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Abstract

The coupling effects in multiphysics processes are often neglected in designing multiscale methods. The
coupling may be described by a non-positive definite operator, which in turn brings significant challenges
in multiscale simulations. In the paper, we develop a regularized coupling multiscale method based on
the generalized multiscale finite element method (GMsFEM) to solve coupled thermomechanical problems,
and it is referred to as the coupling generalized multiscale finite element method (CGMsFEM). The method
consists of defining the coupling multiscale basis functions through local regularized coupling spectral prob-
lems in each coarse-grid block, which can be implemented by a novel design of two relaxation parameters.
Compared to the standard GMsFEM, the proposed method can not only accurately capture the multiscale
coupling correlation effects of multiphysics problems but also greatly improve computational efficiency
with fewer multiscale basis functions. In addition, the convergence analysis is also established, and the
optimal error estimates are derived, where the upper bound of errors is independent of the magnitude of
the relaxation coefficient. Several numerical examples for periodic, random microstructure, and random
material coefficients are presented to validate the theoretical analysis. The numerical results show that the
CGMsFEM shows better robustness and efficiency than uncoupled GMsFEM.

Keywords: thermomechanical coupled problems, heterogeneous media, generalized multiscale finite
element method, coupling multiscale basis functions, error estimates

1. Introduction

Heterogeneous media have been extensively applied in practical engineering, and their physical and
mechanical properties across multiple temporal and spatial scales closely interact with their underlying mi-
crostructure, properties, compositions, etc. Hence, efficient coupling multiscale modeling is of paramount
importance for the performance prediction [1], optimization design [2, 3], and safety assessment [4] of hetero-
geneous media. In the case of thermomechanical processes, except for microscale heterogeneity, microscale
thermal expansion properties may also play a significant role at multiple spatial scales. For example, de-
pending on the complex loading conditions (e.g., high stress or extreme temperature environments), damage
or cracks may occur due to induced sharp thermal stresses [5], which can be computationally prohibitive.
For this reason, efforts should be made to develop more efficient multiscale models and numerical methods
to predict the coupled multiphysics behavior of heterogeneous media for engineering practice.

Based on the first law of thermodynamics and the conservation of momentum, mathematical model-
ing of thermomechanical processes can lead to coupled partial differential equations (PDEs) [6], including
hyperbolic mechanical equations and parabolic heat transfer equations that are mutually coupled. Consid-
ering the quasi-static case, the existence and uniqueness of the solutions for the coupled PDEs have been
analyzed in [7, 8], where the inertia terms of the mechanical parts are ignored. Numerical methods have also
been developed with the help of the finite element method (FEM), and the convergence analysis and error
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orders have been obtained in [9, 10]. Numerous studies have focused on the 2D and 3D linear thermome-
chanical problems [11, 12] and nonlinear thermomechanical problems [13], including coupling effects [14],
fracture analysis [15], etc. It is imperative to emphasize that although the physical mechanisms underly-
ing the thermomechanical equations and the poroelastic equations diverge, their mathematical equivalence
prevails. Numerous methodologies and conclusions demonstrate uniformity across both equation types.
Consequently, this paper abstains from an extensive exploration of the poroelastic equations. Furthermore,
the multiscale nature of heterogeneous materials leads to a tremendous cost when solving thermomechan-
ical problems using direct numerical methods, which are also unreliable and notoriously ill-conditioned
[16]. These motivate us to develop robust and efficient multiscale methods that can not only reduce the
dimensionality of coupled thermomechanical problems but also incorporate as much important microscopic
physical information as possible.

Research on multiscale methods is of great significance in modeling and numerically computing heteroge-
neous media. This remains an active field in engineering practice because it has the ability to fully describe
the intrinsic physical processes of complex systems. Great progress has been made to solve multiscale
problems using various strategies, which include constrained macro simulation and the generalized finite
element method (GFEM) [17]. Constrained macro simulation is a micro-macro coupling interaction method
that establishes a suitable macroscopic model through solving specific microscopic problems, including
the homogenization method [18, 19], the variational multiscale method [20], the heterogeneous multiscale
method [21], the computational homogenization method [22], etc. The generalized finite element method
was originally proposed in [17] and has been applied to solve various multiscale problems by constructing
different finite element spaces. In the multiscale finite element method (MsFEM) [23], the basis functions
of the finite element space are constructed by solving the local problems on each coarse block incorporated
with the localized microscale physical information, and the corresponding mathematical theories are also
developed for the MsFEM, such as convergence analysis and the error reduction method. Then the gener-
alized multiscale finite element method (GMsFEM) [24, 25] is designed to obtain high-accuracy multiscale
basis functions by solving local spectral problems on snapshot spaces. Similarly, the multiscale spectral
generalized finite element method (MS-GFEM) [26, 27] is another important multiscale GFEM with local
approximation spaces constructed by solving local spectral problems. Moreover, the localized orthogonal
decomposition (LOD) method [28, 29] stems from the ideas of the variational multiscale method [20], and
the coarse space is modified with the basis functions well approximated locally. These techniques have been
extended and applied to the thermomechanical and poroelastic problems, for instance, the homogenization
method [30, 31, 32, 33], LOD [34, 35], GMsFEM [36, 37] and extended MsFEM [38, 39], etc.

Inspired by previous works, this paper designed an efficient regularized coupling formulation of GMs-
FEM named CGMsFEM. For the traditional GMsFEM [36, 37] or the LOD method [34, 35], the multiscal basis
functions are separately constructed through the corresponding elliptic operators obtained by decoupling
the mechanical and thermal parts of thermomachical equations. The multiscale characteristics of the thermal
expansion coefficients are not considered, which will lead to some limitations of these methods. Treating
the coupled system as a unified operator and constructing local spectral problems within the framework of
the GMsFEM is a natural but impractical idea. This is because the coupling operator exhibits non-positive
definite characteristics, especially in cases of strong coupling, i.e., when the coupling coefficients are rela-
tively large, which renders traditional methods ineffective. To overcome this challenge, we constructed a
regularized local spectral problem by introducing two relaxation coefficients in the CGMsFEM. Through the
regularization technique, the local spectral problems will be solved by a unified operator without decoupling
the thermomechanical equations. The multiscale basis functions are constructed by considering the coupling
effects of the displacement and temperature fields. Thus, the coupling information can be more accurately
captured. In addition, the theoretical results of the GMsFEM method [24, 38, 39] are also generalized. The
convergence analysis of the CGMsFEM is obtained, and the error estimations are derived, where the rate of
decay of eigenvalues for local spectral problems is obtained, which is similar to [40]. Furthermore, several
numerical examples associated with periodic and random microstructure material coefficients are presented
to confirm the theoretical analysis of CGMsFEM. When the same number of basis functions are chosen, the
numerical results show that the CGMsFEM not only has better accuracy than the GMsFEM in the case of
weak coupling but also has obvious advantages in accuracy for the strong coupling situation. The novelty
of the proposed approach is highlighted as follows:

(1) The multiscale basis functions are constructed by the coupled spectral problems incorporating local
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multiscale physical information, which can more accurately approximate the solutions of the original
thermomechanical problems with fewer degrees of freedom.

(2) Two relaxation coefficients are creatively designed for the local coupling spectral problems in each
coarse-grid block, the proper regularity of which is ensured by adjusting the value of the relaxation
coefficient. Moreover, the method can be reduced to the standard GMsFEM when the multiscale
coupling correlation effect disappears, which also provides a generalized framework to design the
coupling multiscale basis functions for weak or strong coupled multiphysics problems.

(3) Through convergence analysis, it is deduced that the error of CGMsFEM is closely related to the
eigenvalue decay in each local coarse block, which is consistent with GMsFEM. At the same time, it
is also proven that the upper error bound is independent of the two relaxation coefficients.

The paper is organized as follows. The formulation of CGMsFEM is given in Section 2, including the
problem statement, the construction of coupling multiscale basis functions, and the corresponding finite
element method. In Section 3, the convergence analysis of CGMsFEM is carried out. A few numerical
examples are implemented to illustrate the efficiency and accuracy of the proposed CGMsFEM in Section 4,
and the conclusions follow in Section 5.

