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Abstract

This paper explores the feasibility of quantum simulation for partial differential equations

(PDEs) with physical boundary or interface conditions. Semi-discretisation of such problems

does not necessarily yield Hamiltonian dynamics and even alters the Hamiltonian structure of the

dynamics when boundary and interface conditions are included. This seemingly intractable issue

can be resolved by using a recently introduced Schrödingerisation method [JLY22a,JLY22b] – it

converts any linear PDEs and ODEs with non-Hermitian dynamics to a system of Schrödinger

equations, via the so-called warped phase transformation that maps the equation into one higher

dimension. We implement this method for several typical problems, including the linear convec-

tion equation with inflow boundary conditions and the heat equation with Dirichlet and Neu-

mann boundary conditions. For interface problems we study the (parabolic) Stefan problem,

linear convection, and linear Liouville equations with discontinuous and even measure-valued

coefficients. We perform numerical experiments to demonstrate the validity of this approach,

which helps to bridge the gap between available quantum algorithms and computational models

for classical and quantum dynamics with boundary and interface conditions.
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1 Introduction

We consider the problem of quantum simulation for partial differential equations (PDEs) with

physical boundary and interface conditions. In most practical applications, one often needs to solve

PDEs in a bounded domain, in which boundary conditions should be provided for the problem to be

solvable. Typical physical boundary conditions include Dirichlet, Neumann, and Robin (or mixed)

conditions. One also encounters interface problems when the background media is heterogeneous,

for example, waves propagation across different media, heat conduction through different materials,

etc.

Numerically solving PDEs becomes challenging when the space dimension is high (for ex-

ample the N -body Schrödinger equation, kinetic equations such as the Boltzmann equation), or

when there are multiple time and space scales. These problems are often too big to be solv-

able for classical computers, and in recent years there are increasing activities in developing

quantum algorithms that use quantum computers– yet to be developed in the future –to solve

PDEs [CPP+13, Ber14,MP16, CJO19, ESP19, CL20, LMS20, CLO21, JL22, GJL22, JLY22c], many

of which rely upon the exponential acceleration advantages in quantum linear systems of equa-

tions [HHL09,CKS17,CAS+21,Ber14,BCOW17,CL20,SS19]. One way to develop quantum PDE

solvers is to first discretise the spatial variables to get a system of ordinary differential equations
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(ODEs), which in turn is solved by quantum ODE solvers [Ber14,BCOW17,CL20]. In particular,

when the resulting ODE is also a Hamiltonian system, one can perform quantum simulations with

less time complexity than quantum ODE solvers or other quantum linear algebra solvers (e.g.,

the quantum difference methods [Ber14, JLY22c]). Thus the design of quantum simulation algo-

rithms for solving linear PDEs become interesting and important. See a very recent proposal using

block-encoding [ALWZ22].

In a recent work, a new, simple and generic framework coined as Schrödingerisation was in-

troduced [JLY22a, JLY22b] that allows quantum simulation for all linear PDEs and ODEs, and

even some iterative methods in linear algebra [JL23]. The idea is to use a warped phase transform

that maps the equations to one higher dimension, which, in the Fourier space, become a system of

Schrödinger’s equations! The method is extended to solve open quantum systems in a bounded do-

main where artificial boundary conditions –which are not unitary operators –are needed [JLLY23].

In this paper, we explore the Schrödingerisation technique for PDEs with physical boundary

and interface conditions. These conditions do not have unitary properties thus are not naturally

suitable for quantum simulations. While a (homogeneous) PDE, when spatially discretised, becomes

a homogeneous system of ODEs or dynamical systems, the boundary conditions, when numerically

discretised, could contribute to an inhomogeneous term in the dynamical system. Our idea, as

laid out in [JLY22a, JLY22b], is to introduce an auxiliary variable such that the extended system

becomes homogeneous again. Then one can adapt the Schrödingerisation technique to turn them

into a Schrödinger or unitary system, thus allowing direct quantum simulation.

Interface conditions, on the other hand, need extra attention when solved numerically. These

problems are often modeled by PDEs with discontinuous coefficients. The immersed interface

methods [LL94,Pes02], which incorporate the physical interface conditions into the numerical fluxes,

are among the most popular methods to numerically treat the interface conditions. In the case of

wave propagation through heterogeneous media, Hamiltonian-Preserving schemes were proposed by

Jin and Wen [JW05,JW06b], where the transmission and reflection of waves crossing the interface

are naturally built into the numerical fluxes. We then solve the discretised system based on the

above methods via Schrödingerisation.

We choose some prototype PDEs with boundary and interface conditions to showcase these

methods. Among the PDEs we study include parabolic and convection equations, with Dirichlet

and Neumann boundary conditions. For the interface problems, we study the (parabolic) Stefan

problem, linear convection, and linear Liouville equations with discontinuous and even measure-

valued coefficients.

The paper is organized as follows. In section 2 we briefly review the Schrödingerisation

technique for linear dynamical systems. Section 2 studies linear convection equation with inflow

(Dirichet) boundary conditions. In section 4 both Dirichlet and Neumann boundary conditions are

considered. Section 5 studies linear convection and heat equations with discontinuous coefficients

describing interfaces. In section 6 we study geometric optics problems across interfaces where the

numerical fluxes need to take into account the partial transmissions and reflections. The paper is

concluded in Section 7.
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2 Quantum simulations via Schrödingerisation

Of central importance in quantum computing algorithms is Hamiltonian simulation techniques.

Assuming access to a Hermitian matrix H, they construct a quantum circuit that implements the

unitary operator U = exp(−itH). Equivalently, it provides a route to evolve the time-dependent

Schrödinger equation,

i∂tψ = Hψ. (2.1)

More generally, one can simulate the unitary evolution driven by a time-dependent Hamiltonian

H(t) [LW18]. The Schrödingerisation technique [JLY22a,JLY22b] extends Hamiltonian simulation

methods to the solution of PDEs. The technique turns a general dynamical system into a (de-

coupled) system of Schrödinger equations, thus paving the way to solve general time-dependent

PDEs using Hamiltonian simulation techniques. In this section, we review the main steps in the

Schrödingerisation procedure.

