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Abstract

In this work, an exponential Discontinuous Galerkin (DG) method is proposed to solve
numerically Vlasov type equations. The DG method is used for space discretization which
is combined exponential Lawson Runge-Kutta method for time discretization to get high
order accuracy in time and space. In addition to get high order accuracy in time, the use of
Lawson methods enables to overcome the stringent condition on the time step induced by
the linear part of the system. Moreover, it can be proved that a discrete Poisson equation is
preserved. Numerical results on Vlasov-Poisson and Vlasov Maxwell equations are presented
to illustrate the good behavior of the exponential DG method.
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1 Introduction

In this work, we are interested in the numerical simulation of Vlasov type equations using
Eulerian based methods. Numerical approximation of Vlasov equations has been the subject of
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a lot works since these models are widely used to describe the dynamics of charged particles in
a plasma through a distribution function f(t, x, v) with the time t ≥ 0, x the spatial variables
and v the velocity variable. Hence, there have been a lot of numerical methods that have been
proposed to numerically solve Vlasov equations. The so-called Particle-In-Cell(PIC) methods
[30, 21] in which the unknown is approximated by a sum of Dirac masses with a position and
velocity (macro-particles) that solves a differential system. Even if these methods are efficient
in high dimensions since only a spatial grid is required, they however suffer from some numerical
noise which make them hardly get an accurate approximation. Indeed, the error slowly decreases
when the number of macro-particles increases, which turns out to be a drawback in low density
plasma region. On the other side, another family of methods have been developed which uses a
grid of the phase space (x, v) like spectral methods [20, 16] or finite differences/volumes methods
[2, 1]. These methods enable to get high order accurate approximation and as such, can capture
fine physical phenomena like Landau damping or filamentation in Vlasov equations.

However, due to the phase-space grid, these methods are quite costly both in terms of
memory and CPU point of view, in particular when high dimensions are considered. Moreover,
their stability is controlled by the so-called CFL condition which imposes a constraint on the
time step depending of the phase space mesh refinement, which makes them very costly in
practice. To overcome this drawback, semi-Lagrangian have been developed [26, 28, 15] or
arbitrary Lagrangian-Eulerian methods [8, 31, 5, 18], which allow extra large time stepping sizes
with stability by tracking solutions along their characteristics. For high dimensional problems,
since (high order) interpolation techniques are required which leads to huge computational cost.
Moreover, reaching high order accuracy in time are quite complicated. One possibility is to
use splitting methods which enable to deal with simple subproblems that can even be solved
exactly. However, the number of stages required to get high order in time become prohibitive
(see [12]).

For Vlasov type equations, the linear part induces the most stringent CFL condition since
the electromagnetic fields (which induce the nonlinear part) are typically one order of magnitude
smaller than the one of the linear advection part. Based on this observation, exponential time
integrator have been proposed in which the linear part is solved exactly, and as such do not
suffer from the stability condition induced by the linear part, whereas the nonlinear part is solved
explicitely. These methods are very popular in a number of applications ([17] and references
therein) and enables to derive easily high order methods in time since they are often based
on a high order Runge-Kutta method. Regarding the use of such time integrators for Vlasov
equations, we can quote [14, 12, 4], but these works are based on Fourier techniques in space
to approximate the linear part, and despite its simplicity and its spectral accuracy, Fourier
methods are quite limited in terms of applications (cartesian domains) and suffer from Gibbs
phenomenon when non periodic boundary conditions are considered.

In the present work, we focus on exponential type method combined with Discontinuous-
Galerkin (DG) method in space to approximate Vlasov type equations. The DG method is a
class of finite element methods, in which the approximation space contains completely discon-
tinuous, piecewise polynomials or other basis functions. High order accuracy can be obtained
and complex geometries with boundary conditions can be handled (see DG review article [11])
which is important for physically relevant problems; moreover, one element only communicates
with its immediate neighbors which is very important for parallelization capability [3] but also,
thanks to this local data structure, the matrices used in these methods are sparse which is an
important point if one wants to combine DG methods in space with exponential methods in
time.

Then, after a finite differences approximation of the Vlasov equation, a DG method is
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employed for the space approximation using central fluxes. Indeed, this choice is motivated
by the fact that the DG matrix has a pure imaginary spectrum which is not the case when
monotone fluxes are considered. Moreover, using central fluxes makes the treatment more
easier compared to upwind flux. Indeed, the latter requires to split the flux of the linear part
into two parts according to the sign of velocity v, which prevents a discrete Poisson equation
from being satisfied because of a lack consistency in the nonlinear part. Once the semi-discrete
equations is obtained, an ODE system has to be solved in time. To do so, exponential time
integrators are used to overcome the stringent condition coming from the linear part, but the
exponential of a large matrix has to be computed. Thanks to a one side coupling between
the distribution function and the electromagnetic fields, it is possible to compute explicitely
the exponential of the matrix and to derive an efficient numerical scheme which is high order
in time, space and velocity, preserves the total mass and a discrete Poisson equation. Some
numerical illustrates the good behavior of the method. In particular, the expected order are
recovered on a two-dimensional linear advection and a good agreement is obtained when we
compare the DG exponential method to the Fourier exponential method.

The rest of the paper is organized as follows. In Section 2, we present the exponential
DG method for one-dimensional (1D) linear transport problems. Section 3 is dedicated to the
construction of the exponential DG method for Vlasov equations includes Vlasov-Ampère (1dx-
1dv) and Vlasov Maxwell (1dx-2dv) equations. In Section 4, we discuss some extensions of the
exponential method to high dimensional Vlasov-Maxwell equations. In Section 5, the capability
of the proposed exponential DG method is illustrated through several numerical tests. Finally,
after some concluding remarks, several appendices details some specific aspects of the method.

2 Exponential DG method for 1D transport equation

We firstly consider the 1D transport equation:{
ut + aux = 0, x ∈ [xa, xb],

u(0, x) = u0(x).
(1)

For simplicity, we assume periodic boundary conditions, and the velocity field a is a constant.
Here we take a as 1 for simplicity. We perform a partition of the computational domain xa =
x 1

2
< x 3

2
< · · · < xN+ 1

2
= xb as the mesh partition. Let Ij = [xj− 1

2
, xj+ 1

2
] denote an element

of length ∆xj = xj+ 1
2
− xj− 1

2
and define ∆x = maxj ∆xj . For simplicity, we consider the

uniform mesh in this paper with ∆xj = ∆x = (xb − xa)/N . We define the finite dimensional
approximation space, V k

h = {vh : vh|Ij ∈ P k(Ij)}, where P k(Ij) denotes the set of polynomials
of degree at most k on Ij . For any ψ ∈ V k

h , we also denote the left limit of ψ at cell boundary
as ψ− and the right limit as ψ+. Multiply (1) by the test function ψ ∈ V k

h , integrate on cell Ij
and integrate by parts, we end up with the semi-discrete DG scheme: find uh ∈ V k

h such thatˆ
Ij

(∂tuhψ)dx = −F̂ |x
j+1

2

ψ−|x
j+1

2

+ F̂ |x
j− 1

2

ψ+|x
j− 1

2

+

ˆ
Ij

Fψxdx, j = 1, ..., N, (2)

where F (u) .= u and F̂ is chosen as either a central or upwind fluxes

central flux: F̂ |x
j± 1

2

=
u− + u+

2
|x

j± 1
2

, upwind flux: F̂ |x
j± 1

2

= u−|x
j± 1

2

, (3)

Next, we consider ξmj (m = 0, 1, . . . , k) a basis of P k(Ij) and we choose a modal basis defined
as ξmj (x) = ((x−xj)/∆x)m so that we have the representation uh(t, x)|Ij =

∑k
m=0 u

m
j (t)ξmj (x),
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with umj (t) the degree of freedom. The semi-discrete DG scheme can eventually be written
as an ordinary differential equation (ODE) satisfied by the DG degrees of freedom umj (t) for
m = 0, . . . , k and j = 1, . . . , N . Introducing the vector u(t) ∈ R(k+1)N

u(t) = (u01, u
1
1, . . . , u

k
1, u

0
2, u

1
2, . . . , u

k
2, . . . , u

0
N , u

1
N , . . . , u

k
N )T (t), (4)

the semi-discretized problem simply becomes

du

dt
= Au, with A ∈ M(k+1)N,(k+1)N (R). (5)

The ’DG-matrix’ A contains the DG approximation (2) for which the details are given in Ap-
pendix A. From this semi-discrete in space formulation, a Runge-Kutta discretization is classi-
cally used to get high order accuracy in time [11, 33, 34]. But it seems also natural to use an
exponential method for time discretization, which turns out to be exact in this simple linear
transport case. Denoting un ≈ u(tn) the fully discretized unknown (with tn = n∆t, n ∈ N and
∆t > 0 the time step), the exponential-DG scheme thus writes

un+1 = exp(A∆t)un, ∀n ∈ N, (6)

with u0 = u0 (u0 being the degrees of freedom of the initial condition u0 in (1)). Note that
from un ∈ R(k+1)N (whose components are denoted by (umj )n, j = 1, . . . , N and m = 0, . . . , k,
following (4)), it is possible to reconstruct a piecewise polynomial function unh ∈ V k

h from

unh(x) =

k∑
m=0

(umj )nξmj (x), ∀x ∈ Ij , j = 1, . . . , N. (7)

The properties of such an approximation obviously depends on the structure of the DG-
matrix A which is discussed now. From the calculations (given in Appendix A), the DG-matrix
A obtained with the central flux and periodic boundary conditions enjoys a circulant tri-diagonal
block structure so that it can be written as:

A =
1

∆x


C1 C2 0 . . . C3

C3 C1 C2 0 . . .

0
. . . . . . . . . C2

C2 0 . . . C3 C1

 , with Cj =M−1Dj (j = 1, 2, 3) (8)

where the matrix elements of the matrices M,Dj ∈ M(k+1),(k+1)(R) are given by (for ℓ,m =
1, . . . , k + 1, see Appendix A for details)

Mℓ,m =
(1/2)m+ℓ−1

m+ ℓ− 1
[1− (−1)m+ℓ−1], (D2)ℓ,m = (−1)m(1/2)m+ℓ−1,

(D1)ℓ,m = (1/2)m+ℓ−2
( ℓ− 1

m+ ℓ− 2
− 1

2

)
[1− (−1)m+ℓ−2], (D3)ℓ,m = (−1)ℓ−1(1/2)m+ℓ−1,(9)

with (D1)1,1 = 0 by convention. The choice of central fluxes implies the matrix A is diagonal-
izable and the eigenvalues are pure imaginary. This has been checked numerically and some
discussions are performed in the following remarks.

Remark 1. In [29], the author proposes a way to deduce the eigenvalues of A ∈ M(k+1)N,(k+1)N (R)
from the eigenvalues of some matrices of size (k + 1), which can be computed explicitly for
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small values of k (numerically for larger k). Considering (ρj)j=0,...,N−1 the N -th roots of the
unity (ρNj = 1 for j = 0, . . . , N − 1), the (k + 1)N eigenvalues of A given by (8) can be de-
duced from the (k + 1) eigenvalues of Cj = C1 + ρjC2 + ρN−1

j C3 for j = 0, . . . , N − 1, where
Cj ∈ M(k+1),(k+1). Then, we checked numerically that the eigenvalues of Cj are pure imaginary
for all j = 0, . . . , N − 1, and we deduce from [29] that it is also true for the eigenvalues of A.

Remark 2. We explore another way to check the eigenvalues of A given by (8) are pure imag-
inary by using symbolic software. Denoting PA(λ) the characteristic polynomial of A, we made
the following observations

• odd case: (k+1)N = 2d+1. In this case, we have PA(λ) = λ
∑d

ℓ=0 a2ℓλ
2ℓ with a2ℓ ∈ R and

the roots can be written as
{
0, λj , λ̄j , j = 1, . . . , d

}
, in particular 0 is a simple eigenvalue

in this case. Since PA(−λ) = PA(λ), we deduce Re(λj) = 0.

• even case: (k + 1)N = 2d. In this case, we have P (λ) = λ2
∑d−1

ℓ=0 a2ℓλ
2ℓ with a2ℓ ∈ R

and the roots can be written as
{
0, λj , λ̄j , j = 1, . . . , d− 1

}
, in particular 0 is a double

eigenvalue in this case. Since PA(λ) = PA(−λ), we deduce Re(λj) = 0.

We can now study the stability of the numerical scheme. To do so, we write the following
proposition.

Proposition 1. Let consider the matrix A ∈ M(k+1)N,(k+1)N (R) given by (8)-(9) There exists
C > 0 such that, for any time t and any k,N , we have ∥ exp(At)∥ ≤ C, with ∥ · ∥ an induced
matrix norm.

Proof. First, we write A = ∆x−1A1 (with ∆x = (xb − xa)/N) and since A is diagonalizable,
there exist P invertible and D diagonal such that A = ∆x−1PDP−1. Let us remark from (8)-(9)
that A1 does not depend on the space mesh ∆x (and then dos not depend on N), so does the
matrix P . Thus, there exists C > 0 (independent of N) such that cond(P ) ≡ ∥P∥∥P−1∥ ≤ C,
where ∥ ·∥ denotes an induced matrix norm. Now, since the eigenvalues of A are pure imaginary
for all k,N , we have Dj,j = iλj , λj ∈ R, j = 1, 2, . . . , (k + 1)N . Finally, we get for all t

∥ exp(At)∥ = ∥P exp(∆x−1D)P−1∥ ≤ cond(P ) ∥ exp(∆x−1D)∥ = cond(P ) ≤ C.

We end this section by proving an error estimate for exponential DG method.

