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Abstract

Computational models of fluid flows based on the Reynolds-averaged Navier–Stokes (RANS) equations supplemented

with a turbulence model are the golden standard in engineering applications. A plethora of turbulence models and

related variants exist, none of which is fully reliable outside the range of flow configurations for which they have

been calibrated. Thus, the choice of a suitable turbulence closure largely relies on subjective expert judgement and

engineering know-how. In this article, we propose a data-driven methodology for combining the solutions of a set

of competing turbulence models. The individual model predictions are linearly combined for providing an ensemble

solution accompanied by estimates of predictive uncertainty due to the turbulence model choice. First, for a set of

training flow configurations we assign to component models high weights in the regions where they best perform,

and vice versa, by introducing a measure of distance between high-fidelity data and individual model predictions.

The model weights are then mapped into a space of features, representative of local flow physics, and regressed by

a Random Forests (RF) algorithm. The RF regressor is finally employed to infer spatial distributions of the model

weights for unseen configurations. Predictions of new cases are constructed as a convex linear combination of the

underlying models solutions, while the between model variance provides information about regions of high model

uncertainty. The method is demonstrated for a class of flows through the compressor cascade NACA65 V103 at

Re ' 3 × 105. The results show that the aggregated solution outperforms the accuracy of individual models for the

quantity used to inform the RF regressor, and performs well for other quantities well-correlated to the preceding one.

The estimated uncertainty intervals are generally consistent with the target high-fidelity data. The present approach

then represents a viable methodology for a more objective selection and combination of alternative turbulence models

in configurations of interest for engineering practice.

Keywords: turbulent flows, RANS equations, RANS models, model mixture, space-dependant weights, NACA65

1. Introduction

Scientific modeling is the process of describing the physical reality via mathematical equations, based on a set

of simplifying assumptions and on experimental observation of a system. The modeling hypotheses determine the
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mathematical structure of the model, called a model class, and limit the validity of its predictions. A specific model is

then singled-out from the class by specifying a set of closure parameters, generally adjusted to fit experimental obser-

vation. Such a process is called calibration. Due to the underlying modeling assumptions and to observation errors

corrupting experimental data, hence closure parameters, predictions based on a model are affected by uncertainties on

both the model form (called epistemic uncertainty) and on the closure parameters (parametric uncertainty) [1].

In the present work we focus on Computational Fluid Dynamics (CFD) models, i.e. computer models for solving

the governing equations for fluid flows:

NS[q(x, t); S ] = 0 (1)

where NS is the Navier-Stokes partial differential operator, q(x, t) is the state variable vector (e.g. pressure, veloc-

ity,...), x is a vector of coordinates in the geometrical space, t is the time and S is a set of parameters determining

the flow conditions, such as the geometry and the initial and boundary conditions, which we call a flow scenario.

Very broad model classes, better called modeling ”levels”, can be identified according to the inclusion or not of some

physical effects. We distinguish for instance inviscid from viscous models. For viscous flows characterized by high

values of the Reynolds number (Re = UL/ν, with U a characteristic velocity scale, L a length scale, and ν a reference

value for the fluid kinematic viscosity) several modeling levels can be identified, according to the strategy used to

account for turbulent motions. Direct Numerical Simulations (DNS) solve for all turbulent motions by seeking the

solution of the discretised form of (1):

D
[
NS[q(x, t); S ]

]
= 0, (2)

with D a discretisation operator on a fine-grained space and time mesh. The computational cost of DNS models

scales as Re11/4 for DNS [2], making them prohibitively expensive for the high-Reynolds number flows of interest.

On the other hand, by applying a coarse-grained operator to Eq. (1), state variables can be split into a coarse-grained

part q̃ and an unresolved q′ part: q = q̃ + q′. Large-Eddy Simulations (LES), consisting in filtering the small scales

and resolving the large, energetic ones, require a number of grid points of order of Re13/7 for resolving wall-bounded

flows [3], which strongly limits their routine use for practical engineering problems. As a result, engineering design

mostly relies on lower-fidelity models such as the Reynolds-averaged Navier–Stokes (RANS) equations. The latter

use a similar decomposition to LES whereby the filter is replaced by a statistical averaging operator:

ÑS[q(x, t); S ] = 0 ⇒ NS[̃q; S ] + ∇ · F (̃q,q′) = 0 (3)

Thus the RANS equations solve only for mean flow motions. F (̃q,q′) represents the contribution of turbulent flow

scales to the transport of momentum and energy and is accounted for by supplementing the RANS equations with

additional constitutive relations. The latter, called a turbulence model, express the so-called Reynolds stress tensor (a
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measure of turbulent transport of momentum) as a function of mean field variables:

NS[̃qm; S ] + ∇ · Fm (̃qm; θFm ) = 0 (4)

where q̃m is an approximation of q̃ under the chosen turbulence model, and θFm is a vector of parameters associated

with the turbulence model Fm. The RANS equations (4) are then numerically solved by applying some discretisation

operatorD:

D
[
NS[̃qm; S ] + ∇ · Fm (̃qm; θFm )

]
= 0 (5)

Only steady solutions are sought in this work, and we denote q̃†m = q̃†m(x) the numerical solution of the discrete

equations (5). For a Quantity of Interest (QoI) δ, post-processed from the computed state vector q̃†m, the whole process

may be written in short as

δ = M(x; S ,Fm, θFm ) (6)

where M is the post-processed CFD model output, which depends on the geometrical space, the operating conditions

S , and the turbulence model. For brevity, S , Fm and θFm are omitted when irrelevant.

Despite the plethora of turbulence models proposed in the literature for more than a century, determining a turbu-

lent closure universally valid for any kind of flow remains a formidable challenge (see [4, 5] for overviews). Existing

turbulence models can be classified according to their levels of complexity, and a number of variants and corrections

exist for different flow features such as pressure gradients, separation, vortices, rotations, shock waves, etc. The reader

is referred to the NASA repository https://turbmodels.larc.nasa.gov, for the description of some widely-used

turbulence models. Assessment against academic and industrial applications shows that the choice of the turbulence

model and of the associated closure parameters θFm may cause large variability in CFD predictions, which in turn may

be critical for decision making [6].

Early attempts to quantify uncertainties in RANS models are due to Cheung et al. [7], Oliver and Moser [8], Emory

et al. [9] and Edeling et al. [10]. Such studies treat turbulence modeling uncertainties in a probabilistic framework:

instead of producing a single deterministic prediction associated with a model form and a set of parameters, they try to

estimate the probability distribution of model outputs, conditioned on some random inputs. The analysis is conducted

either by perturbing directly the Reynolds stress anisotropy tensor computed with a baseline LEVM [9, 11, 12] or

by treating the turbulence model closure parameters as random variables with associated probability distributions

[13, 7, 14, 15]. While the first approach accounts for model-form uncertainties, the second does not. In turn, the first

approach is intrusive in the sense that its implementation involves modifications of the RANS solver, while in the

second one the stochastic parameters can be just fed as inputs to the CFD solver and propagated by using a suitable

(non intrusive) uncertainty quantification method.

An attractive and non-intrusive approach for quantifying model-form uncertainty is represented by multi-model, or

ensemble, statistical methods. For instance, [16] used the Demster-Shafer evidence theory along with the k−ε and k−ω

turbulence models to quantify the variability of CFD simulations. More recently, [10] explored a Bayesian framework,
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namely, Bayesian Model-Scenario Averaging (BMSA), to calibrate and combine the predictions obtained from a set of

competing baseline LEVM models calibrated on various data sets (scenarios). BMSA has been successfully applied

to provide stochastic predictions for a variety of flows, including 3D wings [17] and compressor cascades [18, 19].