In practice, a PDE in a physical domain can be first discretised in space, while keeping the

continuous dependence on time. A wide variety of methods are available for this purpose, including

finite difference methods, finite element elements, spectral methods, etc. Such a spatial discreti-

sation strategy reduces the problem to an ODE system, which can be expressed in the following

general form,






du(t)
dt = A(t)u(t) + b(t),

u(0) = u0,
(2.2)

where u, b ∈ C
n and A ∈ C

n×n. In general, A is non-Hermitian, i.e., A† 6= A, where ”†” denotes

conjugate transpose. We first show that it suffices to assume that b(t) = 0. Otherwise one can

instead consider the augmented system:






du(t)
dt = Au(t) + b(t)v, u(0) = u0,

vt = 0, v(0) = 1,

where the second equation gives v(t) ≡ 1, which leads to the original ODE system. The above

ODEs can be written in the following compact form






dũ(t)
dt = Ãũ(t)

ũ(0) = ũ0

, ũ =

[

u

v

]

, Ã =

[

A b(t)

0T 0

]

, ũ0 =

[

u0

1

]

, (2.3)

where the zero vector 0 has the same size as b. For this reason, without loss of generality, we

assume b = 0 in the following.

Now we return to the general form (2.2). We begin by decomposing A into a Hermitian term

and an anti-Hermitian term:

A = H1 + iH2,

where

H1 =
A+A†

2
= H†

1 , H2 =
A−A†

2i
= H†

2 .

A natural assumption is that (2.2) inherits the stability of the original PDE, in that the

eigenvalues of A have non-positive real parts. The stability property implies that H1 is negative
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semi-definite. Using the warped phase transformation v(t, p) = e−pu(t) for p ≥ 0 and symmetrically

extending the initial data to p < 0, the ODEs are then transformed to a system of linear convection

equations [JLY22a,JLY22b]:







d
dtv(t, p) = Av(t, p) = −H1∂pv + iH2v,

v(0, p) = e−|p|u0.
(2.4)

Let Q−1H1Q = diag(λ1, · · · , λn) with λj ≤ 0 and define ṽ = Q−1v. When neglecting the imaginary

part, one can find that the wave ṽj moves from right to left with speed sj = |λj |.

For numerical implementation, it is natural and convenient to introduce α = α(p) in the initial

data of (2.4) for p < 0:







d
dtv(t, p) = Av(t, p) = −H1∂pv + iH2v,

v(0, p) = e−α|p|u0.
(2.5)

To match the exact solution, α(p) = 1 is necessary for the region p > 0. In the p > 0-domain,

we will truncation the domain at p = R, where R is sufficiently large such that e−R ≈ 0. We

will choose a large α for p < 0 so the solution (see Fig. 1) will have a support within a relatively

small domain. Since the wave ṽj moves to the left, one needs to choose the artificial boundary at

p = L < 0, for |L| large enough such that ṽj, initially almost compact at [L0, R], will not reach

the point p = L during the duration of the computation. This will allow to use periodic boundary

condition in p for spectral approximation.

Fig. 1: Schematic diagram for the computational domain of p

The solution u(t) can be restored by

u(t) =

∫ ∞

0
v(t, p)dp or u(t) = epktv(t, pk), for some pk > 0.

A more intuitive view is by discretising the p domain and concatenating the corresponding function

for each p. Toward this end, we choose uniform mesh size ∆p = (R−L)/Np for the auxiliary variable

with Np being an even number, with the grid points denoted by a = p0 < p1 < · · · < pNp = b.

Let the vector w be the collection of the function v at these grid points, defined more precisely as

follows,

w = [w1;w2; · · · ;wn],

5



with “;” indicating the straightening of {wi}i≥1 into a column vector. This can also be expressed

as a superposition state by |k〉 as a new basis,

wi =
∑

k

vi(t, pk) |k〉 .

By applying the discrete Fourier transformation in the p direction, one arrives at

d

dt
w(t) = −i(H1 ⊗ Pµ)w + i(H2 ⊗ I)w. (2.6)

At this point, we have successfully mapped the dynamics back to a Hamiltonian system. Here, Pµ

is the matrix expression of the momentum operator −i∂p, given by

Pµ = ΦDµΦ
−1, Dµ = diag(µ−Np/2, · · · , µNp/2−1),

where µl = 2πl/(R − L) are the Fourier modes and

Φ = (φjl)M×M = (φl(xj))Np×Np , φl(x) = eiµl(x−L).

By a change of variables w̃ = (I ⊗ Φ−1)w, one has

d

dt
w̃(t) = −i(H1 ⊗Dµ)w̃ + i(H2 ⊗ I)w̃. (2.7)

This is more amenable to an approximation by a quantum algorithm. In particular, if H1 and H2

are sparse, then (2.7) is a Schrödinger equation with the Hamiltonian H = H1 ⊗Dµ −H2 ⊗ I that

inherits the sparsity.

With the state vector encoding w̃, one can apply the quantum Fourier transform on p to get

back tow and then restore u by projecting onto some basis |k〉 or computing the observable induced

by the numerical integration. See [JLY22a] for details on how to retrieve the quantum state with

amplitudes proportional to u and subsequently the observables.