2. Formulation of CGMsFEM

2.1. Problem statement
A thermomechanical problem is considered to describe the quasi-static deformation of heterogeneous

media in domain Ω, where Ω ⊂ Rd, d = 2, 3 is a convex bounded polygonal or polyhedaral domain with
Lipschitz continuous boundary ∂Ω, and T > 0 is a given time. It is assumed that the solid phase is a linear
elastic solid and that the deformation is coupled with the temperature field [4, 3]. Then the equilibrium and
heat transfer equations are written in standard form as follows−∇ ·

(
σ (u) − βθI

)
= f, in Ω × (0,T],

θ̇ − ∇ ·
(
κ∇θ

)
+ β∇ · u̇ = g, in Ω × (0,T],

(1)

where σ is the stress tensor and I is the d-dimensional identity matrix. u(x, t) : Ω × (0,T] → Rd and
θ(x, t) : Ω × (0,T] → R denote the displacement and temperature fields, respectively. Here, the superscript
dot represents partial differentiation with respect to time t, and x denotes the space coordinates. κ(x) and
β(x) are the thermal conductivity and expansion coefficients with multiscale characteristics, f is the body
force, and g is the heat source. Then the initial and boundary condition are defined by

u = uD, on Γu
D × (0,T],

(
σ(u) − βθI

)
· n = σN, on Γu

N × (0,T],

θ = θD, on ΓθD × (0,T], (κ∇θ(x, t)) · n = qN, on ΓθN × (0,T],

θ(x, 0) = θ0, in Ω,

(2)

where the boundary of Ω is divided into surfaces Γu
D and Γu

N, ΓθD and ΓθN with Γu
D ∩ Γ

u
N = ∅ and ΓθD ∩ Γ

θ
N = ∅.

uD and θD are the prescribed displacement and temperature, and σN and qN denote surface load value and
heat flux, respectively. n is the exterior normal to the surface Γu

N and ΓθN. The constitutive relation of stress
and strain for a general thermoelastic material is given by

σ(u) = 2µϵ(u) + λ∇ · uI,

where ϵ(u) is the strain tensor defined by

ϵ(u) =
1
2

(∇u + ∇uT).
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µ and λ are the Lamé constants defined by

.µ =
E

2(1 + ν)
, λ =

Eν
(1 + ν)(1 − 2ν)

,

where E and ν are Young’s modulus and Poisson’s ratio.
Here, some definitions and assumptions will first be stated. Let H1(Ω) denote the classical Sobolev space

equipped with the norm ||v||2H1(Ω)
= ||v||2L2(Ω) + ||∇v||2L2(Ω), and H−1(Ω) represents the dual space of H1. Then

define Lp([0,T]; V) for the Bochner space with the norm

||v||Lp([0,T];V) =

(∫ T

0
||v||pVdt

) 1
p

, 1 ≤ p < ∞,

||v||L∞([0,T];V) = essinf
0≤t≤T

||v||V,

where V ia a Banach space with the norm || · ||V, such as L2(Ω) and H1(Ω). For the sake of simplicity, the
time interval [0,T] and the domainΩwill be omitted, for instance, Lp(V) for Lp([0,T]; V). The following two
spaces Vu(Ω) and Vθ(Ω) are also defined as

Vu(Ω) :=
{
v|v ∈

(
H1(Ω)

)d
: v = 0 on Γu

D

}
, Vθ(Ω) :=

{
v|v ∈ H1(Ω) : v = 0 on ΓθD

}
.

The following assumption is also presented.

Assumption 2.1. The material parameters λ, µ, κ, β ∈ L∞(Ω) satisfied

0 < λmin := essinf
x∈Ω

λ(x) ≤ esssup
x∈Ω

λ(x) := λmax < ∞,

0 < µmin := essinf
x∈Ω

µ(x) ≤ esssup
x∈Ω

µ(x) = µmax < ∞,

0 < κmin := essinf
x∈Ω

κ(x) ≤ esssup
x∈Ω

κ(x) := κmax < ∞,

0 < βmin := essinf
x∈Ω

β(x) ≤ esssup
x∈Ω

β(x) := βmax < ∞.

Furthermore, the corresponding variational formulation of problem (1) is to find the weak solutions
u ∈ Vu(Ω) and θ ∈ Vθ(Ω) such thata(u,vu) − b(vu, θ) = ⟨f,vu⟩ , ∀vu ∈ Vu(Ω),

c(θ̇, vθ) + d(θ, vθ) + b(u̇, vθ) =
〈
g, vθ

〉
, ∀vθ ∈ Vθ(Ω),

(3)

where

a(u,vu) =
∫
Ω

σ(u) : ϵ(vu), b(vu, θ) =
∫
Ω

βθ∇ · vu,

c(θ, vθ) =
∫
Ω

θvθ, d(θ, vθ) =
∫
Ω

κ∇θ · ∇vθ.

: represents the Frobenius inner product, and ⟨·, ·⟩ denotes the inner product in L2(Ω).

2.2. Construction of coupling multiscale basis functions
The procedure of the construction of the CGMsFEM basis functions can be divided into two steps.

Firstly, coupling multiscale eigenfunctions can be constructed by solving regularized coupling local spetral
problems in coarse block, and the local computations associated with construction of local approximation
spaces are independent and can be performed in parallel. Then the partition of unity functions are obtained
to construct multiscale basis functions. Finally, the resulting global stiffness matrix can be several orders of
magnitude smaller than the stiffness matrix obtained by applying FEM directly.
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Suppose the domain Ω is composed of a family of meshes TH, where H = max
Ki∈TH

HKi is the coarse mesh

size and HKi is the diameter of coarse grid Ki. TH is the conforming partition of Ω and is shape-regular. T h

is a conforming refinement of TH, and h is the diameter of the fine grid. N denotes the number of elements
in TH, and Nv denotes the number of vertices of the coarse grid. Let {xi}

Nv
i=1 be the set of vertices in TH and

ωi =
⋃
{K j ∈ T

H
|xi ∈ K j} the neighborhood of the node xi. Figure 1 depicts the fine grid, the coarse element

Ki, and the coarse neighborhood ωi of the node xi.

Figure 1: The fine grid T h, the coarse grid TH , the coarse element Ki and neighborhood ωi of the node xi.

In order to construct coupling multiscale basis functions, the following regularized coupling spectral
problem in each coarse neighborhood ωi is given to find eigen-pairs {Λωi , ψωi } such that

−∇ ·

(
σ(ψωi

u ) − γ1βψ
ωi
θ I

)
=

1
H2Λ

ωi (λ + 2µ)ψωi
u , in ωi,

−∇ · κ∇ψωi
θ + γ2β∇ · ψ

ωi
u =

1
H2Λ

ωiκψωi
θ , in ωi,

σ(ψωi
u ) · n = 0, on ∂ωi,

κ∇ψωi
θ · n = 0, on ∂ωi.

(4)

ψωi = (ψωi
u , ψ

ωi
θ ), ψωi

u and ψωi
θ are corresponding eigenfunctions for displacement and temperature fields

in problem (4). γ1 and γ2 are the relaxation coefficients, the proper regularity of which is ensured by
adjusting the value of relaxation coefficient. To be precise, it is always possible to choose appropriate γ1
and γ2 such that this spectral problem is positive definite. The introduction of 1

H2 in the right-hand side
of this spectral problem is to ensure that Λωi is independent of H. Here, it should be emphasized that the
important coupling physical characteristics are naturally incorporated into multiscale basis functions, which
can obviously reduce the orders of global stiffness matrix.

