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Abstract

We propose an unconditionally energy-stable, orthonormality-preserving,
component-wise splitting iterative scheme for the Kohn-Sham gradient
flow based model in the electronic structure calculation. We first study the
scheme discretized in time but still continuous in space. The component-
wise splitting iterative scheme changes one wave function at a time, sim-
ilar to the Gauss-Seidel iteration for solving a linear equation system. At
the time step n, the orthogonality of the wave function being updated
to other wave functions is preserved by projecting the gradient of the
Kohn-Sham energy onto the subspace orthogonal to all other wave func-
tions known at the current time, while the normalization of this wave
function is preserved by projecting the gradient of the Kohn-Sham en-
ergy onto the subspace orthogonal to this wave function at tn+1/2. The
unconditional energy stability is nontrivial, and it comes from a subtle
treatment of the two-electron integral as well as a consistent treatment
of the two projections. Rigorous mathematical derivations are presented
to show our proposed scheme indeed satisfies the desired properties. We
then study the fully-discretized scheme, where the space is further approx-
imated by a conforming finite element subspace. For the fully-discretized
scheme, not only the preservation of orthogonality and normalization (to-
gether we called orthonormalization) can be quickly shown using the same
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idea as for the semi-discretized scheme, but also the highlight property
of the scheme, i.e., the unconditional energy stability can be rigorously
proven. The scheme allows us to use large time step sizes and deal with
small systems involving only a single wave function during each iteration
step. Several numerical experiments are performed to verify the theoret-
ical analysis, where the number of iterations is indeed greatly reduced
as compared to similar examples solved by the Kohn-Sham gradient flow
based model in the literature.

Keywords: Density functional theory; gradient flow; orthonormality-preserving
schemes; energy stability.

1 Introduction

The Kohn-Sham density functional theory (DFT) is the most widely used ap-
proach for many-electron systems in quantum chemistry and physics [22]. The
straightforward way to obtain the lowest-energy solutions is to solve the Kohn-
Sham equations [7, 4, 20, 21], a nonlinear eigenvalue problem, where the Hartree-
Fock self-consistent field method is commonly applied [9, 32, 25, 28]. The self-
consistent field method assumes that the solution can be represented by a linear
combination of atomic orbitals in the entire R3 space, which may not be accu-
rate enough. It can also be computationally expensive, especially in evaluating
the two-electron repulsion integrals for large molecules [2, 17, 27].

Lately, a growing focus has been on the direct energy minimization model.
Rather than directly solving the Kohn-Sham equations, the model searches the
ground state by minimizing the energy under the Pauli exclusion principle or,
equivalently, the orthonormality constraint. It is worth mentioning that numer-
ous optimization techniques have been put forth for the Kohn-Sham energy min-
imization model [5, 14, 19, 36, 37, 39, 15]. Under appropriate assumptions, the
optimization techniques discussed herein yield local convergence. Nevertheless,
satisfying the orthonormality constraint is a challenging task that frequently
demands implementing specific techniques; sometimes, they bring significant
computational costs to the optimization process.

This paper utilizes the Kohn-Sham gradient flow based model proposed in
[6], where an extended gradient is introduced. One notable benefit in contrast
to the direct energy minimization approach is that this particular gradient flow
model ensures energy stability and orthonormality constraint at the continuous
level as well as at the fully discretized level. It is imperative to acknowledge
the pre-existing literature on employing gradient flow based models in tackling
eigenvalue problems [29, 1, 3].

To our knowledge, the existing numerical schemes for the Kohn-Sham gradi-
ent flow based model do not possess unconditional energy stability and preserve
the orthonormality constraint simultaneously without modifying the original en-
ergy [38]. Moreover, the existing schemes for the gradient flow model typically
arrive at a coupled system, thereby causing a substantial rise in computational
costs, particularly as the number of orbitals rises.
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Unconditionally energy stable schemes have been actively studied in recent
two decades, particularly for multi-component and multi-phase fluid flow and
transport problems [12, 23, 13, 31, 33, 34, 35, 24, 11, 10, 26]. Due to the strong
nonlinearity, the strong coupling between various physics, and the non-convex
feature of the background energy in these problems, small time steps typically
have to be used due to stability concerns instead of maintaining accuracy in
temporal discretization if the scheme is only conditionally energy stable. For
scenarios like these, it is crucial to design unconditionally energy-stable schemes,
which not only substantially increase the computational efficiency of the sim-
ulation, but also greatly enhance the robustness of the calculation. Uncondi-
tionally energy-stable schemes have also been heavily studied for gradient flow
problems [40, 18, 41, 30]; however, to the best of our knowledge, uncondition-
ally energy-stable but orthonormality-preserving schemes for the Kohn-Sham
gradient flow-based model in the electronic structure calculation have not been
reported yet in the literature.

The contribution of this paper is that we propose an iterative, uncondition-
ally energy-stable, orthonormality-preserving numerical scheme for the Kohn-
Sham gradient flow based model. The proposed scheme employs the technique
of component-wise splitting, leading to an algorithm that resembles the Gauss-
Siedel method for solving systems of linear equations. The properties mentioned
above guarantee that we can use large time step sizes in the simulation and solve
small systems in each time step, saving massive computational costs compared
to other algorithms. Unlike the SAV-based method [38], our proposal method
does not modify the original energy and does not have a tuned parameter for
the algorithm.

