(
W (u),

∂u

∂t

)
, W (u) :=

1

z(t)

δE1

δu
,

(2.2)

supplemented with suitable initial and boundary conditions. Based on (2.2), one can construct

the SAV schemes for the gradient flow model (1.1). It is easy to check that the reformulated
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system (2.2) satisfies the energy dissipation law

dF
dt

(u) =

(
Lu, ∂u

∂t

)
+ 2z

dz

dt
=

(
Lu+ zW (u),

∂u

∂t

)
= (Gµ, µ) ≤ 0,

where the reformulated free energy F(u) = 1
2
(Lu, u) + z2−C0 is the same as the original E(u).

Let τ be a given time stepsize, tn = nτ for n ≥ 0 and χn denote an approximation to the

generic variable χ at tn. Approximate the variables χ and ∂χ
∂t

at tn+κ= tn + κτ as follows

∂χ

∂t

∣∣∣n+κ

≈ 1

τ(1−α0)

[
χn+1−(1+α0)χn+α0χ

n−1
]
, (2.3)

χn+κ=
1

1−α0

(
β2χ

n+1+β1χ
n+β0χ

n−1
)
, (2.4)

χ̄n+κ = (1+κ)χn − κχn−1, (2.5)

where α0 6= 1, β2 6= 0 and β0 are three free parameters, κ = β2−β0
1−α0

, β1 = 1 − α0 − β0 − β2,

and χn+κ (resp. χ̄n+κ) denotes an implicit (resp. explicit) approximation to χ(tn+κ), so that

(2.3)-(2.5) can provide at least first-order accurate time discretizations.

Lemma 2.1. The fully implicit time discretizations based on (2.3)-(2.4) are A−stable (but are

not necessarily algebraically stable) if

−1 ≤ α0 < 1, β2 > 0, |β0| ≤ β2, 1− α0 − 2β0 − 2β2 ≤ 0. (2.6)

Specially, (i) when α0 = β0 = 0, the time discretizations based on (2.3)-(2.4) are one-step and

A−stable for any β2 ≥ 1
2
; (ii) when β2 = 1+α0

2
+ β0 and |α0| + |β0| 6= 0 (i.e. α0 and β0 are

not zero simultaneously), the time discretizations based on (2.3)-(2.4) are two-step and second-

order accurate, which are A−stable for any −1 ≤ α0 < 1 and 2β0 + α0 ≥ 0; and (iii) when

β2 6= 1+α0

2
+ β0 and |α0| + |β0| 6= 0, the time discretizations based on (2.3)-(2.4) are two-step

and first-order accurate, which are A−stable under (2.6).

The proof of Lemma 2.1 is given in Appendix A.

Assume that (un−1, zn) and (un, zn) are given. Applying (2.3)-(2.5) to the reformulated
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system (2.2) yields the following semi-discrete-in-time SAV-GL scheme

1

1−α0

un+1− 1+α0

1−α0

un+
α0

1−α0

un−1 =τGµn+κ, µn+κ=Lun+κ+zn+κW (ūn+κ),

1

1−α0

zn+1− 1+α0

1−α0

zn+
α0

1−α0

zn−1 =
1

2

(
W (ūn+κ),

1

1−α0

un+1− 1+α0

1−α0

un+
α0

1−α0

un−1

)
,

(2.7)

where un+κ, zn+κ, and ūn+κ are given by (2.4) and (2.5), respectively. In order to derive its

unconditional modified-energy stability, several algebraic identities are established as follows.

Lemma 2.2. (i) When α0 = β0 = 0, the identity

(
χn+1 − χn

) (
β2χ

n+1 + (1−β2)χn
)

=
1

2

[(
χn+1

)2 − (χn)2
]

+

(
β2−

1

2

)(
χn+1 − χn

)2
, (2.8)

holds for any β2 ≥ 1
2
.

(ii) When β2 = 1+α0

2
+ β0 and |α0|+ |β0| 6= 0, then the identity

(
1

1−α0

χn+1 − 1+α0

1−α0

χn +
α0

1−α0

χn−1

)(
β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1

)
=

2+α0−α2
0+2β0(1−α0)

4(1−α0)2

[(
χn+1

)2−(χn)2
]
+
α0+α2

0+2β0(1−α0)

4(1−α0)2

[
(χn)2−

(
χn−1

)2
]

+
(α0−1)(2β0+α0−1)−(α0+1)

2(1−α0)2

[
χn+1χn−χnχn−1

]
+

(1+α0)(2β0+α0)

4(1−α0)2

(
χn+1−2χn+χn−1

)2
, (2.9)

holds for any −1 ≤ α0 < 1 and 2β0 + α0 ≥ 0.

(iii) When β2 6= 1+α0

2
+ β0 and |α0|+ |β0| 6= 0, then one has

(
1

1−α0

χn+1 − 1+α0

1−α0

χn +
α0

1−α0

χn−1

)(
β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1

)
=

[
1−α2

0+2β2−2α0β0

4(1−α0)2
−c̃c

][(
χn+1

)2−(χn)2
]
+

[
2β2+α2

0−1

4(1−α0)2
−c̃c

][
(χn)2−

(
χn−1

)2
]

+

[
1

2
+
α0β0−β2

(1−α0)2
+2c̃c

][
χn+1χn−χnχn−1

]
+

[(
c− c̃

2

)
χn+1+c̃χn−

(
c+

c̃

2

)
χn−1

]2

, (2.10)
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under the conditions (2.6) and 2β2 − 2β0 − α0 − 1 > 0, where

c =

√
2β2−2β0−α0−1

8(1− α0)
, c̃ = −

√
2(1+α0)(2β0+2β2+α0−1)

2(1−α0)
.

The proof of this lemma is given in Appendix B by using the method of undetermined

coefficients. Using those identities in Lemma 2.2 can give the following results on the semi-

discrete-in-time SAV-GL scheme (2.7).

Theorem 2.3. (i) When α0 = β0 = 0, the semi-discrete scheme (2.7) is unconditionally

modified-energy stable for any β2 ≥ 1
2

in the sense that

1

2

(
Lun+1, un+1

)
+
(
zn+1

)2 ≤ 1

2
(Lun, un) + (zn)2 . (2.11)

(ii) When β2 = 1+α0

2
+ β0 and |α0| + |β0| 6= 0, the semi-discrete scheme (2.7) is uncondi-

tionally modified-energy stable for any −1 ≤ α0 < 1 and 2β0 + α0 ≥ 0 in the sense that

E
(
un+1, un, zn+1, zn

)
≤ E

(
un, un−1, zn, zn−1

)
, (2.12)

where

E
(
un+1, un, zn+1, zn

)
:=

(α0−1)(2β0+α0−1)−(α0+1)

(1−α0)2

[
1

2

(
Lun+1, un

)
+ zn+1zn

]
+

2+α0−α2
0+2β0(1−α0)

2(1−α0)2

[
1

2

(
Lun+1, un+1

)
+
(
zn+1

)2
]

+
α0+α2

0+2β0(1−α0)

2(1−α0)2

[
1

2
(Lun, un) + (zn)2

]
.

(iii) When β2 6= 1+α0

2
+ β0 and |α0| + |β0| 6= 0, the semi-discrete scheme (2.7) is uncondi-

tionally modified-energy stable under the conditions (2.6) and 2β2 − 2β0 − α0 − 1 > 0 in the

sense that

Ē
(
un+1, un, zn+1, zn

)
≤ Ē

(
un, un−1, zn, zn−1

)
, (2.13)
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where

Ē
(
un+1, un, zn+1, zn

)
:=

[
1−α2

0+2β2−2α0β0

4(1−α0)2
−c̃c

][
1

2

(
Lun+1, un+1

)
+
(
zn+1

)2
]

+

[
2β2+α2

0−1

4(1−α0)2
−c̃c

][
1

2
(Lun, un)+(zn)2

]
+

[
1

2
+
α0β0−β2

(1−α0)2
+2c̃c

][
1

2

(
Lun+1, un

)
+zn+1zn

]
.

Proof. The proofs of three inequalities (2.11)-(2.13) are similar so that only the inequality

(2.12) is proved here to avoid repetition. It is worth emphasizing that some different identities

from (2.8) and (2.10) are also presented in Appendix B, so that different unconditionally

modified-energy inequalities from (2.11) and (2.13) can be established for some choices of three

parameters α0, β0, β2 in the GLTDs, e.g. {α0 = β0 = 0, β2 > 1
2
} and {β2 6= 1+α0

2
+ β0,

|α0|+ |β0| 6= 0}.