BMSA, and Bayesian Model Averaging (BMA) [20, 21] from which it originates, may be interpreted as stochastic

variants of the Model Aggregation framework (Stoltz [22], Deswarte et al. [23], Devaine et al. [24]), also referred-to

as Sequential Model Aggregation (SMA). The latter belongs to a wider class of methods, denominated Multiplicative

Weight Updating Algorithms [25], first introduced in the late 80’s [26] and further developed in [27, 28, 29]. Such

methods aim at combining multiple predictions stemming from various models –also termed experts or forecasters–

to provide a global, enhanced, solution — the ’wisdom of crowd’ paradigm, well-known in Machine Learning. In

SMA, weights are computed by using the Exponentially Weighted Average (EWA) [23], which may be interpreted

as a loss function. In such an approach the parameters intrinsic to the individual models may be updated or not

during the training process. In BMA, the predictions of the competing models are weighted by posterior model

probabilities, computed through the Bayes’ theorem of inverse probability. Model Aggregation is generally not applied

to space-dependent predictions while BMA has been. In such case, however, the same BMA weights are assigned

throughout the spatial domain. Spatially-constant weighting of different RANS-model solutions is not optimal, since

prior knowledge about RANS indicates that the accuracy of models may vary according to the local flow physics. In

principle, one would like to assign higher weights to the best-performing models in each region.

Other classes of ensemble methods allow space-varying weights [30, 31, 32]. In Mixture-of-local-Experts [33],

also referred-to as Mixture-of-Experts [34] or Mixture Models, the input feature space (covariate space) is softly

split into partitions where the locally best-performing models are assigned higher weights. The soft partitioning

is accomplished through parametric gate functions, or a network of hierarchical gate functions [35], that rank the

model outputs with probabilities. For promoting the best models in each partition, the softmax function [36, 37] — a

smoothed version of the winner-takes-all model — is employed to build the probabilities. Parameters associated with

the component models and with the gate functions are trained simultaneously though the Expectation Maximisation

algorithm [38], or improved versions [39]. Although the Mixture-of-Experts method originates from a stochastic

formulation, the model output is ultimately a deterministic convex linear combination of individual expert outputs.

Additionally, Mixture-of-Experts tends to promote a single best model in every soft partition, thus accounting for the

spatial variation of the best model but strongly neglecting the uncertainty in model choice.

In the attempt of combining the best features of BMA and Mixture-of-Experts, Yu et al. [40] proposed an improved

version of the BMA, called ”Clustered Bayesian Averaging” (CBA), allowing for space-varying weighting of the

component models in different regions of the covariate space. For that purpose, they computed so-called ”local Bayes

factors”, which were input to a clustering algorithm determining a spatial partition. Specifically, the Classification

And Regression Trees (CART) algorithm was employed to identify the clusters and to regress the local model Bayes

factors as functions of space. At the same time, part of the data are used for iteratively updating the parameters

of each component model. Predictions of a new configuration through the CBA model are finally constructed by
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estimating the posterior model probabilities from the regressed local Bayes factors, and by assigning them as weights

of the model mixture. The CBA algorithm has been applied successfully to hydrology [41] and solid mechanics

[42], but no extensions to CFD problems have been considered up to date. CBA represents an attractive approach for

estimating and improving turbulence modeling uncertainties in CFD because it provides local estimates of posterior

model probabilities, used for aggregating component models into a ”hypermodel” (the model mixture) with improved

predictive capabilities than the mixture components. The procedure assigns weights to the models, as function of

local model performance in each flow subregion, while adjusting their parameters. The iterative update of model

parameters from data improves accuracy via calibration, but it also represents a critical step of the CBA algorithm,

due to the huge number of model evaluations, i.e. costly CFD solves, required in the process.

In the present paper, we propose and validate a novel space-dependent Model Aggregation (XMA) algorithm to

generate mixtures of RANS solutions obtained with different turbulence models. Unlike the BMSA approach used in

previous works [10, 17, 18, 19], XMA enables locally variable weights. The algorithm is inspired from both CBA and

SMA, redesigned for costly CFD applications. More precisely, the original CBA algorithm is simplified to account

for the high computational cost of CFD solves, and no model calibration is performed, so that local Bayes factors are

no longer available. In the proposed methodology, we use instead an EWA loss function inspired from SMA to assign

local model weights. The latter do not depend directly on geometrical coordinates in the physical space but on a set

of well-chosen flow features, which eases generalization of the learned XMA model to different flows. The XMA

algorithm is trained and applied to the prediction of flows through the compressor cascade NACA65 V103, showing

better accuracy than the individual RANS models in the mixture for all flow quantities of interest.

The paper is organized as follows. In Section 2, we present the XMA methodology. Section 3 provides information

about the RANS models in use and the flow configuration and reference data used in the numerical experiments.

Section 4 reports a detailed assessment of the proposed method for both interpolation and extrapolation cases, and for

different training datasets. Finally, the main findings are summarized in Section 5, alongside perspectives for future

developments.

2. Space-dependent Model Aggregation (XMA)

Be δ̂(x) the true value of a spatially-varying flow quantity. A modeled counterpart δ for δ̂ is obtained as the output

of a CFD model of the form (6), which reads:

δ = M(x; S ,Fm, θFm ).

We assume that all inputs S to the CFD code (geometry, boundary conditions, etc) are perfectly known and numerical

errors are negligibly small, so that all deviations between the truthful quantity δ̂ and the model output δ are due to the

turbulence model Fm and its closure parameters θFm .

In the aim of accounting to some extent for model-form uncertainties, while improving prediction accuracy, we do

not predict δ̂ using a single, uncertain model. Instead, we adopt a multi-model ensemble approach and we construct
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a convex linear combination of a set of alternative RANS models, or component models, by means of weighting

functions that depend on a set of flow features (introduced in Section 2.3). More precisely, we consider a discrete set

of NM models

M = {M1, ...,Mm, ...,MNM }

corresponding to NM CFD solves of the same problem based on different turbulence models:

Mm = M(x; S ,Fm, θFm ), m = 1, ...,NM

The space-dependent model aggregation (XMA) then takes the form:

NM∑
m=1

wmMm (7)

where wm = wm(x) is a space-dependent weighting function associated with the m-th component model, subject to:

0 ≤ wm(x) ≤ 1, and
NM∑
m=1

wm(x) = 1 ∀x

The closure parameters θFm associated to Fm are also uncertain and could be calibrated from data (see [43, 10]).

However, such a process generally requires a significant number of CFD solves for finding the best-fit values of the

parameters with respect to a set of observed data. The cost can be alleviated, e.g. by using surrogate models [18],

but it remains high for complex 3D configurations. For that reason, in the present study we do not attempt to update

the turbulence model parameters, which are kept fixed to their nominal values for each component model. Since the

closure parameters are now assigned once and for all for each turbulence model, we simplify the notation as follows:

Mm = M(x; S ,Fm), m = 1, ...,NM

The next step of XMA consists in inferring the weighting functions of the model mixture.

Be δ = (δ1, ..., δd, ..., δNδ̃ )
T a vector of Nδ̃ observations of the quantity δ̂ at various spatial locations xd ∈ X,

X = {xd}
Nδ̃
d=1, and possibly for various flow scenarios S . To enable the use of heterogenous observations in δ (i.e.

corresponding to different flow properties and flow conditions), each subgroup of data is assumed to be standardized

to a distribution of zero mean and unit standard deviation.

