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aSchool of Computational Science & Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

bDepartment of Mechanical Engineering, Stanford University, Stanford, California 94305, USA

Abstract

The macroscopic forcing method (MFM) of Mani and Park [1] and similar methods for obtaining
turbulence closure operators, such as the Green’s function-based approach of Hamba [2], recover
reduced solution operators from repeated direct numerical simulations (DNS). MFM has already
been used to successfully quantify Reynolds-averaged Navier–Stokes (RANS)-like operators for
homogeneous isotropic turbulence and turbulent channel flows. Standard algorithms for MFM force
each coarse-scale degree of freedom (i.e., degree of freedom in the RANS space) and conduct a
corresponding fine-scale simulation (i.e., DNS), which is expensive. We combine this method with
an approach recently proposed by Schäfer and Owhadi [3] to recover elliptic integral operators from
a polylogarithmic number of matrix–vector products. The resulting Fast MFM introduced in this
work applies sparse reconstruction to expose local features in the closure operator and reconstructs
this coarse-grained differential operator in only a few matrix–vector products and correspondingly, a
few MFM simulations. For flows with significant nonlocality, the algorithm first “peels” long-range
effects with dense matrix–vector products to expose a more local operator. We demonstrate the
algorithm’s performance for scalar transport in a laminar channel flow and momentum transport in
a turbulent channel flow. For these problems, we recover eddy diffusivity- and eddy viscosity-like
operators, respectively, at 1% of the cost of computing the exact operator via a brute-force approach
for the laminar channel flow problem and 13% for the turbulent one. We observe that we can
reconstruct these operators with an increase in accuracy by about a factor of 100 over randomized
low-rank methods. Applying these operators to compute the averaged fields of interest has visually
indistinguishable behavior from the exact solution. Our results show that a similar number of
simulations are required to reconstruct the operators to the same accuracy under grid refinement.
Thus, the accuracy corresponds to the physics of the problem, not the numerics. We glean that
for problems in which the RANS space is reducible to one dimension, eddy diffusivity and eddy
viscosity operators can be reconstructed with reasonable accuracy using only a few simulations,
regardless of simulation resolution or degrees of freedom.

Keywords: Multi-scale modeling, eddy diffusivity, turbulence modeling, operator recovery,
numerical homogenization

1. Introduction

Well-established equations describe even the most complicated flow physics. Still, full-resolution
simulations of them stretch computational resources. Reduced-complexity surrogate models are a
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successful approach to reducing these costs. Historically, physical insight and analytical techniques
have been used to develop these models, including the RANS closure models [4]. However, data-
driven approaches are emerging as semi-automated tools to accomplish the same task. Some
approaches attempt to represent the time evolution of the physical system via neural networks,
a formidable task that involves reducing the entire Navier–Stokes operator [5, 6]. An alternative
approach is to compute effective equations that act on spatial or temporal averages. The governing
equations are projected into the reduced or averaged space, and a forcing function is applied
to examine the effect of the underlying fluctuations on the averaged behavior. Kraichnan [7]
and Hamba [2] examined Green’s function solutions (i.e., using Dirac-delta-function-type forcing)
to scalar and momentum transport equations to develop exact expressions for closure operators.
Similarly, the macroscopic forcing method (MFM) of Mani and Park [1] quantifies closure operators
exactly by examining forcing and averaged responses, called input–output pairs. However, as a
linear-algebra-based technique, MFM does not require the use Dirac delta functions as forcing basis
functions, and others like polynomials [8] and harmonic functions [9], can be used.

MFM has been successfully applied to close reacting flow equations [10, 11] and analyze homoge-
neous isotropic turbulence [9] and turbulent channel flow [12]. MFM is analogous to numerical
homogenization, or the finite-dimensional approximation of solution spaces of partial differential
equations (PDEs) [13]. These techniques amount to operator recovery or learning, where an unknown
operator is estimated from a set of input–output pairs obtained from full-resolution simulations.
These simulations are computationally expensive, so there is a pressing need to reduce the number
of samples required, which we address in this work.