Taking the L2 inner product of the first and second equations in (2.7) with µn+κ and

1
1−α0

un+1 − 1+α0

1−α0
un + α0

1−α0
un−1, respectively, yields

(
1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1, µn+κ

)
= τ

(
Gµn+κ, µn+κ

)
, (2.14)

and

(
1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1, µn+κ

)
=

(
Lun+κ,

1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1

)
+ zn+κ

(
W (ūn+κ),

1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1

)
. (2.15)

According to the identity (2.9), one can deduce

(
Lun+κ,

1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1

)
=

2+α0−α2
0+2β0(1−α0)

4(1−α0)2

[(
Lun+1, un+1

)
− (Lun, un)

]
+
α0+α2

0+2β0(1−α0)

4(1−α0)2

[
(Lun, un)

−
(
Lun−1, un−1

)]
+

(α0−1)(2β0+α0−1)−(α0+1)

2(1−α0)2

[(
Lun+1, un

)
−
(
Lun, un−1

)]
+

(1+α0)(2β0+α0)

4(1−α0)2

(
L
[
un+1 − 2un + un−1

]
, un+1 − 2un + un−1

)
, (2.16)
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and

zn+κ

(
1

1−α0

zn+1 − 1+α0

1−α0

zn +
α0

1−α0

zn−1

)
=

2+α0−α2
0+2β0(1−α0)

4(1−α0)2

[(
zn+1

)2 − (zn)2

]
+
α0+α2

0+2β0(1−α0)

4(1−α0)2

[
(zn)2 −

(
zn−1

)2
]

+
(α0−1)(2β0+α0−1)−(α0+1)

2(1−α0)2

[
zn+1zn − znzn−1

]
+

(1+α0)(2β0+α0)

4(1−α0)2

(
zn+1 − 2zn + zn−1

)2
. (2.17)

Multiplying the third equation in (2.7) with zn+κ and using (2.17) give

1

2
zn+κ

(
W (ūn+κ),

1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1

)
=

2+α0−α2
0+2β0(1−α0)

4(1−α0)2

[(
zn+1

)2 − (zn)2

]
+
α0+α2

0+2β0(1−α0)

4(1−α0)2

[
(zn)2 −

(
zn−1

)2
]

+
(α0−1)(2β0+α0−1)−(α0+1)

2(1−α0)2

[
zn+1zn − znzn−1

]
+

(1+α0)(2β0+α0)

4(1−α0)2

(
zn+1 − 2zn + zn−1

)2
. (2.18)

Substituting (2.18) and (2.16) into (2.15) and using (2.14) lead to

E
(
un+1, un, zn+1, zn

)
− E

(
un, un−1, zn, zn−1

)
= τ

(
Gµn+κ, µn+κ

)
− (1+α0)(2β0+α0)

2(1−α0)2

(
zn+1 − 2zn + zn−1

)2

− (1+α0)(2β0+α0)

4(1−α0)2

(
L
[
un+1 − 2un + un−1

]
, un+1 − 2un + un−1

)
. (2.19)

Since the operator L is positive, G is negative, and the parameters α0 and β0 satisfy−1 ≤ α0 < 1

and 2β0 + α0 ≥ 0, one can conclude from (2.19) that the inequality (2.12) holds. Hence, the

proof is completed.

Remark 2.1. If taking α0 = 1
3
, β0 = 0 and β2 = 2

3
, then (2.7) becomes the SAV-BDF2 scheme

in [42], and (2.9) reduces to the identity used in [42] to derive the modified-energy stability

of the SAV-BDF2 scheme. If taking α0 = 2θ−1
2θ+1

, β0 = − (2θ−1)(θ−1)
2θ+1

and β2 = −2θ2−5θ+1
2θ+1

with

1
2
≤ θ ≤ 3

2
, then (2.7) reduces to the scheme in [54] for the Cahn-Hilliard equation, where the
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modified-energy stability is derived by using a special case of (2.9).

Remark 2.2. The semi-discrete scheme (2.7) can be written into the form of the SAV-GL

scheme in [44]. In fact, one can first compute the stage value (Un,1, Zn,1) from


Un,1 =τβ2U̇n,1+ β1+β2(1+α0)

1−α0
un+ β0−α0β2

1−α0
un−1, U̇n,1 =Gµn,1, µn,1 =LUn,1+Zn,1W (ūn+κ)

Zn,1 = τβ2Żn,1 + β1+β2(1+α0)
1−α0

zn + β0−α0β2
1−α0

zn−1, Żn,1 = 1
2

(
W (ūn+κ), U̇n,1

)
,

and then derive the numerical solution (un+1, zn+1) by

un+1 = τU̇n,1 + (1 + α0)un − α0u
n−1, zn+1 = τŻn,1 + (1 + α0)zn − α0z

n−1.

Thus, when the previous GLTDs with three parameters are algebraically stable, the modified-

energy stability of the SAV-GL scheme (2.7) can also be proved by using the theoretical frame-

work in [44]. It should be emphasized that the established modified-energy inequalities in Theo-

rem 2.3 are more general and applicable for some GLTDs without the algebraical stability. For

example, in the case (ii), i.e. β2 = 1+α0

2
+ β0 and |α0| + |β0| 6= 0, the GLTDs with 1 ≤ α0 < 1

and 2β0 +α0 = 0 are not algebraically stable (see Appendix A), but the modified-energy stability

of the corresponding SAV-GL schemes can be gotten by using the identity (2.9). Moreover, we

can also find that those energy inequalities may not be unique for some α0, β0, and β2.

Remark 2.3. Theorem 2.3 tells us that (2.7) is unconditionally modified-energy stable with

choosing appropriate parameters. However, the original-energy E(un) of the gradient flow (1.1)

may be monotonically decreasing conditionally. It will be confirmed by combining numerical

experiments in Section 3 for the Allen-Cahn, the Cahn-Hilliard and the phase field crystal

models with studying the stability regions of the semi-implicit time discretizations based on

(2.3)-(2.5) studied in Appendix D.

Remark 2.4. There exist some variants of the original SAV approach. For example, instead of

the square root function, the exponential function [33, 34], the monotone polynomials, and the

tanh function [12] could be used to extend the original SAV approach. One can combine those

extended SAV approaches with the time-discretizations (2.3)-(2.5) and use Lemma 2.2 to obtain
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corresponding modified-energy stabilities. Moreover, applying the relaxation technique to (2.7)

can derive the SAV schemes with relaxation (R-SAV) [28], which may improve the accuracy

and consistency of the introduced SAV. Besides, there still exists an interesting extension of

the original SAV approach, namely the generalized SAV (G-SAV) approach [26, 27]. The proof

of its modified-energy stability may do not require Lemma 2.2. If defining a shifted free energy

by Ẽ(u) = E(u) + C̃0 and introducing a new SAV R(t) := Ẽ(u), where C̃0 is a chosen non-

negative constant such that Ẽ(u) is always positive, then the gradient flow model (1.1) can be

reformulated as follows

∂u

∂t
= Gµ, µ = Lu+ V (u), V (u) :=

δE1

δu
,

dR

dt
= η (µ,Gµ) ,

(2.20)

where η(t) = R(t)

Ẽ(u)
≡ 1 at the continuous level. After applying the time discretizations (2.3)-(2.5)

to (2.20), one has the following semi-discrete-in-time G-SAV-GL scheme

1

1−α0

un+1 − 1+α0

1−α0

un +
α0

1−α0

un−1 = τGµ̂n+κ, (2.21)

µ̂n+κ = L
[

β2

1−α0

un+1 +
β1

1−α0

un +
β0

1−α0

un−1

]
+ V (ūn+κ), (2.22)

Rn+1 −Rn

τ
= ηn+1

(
µn+1,Gµn+1

)
, (2.23)

where ηn+1 = Rn+1

Ẽ(un+1)
, µn+1 = Lun+1 + V (un+1). They imply

(
1

1−α0

− τβ2

1−α0

GL
)
un+1 =

1+α0

1−α0

un− α0

1−α0

un−1+τGL
[
β1

1−α0

un+
β0

1−α0

un−1

]
+τGV (ūn+κ),

which is a equation of un+1 ≈ u(·, tn+1). Moreover, for given Rn > 0, Rn+1 and ηn+1 are

positive and (2.21)-(2.23) is unconditionally modified-energy stable in the sense that

Rn+1 −Rn = τηn+1
(
µn+1,Gµn+1

)
≤ 0.

Note that the G-SAV scheme (2.21)-(2.23) is different from that in [26, 27], the main difference

between them is that no special control factor, e.g. ξn+1 = 1 − (1 − ηn+1)3, is introduced
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in (2.21)-(2.23) so that the numerical solution un+1 is totally derived by corresponding semi-

implicit scheme. When the time stepsize is large, ξn+1 may become a bad approximation to one

so that numerical solutions are not accurate. Hence, such difference allows us to choose a larger

time stepsize when applying (2.21)-(2.23) to the gradient flow (1.1). The scheme (2.21)-(2.23)

will be compared to the SAV-GL scheme (2.7) in our numerical experiments, see Section 3.

3. Numerical experiments

This section applies the SAV-GL scheme (2.7) in comparison to the G-SAV-GL scheme

(2.21)-(2.23) to the Allen-Cahn, the Cahn-Hilliard and the phase field crystal models with

the periodic boundary conditions in order to demonstrate their modified-energy stability and

check their original-energy stability. For such purpose, the Fourier pseudo-spectral spatial

discretization [44] is still employed for (2.7) and (2.21)-(2.23). The theoretical results in Section

2 could be straightforwardly extended to such fully discrete schemes. The readers are referred

to [44] about the fully discrete SAV-GL methods and [9, 20, 21, 29, 38] for more detailed

descriptions of the spectral methods. Our fully discrete SAV-GL schemes are implemented in

MATLAB and call both fft and ifft functions directly for the discrete Fourier and inverse

Fourier transforms so that their implementation is very simple and efficient. It should be noted

that the FFT of the nonlinear term may always produce the aliasing errors, see e.g. [8, 43].