Proposition 2. Let u(t, x) the exact solution of 1D transport problem (1) with a smooth initial
condition u0 and let unh ∈ V k

h the numerical solution, n = 0, . . . , N (with N = T/∆t, T being
the final time and ∆t the time step) obtained from (6)-(7) where A is the DG-matrix given by
(8)-(9). Then we have the following L2-norm error estimate:

||u(tn, ·)− unh||L2 ≤ C∆xk,

Proof. First, we introduce uh(t, x) the exact solution of the semi-discrete DG scheme (5). The
classical DG projection analysis gives ||u(tn, ·) − uh(t

n, ·)||L2 ≤ C∆xk, where C is a positive
constant independent on ∆x (see the details in [27, 22, 19, 25, 33, 34], but a simple proof of
stability and error estimate is given in Appendix B). Since the exponential method exactly
solves the semi-discrete DG scheme, we have ||uh(tn, ·)− unh||L2 = 0. Finally we have

||u(tn, ·)− unh||L2 ≤ ||u(tn, ·)− uh(t
n, ·)||L2 + ||uh(tn, ·)− unh||L2 ≤ C∆xk.
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Remark 3. It is worthy to be mentioned that the (k + 1)th order optimal convergence rate
have been proved for DG with monotone flux (see [19, 25, 33, 34]). However, kth order sub-
optimal convergence rate is proved for DG with central flux in [23] and a discussion is performed
according to the oddness of k.

3 Semi-discretization of some Vlasov models with Discontinuous
Galerkin method

In this section, we consider the numerical approximation of Vlasov-Maxwell equations using DG
framework in space (as presented in the previous section) and finite differences in the velocity
direction. The semi-discretization (in both space and velocity) is presented and we will see that
the so-obtained ODE system is amenable to Lawson time integrators.

We first present the methodology on the 1dx − 1dv case on the Vlasov-Ampère system and
then we consider the 1dx − 2dv case on the Vlasov-Maxwell system.

3.1 Vlasov-Ampère equation

The equation we address is the following Vlasov-Ampère model satisfied by the distribution
function f(t, x, v) ≥ 0 and the electric field E(t, x) ∈ R with t ≥ 0, x ∈ [0, L] (L > 0) and v ∈ R,

∂f

∂t
+ v

∂f

∂x
+ E

∂f

∂v
= 0,

∂tE = −
ˆ

R
vfdv + J̄ , J̄ =

1

L

ˆ L

0

ˆ
R
vfdxdv,

(10)

with the initial conditions (f0(x, v), E0(x)) such that the Poisson equation is satisfied initially
∂xE0 =

´
R f0dv− ρ̄, with ρ̄ = (1/L)

´ L
0

´
R f0dvdx and periodic boundary conditions are imposed

in space. The Vlasov-Ampère system is equivalent the Vlasov-Poisson model where the electric
field satisfies the Poisson equation ∂xE =

´
R fdv − ρ̄.

3.1.1 Semi-discretization

We shall use a DG method in the space direction x as presented in the previous section and
we consider a truncated domain [−vmax, vmax] in the velocity direction discretized by vj =
−vmax + j∆v, j = 0, . . . , Nv, ∆v = 2vmax/Nv being the velocity mesh step. We firstly present
DG discretization for E in the x-direction with Ii = [xi− 1

2
, xi+ 1

2
], i = 1, ..., Nx (Nx being the

number of cells):

E(t, x) ≈ Eh(t, x) =

Nx∑
i=1

Eh(t, x)|Ii =
Nx∑
i=1

k∑
m=0

Em
i (t)ξm(x).

Then, considering finite difference method for f in v direction, we consider the DG approxima-
tion in x-direction through

f(t, x, vj) ≈ fh(t, x, vj) =

Nx∑
i=1

k∑
m=0

fmi (t, vj)ξ
m(x), j = 0, ..., Nv.

As in the previous section, we denote fj(t) ∈ R(k+1)Nx the vector of the DG coefficients fmi (t, vj)
of fh(t, x, vj) using DG in space and evaluated at the velocity grid vj whereas E ∈ R(k+1)Nx

denotes the vector of DG coefficients Em
i of Eh(t, x).
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For Vlasov-Ampère equation (10), we have the following DG scheme with the DG represen-
tation of E and f :

k∑
m=0

[(
∂tf

m
i (t, vj)ξ

m, ξℓ
)
Ii
− vj

(
fmi (t, vj)ξ

m, ∂xξ
ℓ(x)

)
Ii

]
+ vj

[
{fh(t, x, vj)}ξℓ

]i+1/2

i−1/2

+

k∑
m=0

( k∑
n=0

En
i ξ

n(Dfmi )(t, vj)ξ
m, ξℓ

)
Ii
= 0,

(11)

where we used the central flux {fh(t, x, vj)}|xi±1/2
= 1

2(fh(t, x
+
i±1/2, vj) + fh(t, x

−
i±1/2, vj)), ℓ =

0, 1, 2, ..., k, i = 1, 2, ...Nx and Df(vj) denotes a discrete approximation of (∂vf)(vj) (an example
would be (Df)(vj) = f(vj+1)−f(vj−1)

2∆v but any higher order finite difference approximation can be
used). We denote

fj,i(t) = (f0i (t, vj), f
1
i (t, vj), ...., f

k
i (t, vj))

T , i = 1, 2, ..., Nx,

Ei(t) = (E0
i (t), E

1
i (t), ...., E

k
i (t))

T , i = 1, 2, ..., Nx,

and
Df j,i(t) = ((Df0i )(t, vj), (Df1i )(t, vj), ...., (Dfki )(t, vj))T , i = 1, 2, ..., Nx.

We can rewrite the DG discretization as an ODE system of size (k+1)Nx for each j = 1, . . . , Nv

∆x


M

M
. . .

M

 d

dt


fj,1
fj,2
...
fj,Nx

− vj


D1 D2 . . . D3

D3 D1 D2

. . . . . . D2

D2 . . . D3 D1




fj,1
fj,2
...
fj,Nx



+


B1

B2

. . .
BNx




(Df)j,1
(Df)j,2
...
(Df)j,Nx

 = 0,

(12)

where the matrices M,D1, D2, D3 are the same as in the previous section (see also Appendix A)
and Bi(i = 1, . . . , Nx) are matrices of size k + 1 with elements (Bi)ℓ,m = (

∑k
n=0E

n
i ξ

nξm, ξℓ)Ii .
Introducing now the following vector containing the degrees of freedom of fh and Eh

fj(t) = (f01 (t, vj), . . . , f
k
1 (t, vj), f

0
2 (t, vj), . . . , f

k
2 (t, vj), . . . , f

0
Nx

(t, vj), . . . , f
k
Nx

(t, vj))
T ,

E(t) = (E0
1(t), . . . , E

k
1 (t), E

0
2(t), . . . , E

k
2 (t), . . . , E

0
Nx

(t), . . . , Ek
Nx

(t))T ,

and Df j is defined similarly as fj , we can rewrite the DG scheme (12) as

∂tfj = vjAfj − Ẽ(Df)j , (13)

A ∈ M(k+1)Nx,(k+1)Nx
is the DG-matrix (8) and Ẽ ∈ M(k+1)Nx,(k+1)Nx

is a block diagonal matrix
composed of Nx block matrices of size (k + 1)× (k + 1) defined by (∆xM)−1Bi, i = 1, . . . , Nx.
Let remark that we consider central finite differences method to approximate (Df)j to avoid to
discuss the sign of matrix Ẽ ∈ M(k+1)Nx,(k+1)Nx

compared with upwind FD method.
Let us now discuss the discretization of the Ampère equation. Since our goal is to find a

consistent discretization that is compatible with a discrete Poisson equation, we first discuss
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how to solve the Poisson equation. Using the above discretization, we will use the DG matrix A
which is an approximation of (−∂x). Thus, a direct approximation of the initial Poisson equation
∂xE(0, x) =

´
R f0(x, v)dv − ρ̄ would be −AE0 =

∑
j f

0
j ∆v − ρ̄ (with E0 and f0j the degrees of

freedom of E(0, x) and f0(x, vj). However, as mentioned in Remark 2, A ∈ M(k+1)Nx,(k+1)Nx
is

not invertible and we then introduce Π ∈ M(k+1)Nx,(k+1)Nx
the projection onto the Ker(A) so

that (A+Π) is invertible on R(A) with R(A) the range of A. Here we impose condition ΠE0 = 0
to preserve the uniqueness of the solution E ∈ R(k+1)Nx , which is similarly as the constraint´

RE(x, v)dx = 0 for Poisson equation itself. We then consider the following discretized Poisson
equation

−(A+Π)E0 = (1−Π)
(∑

j

f0j ∆v − ρ̄
)
= (1−Π)

∑
j

f0j ∆v, (14)

with 1 the identity matrix of size (k + 1)Nx and where in the last equality, we used the fact
that constants belong to Ker(A) (see Appendix C for details).

We deduce the discretization of Ampère equation from the time derivative of the discretized
Poisson equation inspired from (14), that is: −(A+Π)E(t) = (1−Π)

∑
j fj(t)∆v. Considering

the time derivative of the latter equation and using (13) leads to

−(A+Π)∂tE(t) = (1−Π)∂t
∑
j

fj(t)∆v = (1−Π)
∑
j

vjAfj(t)∆v

= A(1−Π)
∑
j

vjfj(t)∆v = (A+Π)(1−Π)
∑
j

vjfj(t)∆v,

where we used
∑

j Dfj = 0 and some relations between A and Π. Hence, we consider the
following DG discretization of the Ampère equation

∂tE(t) = −(1−Π)
∑
j

vjfj(t)∆v. (15)

Finally, gathering (13) and (15) enables to get the following semi-discretized scheme for the
Vlasov-Ampère system 

∂tfj = vjAfj − Ẽ(Df)j ,

∂tE = −
∑
j

vjfj∆v +
∑
j

vjΠfj∆v.
(16)

In view of the time discretization, we introduce the following vector of semi-discrete unknown
U = (⃗f ,E) ∈ R(k+1)Nx(Nv+1) with f⃗ = (f1, f2, . . . , fNv) ∈ R(k+1)NxNv . Then the previous system
(16) can be rewritten as

∂tU = LU +N(U), (17)

with L ∈ M(k+1)Nx(Nv+1),(k+1)Nx(Nv+1) given by

L =



v1A 0Ñ,Ñ 0Ñ,Ñ . . . 0Ñ,Ñ 0Ñ,Ñ

0Ñ,Ñ v2A 0Ñ,Ñ . . . 0Ñ,Ñ

...
...

. . . . . .
...

...
0Ñ,Ñ . . . 0Ñ,Ñ vNvA 0Ñ,Ñ

−∆vv1(1−Π) −∆vv2(1−Π) . . . −∆vvNv(1−Π) 0Ñ,Ñ

 (18)
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where we denote Ñ = (k + 1)Nx and 1 = 1Ñ,Ñ the identity matrix of size Ñ × Ñ . Finally,
U,N(U) ∈ R(k+1)Nx(Nv+1) are given by

U =


f1
f2
...
fNv

E

 , N(U) =


−Ẽ(Df)1
−Ẽ(Df)2

...
−Ẽ(Df)Nv

0

 .

3.1.2 Time discretisation

The goal of this part is to present time discretization of (17) to get a fully discretized scheme
of the Vlasov-Ampère system (10). The form (17) is amenable to exponential scheme [17, 14]
which is motivated by the fact that the linear part acts on a different scale compared to the
nonlinear part in Vlasov type problems. Moreover, as discussed in Section 2, the linear part
can be computed exactly thanks to the exponential. Among the exponential schemes, we shall
use the Lawson class of methods for stability reasons [14].

Denoting Un = (⃗fn,En) ≈ (⃗f(tn),E(tn)) = U(tn) with tn = n∆t,∀n ∈ N (∆t > 0 being the
time step), the simplest (first order in time) Lawson method can be written as

Un+1 = exp(∆tL)Un +∆t exp(∆tL)N(Un). (19)

High order methods can be obtained from Runge-Kutta methods using the corresponding
Butcher tableau [14].

The key point of exponential methods lies in the computation of exp(∆tL) with L given
by (18). To compute exp(At) ∀t > 0, one considers the linear part only ∂tU = LU . First, we
observe that the distribution function fj part is decoupled from the electric field part, so that
it can be solved directly and we have, similarly as in Section 2

fj(t) = exp(vjAt)fj(0). (20)

Now, let consider the electric field equation

∂tE = −
∑
j

vj(1−Π)fj(t)∆v,

which gives, after integrating it in time

E(t) = E(0)−
∑
j

ˆ t

0
vj(1−Π)fj(s)∆vds.

Now, replacing fj(s) by exp(vjAs)fj(0) from (20) enables to get an explicit expression of E(t).
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Indeed, using properties used to derive (14) we have

E(t) = E(0)−
∑
j

ˆ t

0
vj(1−Π)fj(s)∆vds = E(0)−

∑
j

ˆ t

0
vj(1−Π) exp(vjAs)fj(0)ds∆v

= E(0)−
∑
j

ˆ t

0
vj(1−Π)

[ ∞∑
k=0

(vjAs)
k

k!

(
Πfj(0) + (1−Π)fj(0)

)]
ds∆v

= E(0)−
∑
j

vj(1−Π)

ˆ t

0

[
Πfj(0) +

∞∑
k=0

(vj(A+Π)s)k

k!
(1−Π)fj(0)

]
ds∆v

= E(0)−
∑
j

vj(1−Π)

[
tΠfj(0) +

∞∑
k=0

(vj(A+Π))ktk+1

(k + 1)!
(1−Π)fj(0)

]
∆v

= E(0)−
∑
j

[
(1−Π)

∞∑
k=0

(A+Π)−1 (vj(A+Π)t)k+1

(k + 1)!
(1−Π)fj(0)

]
∆v

= E(0)−
∑
j

(1−Π)(A+Π)−1(exp(vjAt)− 1)(1−Π)fj(0)∆v

= E(0)−
∑
j

(A+Π)−1(exp(vjAt)− 1)(1−Π)fj(0)∆v

= E(0) + ∆v
∑
j

(A+Π)−1(1− exp(vjAt))fj(0).