Using MFM, one constructs effective operators, or macroscopic operators, acting on solution averages
from full-resolution simulations, called direct numerical simulations (DNS) of the governing or
microscopic equations [1]. If the macroscopic operators are linear, the MFM procedure is no
different from estimating a matrix from a limited number of matrix–vector products. The number
of microscopic simulations required to recover the macroscopic operator exactly equals the number
of macroscopic degrees of freedom, which can be prohibitively large for many simulation problems,
like high-Re turbulence.

One can partially address this problem by working in Fourier space [1] or fitting a parametric
model to approximate the eddy diffusivity operator [12, 14]. However, the former requires spatial
homogeneity, and the latter’s accuracy depends on the parametric model’s quality. Liu et al.
[8] introduces an improved model that uses the nonlocal eddy diffusivity operator’s moments to
approximate the full operator. While these are viable approaches and the subject of ongoing work,
the target of this work is to reconstruct the full discretely-defined nonlocal eddy diffusivity operator,
as opposed to prescribing or modeling its shape.

For many flows of practical interest, the nonlocal effects of closure terms show diffusive behavior.
Thus, work on operator recovery for elliptic PDEs is closely related to MFM. [15] propose a
“peeling” approach for recovering hierarchical matrices from a polylogarithmic number of matrix–
vector products, although without rigorous bounds on the approximation error. Extensions of this
algorithm were proposed by [16–18]. In this setting, eigendecompositions and randomized linear
algebra have been used to recover elliptic solution operators from matrix–vector products [19–22].
Since the eigenvalues of elliptic solution operators follow a power law, these methods require poly(1/ε)
matrix–vector products to obtain an ε approximation of the operator. In contrast, Schäfer et al.
[23] showed that hidden sparsity of the solution operator results in an ε approximation from only
poly(log(1/ε)) carefully crafted matrix–vector products. This speedup amounts to an exponential
reduction in the number of matrix–vector products. The sparsity used by Schäfer and Owhadi [3]
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results from the locality of the partial differential operator shared by local fluid models.

We use this approach to accelerate the MFM to create the Fast MFM. The Fast MFM reveals the
locality of the physical models to reduce the sample complexity of standard MFM operator recovery.
We apply Fast MFM to inhomogeneous and turbulent problems and reconstruct the RANS closure
operators. Specifically, we consider passive scalar transport in a laminar 2D channel flow following
Mani and Park [1] and reconstruct the corresponding eddy diffusivity operator, and momentum
transport in a canonical turbulent 3D channel flow at Reτ = 180 following Hamba [24] and Park
and Mani [12] and reconstruct the corresponding eddy viscosity operator. These examples display
sufficient spatio-temporal richness in their dynamics to argue that the Fast MFM can be applied
more broadly. For example, one could tackle the open closure problems associated with multiphase
flows [25–28], though we do not address such extensions here.

We briefly introduce MFM and similar approaches for recovering turbulence closure operators in
section 2. Section 3 details the mathematical foundations of the sparse reconstruction procedure
and section 3.5 applies it to MFM with an extension to nonsymmetric operators, resulting in the
Fast MFM. Results are presented in section 4, focusing on the 2D and 3D problems analyzed by
Mani and Park [1] and Park and Mani [12]. Section 5 discusses the outlook of sparse reconstruction
methods like the one presented for other flow problems and PDEs broadly.

2. Background on the Macroscopic Forcing Method (MFM)

2.1. The macroscopic forcing method

Given a set of linear microscopic equations,

Lc = s, (1)

and an averaging operator (s, c) 7→ (s̄, c̄), the macroscopic (averaged) operator L is defined to satisfy,
for all microscopic solutions c, s of (1),

Lc̄ = s̄. (2)

Often, (1) are advection-diffusion equations for scalar transport or linearizations of nonlinear PDEs
such as Navier–Stokes equations, so the averaging operation can be written as

s̄ =
1

L2 · · ·LNd

∫

Ω2

· · ·
∫

ΩNd

s(x1, . . . xNd
) dx2 · · · dxNd

, (3)

where

Ω = Ω1 × Ω2 × · · · × ΩNd
(4)

is the physical (possibly spatio-temporal) domain and Li are the lengths in each coordinate direction
xi, i ∈ {1, . . . , Nd}. In this example, the averaged (2) is a univariate problem in the non-averaged
coordinate x1. However, we point out that the techniques outlined in this work apply to a wider
range of possible averaging operations.
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Figure 1: Schematic of the MFM.

