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Abstract

We are concerned with a novel Bayesian statistical framework for the characteriza-
tion of natural subsurface formations, a very challenging task. Because of the large
dimension of the stochastic space of the prior distribution in the framework, typically
a dimensional reduction method, such as a Karhunen-Leove expansion (KLE), needs
to be applied to the prior distribution to make the characterization computationally
tractable. Due to the large variability of properties of subsurface formations (such as
permeability and porosity) it may be of value to localize the sampling strategy so that
it can better adapt to large local variability of rock properties.

In this paper, we introduce the concept of multiscale sampling to localize the search
in the stochastic space. We combine the simplicity of a preconditioned Markov Chain
Monte Carlo method with a new algorithm to decompose the stochastic space into
orthogonal subspaces, through a one-to-one mapping of the subspaces to subdomains
of a non-overlapping domain decomposition of the region of interest. The localization
of the search is performed by a multiscale blocking strategy within Gibbs sampling:
we apply a KL expansion locally, at the subdomain level. Within each subdomain,
blocking is applied again, for the sampling of the KLE random coefficients.

The effectiveness of the proposed framework is tested in the solution of inverse
problems related to elliptic partial differential equations arising in porous media flows.
We use multi-chain studies in a multi-GPU cluster to show that the new algorithm
clearly improves the convergence rate of the preconditioned MCMC method. More-
over, we illustrate the importance of a few conditioning points to further improve the
convergence of the proposed method.

Keywords: Preconditioned MCMC, MCMC convergence, Inverse modeling,
Multiscale Sampling

1. Introduction

Markov chain Monte Carlo (MCMC) methods have important applications and
have experienced enormous developments since the original work of Metropolis-Hastings

ar
X

iv
:2

30
2.

11
14

9v
1 

 [
m

at
h.

N
A

] 
 2

2 
Fe

b 
20

23



[1, 2, 3]. These methods differ on the strategy used in their sampling stage. They can
be divided in two large classes, depending on whether they use or not the gradient of
the likelihood function. Methods that take advantage of the gradient information typi-
cally show improvement in the convergence rate to the equilibrium distribution. These
methods include, among many others, the MALA-Gibbs [4], Hamiltonian Monte Carlo
[5], and the active subspace method [6]. There are also Hessian-based procedures [7].
In the case of porous media flows gradient calculations can be computationally very
expensive (see [8] and references therein).

Our motivation for this work is the gradient-free uncertainty quantification in in-
verse problems associated with porous media flow problems in the field scale. For
this class of problems the likelihood calculation typically requires the numerical solu-
tion of very large problems in fine computational grids [9]. There are methods known
as upscaling [10], that aim at solving an approximate problem (with effective coeffi-
cients) on coarse grids, thus reducing drastically the cost of the simulations. The idea
of upscaling was used in [11] to define a two-stage or preconditioned MCMC (see also
[12] where a procedure of this type was proposed). In the preconditioned MCMC a
sample is first tested through a coarse grid numerical simulation with upscaled coef-
ficients. If it passes this filter, then a full fine grid simulation has to be performed to
determine if the sample is accepted. Computationally this is a quite effective procedure
because they do not require gradient calculations and samples can be discarded with
a coarse grid simulation. The methods of [11, 12] have been further investigated over
the years. Some developments of these methods include their application to flows in
fractured porous media [13], their multi-physics version [14], and their parallelization
in multi-core devices [15]. This procedure has also been successfully applied in the so-
lution of inverse problems in geophysics [16] and more recently a multi-level version
of [12] has been introduced [17]. We remark that although the preconditioned MCMC
is computationally more competitive than the Metropolis-Hastings algorithm, it still
shows slow convergence for large dimensional problems [16]. Thus, the development
of MCMC methods that show good convergence properties and do not require gradient
calculations remains as an important area for research.

In this work, the new Multiscale Sampling Method (MSM) is proposed. It is moti-
vated by multiscale methods for the solution of second order elliptic equations that are
based on a domain decomposition (see [18, 19] and references therein) that can pro-
duce solution for large problems taking advantage of the solution of a family of smaller
boundary value problems. In these methods the domain of the equation is decomposed
into non-overlapping subdomains, local multiscale basis functions are computed for
each subdomain, and a global interface problem is constructed and solved to couple
the local solutions and produce the global solution. In the Multiscale Sampling Method
the domain of the partial differential equation is also decomposed into non-overlapping
subdomains and a local truncated Karhunen-Loève expansion (KLE) [20] is used for
each subdomain. The final stage in the construction of one sample consists in applying
a local averaging procedure to remove discontinuities between adjacent subdomains.
The localized sampling is performed by Gibbs sampling [21].

We perform several multi-chain MCMC studies in a multi-GPU cluster to compare
the convergence of the preconditioned MCMC with and without multiscale sampling
for high-dimensional problems. We find that multiscale sampling has a huge impact
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in improving convergence rates for all problems considered. Moreover, acceptance
rates also increase when the multiscale sampling is used. One example is included to
illustrate the improved convergence that results from combining the proposed method
with a few points for conditioning the field of interest.