Let Vuh(Ω) and Vθh(Ω) be classical affine finite element spaces on T h of Vu(Ω) and Vθ(Ω) respectively,
and the definitions of Vuh(ωi) and Vθh(ωi) are also similar. The corresponding variational formulation of
problem (4) is to find the weak solutions ψωi

u ∈ Vuh(ωi) and ψωi
θ ∈ Vθh(ωi) such that

aωi (ψωi
u ,vuh) − γ1bωi (vuh, ψ

ωi
θ ) =

1
H2Λ

ωi
〈
ψωi

u ,vuh
〉ωi

a , ∀vuh ∈ Vuh(ωi),

dωi (ψωi
θ , vθh) + γ2bωi (ψωi

u , vθh) =
1

H2Λ
ωi

〈
ψωi
θ , vθh

〉ωi

d
, ∀vθh ∈ Vθh(ωi),

(5)

5



where

aωi (ψωi
u ,vuh) =

∫
ωi

σ(ψωi
u ) : ϵ(vuh), bωi (vuh, ψ

ωi
θ ) =

∫
ωi

βψωi
θ ∇ · vuh,

dωi (ψωi
θ , vθh) =

∫
ωi

κ∇ψωi
θ · ∇vθh,〈

ψωi
u ,vuh

〉ωi
a =

∫
ωi

(λ + 2µ)ψωi
u · vuh,

〈
ψωi
θ , vθh

〉ωi

d
=

∫
ωi

κψωi
θ vθh.

In the following text, substituting ωi with K signifies that it maintains the same definition within the region
K. Thus, following the standard finite element discretization, we obtain the following algebraic eigenvalue
problems,

Aωiψωi =
1

H2Λ
ωi Mωiψωi , (6)

where

Aωi =

 Aωi
1 −γ1Aωi

2

γ2Aωi
3 Aωi

4

 ,Mωi =

 Mωi
1 0

0 Mωi
2

 ,
and

(A1)ωi
j1 j1
= aωi (ϕu, j1 , ϕu, j1 ), (A2)ωi

j1 j2
= bωi (ϕu, j1 , ϕθ, j2 ), A3 = AT

2 ,

(A4)ωi
j2 j2
= dωi (ϕθ, j2 , ϕθ, j2 ), (M1)ωi

j1 j1
=

〈
ϕu, j1 , ϕu, j1

〉ωi

a
, (M2)ωi

j2 j2
=

〈
ϕθ, j2 , ϕθ, j2

〉ωi

d
.

ϕu, j ∈ Vuh(ωi) and ϕθ, j ∈ Vθh(ωi), 1 ≤ j1 ≤ dN(ωi), 1 ≤ j2 ≤ N(ωi), and N(ωi) is the number of total fine grid
nodes in ωi.

Then the eigenfunctons {ψωi
l }

Li
l=1 related to the smallest Li eigenvalues are chosen as members of CGMsFEM

space, which is defined by

Vcgm = span
{
Φωi

l |Φ
ωi
l = χ

T
i Id+1ψ

ωi
l , 1 ≤ i ≤ Nv and 1 ≤ l ≤ Li

}
,

where {χi}
Nv
i=1 is a set of partition of unity functions associated with the open cover {ωi}

Nv
i=1 of domain Ω. The

coupling multiscale basis function set {Φωi
l } can be placed in the following matrix

R =
[
Φω1

1 ,Φ
ω1
2 ...,Φ

ω1
L1
,Φω2

1 ,Φ
ω2
2 ...,Φ

ω2
L2
, ...,ΦωNv

1 ,ΦωNv
2 ...,ΦωNv

LNv

]
,

Here, it should be noted that the matrix R only needs to be constructed once, and it can be repeatedly used
for computation.

Remark 2.1. For multi-physics problems, it is more appropriate to select the partition of unit functions {χi}
Nv
i=1

separately for each component. This paper chooses the standard Lagrangian basis functions as the partition of unit
functions. The MsFEM basis functions of the elasticity operator and diffusion operator will result in slightly better
performance.

2.3. Algorithm procedure of CGMsFEM
In the paper, the backward Euler scheme is used for temporal discretization. Let wn = (un

h , θ
n
h) be the

solutions at the n-th time level tn =
∑n

m=1 τm, n ∈ {0, 1, ...,NT}, where τm is the time step. Then we have the
following weak formulation for the Eqs. (3),

a(un
h ,vuh) − b(vuh, θ

n
h) = ⟨fn,vuh⟩ , ∀vuh ∈ Vuh(Ω),

c
(θn

h − θ
n−1
h

τn
, vθh

)
+ d(θn

h , vθh) + b
(un

h − un−1
h

τn
, vθh

)
=

〈
gn, vθ

〉
, ∀vθh ∈ Vθh(Ω),

(7)

Thus, following the standard finite element discretization, Eqs. (7) can be rewritten as follows

Anwn = Bwn−1 + Fn, (8)
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where

An =

 A1 −A2

A3 M′ + τnA4

 ,B =
 0 0

A3 M′

 ,Fn =

 Fn

τnGn

 ,
and

(A1) j1 j1 = a(ϕu, j1 , ϕu, j1 ), (A2) j1 j2 = b(ϕu, j1 , ϕθ, j2 ), A3 = AT
2 ,

(A4) j2 j2 = d(ϕθ, j2 , ϕθ, j2 ), (M′) j2 j2 = c(ϕθ, j2 , ϕθ, j2 ),

(Fn) j1 = (fn, ϕu, j1 ), (Gn) j2 = (gn, ϕθ, j2 ).

Define
An

c = RTAnR, Bc = RTBR, wn
c = (RTR)−1RTwn, Fn

c = (RTR)−1RTFn,

and combining with Eq. (8), the following algebraic system can be given,

An
c wn

c = Bcwn−1
c + Fn

c . (9)

Then the solution wn
c can be calculated by iteration, and the solutions in fine grid can be obtained by use of

the coupling multiscale basis functions,
wn = Rwn

c .

Here, the key difference between CGMsFEM and GMsFEM is the construction of more accurate coupling
multiscale basis functions. The matrix R can be computed offline, and it can be reused in all time steps.
Thus, a much smaller system is solved with CGMsFEM, which can significantly improve the computational
efficiency.

3. Convergence analysis of CGMsFEM

3.1. Interpolation error
Before proving the convergence and error estimates for CGMsFEM, some definitions and Lemmas are

first given. Let w = (u, θ),v = (vu, vθ) ∈ Vu(Ω) × Vθ(Ω). The b(·, ·) is continuous in Vu(Ω) × L2(Ω), and it can
be assumed that there exists a constant C0 such that for all u ∈ Vu(Ω), θ ∈ L2(Ω), we have

bK (u, θ) ≤ C0 ∥u∥a,K ∥θ∥Ld,K , ∀ K ∈ TH,

where

∥θ∥2Ld,K =

∫
K
κθ2.

Also define

∥u∥2La,K =

∫
K

(
λ + 2µ

)
u · u.

And for all u ∈ Vu(Ω), θ ∈ Vθ(Ω), the energy norms can be defined as follows

∥u∥2a,K = aK(u,u), ∥θ∥2d,K = dK(θ, θ).

In the following text, substituting K with ωi signifies that it maintains the same definition within the region
ωi. Meanwhile, the local bilinear functionals can be defined as follows

A
ωi (w,v) = aωi (u,vu) − γ1bωi (vu, θ) + γ2bωi (u, vθ) + dωi (θ, vθ),

M
ωi (w,v) =

∫
ωi

(λ + 2µ)u · vu + κθvθ.
(10)

Then the local eigenvalue problem (4) can be written as

A
ωi (ψωi ,v) =

1
H2Λ

ωiM
ωi (ψωi ,v), ∀v ∈ Vu(ωi) × Vθ(ωi). (11)

7



The obtained eigenvalues can be arranged in ascending order

Λωi
1 ≤ Λ

ωi
2 ≤ · · · ≤ Λ

ωi
L ≤ · · · .

Assume that except for d + 1 zero eigenvalues, all eigenvalues are real numbers and greater than 0, and
define Ṽ (ωi) := Vu(ωi) × Vθ(ωi).

We have

v =
∞∑

l=1

M
ωi (v, ψωi

l )ψωi
l , ∀v ∈ Ṽ (ωi) ,

where {ψωi
l }
∞

l=1 are a set of complete orthogonal basis functions in Ṽ (ωi) with the inner product Mωi (·, ·). It is
easily obtained that

A
ωi (v,v) =

1
H2

∞∑
l=1

M
ωi (v, ψωi

l )2Λωi
l , M

ωi (v,v) =
∞∑

l=1

M
ωi (v, ψωi

l )2. (12)

Inspired by Reference [41], we define the semi-norm by

9v92
s,ωi
=

∞∑
l=1

(
Λωi

l

H2

)s

M
ωi (v, ψωi

l )2 for 0 ≤ s ≤ 2, (13)

and it follows that
9v92

0,ωi
=Mωi (v,v), 9v92

1,ωi
= Aωi (v,v).