The effect of the aliasing error and the de-aliasing by zero-padding provided in Appendix C

on our numerical results are investigated. For simplicity, the subsequent numerical results will

be given only for several special values of three parameters (α0, β0, β2) in (2.3)-(2.5), see Table

3.1, and corresponding fully-discrete SAV-GL and G-SAV-GL schemes will also be abbreviated

as in Table 3.1.

Table 3.1: Choices of (α0, β0, β2) and abbreviations of corresponding fully discrete schemes.

SAV-GL schemes G-SAV-GL schemes
(α0, β0, β2) = (0, 0, 1) SAV-M(1) G-SAV-M(1)

(α0, β0, β2) = (−1/3, 5/12, 3/4) SAV-M(2) G-SAV-M(2)

(α0, β0, β2) = (1/3, 0, 2/3) SAV-M(3) G-SAV-M(3)

(α0, β0, β2) = (1/3,−1/6, 1/2) SAV-M(4) G-SAV-M(4)
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3.1. Allen-Cahn model

The Allen-Cahn model

∂u

∂t
= ε2∆u− u3 + u, x ∈ Ω, t > 0, (3.1)

was introduced to describe the motion of anti-phase interfaces in crystalline solids [2] and can

be derived from the L2 gradient flow of the following free energy

E(u) =

∫
Ω

ε2

2
|∇u|2 +

1

4
(u2 − 1)2dx, (3.2)

where 0 < ε < 1 denotes the diffuse interface thickness.

In order to apply SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) for (3.1), one takes

L = −ε2∆, G = −1, E1(u) =

∫
Ω

1

4

(
u2 − 1

)2
dx.

Example 3.1. This example is used to check the effectiveness of the de-aliasing by zero-padding

for the Allen-Cahn equation (3.1) with ε = 0.1 and u(x, y, 0) = 0.05 sin(x) sin(y). The domain

Ω = (0, 2π)× (0, 2π) is partitioned with N = 128 or 256, and SAV-M(3) is used.

Figure 3.1 presents the contour lines and cut lines of two numerical solutions at t = 200

computed by SAV-M(3) with or without de-aliasing by zero-padding. It is obvious that they

are different when N = 128, but are quite similar when N = 256. Figure 3.2 further shows the

snapshots of the numerical solutions with N = 256 at t = 80, 84, and 88 computed by SAV-M(3)

with or without the de-aliasing. It can be seen that those numerical solutions have some slight

differences, which do not effect the motion of anti-phase interfaces essentially. Those results are

also consistent with those shown in Figure 3.3, which gives the cut lines of numerical solutions

at t = 80, 84, 88, and 92.

Example 3.2. This example is used to discuss the modified- and original-energy stabilities of

SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) for the Allen-Cahn model (3.1). For this

purpose, the domain Ω = (0, 2π)×(0, 2π) is uniformly partitioned with N = 128, the parameter
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Figure 3.1: Example 3.1. Left: contour lines of u with the value of −0.1; right: cut lines of the numerical
solutions along y = 2π − x with x ∈ [0, 2π]. Top: N = 128; bottom: N = 256.

Figure 3.2: Example 3.1. Snapshots of the numerical solutions at t = 80, 84, and 88 derived by SAV-M(3) with
(Top) and without (Bottom) the de-aliasing.
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Figure 3.3: Example 3.1. Cut lines of the numerical solutions along y = 2π−x, x ∈ [0, 2π], derived by SAV-M(3)

with (Left) and without (Right) the de-aliasing.

ε = 0.1, and the initial value is chosen as u(x, y, 0) = 0.1 × rand(x, y) − 0.05, where rand(·, ·)

generates a random number between 0 and 1.

Figure 3.4 presents the discrete total modified-energy curves of SAV-M(1)∼SAV-M(4) and

G-SAV-M(1)∼G-SAV-M(4) defined respectively in Theorem 2.3 and Remark 2.4. One can see

that all those modified-energy curves are monotonically decreasing and consistent with the theo-

retical results. Figure 3.5 provides the discrete total original-energy curves of SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4), and Figure 3.6 presents the numerical solution at t = 200 de-

rived by G-SAV-M(4) with τ = 2 and 1. Those results show that the numerical solution shown

in Figure 3.6 with τ = 1 is quite similar to that in [44], but when τ = 2, the solution is in-

accurate or non-physical and the original energy is not monotonically decreasing as shown in

Figure 3.5. It indicates that some time stepsize constraints are necessary to ensure the original-

energy decay. Remark 3.1 will discuss the time stepsize constraints of SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4) for the Allen-Cahn model (3.1) by using the stability regions of

our SAV-GL schemes for the test equation.

Remark 3.1. Applying the Fourier pseudo-spectral method to the Allen-Cahn model (3.1) yields

the ODE system

dûk,l
dt

= −4π2ε2

L2

(
k2 + l2

)
ûk,l + ûk,l − ŵk,l, (k, l) ∈ ŜN , (3.3)

where ŜN =
{

(k, l) ∈ Z2| − N
2

+ 1 ≤ k, l ≤ N
2

}
, {ŵk,l} are the discrete Fourier coefficients of
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Figure 3.4: Example 3.2. The time evolution of the total modified-energies of SAV-M(1)∼SAV-M(4) and
G-SAV-M(1)∼G-SAV-M(4) for the Allen-Cahn model (3.1).
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Figure 3.6: Example 3.2. Numerical solutions at t = 200 computed by G-SAV-M(4) with τ = 2 (Left) and 1
(Right), respectively.
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the cubic term u3 and given by

ŵkl =
1

N4

∑
(m,n),(p,q)∈ŜN

ûmnûpqûk−m−p,l−n−q. (3.4)

The system (3.3) may be viewed as the test equation (D.1) with ξ = −ε2 (k2 + l2) and

ζ = 1− 3

N4

∑
(m,n)∈ŜN

ûm,nû−m,−n = 1− 3

N4

∑
(m,n)∈ŜN

|ûm,n|2 = 1− 3

N2

∑
(i,j)∈SN

|ui,j|2,

where SN = {(i, j) ∈ Z2|1 ≤ i, j ≤ N}, û−m,−n = ¯̂um,n with ¯̂um,n being the complex conjugate

of û−m,−n and Parseval’s theorem have been used. For Example 3.2, Figure 3.7 plots the curve

ψn = 3
N2

∑
(i,j)∈SN

|uni,j|2 derived by SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4). It shows

that ψn . 2.7 so that ζ & −1.7. Thus, one can take ζ ≈ −1.7 and then estimate the time

stepsize according to Appendix D. Specifically, when the parameters (α0, β0, β2) = (0, 0, 1),

τ < min

{
2

(2β2 − 1)ξ − (2β2 + 1)ζ
: ζ <

2β2 − 1

2β2 + 1
ξ

}
=

{
2

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

which implies τ . 0.3922 since max{ξ−3ζ : ζ < 1
3
ξ} = −3ζ; when (α0, β0, β2) = (−1/3, 3/12, 3/4),

τ < min

{
1 + α0

(2β0 + α0)ξ − ζ
: ζ < (2β0 + α0)ξ

}
=

{
4

3 max(ξ − 2ζ)
: ζ <

1

2
ξ

}
,

which gives τ . 0.3922 by using max{ξ− 2ζ : ζ < 1
2
ξ} = −2ζ; when (α0, β0, β2) = (1/3, 0, 2/3),

τ < min

{
1 + α0

(2β0 + α0)ξ − ζ
: ζ < (2β0 + α0)ξ

}
=

{
4

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

so that τ < − 4
3ζ

. 0.7843; and when (α0, β0, β2) = (1/3,−1/6, 1/2),

τ < −1 + α0

ζ
. 0.7843.

Note that the above time stepsize constraints for SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4)

are sufficient and slightly more severer than them used in the numerical experiments on en-

suring the original-energy decay of Example 3.2; and although the time discretization with
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Figure 3.7: Example 3.2. ψn derived by SAV-M(1)∼SAV-M(4) (Left) and G-SAV-M(1)∼G-SAV-M(4) (Right).

(α0, β0, β2) = (1/3,−1/6, 1/2) is not algebraically stable, the time stepsizes for SAV-M(4) and

G-SAV-M(4) are comparable and both two schemes can provide good numerical results of (3.1).

It is worth noting that for the Allen-Cahn model (3.1), one can use the maximum principle to

give the estimation ζ ≈ −2, and then use Appendix D to get certain time stepsize conditions,

which are also sufficient and have no big difference from the above estimations.

Remark 3.2. For the SAV-GL scheme (2.7), the term ψ̄n = zn+κ√
E1(ūn+κ)+C0

should be precisely

considered in discussing the time stepsize constraints, theoretically. However, unfortunately,

it is difficult to estimate exactly ψ̄n, even if it is equal to one at the continuous level. Figure

3.8 plots ψ̄n derived by SAV-M(1)∼SAV-M(4) with τ = 1 and 0.1, from which one can observe

ψ̄n . 1. This is the reason why we take ψ̄n ≈ 1 for convenience and derive the time stepsize

constraints for SAV-M(1)∼SAV-M(4) in Remark 3.1.
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Figure 3.8: Example 3.2. ψ̄n derived by SAV-M(1)∼SAV-M(4) with τ = 1 (Left) and 0.1 (Right), respectively.
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3.2. Cahn-Hilliard model

The Cahn-Hilliard model

∂u

∂t
= ∆

(
−ε2∆u+ u3 − u

)
, x ∈ Ω, t > 0, (3.5)

is derived from the H−1 gradient flow of the free energy (3.2), and describes the complicated

phase separation and coarsening phenomena [6].