This work is organized as follows. We begin by describing the governing equations
for contaminant transport problems in Section 2. In Section 3 we present a Bayesian
framework for subsurface characterization and the KLE for the dimensional reduction.
We also recall methods for convergence assessment of MCMC methods. In Section 4
we describe the proposed method. Kriging and conditioning that will be used in our
numerical studies are discussed in Section 5. Numerical results from our experiments
appear in Section 6. Our conclusions appear in Section 7.

2. The Model Problem

2.1. Motivation
We consider a model for contaminant transport problems (or single-phase flow

problems) in a subsurface aquifer Ω with a heterogeneous permeability field. In this
model, the first equation of a system of governing equations is an elliptic equationu = −k(x)∇p in Ω

∇ · u = f in Ω,
(1)

where u and p represent the Darcy velocity and the fluid pressure, respectively, k(x) is
known as the absolute permeability field of the rock (a positive definite tensor), and f
represents sources and sinks. The elliptic equation is coupled to a hyperbolic equation

φ(x)
∂s(x, t)
∂t

+ ∇ · [s(x, t)u(x)] = 0, (2)

where s(x, t) is the contaminant concentration in the water and φ(x) is the porosity of
the rock.

The aquifer may contain many monitoring and injection wells. Our goal is to char-
acterize the permeability field of the domain of interest by using available fractional
flow data defined by

F(t) = 1 −

∫
∂Ωout

un(x)s(x, t) dy∫
∂Ωout

un(x) dy
,

where ∂Ωout and un(x) are the well outflow boundary and the normal components of
the velocity field, respectively. More details about single-phase flow problems can be
found in [22, 23]. In this paper we illustrate the proposed method in terms of the elliptic
equation (1).

2.2. Variational Formulation of the Pressure Equation
In this work we consider Ω ⊂ R2, a bounded domain with a Lipschitz boundary

∂Ω. For problems in R3 a formulation similar to the one we describe here is also
applicable. The velocity-pressure system is given by Eq. (1). In porous media flow
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applications typical boundary conditions that occur are Dirichlet (the pressure is given)
and Neumann (the normal component of the velocity is specified), which are expressed
as

p = gp ∈ H
1
2 (∂Ωp), u · n̂ = gu ∈ H−

1
2 (∂Ωu),

where ∂Ω = ∂Ωp ∪ ∂Ωu, ∂Ωp ∩ ∂Ωu = ∅ and n̂ is the outward unit normal vector.
Moreover, we assume f ∈ L2(Ω).

Our numerical approximation is derived from the weak formulation of the above
velocity-pressure problem. In order to introduce the weak formulation, we first define
the following spaces

W(Ω) = L2(Ω),

H(÷; Ω) = {v ∈ (L2(Ω))2 | ∇ · v ∈ L2(Ω)},

and the set

Vgu (Ω) = {v ∈ H(÷; Ω) | v · n̂ = gu on ∂Ωu},

for some function gu. The global weak form of the pressure-velocity system (1) is
given by finding {p,u} ∈ W × Vgu such that

(∇ · u,w)Ω = ( f ,w)Ω, ∀w ∈ W, (3)
(k−1(x)u, v)Ω − (p,∇ · v)Ω + 〈gb, v · n̂〉∂Ωp = 0, ∀v ∈ V0, (4)

where (·, ·)Ω is the L2(Ω) inner product and 〈·, ·〉∂Ω is the L2(∂Ω) inner product involving
line integration over ∂Ω.

The system (3-4) is approximated by the lowest order Raviart-Thomas space [24,
25] that is equivalent to cell-centered finite differences for a uniform partition of Ω. The
resulting problem for the pressure variable is symmetric positive definite. Thus, it can
be efficiently solved by a preconditioned gradient method [26]. We use the algebraic
multigrid method as a preconditioner and our elliptic solver has been developed to run
on GPUs [15, 27].

3. Subsurface Characterization

3.1. The Bayesian Framework
Our focus in this work is in the characterization of the permeability field condi-

tioned on pressure data. The available pressure data comes in the form of a red-black
chessboard pattern: we assume that pressure measurements are available at all black
cells (this type of problem has been investigated in [4] and references therein). The
(log of the) permeability field is denoted by ηηη and Rp refers to the reference pressure
data. A Bayesian statistical approach consisting of a preconditioned MCMC method
combined with a novel multiscale sampling strategy is used to solve the inverse prob-
lem for the permeability field. The posterior probability conditioned on the pressure
data Rp is given by Bayes’ rule:

P(ηηη|Rp) ∝ P(Rp|ηηη)P(ηηη), (5)
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where P(ηηη) denotes a prior distribution. The normalizing constant is not needed in an
iterative search within MCMC methods. The (log of) permeability field ηηη(θθθ) is built
by using a local KLE strategy and the chain θθθ is evolved by an MCMC method. A
Gaussian likelihood function is assumed (as in [11]), and it is given by

P(Rp|ηηη) ∝ exp
(
− (Rp − Rηηη)>Σ(Rp − Rηηη)

)
, (6)

where Rηηη refers to the simulated pressure data. We set the covariance matrix Σ to be
Σ = III/2σ2

R, where III and σ2
R refer to the identity matrix and the precision parameter,

respectively.
An MCMC algorithm is used to sample from the posterior distribution (5). In

the MCMC algorithm an instrumental distribution I(ηηηp|ηηη) is used to propose a sample
ηηηp = ηηη(θθθp) at each iteration, where ηηη denotes the previously accepted sample. For a
given permeability field, the system (3)-(4) is solved numerically to give Rηηη, and the
original Metropolis-Hastings [1, 2, 3] acceptance probability of a proposed sample is
given by

α(ηηη,ηηηp) = min
(
1,

I(ηηη|ηηηp)P(ηηηp|Rp)
I(ηηηp|ηηη)P(ηηη|Rp)

)
. (7)

In this work we consider a preconditioned MCMC method that will be discussed in
Section 4.2.