This article aims to demonstrate the feasibility of quantum simulation for PDEs with physical

boundary conditions and interface conditions. To assess the algorithm complexity associated with

the implementation of the time-dependent Schrödinger equation, one can use the recent results

by Berry et al. [BCS+20, Theorem 10], although the other algorithms can also be used for the

assessment. Here we simply highlight the query complexity,

Theorem 2.1. The TDSE (2.1) with an s-sparse Hamiltonian H(t) can be simulated from t = 0

to t = T within error ǫ with query complexity,

O



s‖H‖max,1

log
(

s‖H‖max,1/ǫ
)

log log
(

‖H‖max,1/ǫ
)



 . (2.8)

Here the norm is defined as,

‖H‖max,1 =

∫ T

0
‖H‖max(t)dt, ‖H‖max(t) := max

i,j
|Hi,j(t)|. (2.9)

The strategy of implementing a semi-discrete approximation of a PDE system using Schrödingerisation

is quite general. In the next few sections, we will illustrate how physical boundary conditions can

be incorporated into this framework.
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3 Linear convection equation with inflow boundary conditions

We first discuss how hyperbolic PDEs can be treated using the Schrödingerisation technique.

As a specific example, we consider the quantum simulations for solving the first-order hyperbolic

equation

ut +∇ · (c(x)u) = 0, x = (x1, x2, · · · , xd) ∈ (a, b)d,

where c(x) = [c1(x), c2(x), · · · , cd(x)]
T and u = u(t, x1, x2, · · · , xd). This is a typical linear wave

equation through inhomogeneous media. It also appears in the linear representation of nonlinear

dynamics, see the Liouville equation in [JL22, JLY23] for instance. For simplicity we set c1(x) =

· · · = cd(x) ≡ 1 in what follows and impose the inflow boundary conditions.

To construct a spatial discretisation, we introduce Nx + 1 spatial mesh points 0 < xi,0 <

xi,1 < · · · < xi,Nx = 1 by xi,j = a + j∆x in the xi-direction, where ∆x = (b − a)/Nx. Let

j = (j1, j2, · · · , jd). In addition, we consider the upwind scheme, which can be written as

d

dt
uj(t) +

d∑

k=1

uj(t)− uj−ek(t)

∆x
= 0, (3.1)

where ek = (0, · · · , 0, 1, 0, · · · , 0) with k-th entry being 1 and jk = 1, 2, · · · , Nx and we assume that

the scheme is also applied to the right endpoint x = xi,Nx along each dimension. Denote by u the

vector form of the d-order tensor (uj) = (uj1,j2,··· ,jd):

u =
∑

j

uj |j〉 =

Nx∑

j1,j2,··· ,jd=1

uj1,j2,··· ,jd |j1, j2, · · · , jd〉 ,

where we have used the notation in quantum computation. One can refer to [JLY23] for details.

The associated linear system can be represented as

∑

j

( d

dt
uj(t) +

d∑

k=1

uj(t)− uj−ek(t)

∆x

)

|j〉 = 0.

Due to the wave propagation nature of the PDE, the boundary conditions should only be imposed

on one side of the boundaries. To write the above system in matrix form, let us assume that uj can

be decomposed as uj = uj1uj2 · · · ujd . Noting that uj1,··· ,jd (jk = 0) are the given inflow boundary

values in the xk-direction, we have

∑

j

uj−ek |j〉 =

Nx∑

ji=1,i 6=k

uj1,··· ,0,··· ,jd |j1, · · · , 1, · · · , jd〉

+

Nx∑

j1=1

uj1 |j1〉 ⊗ · · · ⊗

Nx∑

jk=2

ujk−1 |jk〉 ⊗ · · · ⊗

Nx∑

jd=1

ujd |jd〉

=: u0k + u(1) ⊗ · · · ⊗ Thu
(k) ⊗ · · · ⊗ u(d)

= u0k + (I ⊗ · · · ⊗ Th ⊗ · · · ⊗ I)(u(1) ⊗ · · · ⊗ u(d))

= u0k + (I ⊗ · · · ⊗ Th ⊗ · · · ⊗ I)u,
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where

u0k(t) =

Nx∑

ji=1,i 6=k

uj1,··· ,0,··· ,jd |j1, · · · , 1, · · · , jd〉 (0 and 1 are located at the k-th position)

is the vector generated by left boundary values in the xk-direction,

u(i) =

Nx∑

ji=1

uji |ji〉 , i = 1, 2, · · · , d

and

Th =










0

1
. . .

. . .
. . .

1 0










Nx×Nx

. (3.2)

We therefore obtain the system (2.2) with

A = Lh ⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

d matrices

+ · · ·+ I ⊗ · · · ⊗ Lh ⊗ I + I ⊗ I ⊗ · · · ⊗ Lh, Lh =
1

∆x
(Th − I). (3.3)

and

b(t) =
1

∆x

d∑

k=1

u0k(t).

To test this approach, we consider the implementation in 1D. According to the introduction

in Section 2, the underlying waves move from right to left with speed

sj = −λj(H1) = −λj

(A+AT

2

)

=
2

∆x
sin2

jπ

2(Nx + 1)
, j = 1, 2, · · · , Nx

when b(t) = 0 is assumed. Let s∗ = max{sj}. We know that the fastest left moving wave will have

a speed s∗ = O(1/∆x). Given the evolution time T , we can estimate a large enough |L| such that

s∗T ≤ L0 − L or L = L0 − s∗T. (3.4)

We use the backward Euler scheme for the temporal discretisation. It is important to note that the

purpose of these experiments is to demonstrate that the equation (2.7) in the Schrödingerisation

captures the dynamics under various physical boundary conditions. For higher dimensional prob-

lems, a quantum implementation of (2.7) is preferred to classical computers, due to the less depen-

dence of the complexity on the dimension.