In order to apply SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) to the Cahn-Hilliard

model (3.5), the operators L, G and the energy E1(u) are taken as

G = ∆, L = −ε2∆, E1(u) =

∫
Ω

1

4

(
u2 − 1

)2
dx.

Example 3.3. This example is used to check the effectiveness of the de-aliasing by zero-

padding for (3.5). We take ε = 0.1, and the initial data u(x, y, 0) = 0.05 sin(x) sin(y). The

domain Ω = (0, 2π)× (0, 2π) is partitioned with N = 128 or 256, and SAV-M(3) is used.

Figure 3.9 gives the contour lines and cut lines of the numerical solutions at t = 200 derived

by SAV-M(3) with or without de-aliasing. Visible difference between the numerical solutions

with N = 128 can be observed, but the difference is indistinguishable when N = 256. For

N = 256, Figure 3.10 presents the snapshots of the numerical solutions at t = 7.5, 8, and 8.5,

while Figure 3.11 shows the cut lines of numerical solutions at t = 7.5, 8, 8.5, and 9. It is shown

that there are some slight differences between those numerical solutions.

Example 3.4. This example is used to validate the modified-energy stability and to check the

original-energy stability of SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) for (3.5). The

domain Ω = (0, 2π)× (0, 2π) is uniformly partitioned with N = 128, the parameter ε is taken

as 0.1, and the initial value is chosen as u(x, y, 0) = 0.1× rand(x, y)− 0.05.

Figure 3.12 presents the discrete total modified-energy curves of SAV-M(1)∼SAV-M(4) and

G-SAV-M(1)∼G-SAV-M(4). All those curves are monotonically decreasing, and consistent with

the theoretical results. Figure 3.13 plots the discrete total original-energy curves of SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4). The result shows that those schemes can ensure the original-

energy decay only if a suitable time stepsize is taken. Figure 3.14 presents the numerical
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Figure 3.9: Example 3.3. Left: contour lines of u with the value of −0.1; right: cut lines of the numerical
solutions along y = x, x ∈ [0, 2π]. Top: N = 128; bottom: N = 256.

Figure 3.10: Example 3.3. Snapshots of the numerical solutions at t = 7.5, 8, and 8.5 derived by SAV-M(3) with
(Top) and without the de-aliasing (Bottom).
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Figure 3.11: Example 3.3. Cut lines of the numerical solutions along y = 2π, derived by SAV-M(3) with (Left)
and without the de-aliasing (Right).

solutions at t = 200 derived by G-SAV-M(2) with τ = 0.02 and 0.01. It is shown that with a

large time stepsize, the solution is inaccurate and the original-energy is not monotonically de-

creasing as shown in Figure 3.13. Remark 3.3 will provide a detailed discuss on the time stepsize

constraints of SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) for the Cahn-Hilliard model

(3.5).

Remark 3.3. Applying the Fourier pseudo-spectral method to the Cahn-Hilliard model (3.5)

yields the ODE system

dûk,l
dt

= −ε2
(
k2 + l2

)2
ûk,l − (k2 + l2) [ŵk,l − ûk,l] , (k, l) ∈ ŜN , (3.6)

where {ŵk,l} are the discrete Fourier coefficients of the cubic term u3 and given by (3.4).

Similarly, (3.6) can also be viewed as the test equation (D.1) with

ξ = −ε2
(
k2 + l2

)2
, ζ = −(k2 + l2)

 3

N2

∑
(i,j)∈SN

|ui,j|2 − 1

 , (k, l) ∈ ŜN .

For Example 3.4, the curves of ψn = 3
N2

∑
(i,j)∈SN

|ui,j|2 plotted in Figure 3.15 show that ψn . 2.6.

Thus, one can take ζ ≈ −1.6(k2 + l2), (k, l) ∈ ŜN and then use Appendix D to estimate the

time stepsizes for SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4). Specifically, when the
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Figure 3.12: Example 3.4. The time evolution of the discrete total modified-energies of SAV-M(1)∼SAV-M(4)
and G-SAV-M(1)∼G-SAV-M(4) for the Cahn-Hilliard model (3.5).
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Figure 3.13: Same as Figure 3.12, except for the original-energy.

Figure 3.14: Example 3.4. Numerical solutions at t = 200 derived by G-SAV-M(2) with τ = 0.02 (Left) and 0.01
(Right), respectively.
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Figure 3.15: Example 3.4. ψn derived by SAV-M(1)∼SAV-M(4) (Left) and G-SAV-M(1)∼G-SAV-M(4).

parameters (α0, β0, β2) = (0, 0, 1), the time stepsize satisfies

τ <

{
2

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

a simple calculation gives max {ξ−3ζ} = max
{
−0.01 (k2+l2)

2
+4.8 (k2+l2) , (k, l) ∈ ŜN

}
=

575.99 (k=4, l=15) so that τ . 3.47× 10−3; when (α0, β0, β2) = (−1/3, 5/12, 3/4),

τ <

{
4

3 max(ξ − 2ζ)
: ζ <

1

2
ξ

}
,

which is combined with the result max {ξ−2ζ}=max
{
−0.01 (k2+l2)

2
+3.2 (k2+l2) , (k, l) ∈ ŜN

}
=

256 (k=4, l=12) to yield τ . 5.2× 10−3; when (α0, β0, β2) = (1/3, 0, 2/3),

τ <

{
4

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

which gives τ . 7.0× 10−3; and when (α0, β0, β2) = (1/3,−1/6, 1/2),

τ < − 4

3 min(ζ)
,

which gives τ . 1.02× 10−4. Note that those time stepsize estimates for SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4) are sufficient, and when (α0, β0, β2) = (1/3,−1/6, 1/2), the

GLTD is not algebraically stable and the time stepsize is constrained much severely for the

Cahn-Hilliard model (3.5).
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3.3. Phase field crystal model

The phase field crystal model

∂u

∂t
= ∆µ, µ = u3 + (1− ε)u+ 2∆u+ ∆2u, x ∈ Ω, t > 0, (3.7)

can be derived from the H−1 gradient flow of the free energy

E(u) =

∫
Ω

[
1

4
u4 +

1− ε
2

u2 − |∇u|2 +
1

2
(∆u)2

]
dx.

Such model may be used to describe many crystal phenomena such as edge dislocations [5], fcc

ordering [50], epitaxial growth and zone refinement [15], and is a sixth-order nonlinear partial

differential equation.

In order to apply SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) to (3.7) successfully,

the operators L, G and the energy E1(u) are chosen as

L = ∆2, G = ∆, E1(u) =

∫
Ω

[
1

4
u4 +

1−ε
2
u2 − |∇u|2

]
dx.

Example 3.5. This example applies SAV-M(3) with or without the de-aliasing by zero-padding

to the phase field crystal model (3.7). The parameter ε is taken as 0.25, the domain Ω =

(0, 100)×(0, 100) is partitioned withN = 200 or 400, and the initial data is chosen as u(x, y, 0) =

0.5 sin
(
πx
50

)
sin
(
πy
50

)
.

Figure 3.16 shows the contour lines and cut lines of the numerical solutions at t = 1000

derived by SAV-M(3) with or without de-aliasing. Some visible differences between those nu-

merical solutions with N = 200 can be observed, but the differences are indistinguishable for

N = 400. Figure 3.17 gives the snapshots of the numerical solutions at t = 1000 computed

by SAV-M(3) with the de-aliasing. Figure 3.18 presents the cut lines of numerical solutions at

t = 545 and 670. The results show that the numerical solutions by SAV-M(3) with or without

the de-aliasing may have some differences at intermediate times.

Example 3.6. It simulates the polycrystal growth in a supercool liquid and investigates the

modified- and original-energy stabilities of SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4).
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Figure 3.16: Example 3.5. Left: contour lines of u with the value of −0.1; right: cut lines of the numerical
solutions along x = 2π. Top: N = 200; bottom: N = 400.

Figure 3.17: Example 3.5. Snapshots of the numerical solutions at t = 1000 derived by SAV-M(3) with the
de-aliasing. Left: N = 200; right: N = 400.
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Figure 3.18: Example 3.5. Cut lines of the numerical solutions along y = x, x ∈ [0, 30], at t = 545 (Left) and
t = 670 (Right).

For this purpose, the domain Ω = (0, 400)×(0, 400) is partitioned with N = 400, the parameter

ε = 0.25, and the initial value is taken as (see e.g. [34])

u(x, y, 0) =



φ0+B
[
cos
(√

6ϑ
6

(y−x)
)

cos
(√

2ϑ
2

(x+y)
)
− 1

2
cos
(√

6ϑ
3

(y−x)
)]
, (x, y)∈Ω1,

φ0+B
[
cos
(√

6ϑ
6

(x+y)
)

cos
(√

2ϑ
2

(y−x)
)
− 1

2
cos
(√

6ϑ
3

(x+y)
)]
, (x, y)∈Ω2,

φ0+B
[
cos
(

ϑ√
3
x
)

cos(ϑy)− 1
2

cos
(

2ϑ√
3
x
)]
, (x, y)∈Ω3,

φ0, (x, y)∈Ω\(Ω1 ∪ Ω2 ∪ Ω3),

where φ0 = 0.285, B = 0.446, ϑ = 0.66, Ω1 = [130, 170]× [130, 170], Ω2 = [230, 270]× [130, 170],

and Ω3 = [180, 220]× [230, 270].