3.2. Dimensional Reduction
We use a Bayesian statistical framework along with MCMC methods where our nu-

merical simulator requires a permeability value in each cell of a partition of the domain
of interest. Therefore, we need to generate a large number of random permeability
values (based on the grid size) in each iteration that is infeasible from a practical point
of view. Thus, we need to reduce the dimension of the uncertainty parameter space de-
scribing the permeability field. We use KLE [20, 28] to achieve the desired dimensional
reduction of the parameter space. Next, we briefly discuss the KLE.

We consider log [k(x)] = Yk(x) to be a sample of a Gaussian field, where k(x)
represents the permeability field and x is a point in the domain Ω. We also consider
Yk(x) ∈ L2(Ω) with unit probability, i.e., Yk(x) is a second-order stochastic process. If
we assume E[(Yk)2] = 0, then, the permeability field Yk(x) can be written for a given
orthonormal basis {ϕi} of L2(Ω) as follows:

Yk(x) =

∞∑
i=1

Yk
i , ϕi(x), (8)

where Yk
i =

∫
Ω

Yk(x) are random coefficients, and ϕi(x) are eigenfunctions with the
corresponding eigenvalues λi = E[(Yk

i )2] > 0. The pairs (λi, ϕi(x)) satisfy the integral
equation ∫

Ω

R(x1, x2)ϕi(x2)dx2 = λiϕi(x1), i = 1, 2, ... (9)

for a given covariance function R(x1, x2). Setting θk
i = Yk

i /
√
λi in Eq. (8) we have

Yk(x) =

∞∑
i=1

√
λiθ

k
i ϕi(x), (10)
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where the eigenfunctions ϕi and the corresponding eigenvalues λi satisfy Eq. (9). The
eigenvalues are assumed to be arranged in descending order. The series shown in the
Eq. (10) is known as the Karhunen-Loève expansion. The first N dominating eigenval-
ues are considered in the KLE so that the energy E is above 95% [29], i.e.,

E =

N∑
i=1

λi

∞∑
i=1

λi

≥ 95%. (11)

We, thus, can define the truncated KLE by

Yk
N(x) =

N∑
i=1

√
λiθ

k
i ϕi(x). (12)

3.3. Convergence Assessment of MCMCs

We consider a problem that consists of sampling the permeability field conditioned
on pressure measurements. We use a Bayesian statistical approach (discussed in Sec-
tion 3.1) along with a preconditioned MCMC method [11, 12] to characterize the per-
meability field of our domain of interest. Two critical issues, namely, where to begin
(burn-in) and when to terminate (convergence), need to be addressed when MCMC
methods are used. We now discuss the convergence of MCMC methods that we use in
our investigation to construct one of the rock properties (permeability field).

A number of convergence criteria [30, 31, 32] for MCMCs have been developed
with a solid theoretical foundation. Several review papers, where authors used MCMC
convergence diagnostics, are available in the literature [33, 34, 35, 36]. Note that in
[34] the authors discussed thirteen MCMC convergence diagnostics. The convergence
diagnostics described in [36] are now widely used. In this work we use two popular
diagnostic tools, namely, the Potential Scale Reduction Factor (PSRF) and the multi-
variate PSRF (MPSRF), to diagnose the convergence of MCMC algorithms. Between
these two, the MPSRF method takes all the parameters into account for accessing con-
vergence of the MCMC methods. Thus, the MPSRF is more restrictive than the PSRF.

The PSRF and MPSRF measures rely on multiple chains. Thus we are required
to run m > 1 independent chains in parallel with different initial points drawn from
an overdispersed distribution. The effect of starting at different initial points is made
minimal by discarding the first few iterations as burn-in. Let us denote by θ an N-
dimensional parameter vector, and let l represents the number of posterior draws for
each of the m chains. Furthermore, assume that θc

j denote the value of the parameter
vector θ generated at iteration c in jth chain of the MCMC algorithm. The posterior
variance-covariance matrix is then estimated as

V̂ =
l − 1

l
W +

(
1 +

1
m

)
B
l
. (13)
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The within- and between-sequence (chain) covariance matrix W and B are calculated
as

W =
1

m(l − 1)

m∑
j=1

l∑
c=1

(
θc

j − θ̄ j.

) (
θc

j − θ̄ j.

)T
, (14)

and

B =
l

m − 1

m∑
j=1

(
θ̄ j. − θ̄..

) (
θ̄ j. − θ̄..