Hence, denoting A + Π as Ã, we deduce from the above calculation the explicit expression of
exp(Lt)

exp(Lt) =



ev1At 0Ñ,Ñ 0Ñ,Ñ . . . 0Ñ,Ñ 0Ñ,Ñ

0Ñ,Ñ ev2At 0Ñ,Ñ . . . 0Ñ,Ñ

...
...

. . . . . .
...

...
0Ñ,Ñ . . . 0Ñ,Ñ evNvAt 0Ñ,Ñ

∆vÃ−1(1− ev1At) ∆vÃ−1(1− ev2A∆t) . . . ∆vÃ−1(1− evNvAt) 1

 .

(21)
Hence, the exponential-DG scheme for the Vlasov-Ampère equation corresponds to (19)-(21).
For this scheme, one can prove in the following proposition that a discrete Poisson equation is
satisfied for each iteration.

Proposition 3. The exponential DG method (19)-(21) (and its generalization to high order
Lawson Runge-Kutta) satisfied by Un = (⃗fn,En) preserves the following discretized Poisson
equation:

(A+Π)En = −
∑
j

(1−Π)fnj ∆v, ∀n ∈ N⋆,

provided that it is satisfied at the initial time n = 0. Here, A is the DG matrix given by (8)-(9),
Π is the orthogonal projection onto Ker(A) and 1 is the identity matrix of size (k + 1)Nx,

Proof. We present the proof for first order Lawson case (forward Euler), the proof can be
generalized to arbitrary explicit Runge-Kutta scheme. First, we assume the Poisson equation
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(A+Π)E0 = −
∑

j(1−Π)f0j ∆v holds at the initial time.
Next, from the scheme (19) with exp(Lt) given by (21), we have

fn+1
j = exp(vjA∆t)f

n
j −∆t exp(vjA∆t)(ẼDf)nj , (22)

whereas for the E component, we have

En+1 = En +∆v
∑
j

(A+Π)−1(1− exp(vjA∆t))f
n
j

−∆t∆v
∑
j

(A+Π)−1(1− exp(vjA∆t))(ẼDf)nj

= En +∆v
∑
j

(A+Π)−1(1−Π)(1− exp(vjA∆t))f
n
j

−∆t∆v
∑
j

(A+Π)−1(1−Π)(1− exp(vjA∆t))(ẼDf)nj .

The last term can be split into two parts: the first one −∆t∆v(A + Π)−1(1 − Π)
∑

j(ẼDf)nj
vanishes thanks to the conservative properties of the discrete operator D whereas the second
one, we use (22) to get

∆t∆v(A+Π)−1
∑
j

(1−Π) exp(vjA∆t)(ẼDf)nj = ∆v(A+Π)−1
∑
j

(1−Π)(exp(vjA∆t)f
n
j − fn+1

j )

= ∆v(A+Π)−1
∑
j

[
(1−Π) exp(vjA∆t)f

n
j − (1−Π)fn+1

j

]
.

Finally, we then get

En+1 = En +∆v
∑
j

(A+Π)−1(1−Π)(1− exp(vjA∆t))f
n
j

+∆v(A+Π)−1
∑
j

[
(1−Π) exp(vjA∆t)f

n
j − (1−Π)fn+1

j

]
= En +∆v

∑
j

(A+Π)−1((1−Π)fnj − (1−Π)fn+1
j ). (23)

By induction, if the discrete Poisson equation is satisfied at iteration n, then it is satisfied at
iteration n+ 1 and the proof is complete.

Remark 4. In this remark, we discuss how to compute the matrix Π. As mentioned in Remark
2, when (k + 1)Nx is odd (referred as odd case), 0 is a single eigenvalue and the associated
eigenvector u1 corresponds to the constant function in the DG space (see Appendix C). When
(k + 1)Nx is even, 0 has a double multiplicity and one has to find another eigenvector u2 (see
Appendix C). Once we get the eigenvectors u1, u2 ∈ R(k+1)Nx of A associated to the eigenvalue
0, then Π is given by Πx = ⟨x, u1⟩u1 + ⟨x, u2⟩u2 = (uT1 ⊗ u1 + uT2 ⊗ u2)x, for all x ∈ R(k+1)Nx ,
with the Kronecker product ⊗ and (vT ⊗ v)i,j = vivj. Some examples are given in Appendix C.
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3.2 Vlasov Maxwell equations 1dx-2dv

In this part, We consider the following Vlasov-Maxwell 1dx-2dv model satisfied by f(t, x, v1, v2),
E1(t, x), E2(t, x), B(t, x), with t ≥ 0, x ∈ [0, L](L > 0) and (v1, v2) ∈ R2

∂tf + v1∂xf + E1∂v1f + E2∂v2f +B(v2∂v1f − v1∂v2f) = 0,

∂tB = −∂xE2,

∂tE1 = −
ˆ

R2

v1fdv1dv2 + J̄1,

∂tE2 = −∂xB −
ˆ

R2

v2fdv1dv2 + J̄2,

(24)

with the initial conditions (f0(x, v), E0
1(x), E

0
2(x), B

0(x)) such that the Poisson equation is satis-
fied initially ∂xE0

1(x) =
´

R2 f0(x, v)dv1dv2− ρ̄, with ρ̄ = 1
L

´ L
0

´
R2 f0(x, v)dxdv1dv2 and periodic

boundary conditions are imposed in space. Here J̄i = 1
L

´ L
0

´
R2 vifdxdv1dv2 ensures that the

electric fields are zero average in space.

3.2.1 Semi-discretization

We follow the lines of the above subsection and use a DG method in the space direction x and
we consider a grid in the velocity direction vℓ,jℓ = −vℓ,max + jℓ∆vℓ, vℓ ∈ [−vℓ,max, vℓ,max], ℓ =
1, 2,∆vℓ = 2vℓ,max/Nvℓ , Nvℓ ∈ N⋆. The definitions of the different objects are a direct extension
of the definitions introduced in the previous part. Indeed, we denote by fj1,j2 ∈ R(k+1)Nx the DG
coefficient vector of fj1,j2(t, x) = fh(t, x, vj1 , vj2) ≈ f(t, x, vj1 , vj2) in space and evaluated at the
velocity grid, and E1,E2,B ∈ R(k+1)Nx are the DG coefficient vectors of (E1,h, E2,h, Bh)(t, x) ≈
(E1, E2, B)(t, x). Moreover, (F̃Df)j1,j2 (with F̃j1,j2 ∈ M(k+1)Nx,(k+1)Nx

(R)) is obtained as previ-
ously by a DG approximation of the nonlinear term (F ·∇vf), with F = (E1+Bv2, E2−Bv1).
For fixed indices j1, j2, the derivation of the numerical scheme is very similar to the 1dx-
1dv case and we then obtain the following semi-discretized (in space and velocity) scheme
for jℓ = 1, . . . , Nvℓ(ℓ = 1, 2)

∂tfj1,j2 = v1,j1Afj1,j2 − (F̃Df)j1,j2 ,

∂tB = AE2,

∂tE1 = −
∑
j1,j2

v1,j1(1−Π)fj1,j2∆v1∆v2,

∂tE2 = AB−
∑
j1,j2

v2,j2(1−Π)fj1,j2∆v1∆v2,

(25)

where A is given by (8)-(9) and 1 the identity matrix of size (k+1)Nx and Π the projection ma-
trix onto Ker(A) introduced in the previous part. Let denote U(t) = (⃗f(t),B(t),E1(t),E2(t)),
where f⃗(t) ∈ R(k+1)NxNv1Nv2 contains the DG coefficients
fj1,j2 , B(t),E1(t),E2(t) ∈ R(k+1)Nx denote the DG coefficients of the electromagnetic fields.
Using the above notations and the following ones

v⃗ℓ ∈ RNvℓ , (v⃗ℓ)j = vℓ,j = −vℓ,max + j∆vℓ, j = 1, . . . , Nvℓ and ℓ = 1, 2,

f⃗⋆,j2 ∈ R(k+1)NxNv1 for j2 = 1, . . . , Nv2 .

We also introduce the following compact notations for the size of the matrices: Ñ = (k + 1)Nx

and Ñ1 = (k + 1)NxNv1 = ÑNv1 . The system (25) can be recast as

∂tU = LU +N(U), (26)
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with

U =



f⃗⋆,1
f⃗⋆,2
...
f⃗⋆,Nv2

B
E2

E1


, N(U) =



−(F̃Df⃗)⋆,1
−(F̃Df⃗)⋆,2
...
−(F̃Df⃗)⋆,Nv2

0
0
0


, f⃗⋆,j2 ∈ RÑ1 , ∀j2 = 1, . . . , Nv2

L =



diag(v⃗1)⊗A 0Ñ1,Ñ1
0Ñ1,Ñ1

. . . 0Ñ1,Ñ1
0Ñ1,Ñ

0Ñ1,Ñ
0Ñ1,Ñ

0Ñ1,Ñ1
diag(v⃗1)⊗A 0Ñ1,Ñ1

. . . 0Ñ1,Ñ1

...
...

...
...

. . . . . .
...

...
...

...
0Ñ1,Ñ1

. . . 0Ñ1,Ñ1
diag(v⃗1)⊗A 0Ñ1,Ñ

0Ñ1,Ñ
0Ñ1,Ñ

0Ñ,Ñ1
. . . 0Ñ,Ñ1

0Ñ,Ñ1
0Ñ,Ñ A 0Ñ,Ñ

E2,1 E2,2 . . . E2,Nv2
A 0Ñ,Ñ 0Ñ,Ñ

E1 E1 . . . E1 0Ñ,Ñ 0Ñ,Ñ 0Ñ,Ñ


(27)

where diag(v⃗1) ∈ MNv1 ,Nv1
(R) denotes the diagonal matrix with v⃗1 ∈ RNv1 on its diagonal, ⊗

denotes Kronecker product, diag(v⃗1)⊗A ∈ MÑ1,Ñ1
and 0m,n is the zero matrix with m lines and

n columns. Moreover, the matrices E1, E2,j2 ∈ MÑ,Ñ1
(R) for j2 = 1, . . . , Nv2 are defined by

E1 = −∆v1∆v2v⃗1 ⊗ (1−Π),

E2,j2 = −∆v1∆v2v2,j21⊗ (1−Π) with 1 = (1, . . . , 1) ∈ RNv1 .

The size of the matrix L is (Ñ1Nv2 + 3Ñ) × (Ñ1Nv2 + 3Ñ) = (3 + Nv1Nv2)(k + 1)Nx × (3 +
Nv1Nv2)(k + 1)Nx. Even if it is a large matrix, one can see that L is sparse which will help to
compute its exponential.

3.2.2 Time discretization

We now study the time discretization of (26) and as previously, we will design an exponential
scheme. To do so, the discrete unknown Un ≈ U(tn) (tn = n∆t,∆t > 0) is updated by

Un+1 = exp(∆tL)Un +∆t exp(∆tL)N(Un), (28)

and one has to compute exp(∆tL). We give the following proposition to show the representation
of exp(∆tL).

Proposition 4. The exponential of the matrix L given by (27) is given by

exp(L∆t) =



e∆tdiag(v⃗1)⊗A 0Ñ1,Ñ1
0Ñ1,Ñ1

. . . 0Ñ1,Ñ1
0Ñ1,Ñ

0Ñ1,Ñ
0Ñ1,Ñ

0Ñ1,Ñ1
e∆tdiag(v⃗1)⊗A 0Ñ1,Ñ1

. . . 0Ñ1,Ñ1

...
...

...
...

. . . . . .
...

...
...

...
0Ñ1,Ñ1

. . . 0Ñ1,Ñ1
e∆tdiag(v⃗1)⊗A 0Ñ1,Ñ

0Ñ1,Ñ
0Ñ1,Ñ

eB1 eB2 . . . eBNv2

eA∆t+e−A∆t

2
eA∆t−e−A∆t

2 0Ñ,Ñ

eE2,1 eE2,2 . . . eE2,Nv2

eA∆t−e−A∆t

2
eA∆t+e−A∆t

2 0Ñ,Ñ

eE1 eE1 . . . eE1 0Ñ,Ñ 0Ñ,Ñ 1


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where eBj2 , eE2,j2 , eE1 ∈ MÑ,Ñ1
(R) for j2 = 1, . . . , Nv2 are given by

eBj2 = ∆v1∆v2 v2,j2(A+Π)−1α⃗,

eE2,j2 = ∆v1∆v2 v2,j2(A+Π)−1β⃗,

eE1 = ∆v1∆v2(A+Π)−1(1⊗ 1− e∆tdiag(v⃗1)⊗A)

where the matrices α⃗, β⃗ are given by

α⃗ = [α1, α2, . . . , αNv1
] ∈ MÑ,Ñ1

(R) with αj1 =
[ −eA∆t

2(1− v1,j1)
− e−A∆t

2(1 + v1,j1)
+

eA∆tv1,j1

(1− v21,j1)

]
,

β⃗ = [β1, β2, . . . , βNv1
] ∈ MÑ,Ñ1

(R) with βj1 =
[ −eA∆t

2(1− v1,j1)
+

e−A∆t

2(1 + v1,j1)
+
v1,j1e

A∆tv1,j1

(1− v21,j1)

]
.

Proof. First the (Ñ1Nv2) × (Ñ1Nv2) block is diagonal and the diagonal part is e∆tdiag(v⃗1)⊗A

(Nv2 times). Second, the 3 × 3 right bottom block corresponds to the homogeneous Maxwell
equations. Its exponential can be computed and is equal to

exp

 0Ñ,Ñ A∆t 0Ñ,Ñ

A∆t 0Ñ,Ñ 0Ñ,Ñ

0Ñ,Ñ 0Ñ,Ñ 0Ñ,Ñ

 =


exp(A∆t)+exp(−A∆t)

2
exp(A∆t)−exp(−A∆t)

2 0Ñ,Ñ
exp(A∆t)−exp(−A∆t)

2
exp(A∆t)+exp(−A∆t)

2 0Ñ,Ñ

0Ñ,Ñ 0Ñ,Ñ 1

 .