The initial and boundary values are chosen such that the exact solution is given by u(t, x) =

ex−t. Since the speed s∗ scales as O(1/∆x) (we take s∗ = 2/∆x), we choose a relatively large

spatial domain [a, b] = [0, 10] such that |L| is not very large. In the numerical test, we choose

T = 1, L0 = −1, R = 10 and α(p) = 10 for p < 0. For the spatial and p domains, we take

Nx = Np = 64, then the estimated L = −9.5333. We also take Nt = 100 for the temporal

discretisation. The result at t = T is displayed in Fig. 2, from which we observe the numerical

solution is well matched with the exact one.
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Fig. 2: Numerical and exact solutions for the convection equation with inflow boundary condition

4 Heat equation with Dirichlet or Neumann boundary conditions

In this section, we demonstrate how to solve parabolic PDEs with quantum simulations. To-

ward this end, we consider the linear heat equation







ut(x, t) = ∆u(x, t) in Ω := (a, b)d, 0 < t < 1,

u(x, 0) = u0(x),

u(·, t) = 0 on ∂Ω,

where u0(x) is the initial data. For periodic boundary conditions, one can refer to the detailed

paper [JLY22b] on the Schrödingerisation approach, where the Fourier spectral approach is used to

discretise both the spatial and the auxiliary variables. For other types of boundary conditions, we

consider the finite difference discretisation for the spatial domain and use the spectral discretisation

for the auxiliary variable.

Let us first consider the Dirichlet boundary conditions in 1D. The central difference discreti-

sation gives
d

dt
uj(t) =

uj−1(t)− 2uj(t) + uj+1(t)

∆x2
, j = 1, · · · , Nx − 1. (4.1)

Let u(t) = [u1(t), · · · , uNx−1(t)]
T . One gets the system (2.2) with

A =
1

∆x2













−2 1

1 −2
. . .

. . .
. . .

. . .

. . . −2 1

1 −2













(Nx−1)×(Nx−1)

, b(t) =
1

∆x2













u0(t)

0
...

0

uNx(t)













.

For d dimensions, the solution vector is defined by

uh,d =

Nx−1∑

j1,··· ,jd=1

uj1,··· ,jd |j1, · · · , jd〉 .
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The corresponding coefficient matrix and right-hand vector in d dimensions will be replaced by

Ah,d = A⊗ I ⊗ · · · ⊗ I
︸ ︷︷ ︸

d matrices

+I ⊗A⊗ · · · ⊗ I + · · ·+ I ⊗ I ⊗ · · · ⊗A (4.2)

and

bh,d(t) =
1

∆x2

d∑

k=1

(u0,k + uNx,k),

where

u0,k =
Nx−1∑

ji=1,i 6=k

uj1,··· ,0,··· ,jd |j1, · · · , 1, · · · , jd〉 ,

uNx,k =

Nx−1∑

ji=1,i 6=k

uj1,··· ,Nx,··· ,jd |j1, · · · , Nx − 1, · · · , jd〉 .

Here we present a numerical test. In the implementation, the initial and boundary values are

chosen such that the exact solution is given by u(t, x) = e−π2t sin(πx). As analyzed in the previous

section, the associated waves move from right to left with speed

sj = −λj

(A+AT

2

)

=
4

∆x2
sin2

jπ

2Nx
, j = 1, 2, · · · , Nx − 1

when b(t) = 0 is assumed. The fastest speed can be chosen as s∗ = 4/∆x2. To reduce the

computational cost in the p-direction on a classical computer, as discussed in the preceding section,

we take a relatively large spatial domain [a, b] = [0, 10].

Considering the exponentially decreasing factor e−π2t in the exact solution, we choose the

evolution time T = 1/π2. We also choose Nx − 1 = Np = 64. Other parameters are the same as

for the convection equation. The estimated L = −18.1233. The result at t = T is shown in Fig. 3.
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Exact

Fig. 3: Numerical and exact solutions for the heat equation with Dirichlet boundary conditions

We next consider the heat equation with the mixed boundary conditions:

u(t, a) = g(t), ux(t, b) = h(t).
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The discretisation at the interior node is still given by (4.1). For the right boundary, we introduce a

ghost point xNx+1 = xNx +∆x and use the central difference to discretise the first-order derivative,

uNx+1(t)− uNx−1(t)

2∆x
= h(t).

To get a closed system, we assume the discretisation in (4.1) is valid at x = xNx :

d

dt
uNx(t) =

uNx−1(t)− 2uNx(t) + uNx+1(t)

∆x2
.

Eliminating the ghost values to get

d

dt
uNx(t) =

2uNx−1(t)− 2uNx(t)

∆x2
+

2h(t)

∆x
, j = Nx.

Let u(t) = [u1(t), u2(t), · · · , uNx(t)]
T . Then one gets the system (2.2) with

A =
1

∆x2













−2 1

1 −2
. . .

. . .
. . .

. . .

1 −2 1

2 −2













Nx×Nx

, b(t) =
1

∆x2













g(t)

0
...

0

2h(t)∆x













.

We remark that the coefficient matrix in d dimensions still has the form in (4.2), with A replaced

by the one given here. The right-hand vector can be deduced in a similar way.

We implement (2.7) on the same test problem by repeating the procedure for the case of

Dirichlet boundary conditions. The snapshot is depicted in Fig. 4, where we set Nx = 64 and

Np = 512. One can see a good agreement between the exact and the numerical solutions.
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Fig. 4: Numerical and exact solutions for the heat equation with mixed boundary conditions

5 Linear PDEs for interface problems

This section is devoted to the quantum simulation of interface problems with a fixed or moving

interface.
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5.1 The linear advection equation

We are concerned with a hyperbolic equation with discontinuous coefficients — a simple in-

terface problem in the following form:







∂tu+∇ · (c(x)u) = 0, t > 0, x ∈ (−a, a)d,

u(0, x) = u0(x), x ∈ [−a, a]d,
(5.1)

where a > 0 is a constant and c(x) = [c1(x), · · · , cd(x)]
T is a vector for fixed x = (x1, · · · , xd). We

assume that c(x) is piecewise constant in the x1-direction:

ci(x) =







c− > 0, x1 < 0

c+ > 0, x1 > 0
, i = 1, · · · , d.