)T
, (15)

respectively. θ̄ j. denote within chain mean and θ̄.. represent the mean between m com-
bined chains, respectively. T denotes the transpose of a matrix. The PSRFs are calcu-
lated using the two estimators V̂ and W defined by

PSRFi =

√
diag(V̂)i

diag(W)i
, where i = 1, 2, ...,N. (16)

A large PSRFi suggests that either the estimate of the between variance can be de-
creased by taking more samples into account or by taking further samples one could
increase the within variance. It indicates that the simulated sequences have not yet tra-
versed the parameter space completely. On the other hand, if the maximum of PSRF
values is close to 1, we can draw the conclusion that each of the m chains of l simu-
lated samples is close to the target distribution. The MPSRF is estimated by using the
maximum root statistic. As in [36] it is defined by

MPSRF =

√
max

a

aT V̂a
aT Wa

=

√
max

a

aT
[

l−1
l W +

(
1 + 1

m

)
B
l

]
a

aT Wa

=

√
l − 1

l
+

(
m + 1

m

)
max

a

aT B
l a

aT Wa

=

√
l − 1

l
+

(
m + 1

m

)
λ,

where a ∈ RN is an arbitrary vector, and λ is the greatest eigenvalue of the positive
definite matrix W−1B/l. If the means of between chains are equal, the between chain
covariance matrix B becomes zero. In this case, the chains mix well and λ → 0.
Thus, as the MPSRF approaches to 1, it guarantees a convergence for sufficiently large
sample size.

4. Multiscale Sampling

4.1. The Multiscale Prior Distribution
We begin with the description of a decomposition of the domain Ω. Our multiscale

sampling strategy is based on two non-overlapping partitions of the domain Ω: the
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first is a uniform fine Cartesian mesh Ω f where the values of the absolute permeability
field are piecewise constant. This is also the mesh used for the numerical solution
of the system (3)-(4). The second is a coarse Cartesian mesh Ωc constructed as sets
of elements in Ω f (see Figure 1) where a KLE will be applied for local dimensional
reduction. The proposed method is based on partitions Ωγ into rectangles {Ωγ

i , i =

1, . . . ,Mγ} (see Figure 1), such that

Ω̄γ =

Mγ⋃
i=1

Ω̄
γ
i ; Ω

γ
i ∩Ω

γ
k = ∅, i , k, γ = c, f .

Define Γ = ∂Ω and, for i = 1, . . . ,Mγ:

Γ
γ
ik = Γ

γ
ki = ∂Ω

γ
i ∩ ∂Ω

γ
k , γ = c, f .

For each element of the coarse partition {Ωγ
i , i = 1, . . . ,Mc}, we define the set

Si = { j : Ω
f
j ⊂ Ωc

i }.

As indicated in Figure 1, we refer to two length scales in the description of the new
multiscale procedure: H, the mesh size for the coarse partition and h, the mesh size of
an underlying fine grid.

H

h
H

Figure 1: The fine Ω f (dashed lines) and coarse Ωc (solid lines) partitions of Ø along with the three spatial
scales used in the definition of the new multiscale procedure.

We will consider a blocking strategy [36] for Gibbs sampling within a Metropolis-
Hastings algorithm. In order to define it we decompose the θ vector in Eq. (12) into
orthogonal subspaces corresponding to blocks with the same number of components,
that are denoted by θi, for i = 1, . . . ,Mc. Each block of thetas is used to generate a local
Gaussian field within its corresponding subdomain, as illustrated in Fig. 2. The update
of each θi block is based on the random walk sampler (RWS) of [37]. It is given, for
i = 1, . . . ,Mc, by

θp
i =

√
1 − β2 θi + β ε i, (17)
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where the current sample is denoted by θp
i and the previously accepted sample by θi.

The algorithmic parameter β is used for tuning the sampler and ε i represents aN(0, 1)-
random vector. Not all components of θp

i are updated simultaneously. Blocking is
used again so that only a subset of the components is modified in one MCMC iteration.
We view θp

i as a column vector and we are going to refer to the local blocking number
as the number of contiguous components of this column vector that are updated simul-
taneously. For the purpose of sampling, we consider the θp

i components ordered by
their corresponding eigenvalues in the local KLE, from the largest towards the smallest
one.

The samples produced by the local sampling strategy discussed above produces
Gaussian samples that show discontinuities in Γc

ik. Motivated by downscaling strate-
gies developed for multiscale methods (that aim at removing flux discontinuities at
subdomain boundaries [23]) in order to complete the construction of one sample from
our multiscale prior distribution an averaging method is used to condition each sam-
ple on the available data at nearest neighbor subdomains. The averaging procedure is
illustrated in Figure 2.

0 1

1θ1
θ2

θNc
θNc+1

θN

KLE[θ]

θN−Nc+1

θ2Nc

Figure 2: The mapping between blocks of theta variables and elements of the coarse Ωc (solid lines) partition
of Ω. Each block of thetas is used to generate a local Gaussian field within its corresponding subdomain.

A length scale H is set (a fraction of the correlation length that enters in the con-
struction of the prior distribution) and, for each i, all cells of Si that are at a distance
of H (or less) to Γc

ik have their current values replaced by local averages (that preserve
both their mean value and variance - if they were uncorrelated). Figure 3 illustrates
a sample before and after this averaging procedure. In this figure, H = 0.25 and the
averaging is applied on the boundary of the top right subdomain. Note that if the corre-
lation lengths are not equal, the circle for the averaging in Figure 2 should be replaced
by an ellipse.