We note δ(m) = (δ(m)
1 , ..., δ(m)

d , ..., δ(m)
Nδ̃

)T the predictions of a component model Mm at the observation locations,

where δ(m)
d = Mm(xd) (we omitted the other arguments for brevity). Spatial coordinates are specific to a given flow

configuration and do not possess the due invariance properties for ensuring model generalization. For that reason,

we chose instead to transform the spatial fields into a well-chosen space of features η = η(x), i.e. flow properties

representative of the local flow physics. A similar approach is adopted, e.g., in [44] to generalize spatially-dependent
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corrective fields for the turbulence model transport equations.

The mixture weighting functions are then learned in the feature space instead of the geometrical space:

wm = wm(η)

by transforming the training dataset X = {xd}
Nδ̃
d=1 into H =

{
ηd

}Nδ̃
d=1. In practice, the exact features are unknown, and

features estimated from CFD depend on the turbulence model in use. Various strategies are possible, such as averaging

features estimated from various models. Hereafter we chose to make each weighting function dependent on features

estimated from the corresponding component model, i.e.

wm = wm(η(m))

To compute the weighting functions at points of the feature space not included in the data set, we use a supervised

machine learning procedure. The weighting criteria, the machine learning regressor, and the definition of the feature

space are discussed in Sections (2.1), (2.2), and (2.3), respectively.

2.1. Weighting criteria

Several weighting functions are available in the literature. In this work, we adapt the weighting function from

the Exponentially Weighted Average (EWA) predictor, initially introduced by Deswarte et al. [23] for SMA, by

introducing local dependence on the feature vectors:

wm(δ(m); η(m)
d , δd, σ) =

gm(δ(m); η(m)
d , δd, σ)

NM∑
j=1

g j(δ( j); η( j)
d , δd, σ)

, m ∈ {1, · · · ,NM} (8)

where gm is a cost function defined by

gm = exp

−1
2

(δ(m)(η(m)
d ) − δd)2

σ2

 . (9)

gm is reminiscent of a Gaussian likelihood function used in Bayesian approaches, which amplifies/damps the dis-

crepancies between the output of the m-th model and the data. The cost function equals 1 when the model perfectly

matches the data (δ(m)(η(m)
d ) = δd) and it tends to 0 for very large discrepancies, respectively. The squared exponential

ensures a smooth variation of gm with δ(m)(η(m)
d ) − δd. The parameter σ is the learning rate of EWA, controlling how

fast the departure of the model prediction δ(m) from the observed data δ is penalized by the cost function gm: when

σ→ ∞, the models are assigned uniform weights; when σ→ 0, the worst-performing models get weights closer to 0,

while the weight of the best-performing model gets closer to 1. In other terms, σ controls model selection. As in [23],

the optimal value of the parameter σ is sought by a grid search procedure. Precisely, we compute the Mean Squared
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Error (MSE) between the final prediction and the observables for every point in the data set, such that :

σopt = arg min
σ∈Σ

1
Nδ̃

Nδ̃∑
d=1

δd −

NM∑
m=1

wm(η(m)
d ;σ)δ(m)(η(m)

d )


2

(10)

where Σ is a grid of prescribed values for σ. We verified that σ has little influence on the model accuracy, provided

the order of magnitude is correct [23].

Finally, the XMA prediction δ of δ̂ at point η∗ of the feature space is obtained as

δ(η∗) =

NM∑
m=1

wm(η(m)
∗ )δm(η(m)

∗ ) (11)

where we omitted the dependency on δ(m), δd and σ in wm for brevity. Note that the prediction is dependent on η∗,

which stands for the concatenation of feature vectors η(m)
∗ for each component model. The subscript ∗ refers to unob-

served locations in geometrical space for the training scenarios, but also to any location of a new (unseen) scenario to

predict. Since the gm(η(m)) are known only at observation points η(m)
d , they are regressed across the feature space for

each model m to obtain estimates of the weights at new locations η∗. For that aim, a supervised regression method,

presented in Section (2.2) is employed.

The predictions δ(m) given by competing models may be interpreted as the NM possible outcomes of a discrete

random variable δ̃ whose probability mass function (pmf) corresponds to the weights wm. Thereby, Eq. (11) can be

interpreted as the expected value of δ̃:

δ(η∗) = E
[
δ̃(η∗)

]
=

NM∑
m=1

wm(η(m)
∗ )δ(m)(η(m)

∗ ) (12)

The aggregated prediction, given by (12), gives more weight to the best performing models, and less weight to the

worst performing ones. As a result, it is expected be more accurate than the individual models. Moreover, promoting

the best models is done locally in space through the use of the flow features, so that each component model partici-

pates primarily at the most relevant locations.

Similarly, the predictive variance can be written as

Var
[
δ̃(η∗)

]
=

NM∑
m=1

wm(η(m)
∗ )

(
δ(m)(η(m)

∗ ) − E
[
δ̃(η(m)
∗ )

])2
(13)

The variance (13) must be understood as an indicator of the consensus among the models: small variances result from

a strong agreement of individual model predictions while large variances reveal a divergence. Furthermore, as the

weights are better informed, they get closer to 1 for the best models and to 0 for the worst models, and the variance

decreases. This indicates that the uncertainty about model choice has been reduced.
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In practice, we may wish to use XMA for predicting different QoI than the observed vector δ, either by direct

extraction from the model or through post-processing of the solution. Examples of such QoI are given by flow

properties at given locations in the flow, like velocity profiles, pressure or skin friction distributions. We denote

∆ = (∆1, ...,∆N∆ )
T the vector of such unobserved QoI. Such outputs also depend on the flow scenario S , the equations

of motion and the turbulence model, i.e.:

∆ = M∆(x; S ,Fm, θFm ) (14)

where M∆ stands for a different postprocessed output of the same flow solver than M. The model aggregation (12)

and variance equation (13) can be transposed to the quantity ∆. Since no data is available to inform the weights for ∆,

we use the same weights as those learned for δ̃:

∆(η∗) = E
[
∆̃(η∗)

]
=

NM∑
m=1

wm(η(m)
∗ )∆(m)(η(m)

∗ ) (15)

and

Var
[
∆̃(η∗)

]
=

NM∑
m=1

wm(η(m)
∗ )

(
∆(m)(η(m)

∗ ) − E
[
∆(η∗)

])2
(16)

where ∆(m) is the ∆ output for the m-th model. Using the same weights for δ and ∆ is reasonable as long as the

deviations from observed to predicted quantities, of δ̃ are correlated to those of ∆. The latter is a desirable property

meaning that both δ̃ and ∆ are well predicted on the same locations. In this case, the space dependent weights in (15)

and (16) will promote models where both δ̃ and ∆ are accurately predicted. As a result, we can also expect an efficient

and accurate composite prediction (15).

2.2. Supervised regression

In order to enable XMA predictions at points η∗ outside the training set, a supervised regression method is used

to reconstruct the weighting functions wm(η∗). More precisely, we introduce supervised regressors for estimating the

cost functions gm at point η∗, which are subsequently used to compute the weights.

In supervised regression, a set of input-output pairs (the training data set) is provided, the assigned goal being to

learn the function that maps inputs to outputs [45]. Many well-known model class algorithms fall into this category:

linear models [46], Support Vector Machines (SVM) and kernel methods [47], Gaussian Process Regression [48],

Ensemble Methods based on trees [30] or Neural Networks [49], to cite just a few.