The above equation arises in modeling wave propagation through interfaces with jumps in c(x)

corresponding to interfaces between different media. For such a problem an interface condition is

needed at x1 = 0:

u(t, x+) = ρu(t, x−), (5.2)

where x± represents the right and left limits in the x1-direction, ρ = 1 corresponds to the continuity

of mass u or ρ = c−/c+ for the continuity of flux cu [Jin09,WJ08].

In the following, we only consider the 1-D case. The exact solution of (5.1) with the interface

condition (5.2) can be constructed following characteristics [WJ08], given by

u(t, x;u0) =







u0(x− c−t), x < 0,

ρu0(
c−

c+
x− c−t), 0 < x < c+t,

u0(x− c+t), x > c+t.

Since the wave moves from left to right, we impose the boundary condition on the left endpoint.

When numerically solving (5.1), the most natural approach is to build the interface condition

(5.2) into the numerical flux, as was proposed in [WJ08]. Let the uniform spatial mesh be xj , where

j = −Nx, · · · ,−1, 0, 1, · · · , Nx and ∆x = a/Nx is the mesh size. Since c± > 0, one can apply the

upwind scheme for x ≤ 0 and x > ∆x:







duj
dt

= −c−
uj(t)− uj−1(t)

∆x
, j = −(Nx − 1), · · · , 0,

duj
dt

= −c+
uj(t)− uj−1(t)

∆x
, j = 2, · · · , Nx.

Note that in the above scheme u0 is the left limit of u at the interface. For j = 1, the continuity

of cu gives
du1
dt

= −
c+u1(t)− c−u0(t)

∆x
, j = 1.

Let u(t) = [u−(Nx−1)(t), · · · , uNx(t)]
T . One can collect the above equations as the system (2.2)
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with

A =
1

∆x





















−c−

c− −c−

. . .
. . .

c− −c−

c− −c+

c+ −c+

. . .
. . .

c+ −c+





















and b(t) = [c−u(t,−1)/∆x, 0, · · · , 0]T .

A numerical test is conducted with initial data considered in [ZL97]:

u(0, x) =







1

2

(

1 + cos
(x− 0.28)π

0.24

)

, −0.04 ≤ x ≤ 0.52,

0, otherwise,

which will be scaled from (0, 1) to (−a, a) and gives the homogeneous inflow boundary condition.

As in the previous sections, we choose a = 10 to avoid the large domain along p direction. The

wave speeds are c− = 2 for x < 0 and c+ = 1 for x > 0. The fastest left-moving wave for

the Schrödingerisation equation can be chosen as s∗ = 2max(c±)/∆x. The numerical results of

u(t = T, x) are shown in the top row in Fig. 5 for the duration time T = 0.1, 0.5 and 1.0, respectively.

It can be seen that the Schrödingerisation approach captures the behaviour at the interface x = 0,

where the jump is caused by the discontinuity of c(x). We also plot c(x)u(t = T, x) in the bottom

row in Fig. 5, from which we clearly observe the continuity of flux cu, as defined by (5.2).

5.2 The Stefan problem

Let Ω be an open and bounded domain in R
d, and Γ be a continuous interface embedded in

Ω. We consider the case where the interface Γ := Γ(t) varies in time. Such a problem appears

in many applications, for instance, the Stefan problem for simulating temperature distribution

undergoing a phase transition, where the flux jump is proportional to the velocity of the moving

front [Rub71]. The interface separates the domain into disjoint regions Ω+ and Ω−. We consider

quantum simulations for solving the following parabolic interface problem:

ut = ∇ · (β(t, x)∇u) + f(t, x), x ∈ Ω\Γ(t),

with prescribed jump conditions across the interface:

[u]Γ = u+ − u− = q0,

[βun]|Γ = β+u+n − β−n u
− = q1,

where un denotes the normal derivative ∇u · n with n being a unit norm direction of the interface.

The problem in 1-D can be reformulated as

ut = (βux)x + f, x ∈ Ω = (a, b),

13



-10 -5 0 5 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Numerical
Exact

(a) u(0.1, x)

-10 -5 0 5 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Numerical
Exact

(b) u(0.5, x)

-10 -5 0 5 10

x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Numerical
Exact

(c) u(1.0, x)

-10 -5 0 5 10

x

0

0.5

1

1.5

2
Numerical
Exact

(d) c(x)u(0.1, x)

-10 -5 0 5 10

x

0

0.5

1

1.5

2
Numerical
Exact

(e) c(x)u(0.5, x)

-10 -5 0 5 10

x

0

0.5

1

1.5

2
Numerical
Exact

(f) c(x)u(1.0, x)

Fig. 5: Numerical and exact solutions for the interface problem. Top: the solution u(T, x); Bottom:

the flux c(x)u(T, x).

with the jump condition on a moving interface α(t) ∈ (a, b):

[u]|x=α(t) = u+ − u− = 0,

[βux]|x=α(t) = β+u+ − β−u− = 0.

The interface separates Ω into the left and right subdomains Ω−(t) and Ω+(t). For simplicity, we

assume β(t, x) is a piecewise constant function:

β(t, x) =







β− > 0, x ∈ Ω−(t),

β+ > 0, x ∈ Ω+(t).

In the following, we assume that t is fixed and simply write α(t) as α. In this case one can

apply the immersed interface method in [LL94] for the spatial discretisation. Let the uniform grid

in the interval [a, b] be

a = x0 < x1 < · · · < xN = b, xi = a+ ih, h = (b− a)/N.

The goal is to develop semi-discrete finite difference equations of the form

d

dt
ui(t) = γi,1(t)ui−1(t) + γi,2(t)ui(t) + γi,3(t)ui+1(t) + fi, i = 1, 2, · · · , N − 1,

with second-order accurate approximation to u at the uniform grid points. Note that γi,1, γi,2 and

γi,3 depend on the time variable because of the moving interface.