In conclusion, the multiscale prior distribution requires three user-specified param-
eters:

• The value of H: the subdomain size;
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• The value of H: the length scale local averages are taken;

• The local blocking number.

  

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-0.8

Figure 3: Sample of a permeability field before (left) and after (right) a local averaging is applied at the top
right subdomain of a domain decomposition with H = 0.25.

We remark that the number of blocks for the localized Gibbs sampling in each subdo-
main is given by Nlocal = N/(Mc ∗ Nlb), where Nlb denotes the local blocking number.
We refer to these blocks as Bk, k = 1, . . . ,Nlocal, and we also define the local stochastic
dimension to be Nc = N/Mc. We conjecture that improved convergence for MCMCs
should be observed for H > L, where L denotes the largest correlation length in the
definition of the prior distribution. Further studies are needed to check the validity of
this conjecture.

4.2. The Multiscale Sampling Method
We now provide a detailed algorithm of the new Multiscale Sampling Method

(MSM) that consists of a preconditioned MCMC with a multiscale prior distribution.
If the number of subdomains Mc = 1, then the proposed algorithm reduces to the clas-
sical preconditioned MCMC [11, 12] with Gibbs sampling associated with the local
blocking number.

We first discuss the algorithm of the preconditioned MCMC method. The filtering
step of this method is based on a coarse-scale model approximation of the governing
system (3)-(4). The coarse-scale discretization is similar to the fine-scale discretization
and the permeability field ηηη(θθθ) is projected on the coarse-scale. An upscaling proce-
dure [38] is used to set an effective permeability field that provides a similar average
response as that of the underlying fine-scale problem. The numerical simulator is run
on the coarse-scale model and produces the coarse-grid pressure field Rc. The coarse-
scale and fine-scale acceptance probabilities are estimated as

αc(ηηη,ηηηp) = min
(
1,

I(ηηη|ηηηp)Pc(ηηηp|Rp)
I(ηηηp|ηηη)Pc(ηηη|Rp)

)
, and

α f (ηηη,ηηηp) = min
(
1,

P f (ηηηp|Rp)Pc(ηηη|Rp)
P f (ηηη|Rp)Pc(ηηηp|Rp)

)
,

(18)
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where Pc and P f are the posterior probabilities calculated at coarse- and fine-scale,
respectively. In MSM we first construct a local permeability field ηηη(θθθi) for each sub-
domain Ωc

i , i = 1, . . .Mc using Eq. (12). To do so, we generate local KLE data in

subdomains Ωc
i , i = 1, . . .Mc with size

1
2n , n = 1, 2, . . . . Then we construct the global

permeability field by taking local averages. The MSM algorithm is presented in Algo-
rithm 1.

Algorithm 1 The Multiscale Sampling Method (MSM)
1: For a given covariance function R solve Eq. (9) to get a KLE in Eq. (12), which is

used in all the subdomains, Ωc
i , i = 1, . . . ,Mc.

2: for j = 1 to Mmcmc do
3: for i = 1 to Mc do
4: for k = 1 to Nlocal do
5: Generate i.i.d., N(0, 1) Gaussian variables to construct θθθp using Eq. (17)

for block Bk in Ωc
i .

6: Construct a local Gaussian sample (in each subdomain) using the KLE to
set a preliminary value for the Gaussian sample at the Si cells.

7: Run the local averaging algorithm to remove discontinuities.
8: Compute the upscaled permeability on the coarse-scale using ηηηp.
9: Solve the forward problem on the coarse-scale to get Rc.

10: Compute the coarse-scale acceptance probability αc(ηηη,ηηηp).
11: if ηηηp is accepted then
12: Use ηηηp in the fine-scale simulation to get R f .
13: Compute the fine-scale acceptance probability α f (ηηη,ηηηp).
14: if ηηηp is accepted then ηηη = ηηηp.
15: end if
16: end if
17: j = j + 1.
18: end for
19: end for
20: end for

5. Kriging and Conditioning

In this section, we combine the multiscale sampling method with conditioning by
projection for the sampling. The conditioning by projection method has been discussed
in detail in [39]. This method consists of two steps. In the first step, for given perme-
ability values at sparse locations in the domain, generate a kriged field for the domain.
In the second step, project the i.i.d N(0, 1)-random vector onto the nullspace of a data
matrix defined in terms of KLE to calculate the linear combination in Eq. (12). The fi-
nal permeability field is obtained by adding the fields defined in both steps (after taking
exponential). In the following subsections we briefly discuss the kriging interpolation
and projection method for conditioning.
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5.1. Kriging Interpolation

Kriging is an interpolation method that is derived from a regionalized variable the-
ory [40, 41]. It employs a limited set of sampled data points to compute the value of
a variable throughout a continuous spatial field. Kriging uses the spatial correlation
between sampled points to interpolate the values in the spatial field. This interpolation
gives the exact values of the field at the known locations.