In the rest of the study, we use Random Forests (RF) [31], which are well-suited to large datasets and highly

non-linear problems. In the present calculations we use the RF package available in the scikit-learn python module.

The algorithm relies on four hyperparameters: (i) the number of trees, (ii) the maximum number of features evaluated

during a splitting, (iii) the criterion considered for node splitting and (iv) the minimum number of samples in a leaf.

The number of trees is fixed to a high value of 300, while the other three hyperparameters are optimized by grid
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search. The grid search is performed from a K-fold splitting with K = 10.

We train NM RF regressors modeling the relationship between the cost function gm and the features η(m) for each

of the component models. Input-output pairs of the form: Cm =
{
(η(m)

d , gm(δm; η(m)
d , δd, σ)

}Nδ̃
d=1

, m ∈ {1, · · · ,NM} are

used for the training.

For predictions, either on scenarios on which we have reference data, or also on new scenarios, the features at the

NP cell nodes to be predicted are collected in a dataset
{
η(m)

j

}NP

j=1
. This dataset can be used as input to the RF regressors

to make predictions on gm and obtain the model weights.

As a result of the regression process, RF approximations g̃m(η(m)) of the cost function are eventually obtained for

each component model, which are ultimately used to estimate the models’ weights:

w̃m(η(m)) =
g̃m(η(m))

NM∑
j=1

g̃ j(η( j))

, m ∈ {1, · · · ,NM} (17)

In the following numerical experiments, we observed that gm and g̃m may sometimes take values approaching the

machine zero for all m, making (17) becomes ill-conditioned, and possibly leading to incorrect results for the model

weights. Since low values of the cost functions indicate overall low confidence in all of the component models, we

introduce an empirical lower bound to the cost functions C: if the cost functions for all models are below C at a given

point of the feature space, the XMA weights are simply returned to the uniform choice wm = 1/NM . We conducted

a sensitivity analysis on the value of the cutoff-limit C and we observed no significant influence on the result for

C ∈ [0.001, 0.15]. The value C = 0.001 is thus retained for the rest of the study.

2.3. Input features

Switching from the space of geometrical coordinates to a space of input features is an effective method for

generalizing model prediction to unseen geometries. In this work, we select a subset of 10 features among those

initially proposed by Ling and Templeton [50]. The latter define a feature space whose elements are the vectors

η = (η1, ..., ηh, ..., η10)T . The list of input features used in this work is reported in Table 1, where Ui denotes the mean

velocity component in the ith space direction, P the average pressure,Ω the mean rotation rate, S the mean strain rate,

k the turbulent kinetic energy, ε the turbulence dissipation rate, ρ the fluid density, ν the kinematic viscosity, νT the

eddy viscosity, and || · || is the Frobenius norm. Note that some turbulence models, e.g. the Spalart-Allmaras model

considered later in this work, do not provide estimates of the turbulent kinetic energy k. In such cases, the feature is

simply excluded from considerations.

3. Simulation setup and reference data

3.1. Test case description

In the following, the XMA algorithm is demonstrated for a flow problem of practical interest in turbomachinery,

the turbulent flow through a compressor cascade. Specifically, we model the flow around the NACA 65 V103 − 220
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Feature Description Formula Feature Description Formula

η1 Normalized Q criterion
||Ω||2 − ||S||2

||Ω||2 + ||S||2
η6 Viscosity ratio

νT

100ν + νT

η2 Turbulence intensity
k

0.5UiUi + k
η7

Ratio of pressure
normal stresses to
normal shear stresses

√
∂P
∂xi

∂P
∂xi√

∂P
∂x j

∂P
∂x j

+ 0.5ρ
∂U2

k

∂xk

η3
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Table 1: List of input features used in this study.

Scenario S 1 S 2 S 3 S 4

β1 36.99° 39.97° 44.09° 49.2°
Ma1 0.654 0.674 0.666 0.65
Re1 302K 302K 298K 289K
Tu (%) 2.9 3.3 3.2 3.5

Table 2: Flow conditions for various compressor cascade scenarios.

linear compressor cascade, widely studied in the literature [52, 53, 54, 55, 56] and already used as a test case in our

previous works [18, 19]. The cascade is representative of the mid-span section of a stator blade in a highly loaded

axial compressor [52]. The blade aspect ratio being h/l = 1.36, it has been observed from the oil flow visualizations

performed on the blade surface [57] that the flow ”can be considered two-dimensional in the mid-span section” for the

range of Mach and Reynolds numbers considered, which justifies the present choice of 2D RANS simulations. The

cascade geometry and nomenclature (taken from Ref. [53]) are displayed in Fig. 1.

3.2. RANS solver and computational grid

The simulations are carried out with the CFD solver elsA, developed by ONERA [58]. The code solves the steady

compressible RANS equations for Newtonian ideal gases by means of a cell-centered finite volume method on multi-

block structured grids. The upwind scheme of Roe with second-order MUSCL extrapolation is used for approximating

the inviscid fluxes, and a Gauss second-order scheme is used for the viscous fluxes. The solution is advanced to the

steady state by using the first-order backward Euler scheme and local time stepping.

The computational domain contains a single blade profile, and periodic boundary conditions are applied at the

upper and lower boundaries to simulate an infinite cascade. The domain extends from 0.5 axial chord upstream of
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Figure 1: Sketch and design conditions of the NACA 65 V103 − 220 linear compressor cascade. Sketch copied on from [53].

the leading edge to 1.0 axial chord downstream the trailing edge. The top and bottom boundaries are separated by

a distance equal to 0.59 axial chord, which also represents the gap between neighboring blades. No-slip adiabatic

boundary conditions are applied at the blade wall, and characteristic conditions based on the Riemann invariants are

imposed at the inlet and outlet boundaries. At the inlet, the total pressure, enthalpy and angle of attack are prescribed,

whereas a constant static pressure is enforced at the outlet. The computational grid is composed by six matching blocs,

for a total number of 30, 880 cells. The near-wall grid resolution leads to an average height of the first cell closest to

the wall (in wall coordinates) such that y+ < 1.0 on both the suction and the pressure side of the blade. We verified

that, with such a resolution, the numerical solution had reached satisfactory mesh-independency. Convergence to the

steady state is assumed when the L2 norm of the residuals has been reduced by six orders of magnitude with respect

to the initial value.

3.3. Turbulence models

The XMA predictions reported in Section 4 are constructed from a multi-model ensemble of four concurrent linear-

eddy-viscosity turbulence models (LEVM), selected amidst the most widely used in industrial practice. Baseline

RANS simulations of the NACA 65 V103 − 220 cascade are conducted for each of the component LEVM and for

all scenarios in {S 1, S 2, S 3, S 4}, i.e. a total of 16 baseline RANS. Such simulations constitute the components of the

subsequent XMA procedure. An additional explicit algebraic Reynolds stress model (EARSM) is used to generate

reference data for training and validation, as discussed in Section 3.4. The reader is referred to the original articles

cited in the following for more details about the models in use.
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3.3.1. Component turbulence models

Spalart–Allmaras model [59] : the most popular one-equation RANS model relies on a transport equation for an

eddy-viscosity-like quantity ν̃, which merges with turbulent viscosity νt far from the walls.

Wilcox k − ω [4]: the model relies on transport equations for the turbulent kinetic energy k and the specific dissipation

rate ω. The eddy viscosity is then obtained as νt = k/ω̂, with ω̂ a modified specific dissipation.