Figure 3.19 presents the discrete total modified-energy curves of SAV-M(1)∼SAV-M(4) and

G-SAV-M(1)∼G-SAV-M(4). They are monotonically decreasing, and consistent with the theoret-

ical results. Figure 3.20 shows the discrete total original-energy curves of SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4) for (3.7). It is shown that those schemes can preserve the

original-energy decay if a suitable time stepsize is chosen. Figure 3.21 gives the numerical

solution at t = 2400 derived by G-SAV-M(4) with τ = 15 and 12. One can find the numerical

solution derived by G-SAV-M(4) with τ = 12 is similar to that in [34, 44], but when τ = 15, an

the solution is inaccurate and the original-energy is not monotonically decreasing. Remark 3.4

will discuss the time stepsize constraints of SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4)

for the phase field crystal model (3.7).
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Figure 3.19: Example 3.6. The discrete total modified-energy curves of SAV-M(1)∼SAV-M(4) and
G-SAV-M(1)∼G-SAV-M(4) for the phase field crystal model (3.7).

29



0 500 1000 1500 2000
4950

5000

5050

5100

5150

5200

5250
 SAV-M(1) with τ = 12
 SAV-M(1) with τ = 5
 G-SAV-M(1) with τ = 12
 G-SAV-M(1) with τ = 5

0 500 1000 1500 2000
4850

4900

4950

5000

5050

5100

5150

5200

5250
 SAV-M(2) with τ = 5
 SAV-M(2) with τ = 2
 G-SAV-M(2) with τ = 8
 G-SAV-M(2) with τ = 5

0 500 1000 1500 2000
4850

4900

4950

5000

5050

5100

5150

5200

5250
 SAV-M(3) with τ = 8
 SAV-M(3) with τ = 5
 G-SAV-M(3) with τ = 18
 G-SAV-M(3) with τ = 12

0 500 1000 1500 2000
4850

4900

4950

5000

5050

5100

5150

5200

5250
 SAV-M(4) with τ = 8
 SAV-M(4) with τ = 5
 G-SAV-M(4) with τ = 15
 G-SAV-M(4) with τ = 12

Figure 3.20: Same as Figure 3.19, except for the original-energy.

Figure 3.21: Example 3.6. Numerical solutions at t = 2400 derived by G-SAV-M(4) with τ = 15 (Left) and 12
(Right), respectively.
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Figure 3.22: Example 3.6. ψn (y-axis) derived by SAV-M(1)∼SAV-M(4) (Left) and G-SAV-M(1)∼G-SAV-M(4)
with τ = 1.

Remark 3.4. This remark discusses the time stepsize constraints of SAV-M(1)∼SAV-M(4) and

G-SAV-M(1)∼G-SAV-M(4) for the phase field crystal model (3.7).

Applying the Fourier pseudo-spectral method to (3.7) yields the ODE system

dûk,l
dt

= −π
3 (k2+l2)

3

2003
ûk,l −

π(k2+l2)

200

[
ŵk,l +

3

8
ûk,l −

π(k2+l2)

100
ûk,l

]
, (3.8)

where {ŵk,l, (k, l) ∈ ŜN} are the discrete Fourier coefficients of the cubic term u3 and given by

(3.4). Similarly, (3.8) can be viewed as the test equation (D.1) with

ξ = −π
3 (k2 + l2)

3

2003
, ζ = −π(k2+l2)

200

 3

N2

∑
(i,j)∈SN

|ui,j|2+
3

8
−π(k2+l2)

100

, (k, l) ∈ ŜN .

For Example 3.6, Figure 3.22 gives the curves of ψn = 3
N2

∑
(i,j)∈SN

|ui,j|2 derived by SAV-M(1)∼SAV-M(4)

and G-SAV-M(1)∼G-SAV-M(4) with τ = 1. It is shown that ψn ≤ 0.5 so that ζ ≥ −π(k2+l2)
200

[
7
8
− π(k2+l2)

100

]
.

In the following, one may take ζ ≈ −π(k2+l2)
200

[
7
8
− π(k2+l2)

100

]
and use Appendix D to discuss the

time stepsize constraints for SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4). Specifically,

when (α0, β0, β2) = (0, 0, 1), it requires

τ <

{
2

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

and a simple calculation shows that when k = 3 and l = 2, max {ξ − 3ζ} = 0.2788, which gives
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τ . 7.21; when (α0, β0, β2) = (−1/3, 5/12, 3/4),

τ <

{
4

3 max(ξ − 2ζ)
: ζ <

1

2
ξ

}
,

which is combined with max {ξ − 2ζ} = 0.2964 for k = 2 and l = 3 to get τ . 7.32; when

(α0, β0, β2) = (1/3, 0, 2/3),

τ <

{
4

max(ξ − 3ζ)
: ζ <

1

3
ξ

}
,

so that τ . 14.42; and when (α0, β0, β2) = (1/3,−1/6, 1/2),

τ < − 4

3 min(ζ)
,

which yields τ . 13.99 since min(ζ) = 0.1524 for k = 3 and l = 2. Note that those time stepsize

estimates for SAV-M(1)∼SAV-M(4) and G-SAV-M(1)∼G-SAV-M(4) are sufficient. Compared to

the numerical results shown in Figure 3.20, one needs to take slightly smaller time stepsizes

to ensure the original-energy decay when SAV-M(1)∼SAV-M(4) are applied to (3.7), but the

above time stepsize estimates are almost consistent with those in numerical experiments for

G-SAV-M(1)∼G-SAV-M(4).

4. Conclusion

This paper continued to study linear and unconditionally modified-energy stable numerical

schemes (abbreviated as SAV-GL) for the gradient flows. Those schemes were built on the

SAV technique and the general linear time discretizations (GLTD) as well as the extrapolation

for the nonlinear term, and two linear systems with the same constant coefficient were solved

at each time step. Different from [44], the GLTDs with three parameters discussed here were

not necessarily algebraically stable. Some algebraic identities were first derived by using the

method of undetermined coefficients and then used to establish the modified-energy inequalities

for the unconditional modified-energy stability of the semi-discrete-in-time SAV-GL schemes. It

was worth emphasizing that those algebraic identities or energy inequalities are not necessarily

unique for some choices of three parameters in the GLTDs. In order to demonstrate numerically

the energy stability of our SAV-GL schemes, the Fourier pseudo-spectral spatial discretization
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was employed for the gradient flow models with periodic boundary conditions. The effect of the

aliasing error and the de-aliasing by zero-padding provided in Appendix C on the numerical

results were investigated.

Numerical experiments were conducted on the Allen-Cahn, the Cahn-Hilliard, and the

phase field crystal models, and well demonstrated the unconditional modified-energy stability of

SAV-M(1)∼ SAV-M(4) in comparison to another SAV-GL schemes (abbreviated as G-SAV-M(1)∼

G-SAV-M(4)) built on the generalized SAV and the effectiveness of the de-aliasing by zero-

padding. Numerical results also showed that a suitable time stepsize were required for the

SAV-GL schemes to ensure the original-energy decay. With the help of discussing the stabil-

ity regions for the semi-implicit SAV-GL schemes applied to the test equation in Appendix

D, the time stepsizes for SAV-M(1)∼ SAV-M(4) were estimated for the Allen-Cahn, the Cahn-

Hilliard, and the phase field crystal models. Our computations showed that those time stepsize

constraints could ensure the original-energy decay essentially.
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Appendix A. Proof of Lemma 2.1

This appendix proves Lemma 2.1 by discussing the A-stability conditions of the fully implicit

time discretizations based on (2.3)-(2.4).

36



Applying (2.3)-(2.4) to the test equation

du

dt
= u′(t) = ξu(t), t ∈ (0, T ], u(0) = u0,

yields

1

1−α0

un+1 −
1+α0

1−α0

un +
α0

1−α0

un−1 = ξ̄

[
β2

1−α0

un+1 +
β1

1−α0

un +
β0

1−α0

un−1

]
, (A.1)

where ξ̄ = ξτ , ξ is a complex number, and the symbol un have been temporarily used to replace

the previous approximate solution un for convenience. Substituting uj = xj into (A.1) and

dividing by xn−1 give the characteristic equation

ρ(x)− ξ̄σ(x) = 0, (A.2)

with

ρ(x) =
1

1−α0

x2 − 1+α0

1−α0

x+
α0

1−α0

, σ(x) =
β2

1−α0

x2 +
β1

1−α0

x+
β0

1−α0

.