5.2. The Projection Method for Conditioning

Following the discussion in [39], we need to extract a data matrix that is defined in
terms of KLE. We assume the Gaussian field Y(x) defined in Eq. (12) is a Gaussian
perturbation on top of a kriged field Ŷ(x), thus we can write

Y(x) − Ŷ(x) =

N∑
i=1

√
λiϕi(x)θi = φφφT (x)

√
Dθθθ, (19)

where, for each x, φφφ(x) ∈ RN , and D is a diagonal matrix containing N dominating
eigenvalues. If we have M measured data values at sparse locations, then we can define
the following homogeneous linear system of equations

Aθθθ = 0,

where A = φφφT (x̂)
√

D ∈ RM×N is the desired data matrix. Finally, we project the vector
θθθ onto the nullspace of the matrix A to get the closest vector to θθθ in the nullspace of the
data matrix A. i.e.

θ̂̂θ̂θ = Pθθθ,

where P is a projection matrix [42]. Therefore, we can write

Y(x) = Ŷ(x) +

N∑
i=1

√
λiϕi(x)θ̂i, θ̂̂θ̂θ = (θ̂1, . . . , θ̂N).

6. Numerical Results

In this section, we describe the simulation study for the problem of interest. We
test the proposed multiscale sampling method in four examples. In each example, we
numerically solve the system containing Eqs. (3)-(4) on the domain Ω = [0, 1]× [0, 1].
We present a comparative study between the preconditioned MCMC method with and
without multiscale sampling in the first three examples. In the last example, we analyze
MSM with and without conditioning for a problem of higher dimensional stochastic
space. In MSM, we apply KLE to construct a permeability field for each subdomain,
and then construct the global permeability field. In KLE, we use the following covari-
ance function:

R(x1, x2) = σ2
Y exp

−|x1 − x2|
2

2L2
x
−
|y1 − y2|

2

2L2
y

 , (20)

12



where Lx and Ly are the correlation lengths and σ2
Y = Var[(Yk)2]. We take σ2

Y = 1 in
all the four examples. Moreover, we set the source term f = 0 and impose Dirichlet
boundary conditions, p = 1 and p = 0, on the left and right boundaries, respectively.
We also set a no-flow (Neumann-type boundary condition) condition on the other two
boundaries. We run four MCMC chains for each method. In order to remove the
discontinuities between subdomains in our numerical studies, we set the length scale
H to be H = min{ Lx

2 ,
Ly

2 }. Below we discuss the numerical results.

6.1. Example 1

In the first example, we consider Lx = Ly = 0.2 in Eq. (20). We then generate
KLEs for the global and MSM 2 × 2 samplings. In MSM 2 × 2 sampling, we use
H = 0.5. Figure 4 illustrates the decay of the eigenvalues (in log scale) for both
samplings. Note that the relationship between the eigenvalues in the global sampling
and the eigenvalues in multiscale sampling can be obtained directly by a change of
variables in Eq. (9). We take the first 20 eigenvalues that preserve more than 97% of
the total energy for the global sampling. Five eigenvalues are used for each subdomain
in the multiscale sampling. We generate a reference synthetic permeability field on
a computational fine mesh of size 16 × 16, and then run our numerical simulator to
generate the corresponding reference pressure field. We run the MCMC algorithms
conditioned on this pressure field. Figure 5 shows these reference fields. Furthermore,
we use a coarse mesh of size 8× 8 as a filtering step in the preconditioned MCMC. We
let the local blocking number Nlb = 1 and β = 0.5 in Eq. (17).

0.0

0.5

1.0

1.5

E
ig

en
v
al

u
e

(l
o
g

sc
al

e)

0 5 10 15 20

Eigenvalue index

Global

MSM 2 2

Figure 4: Decay of eigenvalues for the global and multiscale samplings in the first example.
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Figure 5: Reference log permeability field (left) and the corresponding reference pressure field (right) for the
first example.

As we discussed in subsection 3.3, we analyze the convergence of the MCMCs us-
ing PSRFs and MPSRF. An MCMC method converges to the stationary distribution if
both MPSRF and the maximum of PSRFs get closer to 1. In [43] the author considered
a value of 1.2 for these parameters to confirm the convergence of the chains. In line
with that, we decide to stop the simulation once these parameters reach 1.2. Figure 6
shows that the preconditioned MCMC methods with and without multiscale sampling
converge. However, the plots at the bottom in Figure 6 show that the preconditioned
MCMC method with multiscale sampling converges to the stationary distribution ear-
lier than the method without multiscale sampling. Table 1 shows the acceptance rates
for both methods as well as the precision parameters for coarse- and fine-grid simula-
tions. The acceptance rate increases slightly when we use MSM. The errors between
the reference and simulated pressure data, which are used in the likelihood function,
for both methods are shown in Figure 7. Both methods produce similar error curves.
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Figure 6: Top: The maximum of PSRFs and MPSRF for the MCMC method with and without multiscale
sampling in the first example. Bottom: Tails of the maximum of PSRFs and MPSRF curves.

Table 1: A comparison of acceptance rates for the MCMC with and without MSM for the first example.

MCMC with global sampling MCMC with multiscale sampling
σ2

F 10−3 10−3

σ2
C 5 × 10−3 5 × 10−3

acc. rate 53% 55%
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Figure 7: Error curves of the preconditioned MCMC with and without multiscale sampling for the first
example.