Finally, we compute the three last block lines of exp(L∆t).

Computation of eE1 : solve E1

First, we have for fj1,j2(t)

fj1,j2(t) = ev1,j1A(t−tn)fj1,j2(t
n),

which enables to compute E1(t
n+1)

E1(t
n+1) = E1(t

n)−
∑
j1,j2

ˆ tn+1

tn
(1−Π)ev1,j1A(t−tn)dtv1,j1fj1,j2(t

n)∆v1∆v2

= E1(t
n) + ∆v1∆v2(A+Π)−1

∑
j1,j2

(1− ev1,j1A∆t)fj1,j2(t
n),

from which we can thus deduce the last line of the exponential of the matrix.

Computation of eBj2 , eE2,j2: solve B,E2

Next, we focus on the calculation of E2(t
n+1) and B(tn+1) from known initial conditions

E2(t
n) and B(tn). Let write down the equations for (E2,B)(t) with t ∈ [tn, tn+1]

d

dt
E2(t) = AB(t)−

∑
j1,j2

(1−Π)ev1,j1A(t−tn)v2,j1fj1,j2(t
n)∆v1∆v2

d

dt
B(t) = AE2(t)
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which can be rewritten as dU
dt =MU +R with U(t) = (E2(t),B(t)) and

M =

(
0Ñ,Ñ A

A 0Ñ,Ñ

)
, R(t) =

(
R1(t)
0Ñ,1

)
,

R1(t) = −
∑
j1,j2

(1−Π)ev1,j1A(t−tn)v2,j1fj1,j2(t
n)∆v1∆v2 (29)

Thus, one can write the variation of constant formula

U(tn+1) = eM∆tU(tn) +

ˆ tn+1

tn
e−M(t−tn+1)R(t)dt. (30)

First, eM∆t reads as, using its definition (29)

eM∆t =
1

2

(
eA∆t + e−A∆t eA∆t − e−A∆t

eA∆t − e−A∆t eA∆t + e−A∆t

)
.

Second, one has to compute the integral term in (30)

ˆ tn+1

tn
e−M(t−tn+1)R(t)dt =

1

2

 ´ tn+1

tn

[
e−A(t−tn+1) + eA(t−tn+1)

]
R1(t)dt´ tn+1

tn

[
e−A(t−tn+1) − eA(t−tn+1)

]
R1(t)dt


= −1

2

 ´ tn+1

tn
∑

j1,j2

[
e−A(t−tn+1) + eA(t−tn+1)

]
ev1,j1A(t−tn)v2,j1f

n
k,j1,j2

∆v1∆v2dt´ tn+1

tn
∑

j1,j2

[
e−A(t−tn+1) − eA(t−tn+1)

]
ev1,j1A(t−tn)v2,j1f

n
k,j1,j2

∆v1∆v2dt


= −

( ∑
j1,j2

I1 v2,j1fnk,j1,j2∆v1∆v2∑
j1,j2

I2 v2,j1fnk,j1,j2∆v1∆v2

)
where I1, I2 are given by

I1 =
1

2

ˆ tn+1

tn

[
e−A(t−tn+1) + eA(t−tn+1)

]
ev1,j1A(t−tn)dt

=
(A+Π)−1eA∆t

2(1− v1,j1)
− (A+Π)−1e−A∆t

2(1 + v1,j1)
− (A+Π)−1v1,j1e

A∆tv1,j1

(1− v21,j1)
,

I2 =
1

2

ˆ tn+1

tn

[
e−A(t−tn+1) − eA(t−tn+1)

]
ev1,j1A(t−tn)dt

=
(A+Π)−1eA∆t

2(1− v1,j1)
+

(A+Π)−1e−A∆t

2(1 + v1,j1)
− (A+Π)−1eA∆tv1,j1

(1− v21,j1)
.

Inserting these calculations in (30) leads to the following expression for E2(t
n+1) and B(tn+1)

E2(t
n+1) =

1

2
(eA∆t + e−A∆t)E2(t

n) +
1

2
(eA∆t − e−A∆t)B(tn) + ∆v1∆v2(A+Π)−1

∑
j1,j2

v2,j2βj1fj1,j2(t
n)

B(tn+1) =
1

2
(eA∆t − e−A∆t)E2(t

n) +
1

2
(eA∆t + e−A∆t)B(tn) + ∆v1∆v2(A+Π)−1

∑
j1,j2

v2,j2αj1fj1,j2(t
n)
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where β⃗ = [β1, β2, . . . , βNv1
] ∈ MÑ×Ñ1

(R) and α⃗ = [α1, α2, . . . , αNv1
] ∈ MÑ×Ñ1

(R) are given by

βj1 =
−eA∆t

2(1− v1,j1)
+

e−A∆t

2(1 + v1,j1)
+
v1,j1e

A∆tv1,j1

(1− v21,j1)

αj1 =
−eA∆t

2(1− v1,j1)
− e−A∆t

2(1 + v1,j1)
+

eA∆tv1,j1

(1− v21,j1)
,

which conclude the proof.

Shared the same spirit with Vlasov-Ampère equation, we have the following discretized
Poisson equation and error estimate for Vlasov-Maxwell equation with exponential Lawson RK
DG FD discretization.

Proposition 5. The exponential DG method (28) where the exponential is given in Prop 4 (and
its generalization to high order Lawson Runge-Kutta) satisfied by Un = (⃗f ,B,E2,E1)

n preserves
the following Poisson equation

(A+Π)En
1 = −

∑
j1,j2

(1−Π)fnj1,j2∆v1∆v2, ∀n ∈ N⋆,

provided that it is satisfied at the initial time n = 0. Here, A is the DG matrix given by (8)-(9),
Π the orthogonal projection onto Ker(A) and 1 is the identity matrix of size Ñ = (k + 1)Nx.

Proof. We present the proof for first order Lawson case (forward Euler), the proof can be
generalized to arbitrary explicit Runge-Kutta scheme. First, we assume the Poisson equation
(A+Π)E0

1 = −
∑

j1,j2
(1−Π)f0j1,j2∆v1∆v2 holds at the initial time.

Next, from the scheme (28) and Prop 4, we have

fn+1
j1,j2

= ev1,j1A∆tfnj1,j2 −∆tev1,j1A∆t(F̃Df)nj1,j2 .

Regarding the E1 component, we have

En+1
1 = En

1 +∆v1∆v2(A+Π)−1
∑
j1,j2

(1− ev1,j1A∆t)fnj1,j2

−∆t∆v1∆v2(A+Π)−1
∑
j1,j2

(1− ev1,j1A∆t)(F̃Df)nj1,j2

= En
1 +∆v1∆v2(A+Π)−1

∑
j1,j2

(1−Π)(1− ev1,j1A∆t)fnj1,j2

−∆t∆v1∆v2(A+Π)−1
∑
j1,j2

(1−Π)(1− ev1,j1A∆t)(F̃Df)nj1,j2

= En
1 +∆v1∆v2(A+Π)−1

∑
j1,j2

(1−Π)(1− ev1,j1A∆t)fnj1,j2

−∆t∆v1∆v2(A+Π)−1(1−Π)
∑
j1,j2

(F̃Df)nj1,j2

+∆v1∆v2(A+Π)−1
∑
j1,j2

(1−Π)(ev1,j1A∆tfnj1,j2 − fn+1
j1,j2

)

= En
1 +∆v1∆v2(A+Π)−1

∑
j1,j2

((1−Π)fnj1,j2 − (1−Π)fn+1
j1,j2

).
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By induction, if the discrete Poisson equation is satisfied at iteration n, then it is satisfied at
iteration n+ 1 and the proof is complete.

4 Vlasov-Maxwell 2dx-2dv

We finally consider the 2dx-2dv Vlasov-Maxwell model satisfied by
f(t, x, y, v1, v2), E1(t, x, y), E2(t, x, y), B(t, x, y), with t ≥ 0, (x, y) ∈ [0, Lx]×[0, Ly] and (v1, v2) ∈
R2 

∂tf + v1∂xf + v2∂yf + E1∂v1f + E2∂v2f +B(v2∂v1f − v1∂v2f) = 0,

∂tB = ∂yE1 − ∂xE2,

∂tE1 = ∂yB −
ˆ

R2

v1fdv1dv2 + J̄1,

∂tE2 = −∂xB −
ˆ

R2

v2fdv1dv2 + J̄2,

∂xE1 + ∂yE2 =

ˆ
R2

fdv1dv2 − ρ̄, ∂xB + ∂yB = 0,

(31)

with initial conditions (f0(x, y, v1, v2), E0
1(x, y), E

0
2(x, y), B(x, y)) such that the Poisson equation

is satisfied ∂xE
0
1 + ∂yE

0
2 =
´

R2 f0dv1dv2 − ρ̄ and periodic boundary conditions are considered
in space. here, J̄i = 1

LxLy

´
Lx×Ly

´
R2 vifdxdydv1dv2, ρ̄ = 1

LxLy

´
Lx×Ly

´
R2 fdxdydv1dv2, E =

(E1, E2), B = (B1, B2),∇ = (∂x, ∂y).

4.1 Exponential DG discretization

Here we apply 2D DG method in (x, y) direction and consider the discretization on Cartesian
meshes with a rectangular triangulation Ii × Ij . We define the space Vh as the space of tensor
product piece-wise polynomials of degree at most k in each variable on every element, i.e.
V k
h = {vh : vh|Ii×Ij ∈ Qk(Ii × Ij)}, where Qk(Ii × Ij) is the space of tensor products of one

dimensional polynomials of degree up to k.
We follow the lines of the above subsections: we use a DG method in the 2D space direction

(x, y) (with Nx (resp. Ny) cells in direction x (resp. y) and a grid in the velocity direction
vℓ,jℓ = vℓ,min + jℓ∆vℓ, ℓ = 1, 2, jℓ = 1, . . . , Nv. The 2D DG approximation for f is represented
as (for j1, j2 = 1, . . . , Nv)

f(t, x, y, vj1 , vj2) ≈ fh(t, x, y, vj1 , vj2) =

Nx∑
i=1

Ny∑
j=1

k∑
m=0

k∑
n=0

fmn
ij (t, vj1 , vj2)ξ

m
i (x)ξnj (y).

For simplicity, we only present the 2D DG discretization for linear part of equation of f obtained
by multiplying the Vlasov equation by ξℓ(x)ξs(y) (for ℓ = 0, . . . , k and s = 0, . . . , k) on (x, y) ∈
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Ii × Ij (for i = 1, 2, ...Nx and j = 1, 2, ...Ny):

k∑
m=0

k∑
n=0

[
∂tf

mn
ij (t, vj1 , vj2)(ξ

m, ξℓ)Ii(ξ
n, ξs)Ij

]
−

k∑
m=0

k∑
n=0

[
vj1f

mn
ij (t, vj1 , vj2)(ξ

m, ∂xξ
ℓ)Ii(ξ

n, ξs)Ij + vj2f
mn
ij (t, vj1 , vj2)(ξ

m, ξℓ)Ii(ξ
n, ∂yξ

s)Ij

]
+

k∑
m=0

k∑
n=0

[
(vj1

[
{fh(t, x, y, vj1 , vj2}ξℓ

]i+ 1
2

i− 1
2

, ξs)Ij + (vj2

[
{fh(t, x, y, vj1 , vj2}ξs

]j+ 1
2

j− 1
2

, ξℓ)Ii

]
= 0,

(32)
where we used the central fluxes in x and y, that is for the x direction
{fh(t, x, y, vj1 , vj2)}|xi±1/2

= 1
2(fh(t, x

+
i±1/2, y, vj1 , vj2) + fh(t, x

−
i±1/2, y, vj1 , vj2)).

We consider fj1,j2 ∈ R(k+1)2NxNy the vector containing the degree of freedom fm,n
i,j

fj1,j2 = [f0,01,1 , f
1,0
1,1 , . . . , f

k,0
1,1 , . . . , f

k,0
Nx,1

, f0,11,1 , . . . , f
k,k
Nx,Ny

]Tj1,j2 (33)

and E1,E2,B ∈ R(k+1)2NxNy the vectors (defined as (33)) containing the DG degree of freedom
of the electromagnetic fields (E1, E2, B). Finally, we introduce (F̃Df)j1,j2 the DG approxima-
tion of the nonlinear term (F · ∇vf)(vj1 , vj2), with F = (E1 + Bv2, E2 − Bv1) using similar
techniques as in the 1dx case. With these notations, we have the following semi-discretized
scheme 

∂tfj1,j2 = (1y ⊗ v1,j1A
x)fj1,j2 + (v2,j2A

y ⊗ 1x)fj1,j2 − (F̃Df)j1,j2

∂tB = −(Ay ⊗ 1x)E1 + (1y ⊗Ax)E2,

∂tE1 = −(Ay ⊗ 1x)B−
∑
j1,j2

v1,j1Pfj1,j2∆v1∆v2,

∂tE2 = (1y ⊗Ax)B−
∑
j1,j2

v2,j2Pfj1,j2∆v1∆v2,

(34)

where Ax ∈ M(k+1)Nx,(k+1)Nx
(R) and Ay ∈ M(k+1)Ny ,(k+1)Ny

(R) are the matrices coming from
the DG semi-discretization in each space direction as before, ⊗ is the Kronecker product, P =
(1y −Πy)⊗ (1x−Πx) with 1x (resp. 1y) the identity matrix of size (k+1)Nx (resp. (k+1)Ny)
and Πx (resp. Πy) the projection onto Ker(Ax) (resp. Ker(Ay)).

Before discussing the time discretization, we prove the following proposition.