According to [24, Def. 1.1], the scheme (A.1) is A-stable iff for any ξ̄ ∈ C−, all solutions of

(A.2) are smaller or equal to one in modulus, and the multiple solutions are strictly smaller

than one. It is known that all roots of the polynomial c2x
2 + c1x + c0 are smaller or equal to

one in modulus iff |c0| ≤ |c2| and |c1| ≤ |c0 + c2|, see e.g. [7]. Thus, when

∣∣α0 − β0ξ̄
∣∣ ≤ ∣∣1− β2ξ̄

∣∣ , ∣∣1 + α0 − β1ξ̄
∣∣ ≤ ∣∣1 + α0 − (β0+β2) ξ̄

∣∣ , (A.3)

for any ξ̄ ∈ C−, all roots of the characteristic polynomial

P(x) := ρ(x)− ξ̄σ(x) =

(
1

1−α0

− β2

1−α0

ξ̄

)
x2 −

(
1+α0

1−α0

− β1

1−α0

ξ̄

)
x+

α0

1−α0

− β0

1−α0

ξ̄,

are smaller or equal to one in modulus so that the scheme (A.1) is A-stable. Let ξ̄ = a + ıb

with ı =
√
−1, a ≤ 0 and b ∈ R. The first inequality in (A.3) is equivalent to

2a(α0β0−β2)+
(
β2

2−β2
0

) (
a2+b2

)
+1−α2

0 ≥ 0, ∀ a ≤ 0, b ∈ R.
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A direct check shows that the parameters α0, β0 and β2 should satisfy

−1 ≤ α0 < 1, α0β0 ≤ β2, |β0| ≤ |β2|,

which further gives

−1 ≤ α0 < 1, β2 > 0, |β0| ≤ β2. (A.4)

On the other hand, the second inequality in (A.3) is equivalent to

(2β0+2β2+α0−1) (1−α0) (a2+b2)+2(1+α0) (1−α0−2β0−2β2) a≥0, ∀ a ≤ 0, b ∈ R,

which yields

(2β0+2β2+α0−1) (1−α0) ≥ 0, (1+α0) (1−α0−2β0−2β2) ≤ 0. (A.5)

Combining (A.4) with (A.5) yields that the scheme (A.1) is A-stable when the parameters

α0, β0 and β2 satisfy

−1 ≤ α0 < 1, β2 > 0, |β0| ≤ β2, 1− α0 − 2β0 − 2β2 ≤ 0. (A.6)

Some special cases are discussed as follows.

• When α0 = β0 = 0, (A.1) reduces to a one-step scheme with parameter β2, i.e,

un+1 − un = β2ξ̄un+1 + (1−β2)ξ̄un, (A.7)

which is second-order accurate only for β2 = 1
2
. A direct check shows that the condition (A.6)

becomes β2 ≥ 1
2
, under which (A.7) is A-stable.

• When β2 = 1
2
(1 + α0) + β0, and α0 and β0 are not zero simultaneously, (A.1) reduces to a
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class of two-step and second-order schemes, i.e.,

1

1−α0

un+1−
1+α0

1−α0

un+
α0

1−α0

un−1 = ξ̄

[
1+α0+2β0

2(1−α0)
un+1+

1−3α0−4β0

2(1−α0)
un+

β0

1−α0

un−1

]
. (A.8)

It can be seen that (A.6) is simplified as −1 ≤ α0 < 1 and 2β0 + α0 ≥ 0, under which the

scheme (A.8) is A−stable. Moreover, if taking α0 = λ−1
λ+1

, β0 = 1−λ+δ
2(1+λ)

, β2 = 1+λ+δ
2(1+λ)

, then (A.8) is

rewritten into

1 + λ

2
un+1 − λun +

λ− 1

2
un−1 = ξ̄

[
1 + λ+ δ

4
un+1 +

1− δ
2

un +
1− λ+ δ

4
un−1

]
, (A.9)

so that it is A−stable for any λ ≥ 0, δ ≥ 0.

• When β2 6= 1
2
(1 + α0) + β0, and α0 and β0 are not zero simultaneously, (A.1) is two-step

but only first-order accurate. In this case, the condition (A.6) can not be simplified.

When the scheme (A.1) is A-stable, it may not be algebraically stable. For example, the

scheme (A.9) with λ ≥ 0 and δ > 0 is shown to be algebraically stable with the positive definite

matrix

G =
1

4

 (1 + λ)2 + δ 1− δ − λ2

1− δ − λ2 (λ− 1)2 + δ

 ,

see e.g. [13], but it is not algebraically stable when λ ≥ 0 and δ = 0. In fact, if (A.9) with

λ ≥ 0 and δ = 0 is algebraically stable, then Theorem 3.2 in [13] shows that corresponding

matrix Ḡ should satisfy

(1, 1)Ḡ =
1

2
(1+λ, 1−λ) , (1, 0)Ḡ =

1

4

(
(1+λ)2, 1−λ2

)
,

which uniquely gives

Ḡ =
1

4

 (1 + λ)2 1− λ2

1− λ2 (λ− 1)2

 .

Obviously, Ḡ is not positive definite so that (A.9) with λ ≥ 0 and δ = 0 is not algebraically

stable. Thus, when β2 = 1
2
(1 + α0) + β0, and α0 and β0 are not zero simultaneously, (A.1) is

algebraically stable for any −1 ≤ α0 < 1 and 2β0 + α0 > 0, but is not algebraically stable for
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−1 ≤ α0 < 1 and 2β0 + α0 = 0.

Appendix B. Proof of Lemma 2.2

This appendix proves Lemma 2.2, which plays an important role for the modified-energy

stability of the SAV-GL scheme (2.7), whose time discretization is not necessarily algebraically

stable.

The establishment of the identities (2.8)-(2.10) in Lemma 2.2 is motivated by the identities

in [41, 54], and may be completed by using the method of undetermined coefficients. Suppose

the parameters α0, β0, and β2 in (2.3)-(2.5) satisfy the condition (A.6). In order to derive the

modified-energy stability of our SAV-GL scheme (2.7), we expect the following identity

( 1

1−α0

χn+1−1+α0

1−α0

χn +
α0

1−α0

χn−1
)( β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1
)

= a
[(
χn+1

)2 − (χn)2
]

+ b
[
(χn)2 −

(
χn−1

)2
]

+ d
[
χn+1χn − χnχn−1

]
+
(
c1χ

n+1 + c2χ
n + c3χ

n−1
)2
, (B.1)

where a, b, d and ci, i = 1, 2, 3 are six undetermined real coefficients. Expanding the term at

the left hand side of (B.1) and then comparing each coefficient with that at the right hand side

yield

a+ c2
1 =

β2

(1− α0)2
, b− a+ c2

2 = −(1 + α0)β1

(1− α0)2
,

c2
3 − b =

α0β0

(1− α0)2
, 2c1c2 + d =

β1

(1− α0)2
− (1 + α0)β2

(1− α0)2
,

2c2c3 − d =
α0β1

(1− α0)2
− (1 + α0)β0

(1− α0)2
, 2c1c3 =

β0

(1− α0)2
+

α0β2

(1− α0)2
.

(B.2)

Adding all six equations gives (c1 + c2 + c3)2 = 0, which implies

c1 + c2 + c3 = 0. (B.3)
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The fourth and fifth equations in (B.2) may gives

2c2(c1 + c3)=
(1 + α0)(β1 − β0 − β2)

(1− α0)2
,

which is combined with (B.3) to give c2 =±
√

2(1+α0)(β0+β2−β1)

2(1−α0)
. Note that (1+α0)(β0+β2−β1) =

(1 + α0)(2β0 + 2β2 + α0 − 1) ≥ 0 when the condition (A.6) holds. If substituting c2 into (B.3)

and combining it with the sixth equation in (B.2), then it is obvious that c1 and c3 are two

solutions of x2 + c2x+ β0+α0β2
2(1−α0)2

= 0, so that

c1 = −c2

2
+

√
c2

2

4
− β0+α0β2

2(1−α0)2
c3 = −c2

2
−

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

or

c1 = −c2

2
−

√
c2

2

4
− β0+α0β2

2(1−α0)2
, c3 = −c2

2
+

√
c2

2

4
− β0+α0β2

2(1−α0)2
.

We expect that the term
c22
4
− β0+α0β2

2(1−α)2
is non-negative so that both c1 and c3 are real, and will

discuss that in three cases below. If
c22
4
− β0+α0β2

2(1−α)2
is non-negative, then inserting c1 and c3 into

the first, third and fifth equations in (B.2) yields

a =
2β2+β0+α0β2

2(1−α0)2
− c2

2

2
+ c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

b = −α0β0+β0+α0β2

2(1−α0)2
+
c2

2

2
+ c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

d = −α0β1−(1+α0)β0

(1−α0)2
− c2

2 − 2c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

or

a =
2β2+β0+α0β2

2(1−α0)2
− c2

2

2
− c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

b = −α0β0+β0+α0β2

2(1−α0)2
+
c2

2

2
− c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
,

d = −α0β1−(1+α0)β0

(1−α0)2
− c2

2 + 2c2

√
c2

2

4
− β0+α0β2

2(1−α0)2
.
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Those undetermined coefficients can give the final identity (B.1), which may be not unique.

Let us discuss when
c22
4
− β0+α0β2

2(1−α)2
is non-negative.

• When α0 = β0 = 0, the condition (A.6) reduces to β2 ≥ 1
2

so that
c22
4
− β0+α0β2

2(1−α)2
= β2 − 1

2
is

non-negative and six undetermined coefficients reduce to

c2 = ±
√
β2 −

1

2
, c1 = 0, c3 = ∓

√
β2 −

1

2
, a = β2, b = β2 −

1

2
, d = 1− 2β2,

or

c2 = ±
√
β2 −

1

2
, c1 = ∓

√
β2 −

1

2
, c3 = 0, a =

1

2
, b = 0, d = 0.