The rest of the paper is organized as follows. In the next Section 2, we
present the problem setup and the gradient flow formulation at the PDE level.
In Section 3, we propose a new orthonormality-preserving and uncondition-
ally energy-stable time-marching algorithm to solve the gradient flow problem,
which yields an orthonormality-preserving, unconditionally energy-stable, and
component-splitting iterative scheme for the original energy minimization prob-
lem. The rigorous proof is given in this section. Section 4 establishes a fully
discrete scheme via the finite element method. In Section 5, some numerical
examples are provided to verify the theory analysis. Finally, we give some con-
cluding remarks in Section 6.

2 Preliminaries

The total energy of a system with N orbitals consists of the following parts:

E = Ekinetic + Eext + EHar + Exc + Enuc, (2.1)
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where Ekinetic is the Kohn-Sham kinetic energy, which is expressed in terms of
the orbital Ψ := {ψ1, ψ2, · · · , ψN} as

Ekinetic =
1

2

N∑
l=1

∫
R3

fl |∇ψl|2 dr, (2.2)

where fl is the occupation number of the l-th orbital.

Eext is the external energy expressed as a functional of the external potential
Vext(r) and density ρ(r):

Eext =

∫
R3

Vext(r)ρ(r)dr, Vext(r) = −
M∑
j=1

Zj

|r−Rj |
, ρ(r) =

N∑
l=1

flψ
2
l (r) (2.3)

where M denotes the number of nuclei, Zj and Rj are the corresponding nu-
clei charge and position of the j−th nuclei, respectively. For the simplicity in
notations, we present our algorithm below without explicitly listing fl, i.e., we
consider the cases that fl = constant, l = 1, ..., N ; in particular, all numerical
examples shown in this paper are cases with fl = 2, l = 1, ..., N .

EHar is the Hartree energy concerning with the Hartree potential VHar:

EHar =
1

2

∫
R3

VHar(r)ρ(r)dr, VHar([ρ]; r) =

∫
R3

ρ (r′)

|r− r′|
dr′ (2.4)

Exc is the exchange–correlation energy for which we do not possess the exact
formula. It can be expressed as the inner product of the exchange-correlation
energy per unit density ϵxc(ρ) and density.

Exc =

∫
R3

ϵxc(ρ)ρ(r)dr. (2.5)

The last term Enuc is a constant for the energy of nucleon-nucleon interactions.
Since the main purpose of this paper is to present and demonstrate our new
algorithm, for simplicity, we ignore the last two energy Exc and Enuc in this
paper. Energy-stable numerical treatment of Exc will be investigated in our
ongoing work.

The total energy now reads

E = Ekinetic + Eext + EHar, (2.6)

and the solution of ground states can be obtained by minimizing the total energy
with orthonormality constraints, which can be formulated as follows:

min
Ψ

E(Ψ)

s.t. ⟨Ψ,Ψ⟩ = IN ,

where ⟨·, ·⟩ stands for the standard L2 inner product, and IN denotes the N×N
identity matrix. In this paper, we call ψi and ψj (i ̸= j) orthogonal to each other
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if and only if ⟨ψi, ψj⟩ = 0; we call ψi is normalized if and only if ⟨ψi, ψi⟩ = 1.
Orthogonality and normalization together is called orthonormality.

For brevity in notations, we first define the operators H,HL, and HHar by

Hψk := −1

2
∇2ψk+(Vext(r) + VHar([ρ]; r))ψk = HLψk+HHar(ρ)ψk, 1 ≤ k ≤ N,

(2.7)
where HLψk := − 1

2∇
2ψk + Vext (r)ψk is the linear part, and HHar(ρ)ψk :=

VHar([ρ]; r)ψk is the nonlinear part. Then the total energy can be expressed as

E =

N∑
l=1

⟨HLψl, ψl⟩+
1

2

N∑
l=1

⟨HHar(ρ)ψl, ψl⟩ =
N∑
l=1

〈(
HL +

1

2
HHar

)
ψl, ψl

〉
,

(2.8)
and its gradient is

(∇E(Ψ))k = 2Hψk = 2HLψk + 2HHar(ρ)ψk. (2.9)

We then introduce the Stiefel manifold, defined as follows

MN =
{
Ψ ∈

(
H1
(
R3
))N

: ⟨Ψ,Ψ⟩ = IN

}
. (2.10)

The gradient on the Stiefel manifold MN of (∇E(Ψ)) at Ψ (see [8]), denoted
by ∇GE(Ψ), can be written as

(∇GE(Ψ))k = (∇E(Ψ))k −
N∑
l=1

⟨(∇E(Ψ))l , ψk⟩ψl. (2.11)

We note that the gradient on the Stiefel manifold MN of (∇E(Ψ)) is the pro-
jection of the original gradient ∇E(Ψ) onto the subspace that is orthogonal to
all ψk, k = 1, · · · , N , because both HL and HHar are symmetric operators.