If we impose the Dirichlet boundary conditions, then the semi-discrete system can be written

as
d

dt
u(t) = A(t)u(t) + b(t),
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where u(t) = [u1(t), · · · , uN−1(t)]
T , and

A(t) =










γ1,2 γ1,3

γ2,1
. . .

. . .

. . .
. . . γN−2,3

γN−1,1 γN−1,2










, b(t) =













γ1,1u0(t) + f1

f2
...

fN−2

γN−1,3uN (t) + fN−1













.

Let α fall between xk and xk+1, i.e., xk ≤ α < xk+1 (note that k depends on t). For i 6=

k, k+1 the solution can be viewed as a smooth function in [xk, xk+1] and one can use the standard

approximation
1

∆x2

(

βi+1/2(ui+1 − ui)− βi−1/2(ui − ui−1)
)

for (βux)x at x = xi, where βi±1/2 = β(xi±1/2). In this case one has

γi,1 = βi−1/2/h
2, γi,2 = −(βi−1/2 + βi+1/2)/h

2, γi,3 = βi+1/2/h
2.

For i = k, k + 1, following [LL94], we take

γk,1 = (β− − [β](xk − α)/h)/Dk , γk+1,1 = β−/Dk+1,

γk,2 = (−2β− + [β](xk−1 − α)/h)/Dk , γk+1,2 = (−2β+ + [β](xk+2 − α)/h)/Dk+1,

γk,3 = β+/Dk, γk+1,3 = (β+ − [β](xk+1 − α)/h)/Dk+1,

where

Dk = h2 + [β](xk−1 − α)(xk − α)/2β−, Dk+1 = h2 − [β](xk+2 − α)(xk+1 − α)/2β+.

It is easy to show that Dk and Dk+1 are positive when β > 0.

We implemented this model with the initial and boundary value functions chosen such that

the exact solution is

u(t, x) =







(

(x− α(t))2 + 1
β−

)

ex, x ∈ Ω−(t),
(

(x− α(t))2 + 1
β+

)

ex +
(

1
β−

− 1
β+

)

eα(t), x ∈ Ω+(t),
.

We set α(t) = 1
2t+

1
4 and β− = 1 and β+ = 2. The backward Euler method is used for the temporal

discretisation. The spatial domain is taken as [0, 10]. We set N = 100 and Nt = 100 and display

the solutions at t = 1 in Fig. 6, from which one can see that the Schrödingerisation approach gives

the desired solution for the problem with interface varying in time.

6 Geometric optics problems with partial transmissions and re-

flections

In this section we are concerned with the quantum simulation of geometric optics problems

when both transmissions and reflections occur at the interface.
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Fig. 6: Numerical and exact solutions for the Stefan problem

6.1 The geometric optics problem

6.1.1 The Hamilton-Jacobi equation for the geometric optics

We consider the linear scalar wave equation in the high frequency regime,

wtt − c(x)2∆w = 0, x ∈ R
d, (6.1)

where c(x) is the local speed of wave propagation of the medium, or the reciprocal of the index of

refraction. When the waves are of high frequency, (6.1) is a multiscale problem, where the small

scale is given by the wavelength over, for example, the overall size of the computational domain. For

sufficiently high frequencies, direct numerical simulation is no longer feasible. Numerical methods

based on approximations of (6.1) are needed.

The derivation of the geometrical optics equations in the linear case follows if one assumes a

series expansion of the form

w(t, x) = eiωS(t,x)
∞∑

k=0

Ak(t, x)(iω)
−k. (6.2)

Plugging this expression into (6.1) and collecting terms of the same order in ω, one obtains separate

equations for the unknown dependent variables in (6.2). The O(ω2) terms give the equation for

the phase function S, which satisfies the Hamilton-Jacobi-type eikonal equation [ER03]

∂tφ+ c(x)|∇S| = 0. (6.3)

Hamilton-Jacobi equations (HJE) take the following general form

∂tS +H(∇S, x) = 0, (6.4)

S(0, x) = S0(x)

with t ∈ R
+, x ∈ R

d, S(t, x) ∈ R. For the geometric optics equation (6.3), the associated Hamilto-

nian is given by

H(ξ, x) = c(x)|ξ|. (6.5)
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6.1.2 The Liouville representation for the Hamilton-Jacobi equation

Define u = ∇S ∈ R
d. Then u solves a hyperbolic system of conservation laws in gradient form:

∂tu+∇H(u, x) = 0, (6.6)

u(0, x) = ∇S0(x).

Ref. [JL22] constructed quantum algorithms to compute physical observables of this nonlinear

problem, which is based on an exact mapping between nonlinear and linear PDEs using the level set

method [JO03]. This approach is referred to as the linear representation approach, and it is based

on an exact map from a nonlinear PDE to a linear one thus no physical information is lost, while

other approaches are based on linear approximations that use truncation to linearize the problem

so they are not the same physical problem as the original nonlinear one. A more comprehensive

discussion can be found in [JLY23], where the finite difference and spectral discretisations are

discussed with periodic boundary conditions applied.

We follow the linear representation approach in [JL22]. The level set function φi(t, x, p) can

be defined by

φi(t, x, ξ = u(t, x)) = 0,

where i = 1, · · · , d and x, ξ ∈ R
d, and u(t, x) is the solution of Eq. (6.6). The zero level set of φ is the

set {(t, x, p)|φi(t, x, ξ) = 0}. Since u(t, x) solves Eq. (6.6), one can show that φ = (φ1, · · · , φd) ∈ R
d

solves a (linear!) Liouville equation [JO03]

∂tφ+∇ξH · ∇xφ−∇xH · ∇ξφ = 0. (6.7)

The initial data can be chosen as

φi(0, x, ξ) = ξi − ui(0, x), i = 1, · · · , d. (6.8)

Then u can be recovered from the intersection of the zero level sets of φi (i = 1, · · · , d), namely

u(t, x) = {ξ(t, x)|φi(t, x, ξ) = 0, i = 1, · · · , d}.