Proposition 6. The semi-discretized system (34) satisfied by (fj1,j2 ,B,E1,E2)(t) preserves the
following discretized Poisson equation

(1y ⊗Ax)E1(t) + (Ay ⊗ 1x)E2(t) = −
∑
j1,j2

Pfj1,j2(t)∆v1∆v2, ∀t > 0,

provided that it is satisfied at time t = 0.
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Proof. Let derive with respect to time the left hand side of the equality to get

∂t((1y ⊗Ax)E1 + (Ay ⊗ 1x)E2) = (1y ⊗Ax)∂tE1 + (Ay ⊗ 1x)∂tE2

= (1y ⊗Ax)(−(Ay ⊗ 1x)B−
∑
j1,j2

v1,j1Pfj1,j2∆v1∆v2)

+(Ay ⊗ 1x)((1y ⊗Ax)B−
∑
j1,j2

v2,j2Pfj1,j2∆v1∆v2)

=
[
(Ay ⊗ 1x)(1y ⊗Ax)− (1y ⊗Ax)(Ay ⊗ 1x)

]
B

−(1y ⊗Ax)
∑
j1,j2

v1,j1Pfj1,j2∆v1∆v2)

−(Ay ⊗ 1x)
∑
j1,j2

v2,j2Pfj1,j2∆v1∆v2)

= −
∑
j1,j2

(
∂t(Pfj1,j2) +P(F̃Df)j1,j2

)
∆v1∆v2

= −∂t
(∑

j1,j2

Pfj1,j2∆v1∆v2

)
,

where we used the identities

(Ay ⊗ 1x)(1y ⊗Ax) = (Ay1y)⊗ (1xA
x) = Ay ⊗Ax

(1y ⊗Ax)(Ay ⊗ 1x) = (1yA
y)⊗ (Ax1x) = Ay ⊗Ax

to pass from the third to the fourth equality. Integrating in time the obtained equality and
assuming the discrete Poisson equation holds at time t = 0 leads to the result.

We end this part by giving some elements on the time discretization. First, in this case, it is
difficult to compute the exponential of the linear part. However, we can consider the exponential
of the fj1,j2 linear part (which corresponds to the (x, y) transport). Indeed, we observe from
(34) that this linear part writes

∂tfj1,j2 =
[
(1y ⊗ v1,j1A

x) + (v2,j2A
y ⊗ 1x)

]
fj1,j2 =

[
v2,j2A

y ⊕ v1,j1A
x
]
fj1,j2 ,

where we used the definition of the Kronecker sum ⊕. The exact solution can be then written
as

fj1,j2(t) = exp
(
(v2,j2A

y ⊕ v1,j1A
x) t
)
fj1,j2(0) = exp

(
v2,j2tA

y ⊕ v1,j1tA
x
)
fj1,j2(0).

It is well known that the exponential of a matrix with Kronecker sum structure is equal to the
Kronecker product of the exponentials that is

fj1,j2(t) = exp(v2,j2tA
y)⊗ exp(v1,j1tA

x)fj1,j2(0),

which can be recast using the vec operation as

fj1,j2(t) = exp(v2,j2tA
y)fj1,j2(0) exp(∆v1,j1t(A

x)T ), (35)

where fj1,j2(s)=vec(fj1,j2(s)) (for s = 0, t denotes the vectorization operation which takes the
matrix fj1,j2 ∈ M(k+1)Nx,(k+1)Ny

(R) as entry and gives the vector fj1,j2 ∈ R(k+1)2NxNy as a result.
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This means that the update of f requires matrix-vector products operations that only involves
to assembly exponential of matrices Ax and Ay which are computed from the one-dimensional
case (see (8)). Moreover, these matrix-vector products calculations can be performed in a very
efficient way. This nice property has been exploited in the literature to design efficient routines
for computing matrix exponentials [6, 13, 24].

Remark 5. The semi-discretized Vlasov-Maxwell system (34) can be degenerated to a semi-
discretization of the Vlasov-Poisson system satisfied by (f,E1, E2). In this case, the Lawson
scheme only applies to the unknown f and then requires the calculation of exp(v2,j2tAy⊕v1,j1tAx)
which can be performed efficiently thanks to (35). The update of the electric field is performed
using the Poisson equation thanks to the updated f .

4.2 Fourier based space discretization

In this part, we consider Fourier in space combined with finite differences in velocity to semi-
discretize the Vlasov-Maxwell system (31) and we will see that in this case, it will be possible
to compute explicitely the exponential of the linear part.

Denoting f̂kx,ky ,j1,j2 the Fourier coefficient of f in space and evaluated at the velocity grid
introduced previously (kx, ky being the Fourier variables), Ê1,kx,ky , Ê2,kx,ky , B̂kx,ky the Fourier
coefficients of the electromagnetic fields (E1, E2, B), and introducing the force term F = (E1 +
Bv2, E2 −Bv1), we get the following semi-discretized scheme

∂tf̂kx,ky ,j1,j2 + (v1,j1ikx + v2,j2iky)f̂kx,ky ,j1,j2 + (̂FDf)kx,ky ,j1,j2 = 0,

∂tB̂kx,ky = ikyÊ1,kx,ky − ikxÊ2,kx,ky ,

∂tÊ1,kx,ky = ikyB̂kx,ky −
∑
j1,j2

v1,j1 f̂kx,ky ,j1,j2∆v1∆v2 + J̄1,

∂tÊ2,kx,ky = −ikxB̂kx,ky −
∑
j1,j2

v2,j2 f̂kx,ky ,j1,j2∆v1∆v2 + J̄2,

(36)

with the initial conditions f̂kx,ky ,j1,j2(0), B̂kx,ky(0), Ê1,kx,ky(0), Ê2,kx,ky(0) satisfying the Poisson
equation ikxÊ1,kx,ky(0) + ikyÊ2,kx,ky(0) =

∑
j1,j2

f̂kx,ky ,j1,j2(0)∆v1∆v2 for (kx, ky) ̸= (0, 0).
For the semi-discretized system (36), we have a similar proposition as Prop (6) in this Fourier

case.

Proposition 7. The semi-discretized system (36) satisfied by (f̂kx,ky ,j1,j2 , B̂kx,ky , Ê1,kx,ky , Ê2,kx,ky)(t)
preserves the following discretized Poisson equation

ikxÊ1,kx,ky(t) + ikyÊ2,kx,ky(t) =
∑
j1,j2

f̂kx,ky ,j1,j2(t)∆v1∆v2, (kx, ky) ̸= (0, 0), ∀t > 0,

provided it is satisfied at time t = 0.

Proof. As in the proof of Prop (6), we take the derivative with respect to time of the left hand

20



side to get

∂t(ikxÊ1,kx,ky + ikyÊ2,kx,ky) = ikx

(
ikyB̂kx,ky −

∑
j1,j2

v1,j1 f̂kx,ky ,j1,j2∆v1∆v2

)
+iky

(
− ikxB̂kx,ky −

∑
j1,j2

v2,j2 f̂kx,ky ,j1,j2∆v1∆v2

)
=

∑
j1,j2

∆v1∆v2

(
∂tf̂kx,ky ,j1,j2 + (̂FDf)kx,ky ,j1,j2

)
= ∂t

(∑
j1,j2

f̂kx,ky ,j1,j2∆v1∆v2

)
,

where we used the summation on j1, j2 of the Vlasov equation together with the fact that D is
a conservative finite difference operator. Finally, integrating the result in time between 0 and t
and assuming the relation holds at t = 0 ends the proof.

To derive a fully discrete scheme, we introduce as previously the vector f̂kx,ky ∈ CNv1Nv2

and denote U(t) = (f̂ , B̂, Ê2, Ê1)kx,ky(t) ∈ MNv1Nv2+3,Nv1Nv2+3(C), then the system (36) can be
rewritten as

∂tU = LU +N(U), (37)

with

L=



−i(kxdiag(v⃗1)+kyv2,1) 0Nv1 ,Nv1
. . . 0Nv1 ,Nv1

0Nv1 ,1
. . . 0Nv1 ,1

0Nv1 ,Nv1
−i(kxdiag(v⃗1)+kyv2,2) . . . 0Nv1 ,Nv1

... . . .
...

...
. . . . . . 0Nv1 ,Nv1

... . . .
...

0Nv1 ,Nv1
. . . 0Nv1 ,Nv1

−i(kxdiag(v⃗1)+kyv2,Nv2
) 0Nv1 ,1

. . . 0Nv1 ,1

01,Nv1
. . . 01,Nv1

01,Nv1
0 −ikx iky

−∆v1∆v2v2,11 −∆v1∆v2v2,21 . . . −∆v1∆v2v2,Nvy
1 −ikx 0 0

−∆v1∆v2v⃗1 −∆v1∆v2v⃗1 . . . −∆v1∆v2v⃗1 iky 0 0


(38)

and

f̂kx,ky =



f̂kx,ky ,1,1
...
f̂kx,ky ,Nv1 ,1
...
f̂kx,ky ,Nv1 ,Nv2

 ∈ MNv1Nv2 ,Nv1Nv2
(C) and N(U) =


(F̂Df)kx,ky
0
0
0

 ∈ MNv1Nv2+3,Nv1Nv2+3(C),

where we denote v⃗1 the vector with components (v⃗1)j1 = v1,min + j1∆v1 and v2,j2 = v2,min +
j2∆v2. In the same spirit as previously, diag(v⃗1) denotes the diagonal matrix whose diagonal is
composed of v⃗1.

We now study the time discretization of (37) based on a Lawson scheme which requires to
know exp(tL) with L given above. Similar (but more tedious) calculations to those performed in
the proof of Prop 4 enable to get an explicit expression of exp(tL). To end this section, we prove
that the following scheme, with Un ≈ U(tn), tn = n∆t,∆t > 0 and the notations introduced
above

Un+1 = exp(∆tL)Un +∆t exp(∆tL)N(Un), (39)
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that approximates the ODE (37) preserves a discrete Poisson equation. This is the object of
the following proposition.

Proposition 8. The Lawson scheme (39) satisfied by Un = (f̂ , B̂, Ê2, Ê1)
n
kx,ky

preserves the
following Poisson equation

ikxÊ
n
1,kx,ky + ikyÊ

n
2,kx,ky =

∑
j1,j2

f̂nkx,ky ,j1,j2∆v1∆v2, (kx, ky) ̸= (0, 0),∀n ∈ N⋆,

provided that it is satisfied at the initial time n = 0.

Proof. First, we need to know the shape of exp(∆tL). From the one-dimensional calculations
and from [4], we have

eL∆t=



e−i∆t(kxv⃗1+kyv2,1) 0Nv1 ,Nv1
0Nv1 ,Nv1

. . . 0Nv1 ,Nv1
0Nv1 ,1

0Nv1 ,1
0Nv1 ,1

0Nv1 ,Nv1
e−i∆t(kxv⃗1+kyv2,2) 0Nv1 ,Nv1

. . . 0Nv1 ,Nv1

...
...

...
...

. . . . . . 0Nv1 ,Nv1

...
...

...
0Nv1 ,Nv1

. . . 0Nv1 ,Nv1
e−i∆t(kxv⃗1+kyv2,Nv2

) 0Nv1 ,1
0Nv1 ,1

0Nv1 ,1

eBkx,ky ,⋆,1 eBkx,ky ,⋆,2 . . . eBkx,ky ,⋆,Nv2
cos(|k|∆t) −ikxsin(|k|∆t)

|k|
ikysin(|k|∆t)

|k|

eE2,kx,ky ,⋆,1 eE2,kx,ky ,⋆,2 . . . eE2,kx,ky ,⋆,Nv2

−ikxsin(|k|∆t)
|k|

k2xcos(|k|∆t)+k2y
|k|2

kxky(1−cos(∆t|k|)
|k|2

eE1,kx,ky ,⋆,1 eE1,kx,ky ,⋆,2 . . . eE1,kx,ky ,⋆,Nv2

ikysin(|k|∆t)
|k|

kxky(1−cos(∆t|k|)
|k|2

k2y cos(∆t|k|)+k2x
|k|2


where we used the fact that the exponential of the homogeneous Maxwell part is

exp

t
 0 −ikx iky

−ikx 0 0
iky 0 0

 =


cos(t|k|) − ikx sin(t|k|)

|k|
iky sin(t|k|)

|k|

− ikx sin(t|k|)
|k|

k2x cos(t|k|)+k2y
|k|2

kxky(1−cos(t|k|))
|k|2

iky sin(t|k|)
|k|

kxky(1−cos(t|k|))
|k|2

k2y cos(t|k|)+k2x
|k|2

 ,

and the vectors (eB, eE2, eE1)kx,ky ,⋆,j2 ∈ C3Nv1 for all kx, ky and j2 = 1, . . . , Nv2 will be given
below. From the components on f̂ , since we get a diagonal matrix, we have

f̂kx,ky ,j1,j2(t) = e−i(t−tn)(kxv1,j1+kyv2,j2 )fnkx,ky ,j1,j2 (40)

which can be inserted in the Maxwell part to compute the vectors (eB, eE2, eE1)kx,ky ,⋆,j2 . To do
so, we consider the vector V (t) = (B̂, Ê2, Ê1)

T (t) which solves the following ODE

∂tV = J V+R with R(t) =

 0∑
j1,j2

v2,j2 f̂kx,ky ,j1,j2(t)∆v1∆v2∑
j1,j2

v1,j1 f̂kx,ky ,j1,j2(t)∆v1∆v2

 and J =

 0 −ikx iky
−ikx 0 0
iky 0 0

 .

The variation of constant formula gives

V (tn+1) = e∆tJ V (tn) +

ˆ tn+1

tn
e(t

n+1−t)JR(t)dt.