To propose a gradient flow model that automatically preserves the orthonor-

mal constraint, we have to extend the gradient (∇GE(Ψ)) fromMN to
(
H1
(
R3
))N

.
The extended gradient, still denoted as (∇GE(Ψ)), is defined as

(∇GE(Ψ))k =

N∑
l=1

⟨ψl, ψk⟩ (∇E(Ψ))l −
N∑
l=1

⟨(∇E(Ψ))l , ψk⟩ψl. (2.12)

The corresponding Kohn-Sham gradient flow model can now be formulated as{
∂Ψ(r,τ)

∂τ = −∇GE(Ψ), 0 < τ <∞,
Ψ(r, 0) = Ψ0,

(2.13)

where Ψ0 = {ψ0,1, ψ0,2, ...ψ0,N} ∈ MN is the initial condition. Note that the
first equation in (2.13) can also be written as

∂ψk(r, τ)

∂τ
= −2

N∑
l=1

⟨ψl, ψk⟩Hψl + 2

N∑
l=1

⟨Hψl, ψk⟩ψl. (2.14)
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We can do a simple variable substitution of t = 2τ to obtain

∂ψk(r, t)

∂t
= −

N∑
l=1

⟨ψl, ψk⟩Hψl +

N∑
l=1

⟨Hψl, ψk⟩ψl. (2.15)

A direct verification can show that the solution Ψ sits in the Stiefel manifold
MN . Indeed, for any 1 ≤ m ≤ N , we have

d

dt
⟨ψk, ψm⟩

=

〈
∂ψk

∂t
, ψm

〉
+

〈
∂ψm

∂t
, ψk

〉
(2.16)

=

〈
N∑
l=1

⟨Hψl, ψk⟩ψl −
N∑
l=1

⟨ψl, ψk⟩Hψl, ψm

〉

+

〈
N∑
l=1

⟨Hψl, ψm⟩ψl −
N∑
l=1

⟨ψl, ψm⟩Hψl, ψk

〉
(2.17)

= 0. (2.18)

Proposition 2.1. (see Proposition 3.2 in [6])The model equations (2.13) satisfy

1. ⟨Ψ,Ψ⟩ = IN ;

2. dE
dt ≤ 0.

3 An Iterative Orthonormality-Preserving and
Unconditionally Energy-Stable Algorithm

This section introduces an iterative scheme that preserves orthonormality and
unconditional discrete energy stability. Let

{tn : n = 0, 1, 2 · · · } ⊂ [0,+∞) (3.1)

be discrete points such that 0 = t0 < t1 < t2 < · · · < tn < · · · and set
∆tn = tn+1 − tn. For any n ≥ 0 and 1 ≤ k ≤ N , we introduce the following
modified midpoint scheme:

ψn+1
k − ψn

k

∆tn
= A(ψ

n+ 1
2

k ), (3.2)
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where we have

ψ
n+ 1

2

k =
1

2

(
ψn
k + ψn+1

k

)
, (3.3)

A(ψ
n+ 1

2

k ) = −
〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
Hn+ 1

2ψ
n+ 1

2

k +
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
ψ
n+ 1

2

k

+
∑
l ̸=k

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψn+δl
l

〉
ψn+δl
l (3.4)

Hn+ 1
2 = H

(
ψn+1
1 , · · · , ψn+1

k−1 , ψ
n+1
k , ψn

k+1, · · · , ψn
N

)
(3.5)

δl =

{
1, l < k
0, l > k

(3.6)

We note that we called the scheme “modified midpoint scheme” because in
a component-wise midpoint scheme, the term Hn+ 1

2 above should read

Hn+ 1
2 = H

(
ψn+1
1 , · · · , ψn+1

k−1 , ψ
n+1/2
k , ψn

k+1, · · · , ψn
N

)
.

However, even though this component-wise midpoint scheme also preserves or-
thogonality and normalization, it does not have unconditional energy stability,
as we will see from the proof later in this paper. We also note that notation-wise,

we should call it H
n+ 1

2

k as it also depends on k, but since this dependence is
clear from the context, we abuse the notation a little and omit k for simplicity.

Let us denote Ψn+1 :=
{
ψn+1
1 , ψn+1

2 , · · · , ψn+1
N

}
. We present the following

two theorems to show the scheme satisfies the desired properties.

Theorem 3.1. The numerical solution of the scheme (3.2) satisfies

⟨Ψn+1,Ψn+1⟩ = IN , ∀n ≥ 0, (3.7)

if we have ⟨Ψ0,Ψ0⟩ = IN .

Proof. We first take the inner product of the scheme (3.2) with ψ
n+δj
j (j ̸= k).〈

ψn+1
k − ψn

k

∆tn
, ψ

n+δj
j

〉
=

〈
ψn+1
k

∆tn
, ψ

n+δj
j

〉
=
〈
A(ψ

n+ 1
2

k )), ψ
n+δj
j

〉
. (3.8)

Then we can obtain〈
A(ψ

n+ 1
2

k ), ψ
n+δj
j

〉
= −

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+δj
j

〉
+
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
ψ
n+ 1

2

k , ψ
n+δj
j

〉
+
∑
l ̸=k

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψn+δl
l

〉〈
ψn+δl
l , ψ

n+δj
j

〉
.