To retrieve physical observables (and to avoid finding the zero level set of φ which is challenging)

later, [JL22] proposed to solve for f , defined by the following problem

∂tf +∇ξH · ∇xf −∇xH · ∇ξf = 0, (6.9)

f(0, x, ξ) =

d∏

i=1

δ(ξi − ui(0, x)),

whose analytical solution is f(t, x, ξ) = δ(φ(t, x, ξ)). We have thus transformed a (d+1)-dimensional

nonlinear Hamilton-Jacobi PDE to a (2d + 1)-dimensional linear PDE – the Liouville equation,

without any approximations or constraints on the nonlinearity. The mapping is exact, but at the

expense of doubling the spatial dimension.
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For geometric optics, the Liouville equation can be written as

ft + c(x)
ξ

|ξ|
· ∇xf − |ξ|∇xc · ∇ξf = 0. (6.10)

The bicharacteristics of the Liouville equation (6.10) satisfy the Hamiltonian system:

dx

dt
= c(x)

ξ

|ξ|
,

dξ

dt
= −|ξ|∇xc. (6.11)

In particular, the 1-D Liouville equation is

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0,

where c(x) > 0 may be discontinuous at the interface between two media.

6.1.3 The condition for transmissions and reflections at the interface

Fig. 7: Wave transmission and reflection at an interface

In geometrical optics, when a wave moves with its density distribution governed by the Liouville

equation, its Hamiltonian H = c|ξ| should be preserved across the interface

H(x+, ξ+) = H(x−, ξ−) or c−|ξ−| = c+|ξ+|, (6.12)

where the superscripts ± represent the right and left limits of the quantity at the interface. Let us

consider a 2-D example. When a plane wave hits a flat vertical interface as shown in Fig. 7, the

Hamiltonian preserving condition (6.12) is equivalent to Snell’s law of refraction

sin θi
c−

=
sin θt
c+

,

and the reflection law

θr = θi,

where θi, θt and θr stand for angles of incident, transmitted and reflected waves. Let ξ = (ξ1, ξ2).

Assume that the incident wave has a velocity (ξ−1 , ξ
−
2 ) to the left side of the interface, with ξ−1 > 0.

Since the interface is vertical (∂yc = 0), the characteristic of ξ in (6.11) implies that ξ2 is not
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changed when the wave crosses the interface. When c− > c+, the wave can partially transmit

and partially be reflected. In this case, the local wave speed decreases, so the wave will cross the

interface and increase its ξ value in order to maintain a constant Hamiltonian. The preserving

condition (6.12) implies

ξ+1 =
√

ρ2(ξ−1 )
2 + (ρ2 − 1)(ξ−2 )

2, ρ = c−/c+.

As a linear hyperbolic equation, the solution to the Liouville equation (6.10), can be obtained

by the method of characteristics. Namely, the density distribution f remains a constant along

a bicharacteristic. However, when partial transmissions and reflections are considered, this is

no longer valid, since f needs to be determined from two bicharacteristics, one accounting for the

transmission and the other for reflection. Ref. [JW06b] uses the following condition at the interface:

f(t, x+, ξ+) = αT f(t, x
−, ξ−) + αRf(t, x

+,−ξ+), (6.13)

where αT , αR ∈ [0, 1] are the transmission and reflection coefficients, satisfying αT + αR = 1, and

x+ = x− (for a sharp interface). Note that for a complete transmission, f(t, x+, ξ+) = f(t, x−, ξ−),

while for a complete reflection, f(t, x+, ξ+) = f(t, x−,−ξ−) and ξ− = ξ+. For partial transmissions

and reflections αR, αT ∈ (0, 1).

6.2 The Hamiltonian-preserving scheme

6.2.1 The numerical flux

We now describe the Hamiltonian-preserving finite difference scheme proposed in [JW06a,

JW06b] for the 1-D Liouville equation

ft + c(x)sign(ξ)fx − cx|ξ|fξ = 0,

where c(x) > 0 may be discontinuous.

We use a uniform mesh with grid points at xi+ 1

2

, i = 0, 1, · · · , N in the x-direction and ξj+ 1

2

,

j = 0, 1, · · · ,M in the ξ-direction. The cells are centered at (xi, ξj) for 1 ≤ i ≤ N and 1 ≤ j ≤M ,

where xi =
1
2(xi− 1

2

+ xi+ 1

2

) and ξj =
1
2(ξj− 1

2

+ ξj+ 1

2

). The cell average of f is defined by

fij =
1

∆x∆ξ

∫ x
i+1

2

x
i− 1

2

∫ ξ
j+1

2

ξ
j− 1

2

f(t, x, ξ)dξdx.

Assume that the discontinuous points of the wave speed c are located at the grid points. Let

the right and left limits of c(x) at point xi+ 1

2

be c+
j+ 1

2

and c−
i+ 1

2

, respectively. We define the average

wave speed as ci =
1
2(c

−
i− 1

2

+ c+
i+ 1

2

). The flux splitting technique is adopted here. The semi-discrete

scheme reads

d

dt
fij +

cisign(ξj)

∆x
(f+

i+ 1

2
,j
− f−

i− 1

2
,j
)−

c+
i+ 1

2

− c−
i− 1

2

∆x∆ξ
|ξj|(fi,j+ 1

2

− fi,j− 1

2

) = 0 (6.14)

for 1 ≤ i ≤ N and 1 ≤ j ≤ M , where the numerical fluxes fi,j+ 1

2

in the ξ-direction are defined

using the upwind discretisation, that is,

fi,j+ 1

2

− fi,j− 1

2

=







fij − fi,j−1, cξ ≥ 0

fi,j+1 − fi,j, cξ < 0
, cξ = −

c+
i+ 1

2

− c−
i− 1

2

∆x∆ξ
|ξj|.
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Since the characteristics of the Liouville equation may be different on the two sides of the

interface, the corresponding numerical fluxes should also be different. The essential part of the

algorithm is to define the split numerical fluxes f±
i+ 1

2
,j
at the cell interface by utilizing the interface

condition (6.13).