Launder–Sharma k − ε [60]: the model relies on transport equations for the turbulent kinetic energy k and the tur-

bulent dissipation rate ε, the eddy viscosity being obtained as νt = Cµk/ε, with Cµ a constant, generally taken

equal to 0.09.

Smith k − L [61]: the model was derived from the k−kL model of [62] with the aim of simplifying the wall functions

in the kl equation. The model uses two transport equations for k and for the turbulence length scale L . The

turbulent dissipation ε is connected to L through the following relation: ε = (2k)3/2/B1l.

3.3.2. Reference model

In addition to the component LEVM models used in the XMA, we also consider a reference model relying on

a different constitutive relation for the Reynolds stress tensor, i.e. displaying a major structural difference in its

mathematical formulation compared to LEVMs. EARSM are expected to provide a more accurate representation of

turbulence anisotropy and rotation effects compared to LEVM. For that reason, the model is here introduced for the

double purpose of generating training data for the XMA and assessing the model prediction. This allows generating

any amount of training data for any QoI and for any flow scenario, enabling detailed parametric analyses and solution

assessment (reported in Section 4) that could be hardly achieved with the limited high-fidelity datasets available in the

literature. Precisely, we consider in the following the EARSM k − kL model of [63]. The latter models the anisotropy

tensor through the Wallin-Johansson formulation [64], alongside Smith’s k − kL transport equation for computing the

turbulent length and velocity scales [61].

3.4. Training data sets

High-fidelity data are collected for inferring the XMA mixture weighting functions in the feature space. More

precisely we consider four cascade operating conditions or scenarios, described in Table 2. High-fidelity DNS and

LES simulations exist in the literature for this cascade (e.g. [55, 56]), but unfortunately only limited results from those

datasets are publicly accessible. This is why, for the aims of the present proof-of-concept study, we considered instead

synthetic data sets generated through the reference EARSM k − kL model. The elsA RANS solver supplemented with

the EARSM k− kL model is used to generate reference full fields for various flow quantities (including velocity, static

and total pressure, and temperature) for each scenario in {S 1, S 2, S 3, S 4}. During preliminary tests (not reported for

brevity), the reference flow-field quantities were used to investigate the effect of inferring the XMA model weights

from various kinds of data. Numerical tests showed that the total pressure is the most informative quantity. Indeed,
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that total pressure depends on both dynamic and thermodynamic quantities, and therefore it carries more information

about the flow than pressure or velocity separately, and particularly about losses in the viscous boundary layers and

wake. In the following, the total pressure is retained as the only observed quantity in the data set δ. Reference fields

of the remaining flow quantities are used for validation only.

Two subsets of total pressure data are then extracted from the reference simulations, with the aim of investigating

the effect of training set size on the learned XMA weights. Given the numerical solutions available at each point of

the computational mesh for the four scenarios a first data set is constructed by collecting total pressure data at all mesh

points, which we call the ”big data” regime hereafter. The data are extracted at the mesh nodes, leading to a total of

40080 data. We also consider a ”small data” training regime corresponding to selecting one over 8 mesh points in

each mesh direction, leading to a total of 820 data points. Figure 2 displays the arrangement of numerical probes in

the small data. The data are uniformly distributed across the grid, and no attempt was made to use optimal sensor

placement (OSP) techniques or prior physical knowledge on the flow, since it was beyond the scope of the present

work. Further research on optimal sensor placement is warranted in the future.

In the following, numerical experiments are conducted by training the XMA weighting functions against obser-

vations for a single flow scenario (i.e. by using total pressure data for the chosen scenario), or for several scenarios

simultaneously (i.e.by using a concatenation of the total pressure datasets for the various scenarios). When multiple

scenarios are used to build the training set, the same observation points are considered for all scenarios, but other

choices are possible.

Figure 2: Locations of the observation points for the small data regime.
For clarity, only one of four mesh vertices is represented.

4. Results

In this section the XMA is applied to predict flow past the NACA 65 V103 cascade.
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(a) k − ε (b) Spalart-Allmaras

(c) k − L (d) k − ω

Figure 3: Iso-contours of the XMA1 weighting functions for the four component RANS models. Training and prediction on S 2.

As a first test, XMA is trained and tested on the same flow scenario (namely S 2). A sensitivity study of the results

to the hyperparameters of the XMA model is carried out. Afterwards, XMA is used for predicting a flow scenario

not used for training. More precisely, we train XMA on three scenarios and we predict on the fourth. We choose to

train the algorithm on scenarios {S 2, S 3, S 4} and predict on S 1, in order to have the angle of attack of the prediction

scenario outside the range of the angles of attack of the training scenarios. As described in Section 3.1, S 1 has a

severely off-design angle of attack and also the lowest of the four available scenarios, which makes this scenario an

extrapolation configuration and a challenging test case for assessing XMA predictions outside the training set.

4.1. Training and prediction on scenario S 2

In this section, the XMA algorithm is trained on EARSM k − kL reference total pressure data for scenario S 2 and

applied for the prediction of the full fields on the same scenario. To assess the effect of the number of training data

two XMA models are constructed. The first one, noted XMA1 is trained on the complete data set (i.e. 40080 data) and

corresponds to the big data regime; a second model, named XMA2 uses only 820 data, which corresponds to a scarce

data regime. Of note, the second situation is the most likely to occur in practice, especially in the case of experimental

measurements.

Fig. 3 presents the iso-contours of the weighting functions wm for XMA1 and the four component RANS models.

The predictions have been obtained in the feature space and then brought back in the geometrical space (x, y, z) to

produce visualizations. We observe that all four models are assigned weights equal to 1/4 far from the blade, i.e.

in the potential flow region. This is consistent with the theoretical expectation that RANS modeling does not affect
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(a) k − ε (b) Spalart-Allmaras

(c) k − L (d) k − ω

Figure 4: Iso-contours of the XMA2 weighting functions for the four component RANS models. Training and prediction S 2.

the potential region for the present flow with thin and attached boundary layers. As a consequence, the models

are equally likely to capture the reference solution in that region. On the other hand, the models weights exhibit

considerable differences in the vicinity of the blade and in the wake. Fig. 3a shows that the k − ε model is generally

associated with lower weights in the wake and on the suction and pressure sides, meaning that XMA1 has learned that

k − ε is the less likely to accurately predict the reference data in those regions, compared to the other models. The

three remaining models are globally given higher weights. First, the Spalart-Allmaras model (see Fig. 3b) is assigned

high weights at the pressure side and, to a minor extent, at the rear of the suction side, close to the trailing edge, while

the weight tends to go down to 1/4 in the wake. Similarly, the k − L model (Fig. 3c) is given a very high weight at the

suction side and a rather high weight at the pressure side. Finally, Fig. 3d presents the weighting function contours for

the k − ω model. This model is given the highest weight on the first half of the suction side, which is then continued

by a thin and detached band of low weight on the second half of the suction side. A similar behavior is observed at

the pressure side.

Fig. 4 presents the weighting function contours for XMA2, trained with only 820 data. Similarly to Fig. 3a, the

k − ε model is given an overall lower weight than the other models. Overall, the contours are very similar to those

obtained in the big data regime (XMA1), albeit a bit noisier. The observed noise is mostly caused by the interpolation

errors. Nevertheless, the scarce data XMA results remain satisfactory and illustrate of potential of the proposed

methodology for real-world applications with limited training data.

We now evaluate more quantitatively the quality of XMA training using different amounts of data by comparing

the XMA prediction of the quantity used for training (total pressure) with the reference data. First, in Fig. 5 we report
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(a) Model weights, XMA1. (b) Model weights, XMA2. (c) Prediction

Figure 5: Profiles of the weighting functions and of the XMA prediction of the total pressure loss across the wake, at streamwise location x
l = 1.20.