(3.9)
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Note that we have
〈
ψn+δl
l , ψ

n+δj
j

〉
= δlj , then we can arrive at〈

A(ψ
n+ 1

2

k ), ψ
n+δj
j

〉
= −

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+δj
j

〉
+
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
ψ
n+ 1

2

k , ψ
n+δj
j

〉
+
〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+δj
j

〉
=
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
ψ
n+ 1

2

k , ψ
n+δj
j

〉
=

1

2

〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
ψn+1
k , ψ

n+δj
j

〉
(3.10)

Substituting the equation (3.10) into (3.8), we can obtain〈
ψn+1
k , ψ

n+δj
j

〉
= 0, (3.11)

unless
1

∆tn
=

1

2

〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
. (3.12)

By continuity argument, we can still show
〈
ψn+1
k , ψ

n+δj
j

〉
= 0 even if (3.12)

holds. To show its normalization property, we now take the inner product of

the scheme (3.2) again with ψ
n+ 1

2

k to obtain〈
ψn+1
k − ψn

k

∆tn
, ψ

n+ 1
2

k

〉
=

1

2∆tn

(〈
ψn+1
k , ψn+1

k

〉
− 1
)
=
〈
A(ψ

n+ 1
2

k ), ψ
n+ 1

2

k

〉
,

(3.13)

where we have〈
A(ψ

n+ 1
2

k ), ψ
n+ 1

2

k

〉
= −

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
+
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
+
∑
l ̸=k

〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉〈
Hn+ 1

2ψ
n+ 1

2

k , ψn+δl
l

〉〈
ψn+δl
l , ψ

n+ 1
2

k

〉
= 0.

(3.14)

Combining the results of equations (3.13)-(3.14), we arrive at〈
ψn+1
k , ψn+1

k

〉
= 1, (3.15)

which concludes the proof.
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Before we state the next theorem, we recall the expression of the total energy
and rewrite it as

E(Ψ) = E ({ψ1, · · · , ψk−1, ψk, ψk+1, · · · , ψN})

=

N∑
l=1

〈(
HL +

1

2
HHar(Ψ)

)
ψl, ψl

〉

=

N∑
l=1

⟨HLψl, ψl⟩+
1

2

N∑
l=1

N∑
m=1

〈
LHarψ

2
l , ψ

2
m

〉
,

(3.16)

where we utilize the definition of density and define

⟨LHarρl, ρm⟩ :=
∫
R3

∫
R3

ρl(r)ρm (r′)

|r− r′|
drdr′. (3.17)

Lemma 3.1. The following two inequalities hold

⟨LHarρ2, (ρ1 − ρ2)⟩ ≤ ⟨LHarρ1, (ρ1 − ρ2)⟩ , (3.18)

⟨LHarρ2, ρ2⟩ − ⟨LHarρ1, ρ1⟩ ≤ 2 ⟨LHarρ2, (ρ2 − ρ1)⟩ . (3.19)

Proof. Note that ⟨LHarρl, ρm⟩ is in a symmetric and positive-definite form.
Thus, we have

0 ≤ ⟨LHar (ρ1 − ρ2) , (ρ1 − ρ2)⟩
= ⟨LHarρ1, (ρ1 − ρ2)⟩ − ⟨LHarρ2, (ρ1 − ρ2)⟩ ,

(3.20)

and
⟨LHarρ2, ρ2⟩ − ⟨LHarρ1, ρ1⟩

=2 ⟨LHarρ2, (ρ2 − ρ1)⟩ − ⟨LHar (ρ1 − ρ2) , (ρ1 − ρ2)⟩
≤2 ⟨LHarρ2, (ρ2 − ρ1)⟩ .

(3.21)

This completes the proof.

Lemma 3.2. For any n ≥ 0 and 1 ≤ k ≤ N , the following inequality holds

E(Ψn+1
k )− E(Ψn+1

k−1)

2∆tn
≤
〈
Hn+ 1

2ψ
n+ 1

2

k ,
ψn+1
k − ψn

k

∆tn

〉
, (3.22)

where

Ψn+1
k :=

{
ψn+1
1 , · · · , ψn+1

k−1 , ψ
n+1
k , ψn

k+1, · · · , ψn
N

}
, (3.23)

Ψn+1
k−1 :=

{
ψn+1
1 , · · · , ψn+1

k−1 , ψ
n
k , ψ

n
k+1, · · · , ψn

N

}
. (3.24)
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Proof. By the definition of the total energy (3.16), we have

E(Ψn+1
k )− E(Ψn+1

k−1)

2(∆tn)

=
1

2∆tn

(
k∑

l=1

〈
HLψ

n+1
l , ψn+1

l

〉
+

N∑
l=k+1

⟨HLψ
n
l , ψ

n
l ⟩

)

− 1

2∆tn

(
k−1∑
l=1

〈
HLψ

n+1
l , ψn+1

l

〉
+

N∑
l=k

⟨HLψ
n
l , ψ

n
l ⟩

)

+
1

4∆tn

〈
LHar

(
k∑

l=1

(
ψn+1
l

)2
+

N∑
l=k+1

(ψn
l )

2

)
,

(
k∑

m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)〉

− 1

4∆tn

〈
LHar

(
k−1∑
l=1

(
ψn+1
l

)2
+

N∑
l=k

(ψn
l )

2

)
,

(
k−1∑
m=1

(
ψn+1
m

)2
+

N∑
m=k

(ψn
m)

2

)〉
.

(3.25)

The first two terms on the right-hand side of (3.25) can be simplified as

1

2∆tn

(
k∑

l=1

〈
HLψ

n+1
l , ψn+1

l

〉
+

N∑
l=k+1

⟨HLψ
n
l , ψ

n
l ⟩

)

− 1

2∆tn

(
k−1∑
l=1

〈
HLψ

n+1
l , ψn+1

l

〉
+

N∑
l=k

⟨HLψ
n
l , ψ

n
l ⟩

)

=
1

2∆tn

〈
HLψ

n+1
k , ψn+1

k

〉
− 1

2∆tn
⟨HLψ

n
k , ψ

n
k ⟩

=

〈
HL

(
ψn+1
k − ψn

k

)
∆tn

, ψ
n+ 1

2

k

〉
=

〈
HLψ

n+ 1
2

k ,
ψn+1
k − ψn

k

∆tn
,

〉
.