Using MFM, one can determine the exact linear operator L that acts on averages of flow statistics [1].
They infer this operator by generating solution pairs to Lc̄ = s̄, obtained from solving the microscopic
equations with forcing s̄ and macroscopic solution average c̄.

Figure 1 show an example MFM procedure schematically for a two-dimensional problem with
coordinate directions x1 and x2. The relevant averaging direction is x2, with averaged “strips”
indicating averaging. This solution is forced by a field s(x1, x2) as a Dirac delta function at a
specific x1 coordinate equivalent to its averaged field s̄(x1). The inverse solution operator L−1

solves the problem (1) for c(x1, x2) given s̄(x1). This is computationally equivalent to solving
the full-resolution system (1) or DNS. The averaged solution field c̄(x1) corresponds to a column

(“recover a column”) of a macroscopic solution operator L−1
under this averaging scheme. This

procedure is repeated for all non-averaged degrees of freedom.

In this example, the non-averaged coordinate is x1, so each discretized x1,i is locally forced (via
a Dirac delta function) with s ≡ s̄. Completing the MFM procedure gives access to the matrix

representation L via s 7→ L−1
s. Since evaluating this map involves a high-resolution simulation,

column-by-column construction of L−1
is intractable.

2.2. The linear algebra of MFM

A linear algebraic perspective is useful for understanding MFM. To this end, we denote as L the
matrix representation of a discretized advection-diffusion operator

L =
∂

∂t
+ u ·∇−∇ · (a∇), (5)

where coefficients a, u, are allowed to vary in space and time. The inverse operator, L−1, takes a
spatio-temporal forcing term s as input and returns the spatio-temporal field c = L−1s by solving the
PDE. Let P denote a projection onto coarse-scale features of interest, for example, spatio-temporal
averages, and E denote an extension such that PE = I, where I is the identity matrix. In the
example of fig. 1, rows of P correspond to averages of c in the x2-direction of the domain, and the
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i

j

(a)

−15 −10 −5
log10Dij

i
(b)

−15 −10 −5 0

log10 L̄ij

i
(c)

−2 −1 0

log10 L̄−1
ij

Figure 2: Matrices D, L, and L−1
as labeled for the 2D channel flow case with 50 non-averaged grid points

(and so each is 50× 50) for illustration purposes. The inverse operator matrix of (c) is nearly dense, though
(a) and (b) are more strongly banded. Similar behavior is observed for finer discretizations, which correspond
to larger matrices.

rows of E extend s̄ to s. The macroscopic operator can then be expressed as [1]

L =
(
PL−1E

)−1
, (6)

where L and L−1 are now discretized.

Another perspective on MFM can be obtained considering L in discretized form. By using bases for
its row and column space that consider the row and column spaces of P and E, we obtain a 2× 2
block matrix. After eliminating the second block, the macroscopic operator is obtained as the Schur
complement of L.

L =
((
L−1

)
1,1

)−1
= L1,1 − L1,2 (L2,2)−1 L2,1. (7)

Computing L−1 or (L2,2)−1 L2,1 näıvely, column by column, requires as many solutions of the
full-scale problem as there are coarse scale degrees of freedom.

2.3. Inverse MFM

As shown in fig. 2, L is more local than its computed inverse. Hoping to turn this locality into
computational gains, Mani and Park [1] propose an inverse MFM to directly compute matrix–vector

products with L without first having to compute L−1
using the ordinary MFM. This procedure can

be interpreted as evaluating the right-hand side of (7) at the cost of solving a system of equations
in L2,2. If (1) is an evolution PDE, this procedure can be interpreted as a control problem, where
at each time step, the microscopic portion of the forcing s is chosen to maintain a target average c̄.
The resulting averaged forcing s̄ is the same as Lc̄.