It’s important to emphasize that the eigenvalues of the local spectral problem (4) are
{
Λ
ωi
l

H2

}
. Therefore, the

seminorm is defined in this manner. Following the above definitions, we give

Lemma 3.1. Assume that w ∈ Vu(ωi) × Vθ(ωi) and 9w9s,ωi < ∞. For 0 ≤ t ≤ s ≤ 2,Li ≥ d + 1, there holds

9w − Iωi
Li

w92
t,ωi
≤

Λωi
Li+1

H2

t−s

9 w92
s,ωi
, (14)

where Iωi
Li

is the local interpolation operator defined by

I
ωi
Li

w =
Li∑

l=1

M
ωi (w, ψωi

l )ψωi
l .

Proof 3.1. By definition (15), it can be obtained that

9w − Iωi
Li

w92
t,ωi
=

∞∑
l=Li+1

(
Λωi

l

H2

)t

M
ωi (w, ψωi

l )2

=

∞∑
l=Li+1

(
Λωi

l

H2

)t−s (
Λωi

l

H2

)s

M
ωi (w, ψωi

l )2

≤

Λωi
Li+1

H2

t−s ∞∑
l=Li+1

(
Λωi

l

H2

)s

M
ωi (w, ψωi

l )2

≤

Λωi
Li+1

H2

t−s

9 w − Iωi
Li

w92
s,ωi

≤

Λωi
Li+1

H2

t−s

9 w 92
s,ωi

.
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Then the following corollary can be given by this lemma with t = 0, 1.

Corollary 3.1. For all w ∈ Vu(ωi) × Vθ(ωi), 1 ≤ s ≤ 2,Li ≥ d + 1,

M
ωi (w − Iωi

Li
w,w − Iωi

Li
w) ≤

H2s(
Λωi

Li+1

)s 9 w92
s,ωi
,

A
ωi (w − Iωi

Li
w,w − Iωi

Li
w) ≤

H2s−2(
Λωi

Li+1

)s−1 9 w 92
s,ωi

.

(15)

For interpolation operator I: Vu(Ω)×Vθ(Ω)→ Vu(Ω)×Vθ(Ω) and all w = (u, θ) ∈ Vu(Ω)×Vθ(Ω), we define
(Iw)u and (Iw)θ, s.t. Iw = ((Iw)u , (Iw)θ).

Lemma 3.2. For all w = (u, θ) ∈ Vu(Ω) × Vθ(Ω), there holds∫
K

(λ + 2µ) (u − (Imsw)u) · (u − (Imsw)u) + κ (θ − (Imsw)θ)2

≤ NK
H4

ΛK,L+1

∑
yi∈K

9w92
2,ωi
,

(16)

where NK = card {yi : yi ∈ K} and ΛK,L+1 = minyi∈K Λ
ωi
Li+1. Ims : Vu(Ω) × Vθ(Ω)→ Vcgm is the global interpolation

operator, which is defined by

Imsw =
Nv∑
i=1

Li∑
l=1

M
ωi (w, ψωi

l )Φωi
l .

Proof 3.2. Based on the definition of Ims, we have

w − Imsw = w −
Nv∑
i=1

Li∑
l=1

M
ωi (w, ψωi

l )χT
i (x)Id+1ψ

ωi
l

= w −
Nv∑
i=1

χT
i Id+1I

ωi
Li

w

=

Nv∑
i=1

χT
i (x)Id+1

(
w − Iωi

Li
w

)
.

(17)

9



Combining with Eq. (17), the left part of Eq. (16) gives∫
K

(λ + 2µ)

∑
yi∈K

χT
i,uId

(
u −

(
I
ωi
Li

w
)

u

) ·
∑

yi∈K

χT
i,uId

(
u −

(
I
ωi
Li

w
)

u

)
+ κ

∑
yi∈K

χi,θ

(
θ −

(
I
ωi
Li

w
)
θ

)
2

≤ NK

∑
yi∈K

∫
K

(λ + 2µ)
(
χT

i,uId

(
u −

(
I
ωi
Li

w
)

u

))
·

(
χT

i,uId

(
u −

(
I
ωi
Li

w
)

u

))
+ κ

(
χi,θ

(
θ −

(
I
ωi
Li

w
)
θ

))2

≤ NK

∑
yi∈K

∫
ωi

(λ + 2µ)
(
u −

(
I
ωi
Li

w
)

u

)
·

(
u −

(
I
ωi
Li

w
)

u

)
+ κ

(
θ −

(
I
ωi
Li

w
)
θ

)2

= NK

∑
yi∈K

M
ωi (w − Iωi

Li
w,w − Iωi

Li
w)

≤ NK

∑
yi∈K

H4(
Λωi

Li+1

)2 9 w92
2,ωi

≤ NK
H4(
ΛK,L+1

)2

∑
yi∈K

9w 92
2,ωi

.

Lemma 3.3. For all w = (u, θ) ∈ Vu (Ω)×Vθ (Ω) and the definition of Ims, the local interpolation error estimate can
be given as ∥∥∥u − (Imsw)u

∥∥∥
a,K +

∥∥∥θ − (Imsw)θ
∥∥∥

d,K ≤ 2NK

∑
yi∈K

(
C2A

K (w − Imsw,w − Imsw)

+

2C2
1

H2 + C3

 (∥∥∥u − (Imsw)u

∥∥∥
La,K
+

∥∥∥θ − (Imsw)θ
∥∥∥

Ld,K

) , (18)

where C2 =
2

2 − |γ1 − γ2|C0
, C3 =

|γ1 − γ2|C0

2 − |γ1 − γ2|C0
, and C1 is a constant such that

max |∇χi| ≤
C1

H
, ∀ i ≤ Nv.

The proof of this lemma can be found in Appendix A.
Lemma 3.3 directly leads to the following estimation of global interpolation error.

Theorem 3.1. For all w ∈ Vu (Ω) × Vθ (Ω) and definition of Ims, the global interpolation error can be given as∥∥∥u − (Imsw)u

∥∥∥2

a,Ω +
∥∥∥θ − (Imsw)θ

∥∥∥2

d,Ω

≤ 2Nmax

(
C2

H2

ΛL+1
+

(
2C2

1H2 + C3H4
) 1

(ΛL+1)2

)∑
ωi

9w92
2,ωi
,

(19)

where ΛL+1 = minωi Λ
ωi
Li+1 and Nmax = maxK NK.
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Proof 3.3. From Eq. (18), the following estimations can be given as∑
K∈TH

∑
yi∈K

A
K
(
w − Iωi

Li
w,w − Iωi

Li
w

)
=

∑
ωi

A
ωi

(
w − Iωi

Li
w,w − Iωi

Li
w

)
≤

∑
ωi

H2

Λωi
Li+1

9 w92
2,ωi
,

(20)

∑
K∈TH

∑
yi∈K

(∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥
La,K
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥
Ld,K

)
=

∑
ωi

(∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥
La,ωi
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥
Ld,ωi

)
=

∑
ωi

9w − Iωi
Li

w92
0,ωi
≤

∑
ωi

H4(
Λωi

L+1

)2 9 w 92
2,ωi

.

(21)

Then combining the summation of Eq. (18) for all K ∈ TH with Eqs. (20) and (21), the proof is complete.

3.2. Steady state case
Some results for the prior error estimate of the problem (1) will be first given in the steady state case. For

ū ∈ Vu(Ω) and θ̄ ∈ Vθ(Ω), it follows that

a(ū,vu) − b(vu, θ̄) = ⟨f̄,vu⟩a, ∀vu ∈ Vu(Ω),
d(θ̄, vθ) = ⟨ḡ, vθ⟩d, ∀vθ ∈ Vθ(Ω).