(3.26)
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By using the inequality (3.19) in Lemma 3.1, we can obtain

1

4∆tn

〈
LHar

(
k∑

l=1

(
ψn+1
l

)2
+

N∑
l=k+1

(ψn
l )

2

)
,

(
k∑

m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)〉

− 1

4∆tn

〈
LHar

(
k−1∑
l=1

(
ψn+1
l

)2
+

N∑
l=k

(ψn
l )

2

)
,

(
k−1∑
m=1

(
ψn+1
m

)2
+

N∑
m=k

(ψn
m)

2

)〉

=
1

2∆tn

〈
LHar

(
k−1∑
m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)
,
(
ψn+1
k

)2 − (ψn
k )

2

〉

+
1

4∆tn

(〈
LHar

(
ψn+1
k

)2
,
(
ψn+1
k

)2〉−
〈
LHar (ψ

n
k )

2
, (ψn

k )
2
〉)

≤ 1

2∆tn

〈
LHar

(
k−1∑
m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)
,
(
ψn+1
k

)2 − (ψn
k )

2

〉

+
1

2∆tn

〈
LHar

(
ψn+1
k

)2
,
(
ψn+1
k

)2 − (ψn
k )

2
〉

=
1

2∆tn

〈
LHar

(
k∑

m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)
,
(
ψn+1
k

)2 − (ψn
k )

2

〉

=
1

∆tn

〈
LHar

(
k∑

m=1

(
ψn+1
m

)2
+

N∑
m=k+1

(ψn
m)

2

)
,
(
ψn+1
k − ψn

k

)
ψ
n+ 1

2

k

〉

=

〈
H

n+ 1
2

Har ψ
n+ 1

2

k ,
ψn+1
k − ψn

k

∆tn

〉
,

(3.27)
which concludes the proof.

Theorem 3.2. The numerical solution of the scheme (3.2) satisfies

E(Ψn+1) ≤ E(Ψn), ∀n ≥ 0, (3.28)
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Proof. By utilizing the result in Lemma 3.2, we can arrive at

E(Ψn+1
k )− E(Ψn+1

k−1)

2∆tn
≤
〈
Hn+ 1

2ψ
n+ 1

2

k ,
ψn+1
k − ψn

k

∆tn

〉
(3.29)

=

〈
Hn+ 1

2ψ
n+ 1

2

k ,
ψn+1
k − ψn

k

∆tn

〉
(3.30)

= −
〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉
∥Hn+ 1

2ψ
n+ 1

2

k ∥2 +
〈
Hn+ 1

2ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉2
+
〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉 k−1∑
l=1

〈
Hn+ 1

2ψ
n+ 1

2

k , ψn+1
l

〉2
+
〈
ψ
n+ 1

2

k , ψ
n+ 1

2

k

〉 N∑
l=k+1

〈
Hn+ 1

2ψ
n+ 1

2

k , ψn
l

〉2
(3.31)

= −c20

〈
Hn+ 1

2ψ
n+ 1

2

k , Hn+ 1
2ψ

n+ 1
2

k − c1,k
̂
ψ
n+ 1

2

k −
k−1∑
l=1

c2,lψ
n+1
l −

N∑
l=k+1

c3,lψ
n
l

〉
,

(3.32)

where we have

c20 : =
∥∥∥ψn+ 1

2

k

∥∥∥2 =
1

2

(
1 +

〈
ψn
k , ψ

n+1
k

〉)
(3.33)

̂
ψ
n+ 1

2

k :=
ψ
n+ 1

2

k∥∥∥ψn+ 1
2

k

∥∥∥ =
1

c0
ψ
n+ 1

2

k (3.34)

c1,k :=

〈
Hn+ 1

2ψ
n+ 1

2

k ,
̂
ψ
n+ 1

2

k

〉
(3.35)

c2,l :=
〈
Hn+ 1

2ψ
n+ 1

2

k , ψn+1
l

〉
(3.36)

c3,l :=
〈
Hn+ 1

2ψ
n+ 1

2

k , ψn
l

〉
(3.37)

Note that the last three terms in Eq. (3.32) are indeed the projection from

Hn+ 1
2ψ

n+ 1
2

k to the space spanned by {ψn+1
1 , ...ψn+1

k−1 ,
̂
ψ
n+ 1

2

k , ψn
k+1...ψ

n
N}. Thus,

we can have the following identity〈
Hn+ 1

2ψ
n+ 1

2

k , Hn+ 1
2ψ

n+ 1
2

k − c1,k
̂
ψ
n+ 1

2

k −
k−1∑
l=1

c2,lψ
n+1
l −

N∑
l=k+1

c3,lψ
n
l

〉

= ∥Hn+ 1
2ψ

n+ 1
2

k − c1,k
̂
ψ
n+ 1

2

k −
k−1∑
l=1

c2,lψ
n+1
l −

N∑
l=k+1

c3,lψ
n
l ∥2. (3.38)
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By substituting the above equation back to Eq. (3.32), we arrive at

E(Ψn+1
k )− E(Ψn+1

k−1)

2∆tn

≤ −c20∥Hn+ 1
2ψ

n+ 1
2

k − c1,k
̂
ψ
n+ 1

2

k −
k−1∑
l=1

c2,lψ
n+1
l −

N∑
l=k+1

c3,lψ
n
l ∥2 (3.39)

≤ 0, (3.40)

which completes the proof.