2.4. The eddy diffusivity operator

As done in Mani and Park [1], consider a problem in which the averaging operation includes averaging
over the entire temporal domain and all directions except x1. Using a Reynolds decomposition, the
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Figure 3: The middle row of the matrices of fig. 2 on a log scale. D and L have a similar degree of locality,

with entries decreasing in magnitude algebraically from the diagonal. The discretized operator L−1
is dense;

along its diagonal entries only decay modestly at the boundaries.

velocity and scalar fields can be decomposed as

u = ū+ u′ and c = c̄+ c′, (8)

where ( · )′ denotes fluctuations about the mean. Substitution of (8) into the advection–diffusion
equation (5) with Lc = 0 and averaging results in the corresponding mean scalar equation, we have

∂

∂x1
u′1c

′ − a
∂2c̄

∂x21
= 0, (9)

where the scalar flux, u′1c
′, is unclosed, and (9) can be written as Lc̄ = 0. The macroscopic operator,

L, contains both the closure for the scalar flux term and the closed molecular diffusion term. Thus,
L can be further decomposed as

L = −
(

∂

∂x1

)
(D + aI)

(
∂

∂x1

)
, (10)

where D is the eddy diffusivity matrix. In continuous form, this is equivalent to

−u′1c′(x1) =
∫

y1

D(x1, y1)
∂c̄

∂x1

∣∣∣∣
y1

dy1, (11)

which generalizes to the nonlocal eddy diffusivity of Berkowicz and Prahm [29]:

−u′βc′(x) =
∫

y
D(βα)(x,y)

∂c̄

∂xα

∣∣∣∣
y

dy, (12)

where α, β ∈ {1, . . . , Nd} are coordinate directions in the macroscopic space.

As shown in fig. 2 and fig. 3, the eddy diffusivity matrix is significantly more regular than L, making
it a preferred target for an operator recovery strategy. To leverage these properties in operator
recovery, Mani and Park [1] proposed a method for computing matrix–vector products Da as ΣLΣa,
where Σ denotes the antiderivative and a is the vector state. The objective of the present work is
to recover D, and thus L, from as few matrix–vector products as possible, as accurately as possible.
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Figure 4: (a) Sparse recovery: Columns with non-overlapping but known sparsity patterns (shown in
color) can be recovered by a single matrix–vector product via a carefully chosen vector. (b) Factorization:
Cholesky factorizations with leading-column sparsity patterns can be recovered similarly. (c) Peeling: If
denser columns of the factorization prevent recovery of sparser ones, identify dense columns first and subtract
their contribution to recover the sparser ones. [This figure was adapted from Schäfer and Owhadi [3] with
author permission.]

3. LU reconstruction of elliptic operators

3.1. Reconstructing elliptic operators from matrix–vector products

We use the LU variant of the Cholesky reconstruction of Schäfer and Owhadi [3] to construct the
eddy diffusivity operator. Schäfer and Owhadi [3] prove that the solution operators of divergence
form elliptic partial differential equations in dimension Nd can be reconstructed to accuracy ϵ from
only O

(
logNd+1(ϵ−1)

)
solutions for carefully selected forcing terms. We briefly review this approach,

which forms the basis of this work.

3.2. Graph coloring

Graph coloring allows one to reconstruct multiple columns of a sparse matrix from a single matrix–
vector product. The key idea is to identify groups of columns with non-overlapping sparsity sets
and use a right-hand side that only activates those columns. As illustrated in fig. 4, the selected
columns can be read off from the resulting matrix–vector product. Similarly, graph coloring can also
reveal the leading columns of a sparse LU factorization. Once a row-column pair of the LU factors
are identified, it can be used to correct the matrix–vector products to reveal later columns. This
procedure, a variant of which was first proposed by Lin et al. [15], is referred to as peeling (fig. 4).

3.3. Cholesky factors in wavelet basis

It is well-known that the solution operators of elliptic PDEs are dense, owing to the long-range
interactions produced by diffusion. However, Schäfer et al. [23] show that when represented in a
multiresolution basis ordered from coarse to fine, solution operators of elliptic PDEs have almost
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sparse Cholesky factors. This phenomenon is illustrated in fig. 5. The leading columns of the
Cholesky factors, corresponding to a coarse-scale basis function with global support, are dense
and therefore limit the efficiency of graph coloring. However, they are few and can be identified
efficiently and removed via peeling. This procedure can be repeated to reveal progressively finer
columns. The growing number of basis functions on finer scales is compensated for by their smaller
support and, thus, increased gains due to graph coloring. Thus, the number of matrix–vector
products required is approximately constant across levels. The resulting procedure is described in
algorithm 1. As described in Schäfer and Owhadi [3], the operation scatterc takes in the vector
obtained from a peeled matrix–vector product computed in lines 5 and 6 and uses it to recover the
columns associated with the color c. In principle, further compression of the resulting operator is
possible using the techniques of Schäfer et al. [30].