Solutions are reported for the big data (XMA1) and scarce data (XMA2) regimes. Training and prediction on S 2 total pressure data.
k − ε ( ), k −ω ( ), k − L ( ), Spalart-Allmaras ( ), reference data ( ), accessible area , E [∆] ± 2

√
Var [∆] for XMA1 ( ),

E [∆] ± 2
√

Var [∆] for XMA2 ( ).

profiles of the the model weights and the corresponding XMA prediction for the normalized total pressure loss (defined

as (Ptinlet − Pt)/(Ptinlet − Pinlet) with Pt the total pressure, P the static pressure and inlet denoting the inflow boundary

of the computational domain) at a given streamwise location across the wake ( x
l = 1.20). Solutions are reported for

both the big data and the scarce data regimes. Inspection of the weight profiles across the wake (Figs 5a and 5b) shows

that all weighting functions tend toward the uniform weighting of 1/4 in the potential region outside the wake. As

observed previously in the weighting functions contour plots, the k − ε model is assigned a low weight throughout,

whereas the other RANS models are given approximately equivalent higher values, with the Spalart-Allmaras model

being assigned somewhat lower weight in the upper part of the wake, consistently with the lower weight it is assigned

in the suction-side boundary layer. The scarce-data XMA2 exhibits a qualitatively similar behavior as XMA1, with

the different models being assigned weights of the same order of magnitude, but the weight profiles are noisier. This

results from the RF regressor being less informed in this case. Despite that, both XMA1 and XMA2 provide smooth

solutions, rather close to each other, as shown in Fig. 5c. In the figure, the two XMA predictions, with associated

variances estimated from Eq. (13) are compared with the reference data. The grey-shaded region represents the

convex hull of individual predictions from each component RANS model. Since XMA constructs a convex linear

combination of the component models at each point, then the XMA solution must lie within that hull, which is called

hereafter the accessible area. For the QoI at stake the accessible area encompasses the reference solution in the

bottom part of the wake, unlike the outer part of it. The XMA solution captures well the reference in the bottom part

despite a large discrepancy among the component models (illustrated by the wide accessible area) because it correctly

assign high local weights to the best performing models, reducing the contribution of the worst performing one to

the predictions. In the upper part of the wake, all models exhibit relative consensus on the wrong solution, a known

limitation inherent to mixture models. In such a case, the variances (a measure of model consensus) are also small

and do not encompass the reference either. However, XMA does a proper job of assigning higher weights to models

providing the best possible agreement with the data. The scarce-data XMA2 tends to assign more similar weights to

all component models, i.e. it discriminates less well well-performing from bad-performing models. Nevertheless,
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(a) Model weights, XMA1. (b) Model weights, XMA2. (c) Prediction

Figure 6: Profiles of the weighting functions (trained on S 2) and of the tangential velocity for the four XMA component models, at streamwise
location x

l = 0.9 (S 2). Solutions are reported for the big data (XMA1) and scarce data (XMA2) regimes.
k − ε ( ), k − ω ( ), k − L ( ), Spalart-Allmaras ( ), accessible area ( ), reference data ( ).

XMA2 still provides improved performance overall, and much better performance than the worst model, showing that

XMA prevents catastrophic loss of accuracy with respect to the common-practice choice of a single (possibly wrong)

RANS model.

Next, XMA is used to reconstruct one-dimensional profiles of a flow quantity not used for training as a space-

dependent linear combination of the baseline RANS profiles for the same quantity and the weighting functions. We

focus more specifically on the prediction of tangential velocity profiles at chordwise location x/l = 0.9, i.e. at the rear

of the suction side, i.e. in a region of adverse pressure gradient. Figure 6 shows the model weight distributions for

XMA1 and XMA2 obtained after training on total pressure data. As observed previously, the weighting functions have

similar trends (noisier for XMA2) but they exhibit sharper difference in the well-informed XMA1 than in XMA2, which

in turn tends to assign weights closer to the uniform distribution of 1/4. Once again the k − ε model is assigned much

lower weights in both cases, while k−L and Spalart-Allmaras are preferred in the inner part of the boundary layer and

k − ω in the outer part. Figure 6c shows the accessible area, the reference data, and the individual component RANS

solutions for the tangential velocity profiles (normalized with the velocity at boundary layer edge Ue). The XMA

algorithm is expected to rank the models in each region according to their agreement with the data, i.e. model weights

should be a measure of the predictive accuracy of the corresponding component model. However, the weighting

functions were learned from total pressure data, so we may wander if they still provide a reasonable estimate of model

accuracy for velocity profiles. We observe that k − ε, the lowest weighted model, is the worst performing one in

this case. The three other RANS models are closer to the reference, but the enlarged plot in the inset shows that the

k − ω model is less accurate than Spalart-Allmaras and k − L models close to the blade, and it is assigned a lower

weight accordingly. Similarly, the Spalart-Allmaras is less accurate in the outer part of the boundary layer, and it is

consistently assigned a very low weight in that region, both in XMA1 and XMA2. This shows that, despite XMA is

not directly trained on the predicted QoI, still it provides reasonable estimates of local model performance.
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(a) XMA1 (b) XMA2

Figure 7: XMA prediction of the tangential velocity profile at x
l = 0.90, S 2, for XMA1 and XMA2. Reference data ( ), accessible area ,

E [∆] ± 2
√

Var [∆] ( ).

In Fig. 7 we present the reconstructed tangential velocity profiles at the same streamwise station, with error bars

corresponding to twice the variance. The two panels correspond to XMA1 (Fig. 7a) and XMA2 (Fig. 7b), respectively.

For both the big and the scarce data regimes, XMA predictions are in better agreement with the reference data than

individual RANS models, showing that the algorithm is correctly preferring the best-performing model in each region

of the boundary layer. Further, the variances provide an estimate of local model consensus, a measure of the risk of

obtaining a significantly wrong solution if a single model was used to predict the flow. In the present case, the error

bars encompass the reference data but, as already observed for the total pressure loss profiles, the area accessible

by the component models does not. In other terms, the error bars must not be interpreted as the region were the

true solution possibly lies, but simply as a measure of the uncertainty in the choice of a best-performing model. Of

note, XMA assigns weights in such a way that the mixture prediction tends to the accessible area limit closer to the

reference data. This effect is stronger for XMA1 than XMA2, as previously observed for the total pressure loss, since

bringing more information to the training set makes XMA more selective locally. This also results in larger variances

for XMA2, since all models are contributing rather significantly to the mixture everywhere, while in XMA1 only one

or two best-performing models are assigned high weights in each region.