After the convergence of both MCMC methods, we take 10000 log permeability
values from each chain and draw the posterior histograms for three cells with high,
medium and low permeability values in the computational domain. See Figure 5 for
those three cells. Figure 8 shows the posterior histograms with the true (red vertical
line) and mean (green vertical line) values of the log permeability for the cells. Table
2 shows these values and the corresponding standard deviation. We observe in Figure
8 that when we use the multiscale sampling method, the mean values are within one
standard deviation (green horizontal line) for all the three cells. Also, in MSM, the
mean of the posterior histogram is almost the same as the true value for the cell 3. We
do not observe a similar behavior in the posterior histograms in the global sampling
method.

Table 2: True and mean values of log permeability with the corresponding standard deviation for three cells.

Cell 1 Cell 2 Cell 3
Global MSM Global MSM Global MSM

True −1.54 − −0.3 − 1.3 −

Mean −1.08 −1.16 −0.69 −0.07 0.78 1.35
SD 0.36 0.34 0.39 0.27 0.42 0.26

We now compare the reference field with some of the simulated permeability fields
from two selected chains. See Figures 9 and 10. Other chains also show a similar be-
havior. Although both MCMC methods converged, we observe that at iteration 60000
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the permeability field obtained from the multiscale sampling is closer to the reference
permeability field than the field obtained without the multiscale sampling.
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Figure 9: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. From left to right, log
permeability fields at 20000, 40000 and 60000 iterations, respectively, from chain 1 in the first example.
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Figure 10: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. From left to right, log
permeability fields at 20000, 40000 and 60000 iterations, respectively, from chain 2 in the first example.

6.2. Example 2

In the second example we consider the case where the correlation lengths are not
equal, i.e., Lx = 0.2 and Ly = 0.06 in Eq. (20). Figure 11 shows the decay of the
eigenvalues (in log scale) for the global sampling, MSM 2×2, and MSM 4×4 methods.
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Figure 11: Decay of eigenvalues for the global and multiscale sampling in the second example.

In KLE, we consider the first 64 eigenvalues, which preserve 97.87% of the total
energy, in the global sampling method. For MSM 2×2 and MSM 4×4, we take 16 and
4 eigenvalues, respectively. We generate a reference synthetic permeability field on a
computational grid of size 32×32 and then run the numerical simulator to generate the
corresponding reference pressure field. See Figure 12 for the reference fields.
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Figure 12: Reference log permeability field (left) and the corresponding reference pressure field (right) for
the second example.

We use the same coarse mesh of size 8 × 8 as in the first example. We also use the
same local blocking number Nlb = 1. We set the tuning parameter β = 0.75 in Eq. (17).

Let us consider the convergence analysis of these methods. We take 170000 pro-
posals from each chain to compute the MPSRF and the maximum of PSRFs. Figure
13 shows the maximum of PSRFs and MPSRF curves. At the tails of the maximum
of PSRFs and MPSRF curves, we have the values 1.2 and 1.4, respectively, for MSM
4 × 4. These values are slightly higher for MSM 2 × 2. Thus, we can conclude that
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MSM 4×4 converges to the stationary distribution faster than MSM 2×2. On the other
hand, the PSRF and MPSRF curves in the global sampling method do not show any
sign of converging at the same number of iterations. Moreover, the acceptance rates
are better for the multiscale sampling methods. See Table 3. The error curves for this
study are shown in Figure 14. They are very comparable. Figures 15 and 16 present
simulated permeability fields from two selected chains. From these figures, we observe
that both MSM 2 × 2 and MSM 4 × 4 recover the permeability fields better than the
global sampling method.
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Figure 13: The maximum of PSRFs and MPSRF for the MCMC method with and without multiscale sam-
pling for the second example.

Table 3: A comparison of acceptance rates for the MCMC with and without MSM in the second example.

MCMC global MCMC with MSM 2 × 2 MCMC with MSM 4 × 4
σ2

F 10−3 10−3 10−3

σ2
C 5 × 10−3 5 × 10−3 5 × 10−3

acc. rate 50% 54% 55%
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Figure 14: Error curves of the preconditioned MCMC with and without multiscale sampling for the second
example.
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Figure 15: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. Fourth row: Accepted
permeability fields in MSM 4 × 4. From left to right, log permeability fields at 20000, 50000 and 100000
iterations, respectively, from chain 1 in the second example.

6.3. Example 3
In this example, we test the proposed method on a large grid size of 64 × 64 with

the correlation lengths, Lx = Ly = 0.1 in Eq. (20). Figure 4 shows the decay of
the eigenvalues for the methods, the global sampling, MSM 2 × 2, and MSM 4 × 4.
We consider 64 eigenvalues, which preserve 95.8% of the total energy in KLE, in the
global sampling. The numbers of eigenvalues for MSM 2 × 2 and MSM 4 × 4 are

23



 

2.2

1.8

1.4

1

0.6

0.2

-0.2

-0.6

-1

-1.4

-1.8

   

   

   

Figure 16: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. Fourth row: Accepted
permeability fields in MSM 4 × 4. From left to right, log permeability fields at 20000, 50000 and 100000
iterations, respectively, from chain 2 in the second example.
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16 and 4, respectively. The synthetic reference permeability field is generated on a
computational mesh of size 64 × 64. Then, the numerical simulator is used to generate
the corresponding reference pressure field. Figure 18 shows the reference permeability
field and the corresponding pressure distribution on the grid. We use a coarse mesh of
size 16 × 16 in the filtering step in the preconditioned MCMC. Let Nlb = 2. We set
β = 0.2 in Eq. (17).
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Figure 17: Decay of eigenvalues for the global and multiscale sampling for the third example.
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Figure 18: Reference log permeability field (left) and the corresponding reference pressure field (right) for
the third example.