The calculations for the integral term involve the following integral term

I1(f̂n) =

ˆ tn+1

tn

(−ikx sin(|k|(tn+1 − t))

|k|
R2(t) +

iky sin(|k|(tn+1 − t)))

|k|
R3(t)

)
dt

=
∑
j1,j2

((−ikxv2,j2 + ikyv1,j1)

|k|
C
)
f̂nkx,ky ,j1,j2∆v1∆v2,

=
∑
j1,j2

eBkx,ky ,j1,j2 f̂
n
kx,ky ,j1,j2 ,
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I2(f̂n) =

ˆ tn+1

tn

(k2x cos(|k|(tn+1 − t)) + k2y
|k|2

R2(t) +
kxky(1− cos(|k|(tn+1 − t)))

|k|2
R3(t)

)
dt

=
∑
j1,j2

(
v2,j2

k2xA+ k2yB
|k|2

+ v1,j1
kxky(B −A)

|k|2
)
f̂nkx,ky ,j1,j2∆v1∆v2,

=
∑
j1,j2

eE2,kx,ky ,j1,j2 f̂nkx,ky ,j1,j2 ,

I3(f̂n) =

ˆ tn+1

tn

(kxky(1− cos(|k|(tn+1 − t)))

|k|2
R2(t) +

k2y cos(|k|(tn+1 − t)) + k2x
|k|2

R3(t)
)
dt

=
∑
j1,j2

(
v2,j2

kxky(B −A)

|k|2
+ v1,j1

k2yA+ k2xB
|k|2

)
f̂nkx,ky ,j1,j2∆v1∆v2,

=
∑
j1,j2

eE1,kx,ky ,j1,j2 f̂nkx,ky ,j1,j2 ,

where the time integrals are

A =

ˆ tn+1

tn
cos(|k|(tn+1 − t))e−i(t−tn)(k·vj)dt,

B =

ˆ tn+1

tn
e−i(t−tn)(k·vj)dt =

1

ik · vj
(1− e−i∆tk·vj ),

C =

ˆ tn+1

tn
sin(|k|(tn+1 − t))e−i(t−tn)(k·vj)dt,

with k · vj = kxv1,j1 + kyv2,j2 . To check the conservation of the Poisson equation, one focuses
on the equations on Ê2 and Ê1 only. Thanks to the above calculations, we can write down the
update of Ê2, Ê1 using the first order Lawson scheme

Ên+1
2 = (e∆tJ V n)2 + I2(f̂n −∆t ̂(FDfn)),

Ên+1
1 = (e∆tJ V n)3 + I3(f̂n −∆t ̂(FDfn)).

Thus, it remains to compute ikxÊn+1
1 + ikyÊ

n+1
2 using the last relations. First, one can check

easily that

iky(e
∆tJ V n)2 + ikx(e

∆tJ V n)3 = iky

(−ikx sin(|k|∆t)
|k|

B̂n +
k2x cos(|k|∆t) + k2y

|k|2
Ên

2 +
kxky(1− cos(|k|∆t))

|k|2
Ên

1

)
+ikx

( iky sin(|k|∆t)
|k|

B̂n +
kxky(1− cos(|k|∆t))

|k|2
Ên

2 +
k2y cos(|k|∆t) + k2x

|k|2
Ên

1

)
= ikyÊ

n
2 + ikxÊ

n
1 .
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Then, we have

ikyÊ
n+1
2 + ikxÊ

n+1
1 = ikyÊ

n
2 + ikxÊ

n
1 + ikyI2(f̂n −∆t ̂(FDfn)) + ikxI3(f̂n −∆t ̂(FDfn))

= ikyÊ
n
2 + ikxÊ

n
1 + iky

∑
j1,j2

v2,j2(f̂
n −∆t ̂(FDfn))B∆v2∆v1

+ikx
∑
j1,j2

v1,j1(f̂
n −∆t ̂(FDfn))B∆v2∆v1

= ikyÊ
n
2 + ikxÊ

n
1 +∆v2∆v1

∑
j1,j2

(ik · vj)(f̂n −∆t ̂(FDfn)) 1

ik · vj
(1− e−i∆tk·vj )

= ikyÊ
n
2 + ikxÊ

n
1 +∆v2∆v1

[∑
j1,j2

(1− e−i∆tk·vj )fn

−∆t
∑
j1,j2

̂(FDfn) + ∆t
∑
j1,j2

e−i∆tk·vj ̂(FDfn)
]

= ikyÊ
n
2 + ikxÊ

n
1 +∆v2∆v1

[∑
j1,j2

(1− e−i∆tk·vj )f̂n +
∑
j1,j2

e−i∆tk·vj f̂n − f̂n+1
]

= ikyÊ
n
2 + ikxÊ

n
1 +∆v2∆v1

∑
j1,j2

(f̂n − f̂n+1),

where we used the update for f : f̂n+1 = e−i∆tk·vj f̂n−∆te−i∆tk·vj ̂(FDfn) and the conservation
property of the discrete operator D. Then, if the Poisson equation is satisfied at iteration n, it
is propagated to the next iteration, which concludes the proof.

5 Numerical experiments

In this section, we perform numerical experiments for linear transport problems and Vlasov
equations. First, we study the different order of convergence on a linear problem and then, we
present some numerical results of the exponential DG solutions for Vlasov equations in 1dx-1dv
and 1dx-2dv cases.

5.1 2D linear passive-transport problems

We consider the following two-dimension linear transport equation

∂tu+ ∂xu+ ∂vu = 0, (x, v) ∈ [0, 2π]2 (41)

with the initial condition u(x, v, 0) = sin(x + v) and periodic boundary condition. The exact
solution is u(x, v, t) = sin(x+v−2t) which enables us to check the different order of convergence.
Indeed, for a Lawson scheme based on a underlying Runge-Kutta method RK(m, s) (order m,
s stages, a DG space approximation with Pk and a finite difference approximation in v of order
4 (which means D is chosen as a 4th order centered finite difference operator CD4), we expect
the following estimate

∥u(tn)− un
h∥L2 ≤ C(∆xk +∆v4 +∆tm)

Here we use the 3rd order Lawson-RK method for the time discretization, with a final time
T = 1, and consider different parameters to test the convergence rates in t, x and v. We firstly
take Nv = 320,∆t = 0.01, and consider different mesh size Nx to check the convergence rate of
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DG in x direction for both central and upwind fluxes (in this linear case, upwind fluxes can be
considereed easily). Table 1 shows the L∞ and L2 errors, the associated orders of convergence
for DG-P k for k = 1, 2 in x− direction. The optimal convergence rate for DG is clearly obtained.
In particular, the sub-optimal and optimal rates are observed according to the choice of the flux
and to the oddness of k, as discussed in [23]. Then, we study the convergence in v− direction.
We take k = 5, Nx = 32,∆t = 0.01, and consider different mesh size Nv to check the convergence
rate of the fourth order approximation of D (CD4). Table 2 shows the expected convergence
(note that only central fluxes are considered in this case). Finally, to check time accuracy, we
take k = 5, Nx = 16, Nv = 32 and ∆t = 0.0001 to compute a reference solution. Then we get the
error table for different time step sizes ∆t. From Table 3, the expected 3rd order convergence
is observed for all cases.

Nx
central flux upwind flux

L∞-error order L2-error order L∞-error order L2-error order

P 1

10 1.62E-01 - 3.76E-01 - 4.78E-02 - 9.51E-02 -
20 7.66E-02 1.08 1.86E-01 1.02 1.27E-02 1.91 2.42E-02 1.98
40 3.70E-02 1.05 9.24E-02 1.01 3.25E-03 1.97 6.07E-03 1.99
80 1.82E-02 1.03 4.60E-02 1.00 8.23E-04 1.99 1.52E-03 2.00
160 9.01E-03 1.01 2.30E-02 1.00 2.07E-04 1.99 3.79E-04 2.00

P 2

10 2.29E-03 - 3.76E-03 - 2.52E-03 - 4.67E-03 -
20 2.65E-04 3.11 4.53E-04 3.05 3.07E-04 3.04 5.83E-04 3.00
40 3.25E-05 3.02 5.63E-05 3.01 3.84E-05 3.00 7.29E-05 3.00
80 4.05E-06 3.01 7.03E-06 3.00 4.79E-06 3.00 9.11E-06 3.00
160 5.12E-07 2.98 8.99E-07 2.97 5.95E-07 3.00 1.16E-06 2.98

Table 1: Linear transport equation: L∞ and L2-norm space errors of the Lawson-DG scheme
with P 1, P 2 (CD4 in velocity (Nv = 320) and RK(3,3) in time (∆t = 0.01)).

Nv
central flux

L∞-error order L2-error order

CD4

8 1.18E-02 - 5.24E-02 -
16 7.78E-04 3.92 3.50E-03 3.92
32 4.93E-05 3.98 2.19E-04 3.98
64 3.09E-06 4.00 1.37-05 4.00
128 1.98E-07 3.97 8.78E-07 3.97

Table 2: Linear transport equation: L∞ and L2-norm velocity errors of the Lawson-DG scheme
with CD4 (DG-P 5 in space (Nx = 32) and RK(3,3) (∆t = 0.01)).

5.2 Vlasov-Ampère equation

We firstly consider the following initial condition for Landau damping

f0(x, v) =
1√
2π
e−v2/2(1 + α cos(kx)),

where we take x ∈ [0, 2π/k], k = 0.5, v ∈ [−9, 9] and α = 10−3. Here we still use DG method
for space discretization, the finite difference method CD4 in v direction and the 3rd Lawson-
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RK method for time discretization (see Section 3.1). The numerical parameters are chosen as
follows: ∆t = 0.1, Nx = 31(P 2), Nv = 121.

In Figure 1, the time evolution of the electric energy ∥E(t)∥L2 is displayed in semi-log scale
(with the corresponding damping rate in red) and the deviation of the total energy H(t)−H(0)
with H(t) =

´
v2f(t, x, v)dxdv +

´
E2(t, x)dx. The expected behaviors (correct damping rate

and good energy conservation) are recovered.

Figure 1: Vlasov-Ampère equation (Landau damping): time evolution of the electric energy in
semi-log scale (left) and of the deviation of the total energy (right). Lawson-DG RK(3,3) and
P 2 (∆t = 0.1, Nx = 31(P 2), Nv = 121).

We consider a second test called the two stream instability test with the initial condition

f0(x, v) =
1√
2π
v2e−v2/2(1 + α cos(kx)),

for which the same physical and numerical parameters as previously are kept except the final
time which is T = 300. In Figures 2, we plot the time evolution of the electric energy in semi-log
scale (and the corresponding instability rate in red) and the deviation of the total energy. For
this test, a linear instability is first observed (up to t ≈ 30) during which a vortex in phase
space is created (see 2), and it is followed by a nonlinear phase. These two behaviors are well
reproduced by the scheme even if the mesh is quite coarse. In partiular, even if the vortex is
well captured, we can observe spurious oscillations due to the use of central schemes. Note that
the Poisson equation is satisfied in both cases up to machine accuracy.

∆t
central flux

L∞-error order L2-error order

RK(3,3)

0.1000 4.17E-05 - 1.85E-04 -
0.0500 5.21E-06 2.99 2.31E-05 2.99
0.0250 6.51E-07 3.00 2.89E-06 3.00
0.0125 8.14E-08 3.00 3.61E-07 3.00
0.00625 1.02E-08 3.00 4.52E-08 3.00

Table 3: Linear transport equation: L∞ and L2-norm time errors of the Lawson-DG scheme
with RK(3,3) (DG-P 5 in space (Nx = 16) and CD4 (Nv = 32)).
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Figure 2: Vlasov-Ampère equation (two stream instability): time evolution of the electric energy
in semi-log scale (top left) and of the deviation of the total energy (top right), snapshot of
f(t = 0) (bottom left) and snapshot of f(t = 300) (bottom right). Lawson-DG RK(3,3) and P 2

(∆t = 0.1, Nx = 31(P 2), Nv = 121).

5.3 Vlasov-Maxwell equations 1dx-2dv

We consider the Weibel instability [32] by consideering the Vlasov-Maxwell 1dx-2dv model
studied in Section 3.2 with the initial distribution and fields are of the form

f(t = 0, x, v1, v2) =
1

2πσ1σ2
exp

(
−1

2

(
v21
σ21

+
v22
σ22

))
(1 + α cos(kwx)), x ∈ [0, 2π/k),

B(t = 0x) = β cos(kx), E2(t = 0, x) = 0,

and E1(x, t = 0) is imposed from the Poisson equation. We choose the parameters σ1 =
0.02/

√
2, σ2 =

√
12σ1, k = 1.25, α = 0, β = −10−4 for our test, which gives a growth rate of

0.02784 by solving the dispersion relation (see Weibel [32]). For the numerical simulations up
to a final time T = 500, we still use DG method for space discretization in x− direction, finite
difference method with CD4 in v direction and Lawson-RK(3,3) method for time discretization
(Lawson-RK(3,3)-DG CD4) and consider ∆t = 0.5, Nx = 21(P 2), Nv1 = Nv2 = 44. For
comparison, we also consider Fourier method for space discretization in x− direction, finite
difference with a third order upwind (UP3) in v direction and Lawson-RK(3,3) method in time
(Lawson-RK(3,3)-Fourier UP3) with ∆t = 0.5, Nx = 64, Nv1 = Nv2 = 88.

In Figure 3, we show the time evolution of the electromagnetic energies ∥B(t)∥L2 , ∥Ey(t)∥L2 ,
∥Ex(t)∥L2 (in semi-log scale) obtained by the two methods. First, we can observe that the
theoretical growth rate is in very good agreement with the two numerical solution. Second,
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the two methods are very close up to time t ≈ 300 (which corresponds to the end of the linear
phase) and slightly differs for larger times. We also show the evolution of the relative total
energy |H(t) − H(0)|/H(0) in Figure 4 for Lawson-RK(3,3)-DG CD4 scheme without (left)
and with (right) the energy correction step presented in [4] in the Vlasov-Ampère case. This
projection approach enables to modify the unknown by a suitable coefficient which is of order
the scheme so that the total energy is preserved almost up to machine error 10−12.