To provide an overview of the accuracy of XMA for various QoIs, in Fig. 8 we report the global mean squared

errors (MSE) with respect to the reference data for four different QoI (pressure, velocity, skin friction and total

pressure). The quantities are estimated at each point of the full computational mesh using XMA, and the predicted

values are compared with the reference solution, except for the skin friction that is reconstructed only for mesh points

along the blade wall. Of the four quantities, three were not used for model training. The errors of the four baselines

RANS models are also reported for comparison. We observe that the baseline RANS models exhibit very different

performance, even for a relatively simple 2-D configuration as the present compressor cascade. Additionally, model

accuracy strongly depends on the QoI at stake. For instance, the Spalart-Allmaras model provides closer agreement
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Figure 8: Mean-squared errors for four QoI (normalized by the MSE of the k − ε model), S 2. XMA is trained on S 2.
k − ε model ( ), k − ω model ( ), k − L model ( ) and Spalart-Allmaras model ( ), XMA1 ( ) , XMA2 ( )

with the reference for velocity and pressure, while k − ω provides a better estimate of the skin friction. The k − ε is

consistently less accurate than all other models for all QoI, which is in accordance with the fact that in Figs. 3a and 4a

this model is systematically assigned a lower weight. The k − L model is the second least accurate model for the skin

friction, in contradiction with Figs. 3c and 4c where the model is highly likely all over the blade. However, the weights

have not been trained on skin friction data. Furthermore, the k − L model has been found to be particularly inaccurate

close to leading edge, which radically deteriorates its average performance, although the prediction is reasonably

good elsewhere. Turning now to XMA performance, we see from Fig. 8 that the XMA provides the most accurate

predictions for three of the considered quantities and not only for the one used for training, even if the error for total

pressure is lower than for the other quantities, as expected. For the skin friction, XMA performs worst than k −ω, but

is still more accurate than all the other component models. The results could be improved in the future by improving

the selection and placement of training data. A particularly encouraging result is that both XMA1 and XMA2 are

improving the results, despite the large difference in training set size, opening the way to the training of XMA from

relatively scarce data sets (e.g. experimental datasets).

Finally, we complete the analysis of this case by presenting in Fig. 9 2-D contour plots of the expectancy and

variance of the Mach number field, obtained with XMA2. Despite the scarce data used for training, the 2-D fields

are remarkably smooth. We verified that the same consideration holds for other QoI. As expected, high variances

are observed in the near-wall region and in the turbulent wake, but also in regions of the external flow more strongly

coupled with the viscous layers, typically, the regions with stronger pressure gradient directly affected by the boundary

layer development.

4.2. Prediction of an unseen scenario

In this Section we evaluate the ability of XMA at predicting an unseen flow scenario. More precisely, the XMA

algorithm is trained simultaneously with data extracted from scenarios {S 2, S 3, S 4} and used to predict S 1. The training
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(a) Mean prediction.

0.0 0.2 0.4 0.6
x10−2

(b) Prediction variance.

Figure 9: Iso-contours of the Mach number field predicted with XMA2 (training and prediction on S 2).

data sets are constructed by concatenating total pressure data for the three scenarios. We note again XMA1 the big data

regime, with a training set corresponding to full total pressure data for each flow scenario (i.e. 120240 data in total)

and XMA2 the scarce data regime, with a training set constituted of 820 data for each scenario (i.e. 2460 data in total).

Fig. 10 presents contour plots of the four model weighting functions wm in the case of the XMA1. The maps obtained

for XMA2 are very similar and are omitted for the sake of brevity. As in the preceding tests, k − ε model is assigned

low weights in all regions of interest, i.e. in the vicinity of the blade and in the wake. The Spalart-Allmaras model

in Fig. 10b is assigned high weights on both pressure and suction side, as well as in the wake. The region close to

the trailing edge is particularly associated with high weights, by contrast with the other models that are systematically

assigned lower weights. In contrast with the prediction on S 2, Fig. 10c shows that the k − L model is assigned high

weight only in the outer parts of the suction and pressure side boundary layers, but an intermediate weight of 1/4 on

the pressure side and even low weight on the suction side close to the trailing edge. Finally, k − ω model is assigned

higher weights at the suction side, in the outer part of the boundary layer, and lower weights close to the wall inner

part. At the pressure side on the contrary, the k − ω model seems to be better performing in the inner part of the

boundary layer rather than in the outer part.

Fig. 11 presents weighting functions and total pressure loss profiles at x
l = 1.20 in the wake. Weighting function

profiles for XMA1 and XMA2, depicted in panels 11a and 11b, respectively, are rather similar, indicating that XMA2 is

well informed in this case where we use three times more data than in the preceding example. As observed previously,

using more data leads to sharper model weights. Due to the strong similarity of the weight distributions, the total

pressure loss profiles predicted by XMA1 and XMA2 (panel 11c) are very close to each other. In both cases the

reference data are captured almost perfectly, despite S 1 has not been included in the training data set. The reason for

that is that the reference solution is encompassed by the accessible area, so that XMA can potentially fit the data if

the weight distributions are accurate. This appears to be the case in the present example, thus we conclude that XMA

generalizes well to an extrapolation scenario.

In stark contrast with Fig. 5c, Fig. 11c presents a large variance on the prediction. This behavior can be sourced

in two main reasons. The first reason is that the component RANS models predict very different solutions for this

configuration, as indicated by the wide accessible area. The second reason is that the model weights are less sharp
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Figure 10: Isocontours of XMA1 weighting functions for the four component RANS models. Training on {S 2, S 3, S 4} and prediction on S 1.

on this extrapolation scenario than for an interpolation scenario, i.e.the models are weighted more uniformly. Both

features warn the user about the fact that i) large model-form uncertainty exists and ii) XMA has to be trusted less

than in the preceding example. That being said, the XMA is shown to be very effective at predicting QoI for which

reference data lie within the accessible area. For that purpose, using a set of component models predicting quite

diverse solutions is beneficial, because it widens the accessible area and increases the probability of pickling the local

best-performing models if the weights are correctly modeled.

Fig. 12 model reports the weight profiles and XMA predictions of the tangential velocity profile at x
l = 0.90. For

this quantity not used for training, the solution is less satisfactory, but still in rather good agreement with the reference

(a) Model weights, XMA1. (b) Model weights, XMA2. (c) Prediction

Figure 11: Profiles of the weighting functions (trained on {S 2, S 3, S 4} total pressure data) and of the total pressure loss across the wake at streamwise
location x

l = 1.20. Solutions are reported for the big data (XMA1) and the scarce data (XMA2) regimes. Prediction on S 1.
k − ε ( ), k − ω model ( ), k − L ( ), Spalart-Allmaras ( ), reference data ( ), accessible area , E [∆] ± 2

√
Var [∆] for XMA1

( ), E [∆] ±
√

Var [∆] for XMA2 ( ).
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(a) Model weights , XMA1. (b) Model weights, XMA2. (c) Prediction

Figure 12: Profiles of the weighting functions (trained on {S 2, S 3, S 4} total pressure data) and of the tangential velocity profile at streamwise
location x

l = 0.90. Solutions are reported for the big data (XMA1) and the scarce data (XMA2) regimes. Prediction on S 1.
k − ε ( ), k − ω ( ), k − L ( ), Spalart-Allmaras ( ), reference data ( ), accessible area , E [∆] ± 2

√
Var [∆] ( ).
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Figure 13: Mean-squared errors for four QoI (normalized by the MSE of the k − L model), S 1. XMA is trained on {S 2, S 3, S 4}.
k − ε model ( ), k − ω model ( ), k − L model ( ) and Spalart-Allmaras model ( ), XMA1 ( ), XMA2 ( ).

data. The predicted variances are rather large, providing a measure of RANS modelling uncertainties in the prediction.

Finally, in Fig. 13 we report the MSE for various QoI. In this case the results are normalized with the error of the

k − L model, which exhibits the largest error on 3 out of 4 QoI.

The XMA predictions clearly improve the accuracy over the component RANS models, regardless of the QoI

presented. For example, the MSE for the velocity is reduced by approximately 1/3 with respect to the best-performing

baseline RANS model. Here again, XMA1 and XMA2 lead to similar MSE on average, showing that the scarce data

regime is already sufficient to properly inform the mixture.