Let us consider PSRFs and MPSRF curves for these methods. We take 240000
proposals from each chain in constructing the PSRF and MPSRF curves. We show the
maximum of PSRFs and MPSRF curves in Figure 19. For MSM 4 × 4, the values at
the tails of the PSRF and MPSRF curves are 1.2 and 1.6, respectively. These values
indicate that the curves in MSM 4 × 4 are closer to the convergence. However, the
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curves in MSM 2 × 2 and global sampling method are very far from reaching a con-
vergence. Table 4 shows that the acceptance rates for the multiscale sampling methods
are also slightly better than that of the global sampling method. The error curves are
comparable for these methods. See Figure 20. Figures 21 and 22 compare the accepted
permeability fields for two selected chains in the MCMC simulation. Both MSM 2 × 2
and MSM 4 × 4 recover the fields better than the global sampling method.
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Figure 19: The maximum of PSRFs and MPSRF for the MCMC method with and without multiscale sam-
pling for the third example.

Table 4: A comparison of acceptance rates for the MCMC with and without MSM for the third example.

MCMC global MCMC with MSM 2 × 2 MCMC with MSM 4 × 4
σ2

F 10−3 10−3 10−3

σ2
C 5 × 10−3 5 × 10−3 5 × 10−3

acc. rate 41% 43% 43%
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Figure 20: Error curves of the preconditioned MCMC with and without multiscale sampling for the third
example.
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Figure 21: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. Fourth row: Accepted
permeability fields in MSM 4 × 4. From left to right, log permeability fields at 80000, 160000 and 240000
iterations, respectively, from chain 1 in the third example.
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Figure 22: First row: Reference log permeability filed. Second row: Accepted permeability fields in the
global sampling method. Third row: Accepted permeability fields in MSM 2 × 2. Fourth row: Accepted
permeability fields in MSM 4 × 4. From left to right, log permeability fields at 80000, 160000 and 240000
iterations, respectively, from chain 2 in the third example.

6.4. Example 4
In this example we compare MSM 4 × 4 with and without conditioning for the

problem in example 3. However, in the conditioning approach, we incorporate the
permeability measurements at eight sparse locations in the field.

Four MCMCs are simulated in each case. We compute the maximum of the PSRFs
and MPSRF by taking 100, 000 samples from each chain (total 400, 000 samples). In
Figure 23 we present the maximum of PSRFs and MPSRF curves. The values in the
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tails of the maximum of the PSRFs and the MPSRF are 1.09 and 1.17, respectively,
for the method with conditioning. For the method without conditioning, these values
are 2.5 and 3.5, respectively. Therefore, we can say that MSM 4 × 4 with conditioning
reaches convergence earlier than MSM without conditioning.
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Figure 23: The maximum of PSRFs and MPSRF for the multiscale sampling MCMC method with and
without conditioning for the fourth example.

Fig. 24 shows the accepted fields in the method with conditioning for two chains.
The permeability fields were not fully recovered, however, we see a considerable im-
provement in the fields in comparison to the fields in Figures 21 and 22, which were
obtained using MSM 4 × 4 without conditioning. We thus conclude that the condition-
ing speeds-up the convergence and improves the characterization in this example
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Figure 24: First row: Reference log permeability filed. Second row: Accepted permeability fields from chain
1. Third row: Accepted permeability fields from chain 2. From left to right, log permeability fields at 40000,
60000 and 80000 iterations, respectively, in MSM 4 × 4 with conditioning.

7. Conclusions

We have presented a novel multiscale sampling method aiming at subsurface char-
acterization. The proposed method is based on a non-overlapping partition of the do-
main of the governing partial differential equation that leads to the localization of the
search in the underlying stochastic space. The novel method is implemented in the
framework of a preconditioned Markov Chain Monte Carlo algorithm.

Through several multi-chain MCMC examples, motivated by subsurface flow prob-
lems, we compare the usual preconditioned Markov Chain Monte Carlo algorithm
with the proposed procedure. Our results show that the new multiscale sampling
method considerably improves the convergence rate of the preconditioned Markov
Chain Monte Carlo algorithm. We also incorporated sparse measurements of the per-
meability field in the multiscale sampling method, and showed that conditioning on
this data further improves the convergence of the proposed method.

The authors and their collaborators are currently applying the method introduced
here to solve the inverse problems associated with single and multiphase flows in
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porous media. In these studies the Multiscale Perturbation Method [44] will be used
to speed-up the numerical solution of elliptic equations in the forward solution of the
governing system of equations. Multiscale sampling procedures based on overlapping
domain decompositions are also being considered.
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