(22)

Define VuH = span
{
Φωi

lu

}
and VθH = span

{
Φωi

lθ

}
, where Φωi

l (x) =
(
Φωi

lu (x),Φωi
lθ (x)

)
, (1 ≤ i ≤ Nv, 1 ≤ l ≤ Li). The

discretization form of Eq. (22) is given as

a(ūH,vaH) − b(vuH, θ̄H) = ⟨f̄,vuH⟩a, ∀vuH ∈ VuH,

d(θ̄H, vθH) = ⟨ḡ, vθH⟩d, ∀vθH ∈ VθH.
(23)

Then for all w = (u, θ) ∈ Vu(Ω) × Vθ(Ω), define the Riesz projection operator RH = (RHu (u, θ) ,RHθ (θ)) :
Vu(Ω) × Vθ(Ω)→ VuH × VθH, such that

a(u −RHu (u, θ) ,vuH) − b(vuH, θ −RHθ (θ)) = 0, ∀ vuH ∈ VuH,

d(θ −RHθ (θ) , vθH) = 0, ∀ vθH ∈ VθH.

The following Lemma can be given with reference to [10].

Lemma 3.4. For all w = (u, θ) ∈ Vu(Ω) × Vθ(Ω), and the definition of RH, we have

∥u −RHu(u, θ)∥a ≤ inf
vuH∈VuH

∥u − vuH∥a + C0 ∥θ −RHθ(θ)∥c , (24)

∥θ −RHθ(θ)∥d ≤ inf
vθH∈VθH

∥θ − vθH∥d . (25)

Lemma 3.5. For all r ∈ Ld, and let ϕ ∈ Vθ(Ω) be the solution of the dual problem d(ϕ, vθ) = c(r, vθ),∀ vθ ∈ Vθ(Ω),
and ϕH ∈ VθH be the solution of the discrete problem d(ϕH, vθ) = c(r, vθ),∀vθ ∈ VθH. There holds∥∥∥ϕ − ϕH

∥∥∥
d ≤ C4 ∥r∥c . (26)

where C4 = C
1
2
p κ
−

1
2

min, and Cp is the Poincaré constant.

Proof 3.4. The following equation can first be estimated,∥∥∥ϕ − ϕH

∥∥∥2

d = d
(
ϕ,ϕ − ϕH

)
= c

(
r, ϕ − ϕH

)
≤ ∥r∥c

∥∥∥ϕ − ϕH

∥∥∥
c . (27)

11



C−1
p κmin

∥∥∥ϕ − ϕH

∥∥∥2

c ≤ κmin

∥∥∥∥∇ (
ϕ − ϕH

)∥∥∥∥2

c
≤

∥∥∥ϕ − ϕH

∥∥∥2

d . (28)

Combining Eq. (27) with Eq. (28), it follows that∥∥∥ϕ − ϕH

∥∥∥2

d ≤ C
1
2
p κ
−

1
2

min ∥r∥c
∥∥∥ϕ − ϕH

∥∥∥
d .

Lemma 3.6. For all w = (u, θ) ∈ Vu(Ω) × Vθ(Ω), and the definition of RH, we have

∥u −RHu(u, θ)∥a ≤ max{1,C4C0}C
(
H,Λωi

L+1

)
9 w92,Ω, (29)

∥θ −RHθ(θ)∥d ≤ C
(
H,Λωi

L+1

)
9 w92,Ω, (30)

∥θ −RHθ(θ)∥c ≤ C4C (H,ΛL+1) 9 w92,Ω, (31)

where

C (H,ΛL+1) =
[
C2

H2

ΛL+1
+

(
2C2

1H2 + C3H4
) 1

(ΛL+1)2

] 1
2

, (32)

and 9w92
s,Ω =

∑
ωi∈Ω

9w92
s,ωi

.

Proof 3.5. For all θ ∈ Vθ(Ω), and let r := θ −RHd(θ), it follows

∥θ −RHθ(θ)∥2c = c(r, r) = d(ϕ, r) = d(ϕ − ϕH, r)

≤

∥∥∥ϕ − ϕH

∥∥∥
d ∥r∥d ≤ C4 ∥r∥c ∥r∥d .

Then we have
∥θ −RHθ(θ)∥c ≤ C4 ∥θ −RHθ(θ)∥d . (33)

Moreover, combining Eq. (24) with Eq. (33), it follows

∥u −RHu(u, θ)∥a ≤ inf
vuH∈VuH

∥u − vuH∥a + C4C0 inf
vθH∈VθH

∥θ − vθH∥d .

By the definition of 9w92
s,Ω, the proof is complete.

3.3. The prior error estimate of CGMsFEM
For f and g in problem (1), we have

⟨f̃, vu⟩a = ⟨f, vu⟩,∀ vu ∈ Vu(Ω), ⟨g̃, vθ⟩d = ⟨g, vθ⟩,∀ vθ ∈ Vθ(Ω),

where f̃ ∈ Vu(Ω) and g̃ ∈ Vθ(Ω). Define

Cn(f, g) =
1
2

∥∥∥f̃n
− f̃n

H

∥∥∥2

a + τn

∥∥∥g̃n
− g̃n

H

∥∥∥2

d , ∀ n ∈ 1, · · · ,NT.

For simplicity of notation, let

Cn
1(w) = 4C2

4

(
C2

4 + C2
0max{1,C2

4C2
0}
)
∥∂tw∥L∞(Tn,9·92,Ω) ,

Cn
2(w) = 2C2

4

(
∥∂ttθ∥L∞(Tn,∥·∥c) + C2

0 ∥∂ttu∥L∞(Tn,∥·∥a)

)
.

Then we have the following prior error estimate of the CGMsFEM.

Theorem 3.2. Let w = (u, θ) and wH = (uH, θH) be the unique solution and CGMsFEM solution of problem (1),

12



there holds
1
4

∥∥∥un
− un

H

∥∥∥2

a +
1
4

∥∥∥θn
− θn

H

∥∥∥2

c ≤

n∑
m=1

[
Cm (

f, g
)
+ τmC2 (H,ΛL+1) Cm

1 (w)

+ τ3
mCm

2 (w)
]
+

1
2

(
C2

4 +max
{
1,C2

4C2
0

})
C2 (H,ΛL+1) 9 wn92

2,Ω,

(34)

and
n∑

m=1

1
8
τm

∥∥∥θm
− θm

H

∥∥∥2

d ≤

n∑
m=1

[
Cm (

f, g
)
+ τmC2 (H,ΛL+1) Cm

1 (w)

+τ3
mCm

2 (w)
]
+

n∑
m=1

1
4
τmC2 (H,ΛL+1) 9 wn 92

2,Ω .

(35)

where n ∈ {1, 2, · · · ,NT}.

The proof of this theorem is similar to Theorem 3.1 in Reference [10]. Those interested can refer to the
original source or find a brief imitation in Appendix B. Excluding terms unrelated to H and ΛL+1, it can be
concluded that the energy error of the CGMsFEM solution is primarily controlled by C2 (H,ΛL+1) defined in
Eq. (32). When a sufficient number of basis functions are selected for each subdomain ωi, which implies
that ΛL+1 is sufficiently large, we have C2 (H,ΛL+1) = O( H2

ΛL+1
).

4. Numerical experiments

In this section, we present several numerical examples to evaluate the performance of the proposed
CGMsFEM for the thermomechanical problem (1) and mainly focus on the verification of the accuracy and
efficiency of the CGMsFEM. The computation domain is Ω = [0, 1]2, and the time interval is (0, 1]. The
Dirichlet condition and Neumann boundary conditions for the displacement and temperature fields are
defined as 0 in Γu

D = Γ
θ
D = [0, 1] × 0 and Γu

N = Γ
θ
N = ∂Ω\Γu

D, respectively. The solutions (ucgm, θcgm) of
CGMsFEM will be compared with the reference solutions (ure f , θre f ) of the standard finite element method
and the solutions (ugm, θgm) of GMsFEM. Then, based on Theorem 3.2, the relative energy errors of each
solution and the total relative energy errors are defined as follows

||Eu||e =

( ∫
Ω

σ(Eu) : ϵ(Eu)dx
) 1

2

( ∫
Ω

σ(u) : ϵ(u)dx
) 1

2
, ||Eθ||e =

( ∫
Ω

κ∇Eθ · ∇Eθdx
) 1

2

( ∫
Ω

κ∇θ · ∇θdx
) 1

2
,

||Ew||e =

( ∫
Ω

σ(Eu) : ϵ(Eu) + κ∇Eθ · ∇Eθdx
) 1

2

( ∫
Ω

σ(u) : ϵ(u) + κ∇θ · ∇θdx
) 1

2
.