We remark that

∥∥∥∥Hn+ 1
2ψ

n+ 1
2

k − c1,k
̂
ψ
n+ 1

2

k −
∑k−1

l=1 c2,kψ
n+1
l −

∑N
l=k+1 c2,kψ

n
l

∥∥∥∥ =

0 if and only if the operator Hn+ 1
2 maps ψ

n+ 1
2

k onto the current solution space

of span
{
ψn+1
1 , · · · , ψn+1

k−1 , ψ
n+ 1

2

k , ψn
k+1, · · · , ψn

N

}
. We further note that when

converging, Hn+1 maps span
{
ψn+1
1 , · · · , ψn+1

k , ψn+1
k , ψn+1

k+1 , · · · , ψ
n+1
N

}
onto the

same space of span
{
ψn+1
1 , · · · , ψn+1

k , ψn+1
k , ψn+1

k+1 , · · · , ψ
n+1
N

}
, which implies that

ψn+1
1 , · · · , ψn+1

k , ψn+1
k , ψn+1

k+1 , · · · , ψ
n+1
N is the solution of the original Kohn-Sham

eigenvalue problem unique up to the equivalence relation defined by the or-
thonormal transform.

4 Fully Discrete Schemes

This section introduces the fully discrete scheme provided by the standard finite
element method. Let Th be a tetrahedral finite element partition of a finite
computational domain Ω in R3 with a mesh size h. The corresponding finite
element space Vh is defined as follows:

Vh =
{
v ∈ C0(Ω) : v|K ∈ Pr(K),K ∈ Th

}
, (4.1)

where Pr denotes the space of polynomials of total degree at most r.

For simplicity, we consider the homogenous Dirichlet boundary condition.
We let V 0

h be the subspace of Vh satisfying the homogenous Dirichlet boundary
condition. Then we can derive the fully discrete scheme: For n ≥ 0 and 1 ≤
k ≤ N , find ψn+1

k,h ∈ V 0
h , such that〈

ψn+1
k,h − ψn

k,h

∆tn
, vh

〉
=
〈
Ah(ψ

n+ 1
2

k,h ), vh

〉
, ∀vh ∈ V 0

h , (4.2)
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where we have

ψ
n+ 1

2

k,h =
1

2

(
ψn
k,h + ψn+1

k,h

)
, (4.3)

Ah(ψ
n+ 1

2

k,h ) = −
〈
ψ
n+ 1

2

k,h , ψ
n+ 1

2

k,h

〉
H

n+ 1
2

h ψ
n+ 1

2

k,h +
〈
H

n+ 1
2

h ψ
n+ 1

2

k,h , ψ
n+ 1

2

k,h

〉
ψ
n+ 1

2

k,h

+
∑
l ̸=k

〈
ψ
n+ 1

2

k,h , ψ
n+ 1

2

k,h

〉〈
H

n+ 1
2

h ψ
n+ 1

2

k,h , ψn+δl
l,h

〉
ψn+δl
l,h , (4.4)

H
n+ 1

2

h = Hh

(
ψn+1
1,h , · · · , ψn+1

k−1,h, ψ
n+1
k,h , ψn

k+1,h, · · · , ψn
N,h

)
, (4.5)

⟨Hhψk, vh⟩ = ⟨∇ψk,∇vh⟩+ ⟨(Vext(r) + VHar([ρh]; r))ψk, vh⟩ . (4.6)

Let us denote Ψn+1
h :=

{
ψn+1
1,h , ψn+1

2,h , · · · , ψn+1
N,h

}
. We present the following

corollary to show the fully discrete scheme maintains the desired properties.

Corollary 4.1. For any n ≥ 0, the numerical solution of the scheme 4.2 satis-
fies

E(Ψn+1
h ) ≤ E(Ψn

h), ⟨Ψn+1
h ,Ψn+1

h ⟩ = IN . (4.7)

Proof. The proof can be conducted in the same way as in Theorem 3.1 and
Theorem 3.2.

We also remark that since we are using a conforming Galerkin method for
the spatial discretization, i.e., V 0

h = V 0
h (Ω) is a subspace of H1(R3), we quickly

see that when converging, our numerical energy is an upper-bound estimate
of the true energy if the exact solution of the PDE approaches to the global
minimum solution of the Kohn-Sham energy functional:

lim
n→∞

E(Ψn
h) ≥ lim

n→∞
E(Ψn).

The energy error EE := lim
n→∞

E(Ψn
h) − lim

n→∞
E(Ψn) typically decreases as

we refine the mesh. The analysis of the energy error (and the error on wave
functions) is out of the scope of this paper.

5 Numerical Implementations

This section presents a few numerical examples to validate our theoretical anal-
ysis. Note that all the quantities are in the atomic unit. Let the occupation
number fl = 2 for all orbitals, and the number of orbitals N satisfies N = Ne

2 ,
where Ne is the number of electrons. The number of electrons Ne should be the
same as the total nuclei charge for charge-neutral systems.