Algorithm 1 LU reconstruction in wavelet basis given by W with measurements given by M.

1: L← 0×N empty matrix
2: U← N × 0 empty matrix
3: D← 0× 0 empty diagonal matrix
4: for c color do
5: Lnew ← scatterc

(
W⊤DM:,c − LDUW⊤M:,c

)

6: Unew ← scatterc
(
W⊤DM:,c −U⊤DL⊤W⊤M:,c

)

7: Dnew ← diag ((Lnew +Unew) /2)
−1

8: L,U,D← hcat (L,Lnew) , vcat (U,Unew) , dcat (D,Dnew) {Concatenate to prior solution}
9: end for

10: L← LD
11: return approximate LU factorization LU of W⊤DW

3.4. Adaptation to Fast MFM

The eddy diffusivity operator is not a divergence-form elliptic solution operator. In particular,
it is not symmetric. Instead of the Cholesky recovery of Schäfer and Owhadi [3], we use an LU
recovery that recovers a sparse LU factorization of the target matrix. Columns of L are recovered
from matrix–vector products, and rows of U are recovered from matrix-transpose–vector products
(transpose–vector products), which can be computed by solving the adjoint equation of L. No
rigorous guarantees exist for the accuracy of LU reconstruction applied to eddy diffusivity matrices.
However, Schäfer et al. [23] show a wide range of diffusion-like operators, including those produced
by fractional-order Matérn or Cauchy kernels, produce sparse Cholesky factors, despite the lack of
theory supporting this observation.

3.5. Fast MFM on nonsymmetric operators

As remarked by Schäfer and Owhadi [3], a LU version of Cholesky reconstruction that extends to
nonsymmetric matrices requires not only matrix–vector products but also transpose–vector products.
Similar requirements arise in hierarchical low-rank approaches [15, 31]. Schur complementation
commutes with transposition, in the sense that

(
L
)⊤

=

((
L−⊤

)
1,1

)−1

=
(
L⊤

)
1,1
−
(
L⊤

)
1,2

((
L⊤

)
2,2

)−1 (
L⊤

)
2,1

. (13)

As a result, transpose–vector products with L can be obtained by applying (inverse or forward)

MFM to the L⊤. In the case of the discretized advection-diffusion operator in (5), when the system is
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(a) (b) (c)

Figure 5: (a) shows basis function on four different scales of a multiresolution basis. (b) shows the decay
pattern of the Cholesky factorization of an elliptic Green’s function discretized in this basis. (c) shows four
columns of the Cholesky factor as spatial functions. [This figure was reproduced from Schäfer and Owhadi
[3] with author permission.]

solved up to time T , the transpose of L can be obtained by replacing v(x, t) with −v(x, T − t), a(x, t)
with a(x, T − t), and by using the solution at time T as the initial condition. Here x is the spatial
coordinate, and t denotes time. The resulting PDE is often called the adjoint problem and frequently
arises in the computation of sensitivities of solutions of PDEs with respect to their coefficients,
boundary, and initial conditions. We empirically validate our method using matrix–vector products
and transpose–vector products obtained from a full eddy diffusivity operator constructed via brute
force (column-by-column) MFM. We leave an adjoint-based MFM that efficiently implements
transpose–vector products as future work.