(36)

Eu represents the displacement error Ecgm
u = ucgm

−ure f or Egm
u = ugm

−ure f , and Eθ represents the temperature
error Ecgm

θ = θcgm
− θre f or Egm

θ = θgm
− θre f . Our numerical experiments are performed on a desktop

workstation with 16 GB of memory and a 3.4 GHz Core i7 CPU.

4.1. Verification of CGMsFEM with periodic microstructure
In this example, the efficiency and accuracy of the CGMsFEM are verified for heterogeneous media with

periodic microstructure. The body force f and heat source g are chosen as

f(x, y) = 0, g(x, y) = 10.

The initial boundary condition is defined as

θ0(x, y) = 500x(1 − x)y(1 − y).
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(a) (b)

Figure 2: Contour plots of the material coefficients in periodic microstructure. (a) Lamé coefficients µ, and λ; (b) Thermal conductivity
coefficient κ, and expansion coefficient β.

Then the Lamé coefficients µ, λ, thermal conductivity coefficient κ, and expansion coefficient β are shown
in Figure 2, where the contrasts are chosen as λmax : λmin = 102 : 1, µmax : µmin = 102 : 1, κmax : κmin = 104 :
1,βmax : βmin = 104 : 1. The corresponding relaxation coefficients γ1 = 0.4, γ2 = 0.04 are given, and the time
step is τ = 0.02. Here, the 200 × 200 fine grid is used for the reference solution, and the 20 × 20 coarse grid
is used for the proposed CGMsFEM and GMsFEM. The number of local coupling multiscale basis functions
for CGMsFEM is fixed at 8, and the total number of GMsFEM multiscal basis functions for displacement u
and θ is also chosen at 8.

Figure 3 demonstrates the difference in eigenfunctions for the CGMsFEM and GMsFEM. It can be seen
that the first three or four eigenfunctions from the local coupling spectral problem of the CGMsFEM can
better represent the microscopic oscillating information than those from the GMsFEM. This is because for
the CGMsFEM, fewer eigenfunctions are needed to represent the physical properties of the microstructure.

Table 1: Comparison of energy errors for CGMsFEM and CGMsFEM

L Eigvalue ||Ecgm
θ
||e ||Egm

θ
||e ||Ecgm

u ||e ||Egm
u ||e ||Ecgm

w ||e ||Egm
w ||e

4 14.80 0.1630 0.4611 0.2048 0.3226 0.1922 0.3734

6 35.56 0.1316 0.4221 0.1687 0.2914 0.1576 0.3395

8 37.54 0.1275 0.4212 0.1420 0.2897 0.1374 0.3382

10 40.86 0.0793 0.4045 0.0790 0.2325 0.0791 0.2995

12 43.65 0.0687 0.3972 0.0728 0.2134 0.0715 0.2865

14 70.87 0.0634 0.3880 0.0543 0.2046 0.0574 0.2779

16 77.68 0.0590 0.3785 0.0383 0.1768 0.0461 0.2602

Figure 4 demonstrates the contour plots of reference solutions (ure f , θre f ), CGMsFEM solutions (ucgm, θcgm),
and GMsFEM solutions (ugm, θgm). It can be concluded that the proposed CGMsFEM has higher accuracy
than the GMsFEM with the same number of multiscale basis functions. For comparison purposes, we cal-
culate the energy errors of CGMsFEM and CGMsFEM as defined by the Eq. (36). The numercal results for
different number L = 4, 6, · · · , 16 of multiscale basis functions are given in Table 1, where the column labeled
’Eigenvalue’ refers toΛL+1 of the CGMsFEM. FFrom the table, we observe that the total relative energy error
||Ecgm

w ||e for CGMsFEM decreases as L increases, and similar results can also be shown for the energy errors
||Ecgm

θ ||e and ||Ecgm
u ||e. Moreover, it can also clearly be found that the energy errors of CGMsFEM with L = 4 are

obviously smaller than those of GMsFEM with L = 16 in Figure 5, which demonstrate that the CGMsFEM is

14



(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(a)ψ
cgm
θ

(b) ψ
cgm
u1

(c) ψ
cgm
u2

(d) ψ
gm
θ

(e) ψ
gm
u1

(f) ψ
gm
u2

Figure 3: Contour plots of 8 eigenfunctions of the CGMsFEM and GMsFEM used in Section 4.1. CGMsFEM: (a) ψcgm
θ

(b) ψcgm
u1

and (c)
ψ

cgm
u2

; GMsFEM: (d) ψgm
θ

(e) ψgm
u1

and (f) ψgm
u2

;
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 4: Contour plots of solutions for periodic microstructure. The reference solutions: (a) ure f
1 (b) ure f

2 and (c) θre f ; The CGMsFEM
solutions: (d) ucgm

1 (e) ucgm
2 and (f) θcgm; The GMsFEM solutions: (g) ugm

1 (h) ugm
2 and (i) θgm.

more efficient than the GMsFEM.

4.2. Application to random microstructure material coefficients
In order to validate the good applicability of CGMsFEM, two kinds of tests (Test A, B) are performed in

this subsection. In test A, heterogeneous media have random microstructure and deterministic coefficients,
and in test B, both the microstructure and coefficients of materials are random.

Test A: Heterogeneous media with random microstructure and deterministic coefficients. In this simulation, the
body force f and heat source g are chosen as

f(x, y) = 0, g(x, y) = 10 × exp
(
−

(x − 0.2)2 + (y − 0.4)2

2 ∗ 0.22

)
.

The initial boundary condition is defined as

θ0(x, y) = cos(πx)cos(πy) + 1.5.

Then the Lamé coefficients µ, λ, Conductivity coefficient κ, and thermal expansion coefficient β are showed
in the left of Figure 6, where the contrasts are chosen as λmax : λmin = 102 : 1, µmax : µmin = 102 : 1, κmax :
κmin = 103 : 1,βmax : βmin = 5.0 × 104 : 1. The corresponding relaxation coefficients γ1 = 0.75, γ2 = 7.0 × 10−2

are given, and the time step is τ = 0.01. Here, the 100 × 100 fine grid is used for reference solution, and
10×10 coarse grid for the proposed CGMsFEM and GMsFEM. The number of local coupling multiscale basis
functions for CGMsFEM are fixed to 10, and the total number of local GMsFEM multiscale basis functions
for displacement u and θ are also chosen as 10.
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(a) (b) (c)

Figure 5: Comparison of relative energy errors of the CGMsFEM and GMsFEM in periodic microstructure. (a) Eθ (b) Eu, and (c) Ew;

Test B: Heterogeneous media with random microstructure and coefficients. In this test, the initial conditions,
boundary conditions, and source terms are the same as in Section 4.1. The material coefficients κ(x; ξ), λ(x; ξ),
µ(x; ξ), and β(x; ξ) satisfy the following logarithmic Gaussian random field

exp
(
GP

(
b0(x),Cov(x1, x2)

))
,

where Cov(x1, x2) = σ2exp(−||x1−x2||
2/l2), x1 and x2 are spatial coordinates inΩ, σ2 is the overal variance, and

l is the length scale. Then we take l = 0.01, σ = 10, b0(x) = 0 for κ(x; ξ), β(x; ξ), and l = 0.01, σ = 10, b0(x) = 0 for
λ(x; ξ), µ(x; ξ). For simplicity, the samples are obtained with the help of Karhunen-Loéve expansion (KLE)
with 50 truncated terms. The right parts of Figure 6 show one sample of κ(x; ξ), λ(x; ξ), µ(x; ξ) and β(x; ξ).
Let the time step size be τn = 0.01. Fine grid size h = 1

100 , coarse grid size H = 1
10 , and relaxation coefficients

γ1 = 0.7, γ2 = 8.0× 10−6 are used for simulation. The number of local coupling multiscale basis functions for
CGMsFEM is fixed at 8, and the total number of local GMsFEM multiscal basis functions for displacement
u and θ is also chosen at 8.