The stopping criterion is set as |E(Ψn+1
h )−E(Ψn

h)| ≤ 1e− 6. A fixed point
iteration with a criterion of 1e−8 is applied to solve the nonlinear problem. Let
j ≥ 0 be the number of iterations. The detailed scheme can be formulated as〈

ψn+1,j+1
k,h − ψn

k,h

∆tn
, vh

〉
=
〈
Aj

h(ψ
n+ 1

2

k,h ), vh

〉
, ∀vh ∈ V 0

h , (5.1)
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where we have

ψ
n+ 1

2 ,j+1

k,h =
1

2

(
ψn
k,h + ψn+1,j+1

k,h

)
, (5.2)

Aj
h(ψ

n+ 1
2

k,h ) = −
〈
ψ
n+ 1

2 ,j

k,h , ψ
n+ 1

2 ,j

k,h

〉
H

n+ 1
2 ,j

h ψ
n+ 1

2 ,j+1

k,h (5.3)

+
〈
H

n+ 1
2 ,j

h ψ
n+ 1

2 ,j

k,h , ψ
n+ 1

2 ,j

k,h

〉
ψ
n+ 1

2 ,j+1

k,h

+
∑
l ̸=k

〈
ψ
n+ 1

2 ,j

k,h , ψ
n+ 1

2 ,j

k,h

〉〈
H

n+ 1
2 ,j

h ψ
n+ 1

2 ,j

k,h , ψn+δl
l,h

〉
ψn+δl
l,h , (5.4)

H
n+ 1

2 ,j

h = Hh

(
ψn+1
1,h , · · · , ψn+1

k−1,h, ψ
n+1,j
k,h , ψn

k+1,h, · · · , ψn
N,h

)
, (5.5)

where the initial guess ψn+1,0
k,h = ψn

k,h.
All the meshes are generated by the Gmsh [16]. The polynomial order r is

fixed as 1.

Example 5.1.

We first consider a helium (He) atom with charge two and location (0, 0, 0).
The nonuniform mesh size h is determined by

h(x, y, z) =
x2 + y2 + z2

400
+ 0.2. (5.6)

The initial condition is given as

ψ0,1(r) =
e−2|r−R1|+0.5

∥e−2|r−R1|+0.5∥
. (5.7)

Other parameters are set as follows:

Ω = [−10, 10]3, ∆tn = ∆t = 1e− 4, ∀n ≥ 0. (5.8)

As shown in Figure 5.1, we conclude that the proposed scheme preserves the
discrete energy stability and orthonormal constraint. The nonuniform mesh,
contour plot, and electron density are shown in Figure 5.2 and Figure 5.3, re-
spectively. A spherical shape can be seen from these two figures.

Example 5.2.

In this example, we consider the lithium hydride (LiH) of 2 nuclei with charge
{1, 3} and positions (−1.0075, 0, 0), (2.0075, 0, 0). The initial condition can be
given as

ψ0,1(r) = (1, 0, ..., 0)T , ψ0,2(r) = (0, 1, ..., 0)T , ψ0,l(r) ∈ RNdof×1, (5.9)

where Ndof is the degrees of freedom. We must ensure that the first and second
points are not in the same element. The next step is to normalize the initial
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Figure 5.1: The evolution of the computed total energy (in Hartree) with the
time step (left) and the L2 norm of the numerical solution (right) for the elec-
tronic structure of a helium atom (Example 5.1), demonstrating that our scheme
preserves normalization exactly while being strictly energy stable even with large
time steps.

X

Y

Z

Figure 5.2: The nonuniform mesh used for domain discretization with a total
number of degree of freedoms 5400 (left) and the contour plot (right) for the
predicted electronic structure of a helium atom (Example 5.1).

condition to let them sit in the Stiefel manifold. This initial condition is designed
to be far away from the equilibrium. We utilize a relatively large time step size

∆tn = ∆t = 1e− 1. (5.10)

The computational domain remains the same as the last. The nonuniform mesh
size is calculated by

h(x, y, z) = min(
min

(
(x− 1)2 + y2 + z2, (x+ 2)2 + y2 + z2

)
15

+ 0.1, hmax),

(5.11)
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Figure 5.3: Profiles of the computed electron density function in a linear scale
(left) and in a log scale (right) for the XY cross-section of the electronic struc-
ture of a helium atom (Example 5.1)

where hmax is the default parameter in the Gmsh. As illustrated in Figure 5.4,
we can still observe the discrete energy stability and orthonormality-preserving
property. The simulation only takes 110 steps to converge thanks to the uncon-
ditional energy stability, even though the initial condition is quite distant from
the ground state. Additionally, it can be observed that the numerical solution
consistently resides within the Stiefel manifold, so initiating a restart procedure
is unnecessary to ensure orthonormality. We illustrate the nonuniform mesh,
profiles of the density, and 3D contour plot in Figure 5.5 and Figure 5.6.
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 I n n e r  p r o d u c t  o f  t h e  t w o  w a v e  f u n c t i o n s

Figure 5.4: The evolution of the computed total energy (in Hartree) with the
time step (left) and the L2 norm of the first wave function and inner product of
the two wave functions (right) for the electronic structure of a lithium hydride
molecule (Example 5.2), demonstrating that our scheme preserves normalization
and orthogonality exactly while being strictly energy stable even with large time
steps.

Example 5.3.
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X

Y

Z

Figure 5.5: The nonuniform mesh used for domain discretization with a total
number of degree of freedoms 6909 (left) and the 3D contour plot (right) for the
predicted electronic structure of a lithium hydride molecule (Example 5.2).