Therefore, when α0 = β0 = 0 and β2 ≥ 1
2
, the identity (B.1) becomes

(
χn+1 − χn

) (
β2χ

n+1 + (1−β2)χn
)

= β2

[(
χn+1

)2 − (χn)2
]

+

(
β2 −

1

2

)[
(χn)2 −

(
χn−1

)2
]

+ (1− 2β2)
[
χn+1χn − χnχn−1

]
+

(
β2−

1

2

)(
χn − χn−1

)2
, (B.4)

or

(
χn+1 − χn

) (
β2χ

n+1 + (1−β2)χn
)

=
1

2

[(
χn+1

)2 − (χn)2
]

+

(
β2−

1

2

)(
χn+1 − χn

)2
. (B.5)

Both of them are equivalent to each other, and can be used to study the modified-energy

stability of the SAV-GL scheme (2.7) with different energy inequalities by ignoring the last

positive terms in (B.4) and (B.5).

•When β2 = 1+α0

2
+β0, α0 and β0 are not zero simultaneously, it can be checked

c22
4
− β0+α0β2

2(1−α)2
= 0

and the condition (A.6) reduces to −1 ≤ α < 1, 2β0 + α0 ≥ 0 so that six undetermined

coefficients reduce to

c2 =±
√

(1 + α0)(2β0 + α0)

1− α0

, c1 = c3 = −c2

2
, a =

2 + α0 − α2
0 + 2β0(1− α0)

4(1− α0)2
,

b =
α0 + α2

0 + 2β0(1− α0)

4(1− α0)2
, d =

(α0 − 1)(2β0 + α0 − 1)− (α0 + 1)

2(1− α0)2
,
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which uniquely determine the identity

(
1

1−α0

χn+1 − 1+α0

1−α0

χn +
α0

1−α0

χn−1

)(
β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1

)
=

2+α0−α2
0+2β0(1−α0)

4(1−α0)2

[(
χn+1

)2−(χn)2
]
+
α0+α2

0+2β0(1−α0)

4(1−α0)2

[
(χn)2−

(
χn−1

)2
]

+
(α0−1)(2β0+α0−1)−(α0+1)

2(1−α0)2

[
χn+1χn−χnχn−1

]
+

(1+α0)(2β0+α0)

4(1−α0)2

(
χn+1−2χn+χn−1

)2
. (B.6)

•When β2 6= 1+α0

2
+ β0 and α0 and β0 are not zero simultaneously, the condition (A.6) can not

guarantee
c22
4
− β0+α0β2

2(1−α0)2
to be non-negative. For this reason, we add a parameter constraint

c2
2

4
− β0+α0β2

2(1−α0)2
=

(1+α0)(2β0+2β2+α0−1)−4β0−4α0β2

8(1−α0)2
≥ 0, (B.7)

which implies β2 ≥ 1+α0

2
+ β0. Figure B.1 (a) shows the region of the parameters α0, β0 and

β2 satisfying (A.6) and (B.7). Specifically, when β0 = 0, the conditions (A.6), (B.7) and

β2 6= 1+α0

2
+ β0 reduce to

β2 > 0, β2 ≥
1− α0

2
, β2 >

1 + α0

2
,

and the region of α0 and β2 satisfying the above inequalities is shown in Figure B.1 (b). As an

example, one chooses β0 = 0, α0 = 1
2

and β2 = 1, which locates in the region of green color. In

that case, the values of six undetermined coefficients are

c1 =
√

2, c2 = −3
√

2

2
, c3 =

√
2

2
, a = 2, b =

1

2
, d = −2,

or

c1 =

√
2

2
, c2 = −3

√
2

2
, c3 =

√
2, a =

7

2
, b = 2, d = −5,

which can determine the following identities

(
2χn+1 − 3χn + χn−1

) (
2χn+1 − χn

)
= 2

[(
χn+1

)2 − (χn)2
]
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+
1

2

[
(χn)2 −

(
χn−1

)2
]
− 2

[
χn+1χn − χnχn−1

]
+

(
√

2χn+1 − 3
√

2

2
χn +

√
2

2
χn−1

)2

,

and

(
2χn+1 − 3χn + χn−1

) (
2χn+1 − χn

)
=

7

2

[(
χn+1

)2 − (χn)2
]

+ 2
[
(χn)2 −

(
χn−1

)2
]
− 5

[
χn+1χn − χnχn−1

]
+

(√
2

2
χn+1 − 3

√
2

2
χn +

√
2χn−1

)2

.

However, when taking β0 = 0, α0 = 1
2

and β2 = 2
3
, the condition (A.6) holds but (B.7) does

not hold, so that one can not obtain six undetermined real coefficients in (B.1). In summary,

when β2 6= 1+α0

2
+ β0 and α0 and β0 are not zero simultaneously, under the conditions (A.6)

and (B.7), the identity (B.6) can be derived as follows

(
1

1−α0

χn+1 − 1+α0

1−α0

χn +
α0

1−α0

χn−1

)(
β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1

)
=

[
1−α2

0+2β2−2α0β0

4(1−α0)2
+cc̃

][(
χn+1

)2−(χn)2
]
+

[
2β2+α2

0−1

4(1−α0)2
+cc̃

][
(χn)2−

(
χn−1

)2
]

+

[
1

2
+
α0β0−β2

(1−α0)2
−2cc̃

][
χn+1χn−χnχn−1

]
+

[(
c− c̃

2

)
χn+1+c̃χn−

(
c+

c̃

2

)
χn−1

]2

, (B.8)

or

(
1

1−α0

χn+1 − 1+α0

1−α0

χn +
α0

1−α0

χn−1

)(
β2

1−α0

χn+1 +
β1

1−α0

χn +
β0

1−α0

χn−1

)
=

[
1−α2

0+2β2−2α0β0

4(1−α0)2
−cc̃

][(
χn+1

)2−(χn)2
]
+

[
2β2+α2

0−1

4(1−α0)2
−cc̃

][
(χn)2−

(
χn−1

)2
]

+

[
1

2
+
α0β0−β2

(1−α0)2
+2cc̃

][
χn+1χn−χnχn−1

]
+

[
−
(
c+

c̃

2

)
χn+1+c̃χn+

(
c− c̃

2

)
χn−1

]2

, (B.9)

where

c =

√
2β2−2β0−α0−1

8(1− α0)
, c̃ = −

√
2(1+α0)(2β0+2β2+α0−1)

2(1−α0)
.
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(a) Conditions (A.6) and (B.7).
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(b) Conditions (A.6), (B.7), and β0 = 0.

Figure B.1: The region of the parameters α0, β0, and β2.

Appendix C. De-aliasing in FFT by zero-padding

This appendix introduces the de-aliasing by zero-padding for the cubic term when the

Fourier pseudo-spectral method is used for the spatial discretization of the semi-discrete-in-

time SAV-GL scheme (2.7) in our numerical experiments on the Allen-Cahn, the Cahn-Hilliard

and the phase field crystal models in Section 3.

Let N be an even integer and û = (ûk,l)N×N be the discrete Fourier coefficients of u =

(ui,j)N×N , and define w = (wi,j)N×N with wi,j = u3
i,j. Suppose ŵ = (ŵk,l)N×N is the discrete

Fourier coefficients of w, then a simple calculation shows that

ŵk,l =
1

N4

∑
(m,n),(p,q)∈ŜN

ûm,nûp,qûk−m−p,l−n−q

=
1

N4

∑
(m,n),(p,q)∈ŜN

(k−m−p,l−n−q)∈ŜN

ûm,nûp,qûk−m−p,l−n−q +
1

N4

∑
(m,n),(p,q)∈ŜN

(k−m−p,l−n−q)/∈ŜN

ûm,nûp,qûk−m−p,l−n−q. (C.1)

The second summation on the right hand side of (C.1) is called the aliasing error, and it can be

observed that the modes with wave number k−m−p > N
2

or l−n− q > N
2

are aliased to those

with k−m− p−N or l− n− q−N , while the modes with wave number k−m− p < −N
2

+ 1

or l − n− q < −N
2

+ 1 are aliased to those with k −m− p+N or l − n− q +N .

The importance of eliminating the aliasing errors, called de-aliasing, has been studied by

Orszag [36]. Here, we consider the zero-padding, see e.g. [8, §3.4.2], whose main idea is to

use the discrete inverse Fourier transform for ŭ = (ŭk,l)K×K instead of û = (ûm,n)N×N , where
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K > N is an undetermined number, and ŭ is defined by zero padding as follows

ŭk,l =


ûk,l, (k, l) ∈ ŜN ,

0, otherwise.

If letting ũ = (ũi,j)K×K be the inverse Fourier transform of ŭ, defining w̃ = (w̃i,j)K×K with

w̃i,j = ũ3
i,j, and computing the discrete Fourier coefficients of w̃ by

w̆k,l :=
1

K4

∑
(m,n),(p,q)∈ŜK

(k−m−p,l−n−q)∈ŜK

ŭm,nŭp,qŭk−m−p,l−n−q +
1

K4

∑
(m,n),(p,q)∈ŜK

(k−m−p,l−n−q)/∈ŜK

ŭm,nŭp,qŭk−m−p,l−n−q, (C.2)

then one can choose the smallest K > N such that the second summation on the right-hand

side of (C.2) vanishes for (k, l) ∈ ŜN , and then the de-aliased discrete Fourier coefficients of

w = (u3
i,j) are derived by

ŵDe

k,l =

(
K

N

)4

w̆k,l, (k, l) ∈ ŜN .

It can be observed that the de-aliased coefficients ŵDe
k,l, (k, l) ∈ ŜN is equivalent to the first

summation on the right hand side of (C.1).