Table 2: Test A: Relative energy errors of the CGMsFEM and GMsFEM with different contrast ratio of βmax and βmin.

Ratio ||Ecgm
θ
||e ||Egm

θ
||e ||Ecgm

u ||e ||Egm
u ||e ||Ecgm

w ||e ||Egm
w ||e

1 × 101 0.0474 0.0946 0.0838 0.2682 0.0474 0.0947

1 × 102 0.0638 0.0946 0.1197 0.2538 0.0638 0.0947

1 × 103 0.0805 0.1647 0.1364 0.5539 0.0822 0.1828

5 × 103 0.1306 0.8367 0.1311 0.7455 0.1308 0.7926

1 × 104 0.1512 0.5599 0.1519 0.5171 0.1512 0.5360

Table 3: Test B: Relative energy errors of the CGMsFEM and GMsFEM with different variance σ of β.

σ ||Ecgm
θ
||e ||Egm

θ
||e ||Ecgm

u ||e ||Egm
u ||e ||Ecgm

w ||e ||Egm
w ||e

2 0.2075 0.3259 0.2124 0.2916 0.0474 0.0947

3 0.2336 0.3410 0.2478 0.2871 0.2072 0.3116

4 0.2739 0.4202 0.2119 0.2665 0.2371 0.3152

5 0.2656 0.4194 0.2135 0.2677 0.2225 0.3048

6 0.4144 0.5782 0.1492 0.2250 0.1781 0.2728
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(a) (c)

(b) (d)

Figure 6: Contour plots of one sample for the material coefficients. Lamé coefficients µ, and λ: (a) Test A and (c) Test B ; Thermal
conductivity coefficient κ, and expansion coefficient β: (b) Test A and (d) Test B .

(a) (b) (c)

Figure 9: Test A: Comparison of relative energy errors for the CGMsFEM and GMsFEM with different contrast ratio of βmax and βmin

(a) Eθ (b) Eu, and (c) Ew, where βc =
βmax
βmin

.

The reference solutions (ure f , θre f ), the CGMsFEM solutions (ucgm, θcgm), and the GMsFEM solutions
(ugm, θgm) of Test A and Test B are presented in Figure 7 and Figure 8. It can be observed that the CGMsFEM
solutions have higher accuracy than the GMsFEM solutions by comparing the reference solutions, which is
consistent with the periodic case. Moreover, in order to explore the influence of different coefficients on the
results, we compare the energy errors of the CGMsFEM and GMsFEM with the change of β. In Test A, the
contrast ratio of βmax and βmin constantly varies, and in Test B, the variance σ is also constantly changed.
Table 2 and Table 3 report the energy errors Eθ, Eu, and (c) Ew of the CGMsFEM and GMsFEM for Test A and
Test B in detail. To make our point more clear, we also show the trend of the energy errors with βmax and βmin
as contrast ratios in Figure 9 for Test A and with σ as the variance of ln(β) in Figure 10 for Test B. For both
the CGMsFEM and GMsFEM, we observe that the energy errors of the CGMsFEM are almost at the same

18



(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 7: Contour plots of solutions for Test A. The reference solutions: (a) ure f
1 (b) ure f

2 and (c) θre f ; The CGMsFEM solutions: (d) ucgm
1

(e) ucgm
2 and (f) θcgm; The GMsFEM solutions: (g) ugm

1 (h) ugm
2 and (i) θgm.

level, while those of the GMsFEM change significantly. Although the whole system becomes extremely
complex with increasing the contrast ratio or the variance of two material coefficients, the energy error of
the whole system stays in a stable state, which is hardly affected by the complexity of the system. This is also
consistent with that in Section 4.1. In addition, the accuracy of the CGMsFEM is always better than that of
the GMsFEM for Tests A and B, even in the more complex cases. Those numerical results demonstrate that
the CGMsFEM is computationally quite efficient and accurate, with wide applicability in many scenarios.

5. Conclusions

In this paper, a novel CGMsFEM is proposed to efficiently simulate the thermomechanical behaviors
of heterogeneous media, which is suitable for both weak and strong coupling settings. To the best of our
knowledge, this paper is the first example of designed and analyzed coupling multiscale basis functions
for the GMsFEM of multiphysics problems. Two relaxation coefficients are innovatively designed for local
regularized coupling spectral problems. The constructed multiscale basis functions can more accurately
capture the multiphysical coupling information of the original thermomechanical problems, which obviously
reduces the order of the global stiffness matrix. Moreover, the corresponding convergence analysis is derived
in detail, where the error of CGMsFEM is closely related to the eigenvalue decay in each local coarse block
and the upper error bound is independent of the two relaxation coefficients. Numerical experiments show
that the proposed CGMsFEM is stable and effective and can provide enough numerical accuracy, which
supports the theoretical results of this paper.

Despite a number of simplifying hypotheses adopted in this study, the CGMsFEM presented here is quite
general and provides a generalized framework to design the coupling basis functions for fully coupled mul-
tiphysics multiscale problems under the ultimate load. It’s worth noting that this regularization technique
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(a) (d) (g)

(b) (e) (h)

(c) (f) (i)

Figure 8: Contour plots of solutions for Test B. The reference solutions: (a) ure f
1 (b) ure f

2 and (c) θre f ; The CGMsFEM solutions: (d) ucgm
1

(e) ucgm
2 and (f) θcgm; The GMsFEM solutions: (g) ugm

1 (h) ugm
2 and (i) θgm.

is not only effective within the framework of the GMsFEM but also applicable to other multiscale methods.
Future work will focus on the analysis of the optimal relaxation coefficients for solving the local coupling
spectral problems, although we find that they can be flexibly chosen without affecting the efficiency and
accuracy of the CGMsFEM through numerical experiments.
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(a) (b) (c)

Figure 10: Test B: Comparison of relative energy errors of the CGMsFEM and GMsFEM with different variance σ of β. (a) Eθ (b) Eu,
and (c) Ew;

Appendix A. The proof of Lemma 3.3

Firstly, the local energy error of the interpolation operator Ims can be given as

aK (u − (Imsw)u ,u − (Imsw)u) + dK (θ − (Imsw)θ , θ − (Imsw)θ)

=

∫
K

2µϵ (u − (Imsw)u) : ϵ (u − (Imsw)u) +
∫

K
λ∇ · (u − (Imsw)u)

∇ · (u − (Imsw)u) +
∫

K
κ∇ (θ − (Imsw)θ) · ∇ (θ − (Imsw)θ)

≡ I1 + I2 + I3.

(A.1)

Define E(u) : Rd
→ Rd×d with E(u) |i j =

1
2

(
ui + u j

)
for all u ∈ Vu(Ω). Let ◦ is Hadamard product. For any

K ∈ TH, we have

ϵ (u − (Imsw)u) = ϵ

∑
yi∈K

χT
i,uId

(
u −

(
I
ωi
Li

w
)

u

)
=

∑
yi∈K

(
E(χi,u) ◦ ϵ

(
u −

(
I
ωi
Li

w
)

u

)
+ E

(
u −

(
I
ωi
Li

w
)

u

)
◦ ϵ

(
χi,u

))
.