Figure 3: Vlasov-Maxwell equation (Weibel instability): time evolution of the electromagnetic
energies in semi-log scale together with the analytic growth rate. Left: Lawson-RK(3,3)-DG
CD4. Right: Lawson-RK(3,3)-Fourier UP3.

Figure 4: Vlasov-Maxwell equation (Weibel instability): time evolution the relative total energy
of Lawson-RK(3,3)-DG CD4 without (left) and with (right) energy correction step.

The second test for Vlasov-Maxwell equation we considered is the streaming Weibel insta-
bility [7, 9] for which the initial condition is

f(t = 0, x, v1, v2) =
1

2πσ2
exp

(
− v21
2σ2

)(
δ exp

(
−(v2 − v0,1)

2

2σ2

)
+ (1− δ) exp

(
−(v2 − v0,2)

2

2σ2

))
,

B(t = 0, x, t = 0) = β cos(kx), E2(t = 0, x) = 0,

and E1(t = 0, x) = 0 from the Poisson equation. We choose the parameters σ = 0.1/
√
2, k =

0.2, β = −10−3, v0,1 = 0.5, v0,2 = −0.1 and δ = 1/6 for our test. The growth rate of E2 is
0.03 [7]. For the two schemes Lawson-RK(3,3)-DG CD4 and Lawson-RK(3,3)-Fourier UP3, we
take the same parameters as in the previous case but ∆t = 0.1 for stability reasons. We show
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the result in Figure 5 in which the time evolution of the L2 norm of the electromagnetic fields
are displayed. First, we observe a good agreement with the theoretical growth rate for these
two schemes and some deviations in the nonlinear phase can be observed. For this case, we also
consider the correction on the total energy and plot the time history of the relative total energy
in Figure 6 for Lawson-RK(3,3)-DG CD4 without (left) and with (right) energy correction step.
The total energy can be well preserved for exponential DG approximations if it is stable, and
the relative error is greatly improved with energy correction step without affecting the accuracy
of the scheme. Note that the Poisson equation is satisfied in both cases up to machine accuracy.

Figure 5: Vlasov-Maxwell equation (streaming Weibel instability): time evolution of the elec-
tromagnetic energies in semi-log scale together with the analytic growth rate. Left: Lawson-
RK(3,3)-DG CD4. Right: Lawson-RK(3,3)-Fourier UP3.

Figure 6: Vlasov-Maxwell equation (streaming Weibel instability): time evolution the relative
total energy of Lawson-RK(3,3)-DG CD4 without (left) and with (right) energy correction step.

6 Conclusion

In this work, we constructed and implemented a new exponential DG method for Vlasov equa-
tion, extending the previous works [14, 12, 4] on this topic where Fourier method in space were
used. These methods allow to derive high order accuracy in time, space and velocity, still ensur-
ing stability without the restrictive CFL type constraint coming from the linear part. Moreover,
a discrete Poisson equation is satisfied and a projection technique enables to preserve the total
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energy. The extension to DG turns out to be an interesting alternative compared to previous
approach based on Fourier which is restricted to cartesian domains with periodic boundary
conditions. The approach only involves the calculation of exponential of DG-matrices of size
(k + 1)N with k the DG degree and N the number of points in the space direction and we
observe that thanks to the specific structure, this is also true in multi-dimensions.

One interesting extension is to perform an efficient implementation of the method in two-
dimension in space to exploit the Kronecker structure. We also plan to investigate the extension
of this approach to problems involving boundary conditions, for which monotone fluxes are more
appropriate but requires to study the stability of the scheme.

A Appendix A: The DG matrix construction

The goal of this appendix is to give some details on the construction of the DG-matrix (8)
which is at the core of our scheme. To do so, we consider the 1dx transport equation (1) with
coefficient a = 1, for which we wrote in (2) the semi-discrete DG scheme. To get the DG matrix,
we consider ψ = ξℓj and uh(t, x) =

∑k
m=0 u

m
j (t)ξmj (x) in (2) to get

k∑
m=0

[
(∂tu

m
j (t)ξm, ξℓ)Ij − (umj (t)ξm, ∂xξ

ℓ)Ij

]
+ [{uh}ξℓ]

xj+1/2
xj−1/2

= 0, (42)

where ℓ = 0, . . . , k, j = 1, . . . , N and where the central flux {uh}|xj±1/2
= (u+h (xj±1/2) +

u−h (xj±1/2))/2 is considered. Thus we obtain for the boundary term

[{uh}ξℓ]
xj+1/2
xj−1/2

=
1

2

k∑
m=0

[(
umj (t)ξm,−(xj+1/2) + umj+1(t)ξ

m,+(xj+1/2)
)
ξℓ,−(xj+1/2)

−
(
umj−1(t)ξ

m,−(xj−1/2) + umj (t)ξm,+(xj−1/2)
)
ξl,+(xj−1/2)

]
=

1

2

k∑
m=0

[(
umj (t)(1/2)m + umj+1(t)(−1/2)m

)
(1/2)ℓ

−
(
umj−1(t)(1/2)

m + umj (t)(−1/2)m
)
(−1/2)ℓ

]
.

We denote uj(t) = (u0j (t), u
1
j (t), ...., u

k
j (t))

T , j = 1, 2, ..., N, then we can rewrite the DG dis-
cretization as

∆x


M

M
. . .

M

 ∂t


u1

u2
...
uN

−


D1 D2 . . . D3

D3 D1 D2

. . . . . . D2

D2 . . . D3 D1




u1

u2
...
uN

 = 0, (43)

where M,Di ∈ M(k+1),(k+1)(R), i = 1, 2, 3 are given by

Mℓ,m =
(1/2)m+ℓ−1

m+ ℓ− 1
[1− (−1)m+ℓ−1], (D2)ℓ,m = (−1)m(1/2)m+ℓ−1,

(D1)ℓ,m = (1/2)m+ℓ−2
( ℓ− 1

m+ ℓ− 2
− 1

2

)
[1− (−1)m+ℓ−2], (D3)ℓ,m = (−1)ℓ−1(1/2)m+ℓ−1,

with (D1)1,1 = 0 by convention. Then we have

∆xM∂tu−Du = 0,
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where M is a block diagonal mass matrix of size N(k + 1), D is a block tridiagonal matrix of
size N(k + 1), and u is the vector containing the degree of freedom

u = (u01, u
1
1, . . . , u

k
1, u

0
2, u

1
2, . . . , u

k
2, . . . , u

0
N , u

1
N , . . . , u

k
N )T ∈ R(k+1)N .

Now we can rewrite the DG scheme as

∂tu(t) = Au(t), A = (∆xM)−1D, (44)

where A is a block circulant matrix

A =
1

∆x


M−1D1 M−1D2 0 . . . M−1D3

M−1D3 M−1D1 M−1D2 0 . . .

0
. . . . . . . . . M−1D2

M−1D2 0 . . . M−1D3 M−1D1

 =
1

∆x
A1,

or with the circblock notation A1 = circblock(M−1D1,M
−1D2, 0, 0, ...,M

−1D3). Since D and
M are independent of ∆x, so is A1 defined by A = ∆x−1A1.

B Appendix B: Stability and error estimate for semi-discrete DG
scheme.

In this appendix, we give some error estimate of the exponential-DG scheme for the one di-
mensional linear advection equation (1). To do so, we first define some notations about norms
which will be used. For a given function x 7→ v(x), we denote ∥v∥j and ∥v∥∞,j as the L2-norm
and L∞-norm of v on Ij (j = 1, . . . , N) respectively. Moreover,

∥v∥ = (
∑
j

∥v∥2j )
1
2 , ∥v∥∞ = max

j
∥v∥∞,j ,

∥v∥2Γ =
∑
j

(|v+j−1/2|
2 + |v−

j− 1
2

|2),

where we express the value of v on the left and right limits of the grid point xj+ 1
2

with v−
j+ 1

2

and v+
j+ 1

2

respectively. Define the jump and the mean of v at xj− 1
2

as [v]j− 1
2
= (v+

j− 1
2

− v−
j− 1

2

)

and {v}j− 1
2
= (v+

j− 1
2

+ v−
j− 1

2

)/2.

B.1 Notations for projections and some properties of approximation space

The inverse properties of the finite space Vh will be used.

Lemma B.1. When the mesh is regular, ∀v ∈ Vh, ∃ C > 0, s.t.

h2∥∂xv∥2 + h∥v∥2Γ ⩽ C∥v∥2, (45)

where the positive constant C is independent of h and v.

Define the L2-projection Pk of u into Vh as follows:

(Pku, vh) = (u, vh), ∀vh ∈ Vh with vh(χj(., t)) ∈ P k([−1, 1]).

The following lemma states the error of these projections [10].
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Lemma B.2. Let P⊥
h q = q−Pkq is the projection error. For any smooth function q(x), ∃ c > 0,

such that
∥P⊥

h q∥D + h∥∂x(P⊥
h q)∥D + h

1
2 ∥P⊥

h q∥∞,D ⩽ chk+1|q|k+1,D, (46)

∥P⊥
h q∥Γ ⩽ chk+

1
2 ∥∂k+1

x q∥, (47)

where the positive constant c is not dependent on h, solely depending on q, and D may be Ω or
Ij.

Furthermore, to avoid confusion with different constants, we denote a generic positive con-
stant by C, which is independent of the numerical solution and the mesh size for our problem.
But, the constant may dependent on the exact solution and may have a different value in each
occurrence. Moreover, for problems considered in this paper, the exact solution is assumed
to be smooth with periodic or compactly supported boundary condition. Therefore, the exact
solution is always bounded.

We state the L2 stability and L2-norm error estimate for the scheme and also give their
proof.

Theorem B.1. For semi-discrete DG scheme (2) with central flux, we have the L2-stability:
d

dt
||uh||2L2 = 0.

Proof. Take the test function ψ = uh in the semi-discrete scheme (2), we have
1

2

d

dt

ˆ
Ij

u2hdx = −a{uh}|x
j+1

2

u−h |xj+1
2

+ a{uh}|x
j− 1

2

u+h |xj− 1
2

+

ˆ
Ij

auh(uh)xdx,

= −a{uh}|x
j+1

2

u−h |xj+1
2

+ a{uh}|x
j− 1

2

u+h |xj− 1
2

+
a

2
(u2h)

−|x
j+1

2

− a

2
(u2h)

+|x
j− 1

2

.

= −a
2
u+h u

−
h |xj+1

2

+
a

2
u−h u

+
h |xj− 1

2

.

(48)
Sum over j of above equation, the L2-stability follows.

Theorem B.2. Let T > 0, u be the exact solution of problem (1), which is sufficiently smooth
with bounded derivatives. Assume uh is the DG approximation of semi-discrete scheme (2)
with the central flux and the approximation space Vh is the space consisting of k-th piecewise
polynomial. Then it holds that

∥u(T )− uh(T )∥L2 ⩽ Chk, (49)

where C is a positive constant independent on ∆x.

Proof. Denote error as eu = uh − u. Notice that the scheme (2) is still satisfied with uh = u.
So, we have the error equationˆ

Ij

(∂teuψ)dx = −a{eu}|x
j+1

2

ψ−|x
j+1

2

+ a{eu}|x
j− 1

2

ψ+|x
j− 1

2

+

ˆ
Ij

aeuψxdx. (50)

Define eu = uh − u = (uh − Pku)− (u− Pku) = ẽu − P⊥
k u. Then taking ψ = ẽu, we haveˆ

Ij

∂t(ẽu)ẽudx

=

ˆ
Ij

∂t(P
⊥
k u)ẽudx− a{ẽu}|x

j+1
2

ẽu
−|x

j+1
2

+ a{ẽu}|x
j− 1

2

ẽu
+|x

j− 1
2

+

ˆ
Ij

aẽu(ẽu)xdx

+ a{P⊥
k u}|xj+1

2

ẽu
−|x

j+1
2

− a{P⊥
k u}|xj− 1

2

ẽu
+|x

j− 1
2

−
ˆ
Ij

aP⊥
k u(ẽu)xdx.

(51)
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By the the definition of the projections and some calculations, the right terms RHS of the error
equation (51) become

RHS = −a
2
ẽu

+ẽu
−|x

j+1
2

+
a

2
ẽu

−ẽu
+|x

j− 1
2

+ a{P⊥
k u}|xj+1

2

ẽu
−|x

j+1
2

− a{P⊥
k u}|xj− 1

2

ẽu
+|x

j− 1
2

.

(52)
Sum over j,

1

2

d

dt
||ẽu||2 =

∑
j

RHS = −
∑
j

a{P⊥
k u}[ẽu]|xj+1

2

.

Furthermore, from Holder’s inequality, Lemma (B.1) and Lemma (B.2), we have

1

2

d

dt
||ẽu||2 ≤

∑
j

∣∣∣a{P⊥
k u}[ẽu]|xj+1

2

∣∣∣
≤ c||P⊥

k u||Γ||ẽu||Γ ≤ chk+
1
2h−

1
2 ||ẽu||

≤ c∥ẽu∥2 + ch2k.

(53)

Thus by Gronwall’s inequality, the conclusion in Theorem B.2 follows.

C Appendix C: Ker(A) and projection Π

Here, the projection matrix Π onto Ker(A) with A the DG-matrix (8) is discussed. A general
expression (for any k,N) turns out to be difficult and we compute Ker(A) (and the projection Π)
for several practical cases. As mentioned in Remark 2, there are mainly two cases, according to
the oddness of (k+1)N : (i) if (k+1)N is odd, 0 is a simple eigenvalue of A and Ker(A)=Span(u1)
where u1 ∈ R(k+1)N correspond constants in the space P k; (ii) if (k+1)N is even, 0 is a double
eigenvalue of A and Ker(A)=Span(u1, u2) and u2 ∈ R(k+1)N has to be determined. This second
case recalls what happens for the second centered finite differences in which constant vector
belongs to the kernel but also the sequence (−1)j .