The remaining issue is how to determine K. In order to make the second summation on the

right-hand side of (C.2) to be zero, one needs ŭm,nŭp,qŭk−m−p,l−n−q = 0 for any (m,n), (p, q) ∈

ŜK and (k −m − p, l − n − q) /∈ ŜK . Let ŜKN = {(k, l) ∈ Z2|(k, l) ∈ ŜK and (k, l) /∈ ŜN}. It

is obvious that ŭm,nŭp,qŭk−m−p,l−n−q = 0 for (m,n) ∈ ŜKN or (p, q) ∈ ŜKN . Hence, one only

needs to consider the indexes (m,n) ∈ ŜN and (p, q) ∈ ŜN . In that case, the modes ŭm,n and

ŭp,q usually are not zero so that it requires ŭk−m−p,l−n−q = 0 for (k −m − p, l − n − q) /∈ ŜK .

Consequently, when the wave number k−m−p > K
2

or l−n−q > K
2

, one needs k−m−p−K <

−N
2

+ 1 and l−n− q−K < −N
2

+ 1, since the modes with k−m− p > K
2

or l−n− q > K
2

are

aliased to those with k −m− p−K or l− n− q −K. The largest possible value of k −m− p

and l− n− q is 3
2
N − 2, and thus the inequality 3

2
N − 2−K < −N

2
+ 1 gives K > 2N − 3. In

a similar way, when the wave number k −m− p < −K
2

+ 1 or l − n− q < −K
2

+ 1, it requires

k−m− p+K > N
2

and l− n− q +K > N
2

such that the modes with those wave numbers are

zero. Since the smallest possible value of k −m− p and l− n− q is −3
2
N + 1, one can deduce
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K > 2N − 1. In summary, one can take K = 2N in actual applications, and the de-aliased

discrete Fourier coefficients of w = (u3
i,j) with zero padding are computed as follows:

(1) For given 2D vector u = (ui,j)N×N , compute the discrete Fourier coefficients û by the FFT;

(2) Extend û to ŭ by zero padding with K = 2N , perform the inverse Fourier transform of ŭ

to derive ũ by the inverse FFT, and then compute w̃ = (ũ3
i,j)K×K ;

(3) Compute the discrete Fourier coefficients w̆ of w̃ by the FFT, then multiply a scaling

factor
(
K
N

)4
and drop the extra wave numbers to obtain ŵ

De, the de-aliased discrete

Fourier coefficients of w = (u3
i,j).

Several numerical examples in Section 3 will be given to demonstrate the effectiveness of the

above de-aliasing procedure. Moreover, such de-aliasing by zero-padding can be easily extended

to a general polynomial nonlinear term up, p ≥ 3, by setting K = p+1
2
N and the scaling factor

in step (3) as
(
K
N

)2(p−1)
, where 2 in the exponent is the spatial dimension.

Appendix D. Estimating the time stepsize for the SAV-GL scheme

This appendix estimates the time stepsize of the SAV-GL scheme (2.7) with the Fourier

pseudo-spectral spatial discretization with the help of the following test equation

u′(t) = ξu(t) + ζu(t), (D.1)

where ξ < 0, |ζ| ≤ |ξ|. Applying (2.3)-(2.5) to (D.1) yields the semi-implicit scheme

1

1−α0

un+1 −
1+α0

1−α0

un +
α0

1−α0

un−1 = ξ̄

[
β2

1−α0

un+1 +
β1

1−α0

un +
β0

1−α0

un−1

]
+ ζ̄

[
1−α0+β2−β0

1−α0

un −
β2−β0

1−α0

un−1

]
, (D.2)

where ξ̄ = ξτ , ζ̄ = ζτ , the parameters α0, β0 and β2 are assumed to satisfy (A.6). It is known

that (D.2) is stable iff all roots of the characteristic polynomial defined by

Q(x)=

[
1

1−α0

− β2

1−α0

ξ̄

]
x2−

[
1+α0

1−α0

+
β1

1−α0

ξ̄+
1−α0+β2−β0

1−α0

ζ̄

]
x+

α0

1−α0

− β0

1−α0

ξ̄+
β2−β0

1−α0

ζ̄ .
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are smaller or equal to one in modulus. In order to make sure the roots of Q(x) are smaller or

equal to one in modulus, one requires

∣∣α0 − β0ξ̄ + (β2 − β0) ζ̄
∣∣ ≤ ∣∣1− β2ξ̄

∣∣ ,∣∣1 + α0 + β1ξ̄ + (1− α0 + β2 − β0) ζ̄
∣∣ ≤ ∣∣1 + α0 − (β0 + β2) ξ̄ + (β2 − β0) ζ̄

∣∣ ,
which is equivalent to

1+α0−(β0+β2) ξ̄+(β2−β0) ζ̄ ≥ 0, 1−α0+(β0−β2) ξ̄−(β2−β0) ζ̄ ≥ 0,

2(1+α0)+(β1−β0−β2) ξ̄+(1−α0+2β2−2β0) ζ̄≥0, −(β1+β0+β2) ξ̄−(1−α0) ζ̄≥0.

(D.3)

Thus, the boundary of the stability region of (D.2) can be represented by the curves 1+α0−

(β0+β2) ξ̄+ (β2−β0) ζ̄ = 0, 1−α0 + (β0−β2) ξ̄− (β2−β0) ζ̄ = 0, 2(1 +α0) + (β1−β0−β2) ξ̄+

(1−α0+2β2−2β0) ζ̄ = 0 and −(β1+β0+β2) ξ̄−(1−α0) ζ̄ = 0.

Next, we discuss two special cases.

• When α0 = β0 = 0 and β2 ≥ 1
2
, the condition (D.3) reduces to

1−β2ξ̄+β2ζ̄ ≥ 0, 1−β2ξ̄−β2ζ̄ ≥ 0, 2+(1−2β2) ξ̄+(1+2β2) ζ̄≥0, ξ̄ + ζ̄≤0. (D.4)

Since ξ < 0 and |ζ| ≤ |ξ|, the latter two inequalities imply the first two inequalities in (D.4), so

that the boundary of the stability regions of (D.2) is determined by the curves 2+(1−2β2) ξ̄+

(1+2β2) ζ̄ = 0 and ξ̄+ ζ̄ = 0. Figure D.1 gives the stability regions of (D.2) with (α0, β0, β2) =

(0, 0, 1) and (0, 0, 2). One can deduce that the scheme (D.2) is unconditionally stable when

ξ < 0 and 2β2−1
2β2+1

ξ ≤ ζ < |ξ|, and is stable under the time stepsize condition τ < 2
(2β2−1)ξ−(2β2+1)ζ

when ξ < 0 and ζ < 2β2−1
2β2+1

ξ.

• When β2 = 1+α0

2
+ β0, α0 and β0 are not zero simultaneously, and −1 ≤ α0 < 1 and

2β2 + α0 ≥ 0, the condition (D.3) reduces to

2(1+α0)− (4β0+α0+1)ξ̄ + (1+α0)ζ̄ ≥ 0, 2(1−α0)− (1+α0)ξ̄ − (1+α0)ζ̄ ≥ 0,

1 + α0 − (2β0+α0)ξ̄ + ζ̄ ≥ 0, ξ̄ + ζ̄ ≤ 0.

(D.5)
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Figure D.1: Stability regions (in green) of (D.2) for (α0, β0, β2) = (0, 0, 1) and (0, 0, 2).

Since ξ < 0 and |ζ| ≤ |ξ|, a direct check shows that the boundary of the stability region of (D.2)

can be represented only by the curves 1+α0−(2β0+α0)ξ̄+ ζ̄ = 0 and ξ̄+ ζ̄ = 0. Figure D.2 gives

the stability regions of (D.2) with (α0, β0, β2) = (−1/3, 5/12, 3/4), (1/3, 0, 1), (−1/3, 1/6, 1/2)

and (1/3,−1/6, 1/2), from which one can see that the stability region of (D.2) with 2β0+α0 6= 0

is much larger than that with 2β0+α0 = 0, so that the scheme (D.2) with 2β0+α0 6= 0 possesses

better stability properties. More specifically, for (D.2) with 2β0 + α0 = 0, the upper and lower

boundaries of the stability region are determined by the curves ζ̄ = −ξ̄ and ζ̄ = −(1 + α0),

respectively. Therefore, (D.2) with 2β0 + α0 = 0 is unconditionally stable when ξ < 0 and

0 ≤ ζ < |ξ|, and is stable under the time stepsize condition τ < −1+α0

ζ
when ξ < 0 and ζ < 0.

For (D.2) with 2β0 + α0 6= 0, the upper and lower boundaries of the stability region are the

curves ζ̄ = −ξ̄ and ζ̄ = (2β0+α0)ξ̄− (1+α0), respectively. Therefore, (D.2) with 2β0 +α0 6= 0 is

unconditionally stable when ξ < 0 and (2β0+α0)ξ ≤ ζ < |ξ|, and is stable under the condition

τ < 1+α0

(2β0+α0)ξ−ζ when ξ < 0 and ζ < (2β0+α0)ξ.
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Figure D.2: Stability regions of the scheme (D.2) with (α0, β0, β2) = (−1/3, 5/12, 3/4), (1/3, 0, 1),
(−1/3, 1/6, 1/2) and (1/3,−1/6, 1/2).
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