Then I1 can be estimated as follows

I1 ≤ 2NK

∑
yi∈K

(∫
K

2µE(χi,u) ◦ ϵ
(
u −

(
I
ωi
Li

w
)

u

)
: E(χi,u) ◦ ϵ

(
u −

(
I
ωi
Li

w
)

u

)
+

∫
K

2µE
(
u −

(
I
ωi
Li

w
)

u

)
◦ ϵ

(
χi,u

)
: E

(
u −

(
I
ωi
Li

w
)

u

)
◦ ϵ

(
χi,u

))
≤ 2NK

∑
yi∈K

(∫
K

2µϵ
(
u −

(
I
ωi
Li

w
)

u

)
: ϵ

(
u −

(
I
ωi
Li

w
)

u

)
+

C2
1

H2

∫
K

2µE
(
u −

(
I
ωi
Li

w
)

u

)
: E

(
u −

(
I
ωi
Li

w
)

u

) ,
≤ 2NK

∑
yi∈K

(∫
K

2µϵ
(
u −

(
I
ωi
Li

w
)

u

)
: ϵ

(
u −

(
I
ωi
Li

w
)

u

)
+

C2
1

H2 2
∫

K
2µ

(
u −

(
I
ωi
Li

w
)

u

)
·

(
u −

(
I
ωi
Li

w
)

u

) .

(A.2)
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Next, I2 can be estimated for any K ∈ TH as follows

∇ · (u − (Imsw)u) =
∑
yi∈K

∇ ·

(
χT

i,uId

(
u −

(
I
ωi
Li

w
)

u

))
=

∑
yi∈K

(
diag(χi,u) : ∇

(
u −

(
I
ωi
Li

w
)

u

)
+ diag

(
u −

(
I
ωi
Li

w
)

u

)
: ∇

(
χi,u

))
,

where diag (·) represents the main diagonal elements of square matrix. Thus,

I2 ≤ 2NK

∑
yi∈K

(∫
K
λ
(
diag(χi,u) : ∇

(
u −

(
I
ωi
Li

w
)

u

))2

+
(
diag(u −

(
I
ωi
Li

w
)

u
) : ∇

(
χi,u

))2
)

≤ 2NK

∑
yi∈K

(∫
K
λ
(
∇ ·

(
u −

(
I
ωi
Li

w
)

u

))2

+
2C2

1

H2

(
u −

(
I
ωi
Li

w
)

u

)
·

(
u −

(
I
ωi
Li

w
)

u

) .
(A.3)

Combining Eqs. (A.2) with (A.3), it follows that

I1 + I2 ≤ 2NK

∑
yi∈K

(∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥2

a,K

+
2C2

1

H2

∫
K

(
2µ + λ

) (
u −

(
I
ωi
Li

w
)

u

)
·

(
u −

(
I
ωi
Li

w
)

u

) . (A.4)

Estimating I3 is similar, and we have

∇ (θ − (Imsw)θ) =
∑
yi∈K

∇

(
χi,θ

(
θ −

(
I
ωi
Li

w
)
θ

))
=

∑
yi∈K

(
χi,θ∇

(
θ −

(
I
ωi
Li

w
)
θ

)
+

(
θ −

(
I
ωi
Li

w
)
θ

)
∇χi,θ

)
.

Substituting it into I3, we obtain

I3 ≤ 2NK

∑
yi∈K

(∫
K
κ
(
χi,θ∇

(
θ −

(
I
ωi
Li

w
)
θ

))
·

(
χi,θ∇

(
θ −

(
I
ωi
Li

w
)
θ

))
+

∫
K
κ
((
θ −

(
I
ωi
Li

w
)
θ

)
∇χi,θ

)
·

((
θ −

(
I
ωi
Li

w
)
θ

)
∇χi,θ

))
≤ 2NK

∑
yi∈K

(∫
K
κ∇

(
θ −

(
I
ωi
Li

w
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θ
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(
θ −

(
I
ωi
Li

w
)
θ

)
+

2C2
1

H2

∫
K
κ
(
θ −

(
I
ωi
Li

w
)
θ

)2
 .

(A.5)
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Combining Eqs. (A.4) and (A.5), it follows that

I1 + I2 + I3 ≤ 2NK

∑
yi∈K

(∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥2

a,K
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥2

d,K
+

2C2
1

H2
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(
I
ωi
Li

w
)

u
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La,K
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ
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Ld,K

) . (A.6)

Moreover, define J =
∥∥∥∥u −

(
I
ωi
Li

w
)

u

∥∥∥∥2

a,K
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥2

d,K
, then

J = AK
(
w − Iωi

Li
w,w − Iωi

Li
w

)
+

(
γ1 − γ2

)
bK

(
u −

(
I
ωi
Li

w
)

u
, θ −

(
I
ωi
Li

w
)
θ

)
≤ A

K
(
w − Iωi

Li
w,w − Iωi

Li
w

)
+ |γ1 − γ2|C0

∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥
a,K

∥∥∥∥θ − (
I
ωi
Li

w
)
θ
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Ld,K

≤ A
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(
w − Iωi

Li
w,w − Iωi

Li
w
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+
|γ1 − γ2|C0

2(∥∥∥∥u −
(
I
ωi
Li

w
)

u

∥∥∥∥2

a,K
+

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥2

Ld,K

)
≤ A

K
(
w − Iωi

Li
w,w − Iωi

Li
w

)
+
|γ1 − γ2|C0

2

(
J +

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥2

Ld,K

)
.

Then let C2 =
2

2 − |γ1 − γ2|C0
, C3 =

|γ1 − γ2|C0

2 − |γ1 − γ2|C0
, and assume

|γ1 − γ2|C0

2
< 1, it follows that

J ≤ C2A
K
(
w − Iωi

Li
w,w − Iωi

Li
w

)
+ C3

∥∥∥∥θ − (
I
ωi
Li

w
)
θ

∥∥∥∥2

Ld,K
. (A.7)

Finally, combining Eqs. (A.1), (A.6) with (A.7), this proof is complete.

Appendix B. The proof of Theorem 3.2

By the definition of Riesz projection operator RH, and we define

ηn
Hu = RHu (un, θn) − un

H, ηn
Hθ = RHθ (θn) − θn

H.

Combining Eq. (7), we have

a
(
ηn

Hu,vuH

)
− b

(
vuH, η

n
Hθ

)
+ c

(
ηn

Hθ − η
n−1
Hθ , vθH

)
+ b

(
ηn

Hu − η
n−1
Hu , vθH

)
+ τnd

(
ηn

Hθ, vθH

)
= ⟨f̃n

− f̃n
H,vuH⟩a + τn⟨g̃n

− g̃n
H, vθH⟩d

+ c
(
δn

Hθ, vθH

)
+ b

(
δn

Hu, vθH

)
, ∀ (vuH, vθH) ∈ Vcgm,

where
δn

Hθ = RHθ (θn) −RHθ

(
θn−1

)
− τn∂tθ

n

δn
Hu = RHu (un, θn) −RHu

(
un−1, θn−1

)
− τn∂tun.

Define vuH = ηn
Hu − η

n−1
Hu ∈ VuH and vθH = ηn

Hθ, it follows
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(B.1)
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Similar to Eq. (28), by use of
∥∥∥ηn

Hθ

∥∥∥
c ≤ C4

∥∥∥ηn
Hθ

∥∥∥
d, we have
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a .

Based on the regularity assumption of problem and Eq. (31), we have

∥∥∥δn
Hθ

∥∥∥
c =
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∫
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n ∥∂ttθ∥L∞(Tn,∥·∥c) .

(B.2)

Similarly, using Eq. (29), we obtain∥∥∥δn
Hu

∥∥∥
a ≤ τnmax{1,C4C0}C (H,ΛL+1) ∥(∂tw)∥L∞(Tn,9·92,Ω) +

1
2
τ2

n ∥∂ttu∥L∞(Tn,∥·∥a) . (B.3)

Combining Eq. (B.2) with Eq. (B.3), it follows

4C2
4τ
−1
n

∥∥∥δn
Hθ

∥∥∥2

c + 4C2
4τ
−1
n C2

0

∥∥∥δn
Hu

∥∥∥2

a ≤ τnC2 (H,ΛL+1) Cn
1(w) + τ3

nCn
2(w).

Let u0
H = RHu

(
u0, θ0

)
and θ0
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Hθ = 0, we have

1
2

∥∥∥ηn
Hu

∥∥∥2

a +
1
2

∥∥∥ηn
Hθ

∥∥∥2

c +

n∑
m=1

1
4
τm

∥∥∥ηm
Hθ

∥∥∥2

d ≤

n∑
m=1

[
Cm (

f, g
)
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(B.4)

Finally, the proof is complete by using the triangle inequality.
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