Assume c is discontinuous at xi+ 1

2

. Consider the case ξj > 0. Since the wave moves from left

to right in [xi, xi+ 1

2

], we can define the interface value f+
i+ 1

2
,j
= fij using the upwind approximation.

According to the interface condition (6.13),

f−
i+ 1

2
,j
= αT f(t, x

+
i+ 1

2

, ξ+j ) + αRf(t, x
−
i+ 1

2

,−ξ−j ),

where ξ+j is obtained from ξ−j = ξj from (6.12). Noting that ξ+j may not be a grid point, we have

to define it approximately. One can first locate the two cell centers that bound this velocity, and

then use linear interpolation to evaluate the needed numerical flux at ξ+j . The case ξj < 0 can be

treated similarly.

The algorithm of computing the numerical flux is summarized in Algorithm 1.

Algorithm 1 Computation of the numerical flux in x-direction

Case 1: ξj > 0.

• f+
i+ 1

2
,j
= fij, ξ

′ =
c−
i+1

2

c+
i+1

2

ξj.

• If ξk ≤ ξ′ < ξk+1 for some k, then

aR =
(c+

i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2
, aT = 1− aR,

f−
i+ 1

2
,j
= aT

(ξk+1 − ξ′

∆ξ
fi,k +

ξ′ − ξk
∆ξ

fi,k+1

)

+ aRfi+1,k′,

where ξk′ = −ξk.

Case 2: ξj < 0.

• f−
i+ 1

2
,j
= fi+1,j, ξ

′ =
c+
i+1

2

c−
i+1

2

ξj.

• If ξk ≤ ξ′ < ξk+1 for some k, then

aR =
(c+

i+ 1

2

− c−
i+ 1

2

c+
i+ 1

2

+ c−
i+ 1

2

)2
, aT = 1− aR,

f+
i+ 1

2
,j
= aT

(ξk+1 − ξ′

∆ξ
fi+1,k +

ξ′ − ξk
∆ξ

fi+1,k+1

)

+ aRfi,k′,

where ξk′ = −ξk.
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6.2.2 The Schrödingerisation simulation

We consider the first example in [JW06b]. The discontinuous wave speed is given by

c(x) =







0.6, x < 0,

0.2, x > 0.

The initial data is

f(0, x, ξ) =







1, x < 0, ξ > 0,
√

x2 + 4ξ2 < 1,

1, x > 0, ξ < 0,
√

x2 + ξ2 < 1,

0, otherwise.

The exact solution for f at t = 1 is given by

f(x, ξ, 1) =







αT , 0 < x < 0.2,
√

1− (0.2 − x)2 < ξ < 1.5
√

1− (3x− 0.6)2,

1, 0 < x < 0.2, 0 < ξ <
√

1− (0.2− x)2,

1, 0 < x < 0.8, −
√

1− (x+ 0.2)2 < ξ < 0,

1, −0.4 < x < 0, 0 < ξ < 1
2

√

1− (x− 0.6)2,

1, −0.6 < x < 0, −1
3

√
1− (x3 + 0.2)2 < ξ < 0,

αR, −0.6 < x < 0, −1
2

√

1− (x+ 0.6)2 < ξ < −1
3

√
1− (x3 + 0.2)2,

0, otherwise.

In the implementation, we choose a large enough domain that contains the supports of the

initial and final solutions. For this example, one can take it as [−1.5, 1.5]2. To save the computa-

tional cost in the p-direction, where p is the auxiliary variable for the Schrödingerisation approach,

we set it as [−4, 4]2. For simplicity, we use the forward Euler method to iteratively get the updated

solution. We take N =M = 200 and Nt = 1000, where Nt is the number of steps for time discreti-

sation. The numerical result is displayed in Fig. 8. Due to the first-order accuracy in x, ξ, p and t,

the numerical solution has some smearing across the discontinuities, which is expected and can be

improved by using more grid points or using higher order approximations. We remark that for the

direct upwind discretisation, the CFL condition requires the time step to satisfy ∆t = O(∆x∆ξ).

However, the Hamiltonian preserving scheme allows a time step ∆t = O(∆x,∆ξ).

7 Conclusion

Quantum simulations for time-dependent or independent boundary value problems of partial

differential equations are quite difficult because the ODE system resulting from spatial discretisa-

tions is not necessarily a Hamiltonian system. Spatial discretisation of the boundary condition,

like the Dirichlet boundary condition for example, could also give rise to an inhomogeneous term

in the system ( b 6= 0 in (2.2)). Our Schrödingerisation approach combined with the augmentation

technique resolves this problem in a generic and efficient way as shown in [JLLY23] and this work.

In this article, we extend the Schrödingerisation approach [JLY22a,JLY22b] for quantum sim-

ulations of PDEs to problems with physical boundary or interface conditions. While a quantum
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(a) Numerical solution (b) Exact solution

Fig. 8: Snapshots of the nonzero part of the solutions for the Hamiltonian preserving scheme.

dynamics with physical boundary or interface conditions is no longer a Hermitian Hamiltonian

system, the Schrödingerisation approach makes it so in a simple fashion. We give the implementa-

tion details for these problems. The numerical experiments validate this approach, demonstrating

that the Schrödingerised systems yield the same results as the original dynamics. This further

extends the Schrödingeration techniques toward real applications of partial differential equations

which most often are coupled with boundary or interface conditions.
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