4. Results

4.1. Steady-state laminar channel flow

Consider a 2D domain representing a channel with left and right walls at x1 = ±π with Dirichlet
boundary condition c = 0 and the top and bottom walls with x2 = 0, 2π with no flux condition
∂c/∂x2 = 0. The scalar field c(x1, x2) is governed by a steady advection–diffusion equation with a
uniform source term

u1
∂c

∂x1
+ u2

∂c

∂x2
= 0.05

∂2c

∂x21
+

∂2c

∂x22
+ 1, (14)

where the unequal diffusion constants in the coordinate directions are an outcome of directional
nondimensionalization. The flow is incompressible and satisfies no-penetration boundary conditions
on the walls. The steady velocity field is prescribed as

u1 = (1 + cos(2x1)) cos(2x2), u2 = sin(2x1) sin(2x2). (15)

The PDE is discretized on a uniform staggered mesh with N1 and N2 = N1/2 grid points in the x1
and x2 coordinate directions. Second-order accurate central differences are used. The advective
fluxes at the cell faces are computed via second-order interpolation and then multiplication of the
divergence-free velocity at the face centers. At the cell faces x1 = ±π, the fluxes are computed
using ghost points that enforce the specified Dirichlet boundary conditions, while at the cell faces at
the top and bottom boundaries, the no flux condition is naturally enforced.
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Figure 6: Relative L2 errors between the exact MFM operator D and its reconstruction for the laminar
flow configuration. In (b), only the Fast MFM with automatically chosen parameterization is shown, but for
different resolutions N1 and the number of matrix–vector products is denoted by n in the legend.

Figure 6 shows the macroscopic operator errors for the laminar flow configuration. In (a), the
mesh resolution in the x1 (non-averaged) coordinate is N1 = 2000. Fast MFM errors are smaller
than a truncated SVD reconstruction of the same operator. The latter provides the optimal low-
rank approximation of D but requires access to the full operator and is, therefore, not practical.
A randomized low-rank representation is also shown, which is available. The errors for this
reconstruction are about 10 times larger than the SVD. Compared to Fast MFM, these errors are
also larger as the number of matrix–vector products increases. The Fast MFM requires choosing
the distance between basis functions of the same color (see section 3.2) and the level at which the
wavelet coefficients are truncated. The former parameter dictates the cost-accuracy trade-off, and
choosing a suitable truncation can improve the method’s cost and stability. A sweep over a wide
range of parameters is shown in shaded markers. We use a heuristic to set these parameters, which
results in the non-shaded darker marks. Sometimes, the heuristic still produces poor parameter
choices resulting in larger Fast MFM errors.

In fig. 6 (b), we perform a similar analysis but only show the Fast MFM results for varying mesh
sizes N1. Errors decrease exponentially with the number of matrix–vector products (corresponding
to the number of DNSs) with about the same fit coefficients regardless of N1. This indicates that
the Fast MFM reconstruction is dependent on the physical locality of the operator, not a numerical
or discretized one. Thus, operator recovery for high-resolution simulations has an out-sized benefit
over traditional MFM.

Figure 7 shows the application of the recovered operator of fig. 6 to compute c̄ using (10). The
exact result is computed using N1 = 2000 DNSs to recover c̄. For fewer DNSs, 26 out of the 2000
total non-averaged degrees of freedom, the Fast MFM result matches the exact result well, but the
other methods do not. The Boussinesq approximation is purely local [14]:

−u′1c′ = DBoussinesq
∂c̄

∂x1
, (16)
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Boussinesq Fast MFM

Figure 7: Reconstruction of c̄ for the laminar, steady channel flow problem. Results are shown for
a randomized low-rank approximation, the Boussinesq approximation, and the Fast MFM result. This
visualization is 26 out of 2000 possible samples.

where

DBoussinesq(x1) =

∫

y1

D(x1, y1)dy1. (17)

4.2. Turbulent channel flow

We next consider a fully-developed turbulent channel flow, reconstructing eddy diffusivities, which,
for momentum transport, are commonly referred to as eddy viscosities. The incompressible Navier–
Stokes equations are

∂ui
∂t

+
∂ujui
∂xj

= − ∂p

∂xi
+

1

Re

∂2ui
∂xj∂xj

+ ri, (18)

∂uj
∂xj

= 0, (19)

where r is a body force, p is the pressure, and u are velocities. Following Mani and Park [1], the
generalized momentum transport equation associated with MFM for a computed ui field is

∂vi
∂t

+
∂ujvi
∂xj

= − ∂q

∂xi
+

1

Re

∂2vi
∂xj∂xj

+ si, (20)

∂vj
∂xj

= 0, (21)

for a pressure-like term q that ensures incompressibility.