Figure 5.6: Profiles of the computed electron density function in a linear scale
(left) and in a log scale (right) for the XY cross-section of the electronic struc-
ture of a lithium hydride molecule (Example 5.2).

Finally, we simulate a methane (CH4) molecule of 5 nuclei with charge
{6, 1, 1, 1, 1} and positions (0, 0, 0), (c, c, c), (−c,−c, c), (c,−c,−c), (−c, c,−c),
where the constant c = 1.18921. The computational domain stays the same
as Example 5.1. We give the initial condition in the same way as in the last
example, except for the first wave function

ψ0,1(r) =
e−2|r−R1|

∥e−2|r−R1|∥
. (5.12)

1From Computational Chemistry Comparison and Benchmark DataBase: https://cccbdb.
nist.gov/expgeom2.asp?casno=74828&charge=0.

18

https://cccbdb.nist.gov/expgeom2.asp?casno=74828&charge=0
https://cccbdb.nist.gov/expgeom2.asp?casno=74828&charge=0


We utilize a simple adaptive time step size strategy in this example

∆tn+1 =

{
5 ∗ 1e− 2 if |E(Ψn+1)− E(Ψn)| ≥ 1e− 2,

5 ∗ 1e− 4 otherwise.
(5.13)

The reason why we choose this strategy is to make full use of the unconditional
energy stability. We employ a large time step size to let the solution close to
the ground state as soon as possible, followed by a transition to a small time
step size for accuracy. The nonuniform mesh size is defined by

h(x, y, z) =

{
0.2 if x2 + y2 + z2 ≤ 1.82,

2.5 otherwise.
(5.14)

And we set the thickness of the ball to 1.

We observe that the discrete energy dissipation law still holds from Figure
5.7. Analogously, the total energy travels a considerable distance from the initial
condition to the ground state. We suggest the readers use the initial condition
close enough to the ground state. The numerical examples are designed to show
the power of unconditional energy stability. The 3D contour plot is presented
in Figure 5.8. We can see the dense electronic cloud around the carbon atom
and the sparse cloud around the four hydrogen atoms (one at the top and three
at the bottom). The numerical density profiles are presented in Figure 5.9.
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Figure 5.7: The evolution of the computed total energy (in Hartree) with the
time step (left) and the nonuniform mesh used for domain discretization with
a total number of degree of freedoms 3323 (right) for the electronic structure
of a methane molecule (Example 5.3). The evolution of the computed total
energy demonstrates that our scheme is strictly energy stable even with large
time steps. We purposely enlarge the energy scale at later time steps to show
the total energy indeed decreases strictly, though slowly, after 100 time steps,
verifying our theoretical analysis reported in this paper.
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Figure 5.8: The 3D contour plot for the predicted electronic structure of a
methane molecule (Example 5.3). The shown shape of the methane molecule is
stretched by the four hydrogen atoms sitting outside. We purposely peek into
the core to visualize the dense electronic cloud around the carbon atom sitting
in the center.

Figure 5.9: Profiles of the computed electron density function in a linear scale
(left) and in a log scale (right) for the XY cross-section of the electronic struc-
ture of a methane molecule (Example 5.3).

Remark 5.1. We actually tested various meshes on the same problem, wherein
it was discovered that the number of time steps remained almost the same across
all tested meshes. This phenomenon shows that the proposed scheme inherits
the property from the PDE, where the extended gradient has an exponential
decay over time t [6].

6 Conclusions

This paper presents an unconditionally energy-stable, orthonormality-preserving,
component-wise splitting iterative scheme for the Kohn-Sham gradient flow
based model. The proposed scheme perfectly inherits the two desirable proper-
ties from the PDE model and offers an iterative approach that mitigates the need
for significant computational resources. Rigorous proof and several numerical
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examples are given in the paper to verify, theoretically and numerically.
Even though quite a number of orthonormality-preserving schemes have been

proposed for the Kohn-Sham gradient flow based model, their energy stability
typically depends on the time step size. To the best of our knowledge, the
algorithm presented in this paper is the first unconditionally energy-stable al-
gorithm reported in the literature that also preserves orthonormality exactly.
The component-wise splitting technique simplifies the computation further and
reduces the number of simultaneous equations to be solved at a time. The un-
conditional energy stability guarantees that we can use large time step sizes in
the simulation, while component-wise splitting allows us to solve small systems
in each time step, saving massive computational costs as well as memory require-
ments as compared to existing algorithms. Unlike the SAV-based methods, our
proposal method does not modify the original energy and does not have a tuned
parameter for the algorithm; thus, our proposal method presents a robust and
efficient choice of the Kohn-Sham gradient flow based solution procedures.

The unconditionally energy-stable yet orthonormality-preserving iterative
strategies presented in this paper shed light on the future study of the Kohn-
Sham gradient flow based approach. Future work can include applying adaptive
strategies in mesh generation and time step sizes, developing proper precondi-
tioners to accelerate the computation, energy-stable treatment of the exchange-
correlation term, and many other improvements. The ultimate goal is to estab-
lish a linear version of the proposed scheme that still possesses the unconditional
energy stability and the orthonormality-preserving property. Many theoretical
questions are also intriguing; for example, it is an interesting ongoing work to
rigorously show the number of iterations in this unconditionally energy-stable
yet orthonormality-preserving iterative scheme is independent of (or weakly de-
pends on) the dimension of the Galerkin finite element spaces.
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