5. Conclusions

A novel space-dependent Model Aggregation (XMA) algorithm is introduced and assessed for improving Reynolds-

Averaged predictions of turbulent flows while providing estimates of turbulence modeling uncertainties. XMA is a
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multi-model ensemble technique that builds a convex linear combination of RANS solutions obtained by using a set

of competing turbulence models, whose weight depend on a vector of well-chosen local flow features. A supervised

machine learning algorithm (Random Forests) is used to regress the mixture weights as functions of the features from

a training set of observed flow quantities. The weighting functions are based on a cost function that can be interpreted

as the likelihood for a given model to capture the observed data, given the features. They can be interpreted as a rela-

tive score of performance assigned to each component model in the set of candidates. A convex linear combination of

the individual RANS model solutions and the weighting functions is used to estimate an average RANS solution and

its variance. The latter provides a measure of the uncertainty in the prediction, due to the lack of knowledge about the

best-performing turbulence model for a given flow scenario and local flow features. In the numerical examples, we

focus on a set of four linear eddy viscosity models (LEVM), widely used in engineering applications. Specifically,

the Spalart-Allmaras, Launder-Sharma k − ε, Wilcox (2006) k − ω, and Smith k − L models are used to build the

XMA mixture. The approach is assessed for flow configurations of practical interest, namely, compressible turbulent

flows through the NACA 65 V103 planar compressor cascade. For proving the interest of the proposed methodology,

synthetic data are generated from RANS simulations based on an explicit algebraic Reynolds stress model (EARSM),

i.e. a model with a significantly different turbulence anisotropy structure compared to the LEVM. The EARSM refer-

ence simulations, obtained for a set of four different operating conditions of the cascade (called ”scenarios”), provides

target values for all possible flow quantities for both training and validation. The synthetic data are used to investigate

the influence of observed flow quantities and of the size of the training set on the quality of XMA predictions. For

the configuration at stake, the total pressure, which depends on both kinematic and thermodynamic quantities, is used

to train the XMA weights. Various training datasets are constructed by uniformly sampling the reference EARSM

solutions. The latter may contain observations extracted from a single flow scenario or by multiple scenarios simul-

taneously and both ”big data” and ”small data” regimes are considered. The first one corresponds to including total

pressure data at all points of the computational mesh for the reference solution(s). The second one corresponds to

extracting information at one mesh point over 8, leading to a dataset of only 820 data if a single scenario is included.

When XMA is trained on a single scenario and used to predict the same scenario, the predicted fields of the

observed quantity do not match the reference data perfectly, due to the structural deficiencies of the underlying LEVM,

whose individual solutions do not encompass the reference once everywhere in the flow. However, on the average,

XMA consistently improves the results over any of the component models, because it consistently assigns higher

weighting to the best performing models in each flow region. Interestingly, XMA does not only improve the prediction

for the flow quantity used for training, but also for unobserved quantities that are reasonably well correlated with the

preceding one, such as the velocity field. Additionally, the learned weighting functions and component solutions

can be used to estimate the variance of the XMA estimate, which represents a measure of the consensus among the

candidate models about what the solution should be. Relatively similar results are obtained for both for the big and

scarce training sets, with the accuracy increasing and the variance decreasing with the size of the training set.

Afterward, XMA is trained against three flow scenarios and used to predict a fourth one, whose operating condi-
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tions are not within the range of operating conditions of the calibration scenarios. For such extrapolation situation,

the XMA shows very good generalization abilities, providing a solution that is overall more accurate than any of the

component models for most flow quantities of interest. In this case however, the variances are larger, warning the user

about the trustfulness of the results.

The present XMA relies on ”on the shelf” component turbulence models, not specifically calibrated for the con-

figuration of interest. Additionally, no attempt was done to optimize the placement of observation points used for

model training. Thus, possible future improvements consist in simultaneously calibrating the models and training the

weighting functions, as well as utilizing optimal sensor placement techniques (e.g. [65]) for selecting the training

data. Further work on the choice of the flow features used to describe the model weights is also planned.
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[11] C. Gorlé and G. Iaccarino. A framework for epistemic uncertainty quantification of turbulent scalar flux models for
Reynolds-Averaged Navier-Stokes simulations. Physics of Fluids, 25(5):055105, 2013.

[12] R. L. Thompson, A. Mishra, G. Iaccarino, W. Edeling, and L. Sampaio. Eigenvector perturbation methodology for uncertainty quantification
of turbulence models. Physical Review Fluids, 4(4):044603, 2019.

[13] P. D. A. Platteeuw, G. J. A. Loeven, and H Bijl. Uncertainty quantification applied to the k–ε model of turbulence using the probabilistic
collocation method. In 10th AIAA Non-Deterministic Approaches Conference, 2008. Paper no.: 2008-2150.

[14] W. N. Edeling, P. Cinnella, R. P. Dwight, and H. Bijl. Bayesian estimates of parameter variability in the k–ε turbulence model. Journal of
Computational Physics, 258:73–94, 2014.

[15] L. Margheri, M. Meldi, M. V. Salvetti, and P. Sagaut. Epistemic uncertainties in RANS model free coefficients. Computers & Fluids,
102:315–335, 2014.

[16] S. V. Poroseva, M. Y. Hussaini, and S. L. Woodruff. Improving the predictive capability of turbulence models using evidence theory. AIAA
Journal, 44(6):1220–1228, 2006.

[17] W. N. Edeling, M. Schmelzer, R. Dwight, and P. Cinnella. Bayesian predictions of Reynolds-averaged Navier–Stokes uncertainties using
maximum a posteriori estimates. AIAA Journal, 56(5):2018–2029, 2018.

[18] M. de Zordo-Banliat, X. Merle, G. Dergham, and P. Cinnella. Bayesian model-scenario averaged predictions of compressor cascade flows
under uncertain turbulence models. Computers & Fluids, 201:104473, 2020.

[19] M. de Zordo-Banliat, X. Merle, G. Dergham, and P. Cinnella. Estimates of turbulence modeling uncertainties in naca65 cascade flow
predictions by bayesian model-scenario averaging. International Journal of Numerical Methods for Heat & Fluid Flow, 32:1398–1414,
2022.

[20] D. Draper. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society: Series B (Methodological), 57(1):45–
70, 1995.

25



[21] J. A. Hoeting, D. Madigan, A. E. Raftery, and C. T. Volinsky. Bayesian model averaging: a tutorial. Statistical science, 14(4):382–401, 1999.
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[63] H. Bézard and T. Daris. Calibrating the length scale equation with an explicit algebraic Reynolds stress constitutive relation. In Engineering

turbulence modelling and experiments 6, pages 77–86. Elsevier, 2005.
[64] S. Wallin and A. V. Johansson. An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows. Journal of

Fluid Mechanics, 403:89–132, 2000.
[65] V. Mons, J.C. Chassaing, and P. Sagaut. Optimal sensor placement for variational data assimilation of unsteady flows past a rotationally

oscillating cylinder. Journal of Fluid Mechanics, 823:230–277, 2017.

27


	1 Introduction
	2 Space-dependent Model Aggregation (XMA)
	2.1 Weighting criteria
	2.2 Supervised regression
	2.3 Input features

	3 Simulation setup and reference data
	3.1 Test case description
	3.2 RANS solver and computational grid
	3.3 Turbulence models
	3.3.1 Component turbulence models
	3.3.2 Reference model

	3.4 Training data sets

	4 Results
	4.1 Training and prediction on scenario S2
	4.2 Prediction of an unseen scenario

	5 Conclusions
	6 Acknowledgement