We consider a case with Reτ = uτδ/ν = 180 where δ is the channel half-width and uτ is the friction
velocity. The mean flow is in the x1 direction, the x2 direction is wall-normal, and the x3 direction
is the span with periodic boundaries. The streamwise domain length is 2π, and the spanwise
length is π. The body force, r, is the mean pressure gradient in the periodic simulation and is
r = (1, 0, 0) in this nondimensionalized problem. The incompressible Navier–Stokes equations are
solved using direct numerical simulation with a 1443 grid for T = 500δ/uτ to ensure statistical
convergence. Simulation-result baselines, including the discretized D and L matrices, for this case
follow from Park and Mani [12] and are used herein. Figure 8 shows our MFM procedure, averaging
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Figure 8: Diagram of the Fast MFM reconstruction procedure for the 3D turbulent channel flow case.
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Figure 9: Relative errors in the recovered eddy viscosity kernels (a) D21 and (b) D11 are shown for the
Reτ = 180 turbulent channel flow configuration.

all independent variables except for the wall-normal coordinate x2. We thus recover the Reynolds
stresses as a function of x2. The generalized eddy viscosity is given by

−u′βu′γ(x) =
∫

y
D(βγ)(x,y)

∂ū1
∂x2

∣∣∣∣
y

dy (22)

where Dβγ in our notation represents Dβγ21 in traditional notation for the eddy viscosity tensor [24].

Figure 9 shows the errors in the recovered eddy viscosities. The errors are computed as the difference
in operator norms between the approximate and exact solutions to the discretized problem. The
exact solution is recovered via brute force IMFM, which computes each non-averaged degree of
freedom via forcing each si independently to recover all columns of Dβγ for each β and γ. In
fig. 9, the trends of (a) and (b) are similar, with the Fast MFM having smaller errors than both
the SVD, which is inaccessible in practice, and a randomized low-rank approximation of it that is
accessible. The differences in errors are small for small numbers of matrix–vector produces as the
peeling procedure removes the long-range behaviors. For larger numbers of matrix–vector products,
the difference increases. Fast MFM has a factor of about 100 smaller errors than the low-rank
approximation for 100 matrix–vector products in both (a) and (b).

Figure 10 shows the Reynolds stress reconstructions for the turbulent channel flow. While direct
computation of Reynolds stresses needs only one DNS, we use Reynolds stresses as a metric to assess
the accuracy of the recovered eddy viscosity operator, which inevitably requires multiple simulations.
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Figure 10: Reynolds stress reconstructions (a) u′
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1 for the turbulent channel flow configuration.

Results are shown for 20 out of 144 possible samples.

The Fast MFM results (solid, thin line) are compared with the Boussinesq approximation and a
randomized low-rank procedure. Exact results are recovered via brute-force MFM. For 20 simulations,
the difference between the exact solution and Fast MFM is not discernible. For the same number
of simulations, the low-rank procedure does not produce a reasonable approximation for either
component. The Boussinesq approximation is a good one for the transverse stress component u′2u

′
1

of fig. 10 (b) but does poorly with the u′1u
′
1 reconstruction in fig. 10 (a).

5. Conclusion

This work explores a linear algebra approach to reconstructing closure operators. Fast MFM
uses sparse recovery and peeling techniques, revealing local behaviors that crafted forcings can
simultaneously recover. Results show that tens of simulations are required to reconstruct the eddy
diffusivity operator and averaged field to visual accuracy. This contrasts against brute-force MFM,
which forces each degree of freedom and is thus prohibitively expensive; the Boussinesq approximation,
which is shown to have inaccuracies in some test cases; randomized low-rank approximations, which,
while feasible, have poor accuracy; and even SVD, which performs worse than Fast MFM and
is inaccessible in a simulation environment. While other ongoing work focuses on modeling the
nonlocal eddy diffusivity using partial differential equations and limited information about the exact
eddy diffusivity, the Fast MFM procedure recovers full nonlocal eddy diffusivity operators at low
sample complexity. It is a stepping stone toward the long-term goal of sample-efficient recovery of
coarse-grained time integrators.
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