• odd case: We can check that

u1 =
[
1, 0, . . . , 0︸ ︷︷ ︸

∈Rk

, 1, 0, . . . , 0︸ ︷︷ ︸
∈Rk

, . . . , 1, 0, . . . , 0︸ ︷︷ ︸
∈Rk

]T
∈ R(k+1)N .

is a eigenvector of A associated to the eigenvalue 0. By Πx = ⟨x, u1⟩u1, we get the
expression of the matrix Π

Π = [u1,0, . . . ,0, u1,0, . . . ,0, . . . , u1,0, . . . ,0
]
∈ M(k+1)N,(k+1)N (R),

with 0 ∈ R(k+1)N .

• even case: in addition to u1, we need to find a second eigenvector to construct Π. We give
below the expression of u2 for some k = 1 to k = 5

– k = 0, u2 =
[
0, 1, 0, 1, . . . , 0, 1

]T
∈ RN .

– k = 1, u2 =
[
0, 1︸︷︷︸
∈R2

, 0, 1︸︷︷︸
∈R2

, . . . , 0, 1︸︷︷︸
∈R2

]T
∈ R2N .
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– k = 2, u2 =
[
−1

6
, 0, 1, 0, 0,−1︸ ︷︷ ︸

∈R6

, . . . ,−1

6
, 0, 1, 0, 0,−1︸ ︷︷ ︸

∈R6

]T
∈ R3N .

– k = 3, u2 =
[
0,− 3

20
, 0, 1︸ ︷︷ ︸

∈R4

, 0,− 3

20
, 0, 1︸ ︷︷ ︸

∈R4

, . . . , 0,− 3

20
, 0, 1︸ ︷︷ ︸

∈R4

]T
∈ R4N .

– k = 4, v2 =
[
− 3

280
, 0,

3

14
, 0,−1, 0, 0,− 3

14
, 0, 1︸ ︷︷ ︸

∈R10

, . . . ,− 3

280
, 0,

3

14
, 0,−1, 0, 0,− 3

14
, 0, 1︸ ︷︷ ︸

∈R10

]T
∈

R5N .

– case k = 5, u2 =
[
0,

5

336
, 0,− 5

18
, 0, 1︸ ︷︷ ︸

∈R6

, 0,
5

336
, 0,− 5

18
, 0, 1︸ ︷︷ ︸

∈R6

, . . . , 0,
5

336
, 0,− 5

18
, 0, 1︸ ︷︷ ︸

∈R6

]T
∈

R6N .

In the even case, when k is even, we observe a double pattern which is repeated N/2 (since
when k is even, N is even to ensure (k + 1)N is even). Once we get (u1, u2), the formula
Πx = ⟨x, u1⟩u1 + ⟨x, u2⟩u2 enables to get Π.

D Appendix D: Lawson-Fourier method for Vlasov-Maxwell 1dx-
2dv.

In this appendix, we extend the method presented in [4] to the Vlasov-Maxwell model in 1dx-
2dv. This approach is compared to the Lawson-DG method in the numerical section 5.

Starting from the Vlasov-Maxwell 1dx-2dv model (24) satisfied by
f(t, x, v1, v2), E1(t, x), E2(t, x), B(t, x), with t ≥ 0, x ∈ [0, L] and (v1, v2) ∈ R2, we shall use a
Fourier method in the space direction x and we consider a grid in the velocity direction vℓ,jℓ =
vℓ,min + jℓ∆vℓ, ℓ = 1, 2. Denoting f̂k,j1,j2(t) the spatial Fourier coefficients of f(t, x, vj1 , vj2)
and (E1,k, E2,k, Bk)(t) the Fourier coefficients of (E1, E2, B)(t, x) then gives the following semi-
discretized scheme for k = 1, . . . , Nx (Nx being the number of grid points in [0, L])

∂tf̂k,j1,j2 + v1,j1ikf̂k,j1,j2 + (̂FDf)k,j1,j2 = 0, with F = (E1 +Bv2, E2 −Bv1),

∂tB̂k = −ikÊ2,k,

∂tÊ1,k = −
∑
j1,j2

v1,j1 f̂k,j1,j2∆v1∆v2,

∂tÊ2,k = −ikB̂k −
∑
j1,j2

v2,j2 f̂k,j1,j2∆v1∆v2,

(54)

with the initial condition f̂k,j1,j2 , B̂k(0), Ê1,k(0), Ê2,k(0) satisfying the Poisson equation ikÊ1,k(0) =∑
j1,j2

f̂k,j1,j2(0)∆v1∆v2 for k ̸= 0. Let denote U = (f̂ , B̂, Ê2, Ê1) ∈ MNv1Nv1+3,Nv1Nv1+3(C),
then the previous system can be rewritten as

∂tU = LU +N(U), (55)
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with

U =



f̂k,⋆,1
f̂k,⋆,2
...
f̂k,⋆,Nv2

B̂k

Ê2,k

Ê1,k


, N(U) =



−(̂FDf)k,⋆,1
−(̂FDf)k,⋆,2
...
−(̂FDf)k,⋆,Nv2

0
0
0


, f̂k,⋆,j2 ∈ CNv1 ,

∀k = 1, . . . , Nx,
∀j2 = 1, . . . , Nv2 ,

L =



−ikdiag(v⃗1) 0Nv1 ,Nv1
0Nv1 ,Nv1

. . . 0Nv1 ,Nv1
0Nv1 ,1

. . . 0Nv1 ,1

0Nv1 ,Nv1
−ikdiag(v⃗1) 0Nv1 ,Nv1

. . . 0Nv1 ,Nv1

...
...

...
...

. . . . . . 0Nv1 ,Nv1

...
...

...

0Nv1 ,Nv1
. . . 0Nv1 ,Nv1

−ikdiag(v⃗1) 0Nv1 ,1
... 0Nv1 ,1

01,Nv1
. . . 01,Nv1

01,Nv1
0 −ik 0

−∆v1∆v2(v⃗2)11 −∆v1∆v2(v⃗2)21 . . . −∆v1∆v2(v⃗2)Nvy1 −ik 0 0
−∆v1∆v2v⃗1 −∆v1∆v2v⃗1 . . . −∆v1∆v2v⃗1 0 0 0


(56)

where we denote v⃗1 the vector with components (v⃗1)j1 = v1,min + j1∆v1 and v⃗2 the vector with
components (v⃗2)j2 = v2,min + j2∆v2. Moreover, diag(v⃗1) denotes the diagonal matrix whose
diagonal is composed of v⃗1, 1 ∈ RNv1 denotes the vector with components 1 and 0A,B is a
matrix with A lines and B columns with zeros. The size of the matrix L is (Nv1Nv2 +3) and in
spite of its size, one can see that L is sparse.

A key point is to compute exp(L∆t) to design an exponential scheme approximating (55).
Denoting Un ≈ U(tn), tn = n∆t,∆t > 0, the first order Lawson scheme is

Un+1 = exp(L∆t)Un +∆t exp(L∆t)N(Un).

The following proposition gives an explicit expression of exp(−∆tL).

Proposition 9. The exponential of the matrix L given by (56) is given by

e−ik∆tdiag(v⃗1) 0Nv1 ,Nv1
0Nv1 ,Nv1

. . . 0Nv1 ,Nv1
0Nv1 ,1

0Nv1 ,1
0Nv1 ,1

0Nv1 ,Nv1
e−ik∆tdiag(v⃗1) 0Nv1 ,Nv1

. . . 0Nv1 ,Nv1

...
...

...
...

. . . . . . 0Nv1 ,Nv1

...
...

...
0Nv1 ,Nv1

. . . 0Nv1 ,Nv1
e−ik∆tdiag(v⃗1) 0Nv1 ,1

0Nv1 ,1
0Nv1 ,1

eBk,1 eBk,2 . . . eBk,Nv2
cos(k∆t) −i sin(k∆t) 0

eE2,k,1 eE2,k,2 . . . eE2,k,Nv2
−i sin(k∆t) cos(k∆t) 0

eE1,k eE1,k . . . eE1,k 0 0 1


where eBk,j2 , eE2,k,j2 , eE1,k ∈ M1,Nv1

(C) for j2 = 1, . . . , Nv2 are given by

eBk,j2 =
i∆v1∆v2

k
v2,j2α⃗, eE2,k,j2 =

i∆v1∆v2
k

v2,j2 β⃗, eE1,k =
i∆v1∆v2

k
(1− e−ikv⃗1),
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where the vectors α⃗, β⃗ ∈ M1,Nv1
(C) whose components are given by

αj1 = − e−ik∆t

2(1− v1,j1)
− eik∆t

2(1 + v1,j1)
+
e−ik∆tv1,j1

(1− v21,j1)
,

βj1 = − e−ik∆t

2(1− v1,j1)
+

eik∆t

2(1 + v1,j1)
+
v1,j1e

−ik∆tv1,j1

(1− v21,j1)
.

Proof. To compute exp(∆tL), we will solve exactly the linear part of the Vlasov-Maxwell system.
First of all, we observe that the components associated to f̂ is diagonal and can be solved
independently so that the Nv1 × Nv2 top left block of exp(∆tL) is diagonal and is equal to
e−ik∆tv⃗1 (Nv2 times). Second, the 3 × 3 right bottom block corresponds to the homogeneous
Maxwell equations and its exponential can be computed as

exp

 0 −ik∆t 0
−ik∆t 0 0
0 0 0

 =

 cos(k∆t) i sin(k∆t) 0
i sin(k∆t) cos(k∆t) 0
0 0 1

 .

It remains to compute the three last lines corresponding to the coupling between the Vlasov
and Maxwell equations.

Computation of eE1,k: solve Ê1,k

First, we have for f̂k,j1,j2(t)

f̂k,j1,j2(t) = e−ikv1,j1 (t−tn)f̂k,j1,j2(t
n),

which enables to compute Ê1,k(t
n+1)

Ê1,k(t
n+1) = Ê1,k(t

n)−
∑
j1,j2

ˆ tn+1

tn
e−ikv1,j1 (t−tn)dtv1,j1fk,j1,j2(t

n)∆v1∆v2

= Ê1,k(t
n) +

i∆v1∆v2
k

∑
j1,j2

(1− e−ikv1,j1∆t)f̂k,j1,j2(t
n),

from which we deduce the expression of eE1,k.

Computation of eBk, eE2,k: solve B̂k, Ê2,k

Next, we focus on the calculation of Ê2,k(t
n+1) and B̂k(t

n+1). We write down the equations

d

dt
Ê2,k(t) = −ikB̂k(t)−

∑
j1,j2

e−ikv1,j1 (t−tn)v2,j1fk,j1,j2(t
n)∆v1∆v2

d

dt
B̂k(t) = −ikÊ2,k(t)

which can be rewritten as dU
dt =MU +R with U(t) = (Ê2,k(t), B̂k(t)) and

M =

(
0 −ik
−ik 0

)
and R =

(
R1(t)
0

)
, with R1(t) = −

∑
j1,j2

e−ikv1,j1 (t−tn)v2,j1 f̂k,j1,j2(t
n)∆v1∆v2.
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Thus, one can write the variation of constant formula

U(tn+1) = eM∆tU(tn) +

ˆ tn+1

tn
e−M(t−tn+1)R(t)dt. (57)

First, eM∆t reads as

eM∆t = exp

(
0 −ik∆t
−ik∆t 0

)
=

(
cos(kt) −i sin(kt)
−i sin(kt) cos(kt)

)
.

Second, one has to compute the integral term in (57)

ˆ tn+1

tn
e−M(t−tn+1)R(t)dt =

( ´ tn+1

tn cos(k(t− tn+1))R1(t)dt´ tn+1

tn i sin(k(t− tn+1))R1(t)dt

)

= −

( ∑
j1,j2

I1v2,j1 f̂nk,j1,j2∆v1∆v2∑
j1,j2

I2v2,j1 f̂nk,j1,j2∆v1∆v2

)
(58)

where I1 and I2 are given by

I1 =

ˆ tn+1

tn

[
cos(k(t− tn+1))e−ikv1,j1 (t−tn)

]
dt =

ie−ik∆t

2k(1− v1,j1)
− ieik∆t

2k(1 + v1,j1)
− iv1,j1e

−ik∆tv1,j1

k(1− v21,j1)
,

I2 =

ˆ tn+1

tn

[
i sin(k(t− tn+1))e−ikv1,j1 (t−tn)

]
dt =

ie−ik∆t

2k(1− v1,j1)
+

ieik∆t

2k(1 + v1,j1)
− ie−ik∆tv1,j1

k(1− v21,j1)
.

Inserting these calculations in (57) leads to the following expression for Ê2,k(t)

Ê2,k(t
n+1) = cos(k∆t)Ê2,k(t

n)− i sin(k∆t)B̂k(t
n) +

i∆v1∆v2
k

∑
j1,j2

v2,j2βj1 f̂k,j1,j2(t
n),

B̂k(t
n+1) = −i sin(k∆t)E2,k(t

n) + cos(k∆t)Bk(t
n) +

i∆v1∆v2
k

∑
j1,j2

v2,j2αj1 f̂k,j1,j2(t
n),

where β⃗ = [β1, β2, . . . , βNv1
] ∈ CNv1 and α⃗ = [α1, α2, . . . , αNv1

] ∈ CNv1 are given by

βj1 = − e−ik∆t

2(1− v1,j1)
+

eik∆t

2(1 + v1,j1)
+
v1,j1e

−ik∆tv1,j1

(1− v21,j1)
,

αj1 = − e−ik∆t

2(1− v1,j1)
− eik∆t

2(1 + v1,j1)
+
e−ik∆tv1,j1

(1− v21,j1)
.

We conclude by writing the vectors eBk, eE2,k corresponding to B̂k and Ê2,k

eBk,j2 =
i∆v1∆v2

k
v2,j2α⃗, eE2,k,j2 =

i∆v1∆v2
k

v2,j2 β⃗.
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