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Abstract

Stochastic Klein–Gordon–Schrödinger (KGS) equations are important mathematical models and describe
the interaction between scalar nucleons and neutral scalar mesons in the stochastic environment. In this
paper, we propose novel structure-preserving schemes to numerically solve stochastic KGS equations with
additive noise, which preserve averaged charge evolution law, averaged energy evolution law, symplecticity,
and multi-symplecticity. By applying central difference, sine pseudo-spectral method, or finite element
method in space and modifying finite difference in time, we present some charge and energy preserved fully-
discrete scheme for the original system. In addition, combining the symplectic Runge-Kutta method in time
and finite difference in space, we propose a class of multi-symplectic discretizations preserving the geometric
structure of the stochastic KGS equation. Finally, numerical experiments confirm theoretical findings.

Keywords: stochastic KGS equations, averaged charge evolution law, averaged energy evolution law,
symplecticity and multi-symplecticity, structure-preserving scheme

1. Introduction

The KGS equation





idϕ+ (ϕxx + σϕu) dt = 0, (x, t) ∈ O × (0, T ],

dut −
(
uxx − µ2u+ σ|ϕ|2

)
dt = 0, (x, t) ∈ O × (0, T ],

ϕ(0) = ϕ0(x), u(0) = u0(x), ut(0) = v0(x), x ∈ O,
ϕ(t) = 0, u(t) = 0, x ∈ ∂O, t ∈ (0, T ],

(1.1)

where ϕ and u represent a complex scalar nucleon field and a real meson field respectively, µ is mass of a
meson and σ is a coupling real number, was first proposed by Isamu Fukuda and Masayoshi in 1975. The
equation has charge and energy conservation law and models the interaction of scalar nucleons interact-
ing with neutral scalar mesons. Besides, the dynamics of these fields through Yukawa coupling has been
extensively studied and applied in recent decades.

Recently, the stochastic KGS system has been widely concerned, since random effects are needed to take
into account when stochasticity occurs from disturbances in the Klein-Gordon equation (see e.g., [5, 6, 12] and
reference therein), and external perturbation, boundary input, and medium changing (see e.g., [13, 16, 17]
and references therein). Similar to the deterministic case, the existence of local and global solutions of
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stochastic KGS systems can be obtained by a priori estimates in different energy spaces. The averaged
charge and energy of the stochastic KGS equation, as important tools, are not invariant but possess the
evolution law. In addition to the physical characteristics, the stochastic KGS equation possesses stochastic
symplecticity and multi-symplecticity, which are geometric properties. Constructing numerical methods
preserving intrinsic structures and characters of the original system is always an important topic. However,
there has been no result on structure-preserving schemes for stochastic KGS equations till now.

This paper aims to design structure-preserving numerical schemes for stochastic KGS equations with
additive noise. Inspired by the simplicity and easy programmability of the central difference (see [4, 9]),
flexibility to achieve high-order accuracy and deal with complex computational domains of the finite ele-
ment method (see [3]), good stability and rapid convergence accuracy in solving smooth problems of the
sine pseudo-spectral method (see [8, 15]), we employ these three classic numerical methods to approximate
the stochastic KGS equation. The corresponding three semi-discrete schemes preserve both the symplectic
and multi-symplectic geometric structure, as well as the averaged charge and energy evolution law. When
constructing fully-discrete schemes preserving both the averaged charge and energy evolution law, the treat-
ment of the time approximation is of vital importance. For example, the fully-discrete scheme based on the
discrete gradient method in time and central difference in space, inheriting the energy conservation law in
the deterministic case, does not preserve averaged charge and energy evolution law of the stochastic KGS
system. Moreover, if we make use of the fully-discrete scheme preserving both charge and energy conserva-
tion law simultaneously in the deterministic case directly, neither the averaged charge nor energy evolution
law of the stochastic KGS system is preserved. To overcome the difficulty brought by nonlinear coefficients
relying on the interaction between ϕ and u and the coupling effect between nonlinear coefficients and driving
stochastic processes, we propose some novel averaged charge and energy preserved fully-discrete schemes
by introducing some modified terms depending on the increment of Wiener processes. Since the energy-
preserving method can not preserve symplecticity and multi-symplecticity in general, we also employ the
symplectic Runge–Kutta method, especially the parametric symplectic Runge-Kutta methods, to present
various symplectic semi-discretization in time. Combining with the finite difference in the spatial direction,
we proposed fully-discrete schemes, which satisfy the stochastic multi-symplectic conservation law. Finally,
numerical experiments are performed to verify the theoretical result of the stochastic KGS equation.

The paper is organized as follows. In Section 2, we introduce the intrinsic properties of the stochastic
KGS equations with additive noise. In Section 3, we present fully-discrete schemes preserving discrete
averaged energy and charge evolution law based on the central difference, sine pseudo-spectral method,
or finite element method in space. In Section 4, a class of symplectic Runge–Kutta methods and finite
difference are utilized to propose fully-discrete schemes preserving multi-symplecticity. Finally, numerical
experiments are carried out in Section 5.

Some notations to be used:

• φt, φx the derivative of φ with respect to time and space respectively;

• φxx the second derivative of φ with respect to space ;

• |φ| the module of complex-valued function φ;

• Lp([a, b]) the space consisting of p-square integrable complex-valued functions defined on [a, b] with
norm ‖ · ‖Lp ;

• H := L2([a, b]) with innner product 〈φ, ψ〉 = Re(
∫ b

a φ(x)ψ̄(x)dx) for φ, ψ ∈ H and norm ‖ · ‖ := ‖ · ‖L2 ;

• Hm := Hm([a, b]) the usual Sobolev spaces with norm ‖ · ‖m for m > 0;

• H1
0 := H1

0 ([a, b]) the usual Sobolev spaces with norm ‖ · ‖1 and with homogeneous Dirichlet boundary
condition which means H1

0 = {φ|φ(a) = φ(b) = 0, φ ∈ H1};
•

(
Ω,F , {Ft}t≥0 ,P

)
a filtered complete probability space;

• E the expectation operator.
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2. Intrinsic properties of stochastic KGS equation

Consider stochastic KGS equation equipped with the Dirichlet boundary condition as follows





idϕ+ (ϕxx + ϕu) dt = C1dW (t), (x, t) ∈ (a, b)× (0, T ],

dut −
(
uxx − u+ |ϕ|2

)
dt = C2dW̃ (t), (x, t) ∈ (a, b)× (0, T ],

ϕ(0, x) = ϕ0(x), u(0, x) = u0(x), ut(0, x) = µ0(x), x ∈ (a, b),

(2.1)

where i2 = −1, a, b, C1, C2 ∈ R, u0(x), µ0(x) are real-valued functions and ϕ0(x) is a complex-valued

function. Here, W and W̃ are defined as

W (t, x) =W0(t, x) + iW1(t, x) := η1(x)B0(t) + iη1(x)B1(t), W̃ (t, x) = η2(x)B2(t)

where B0(t), B1(t) and B2(t) are independent standard Wiener processes and η1(x), η2(x) are sufficiently
smooth real-valued functions. Set v := 1

2ut and let p and q be the real and imaginary parts of ϕ, respectively.
Then (2.1) has an equivalent formalization





dq = (pxx + up)dt− C1dW0(t),

dp = − (qxx + uq) dt+ C1dW1(t),

dv =
1

2

(
uxx − u+ p2 + q2

)
dt+

1

2
C2dW̃ (t),

du = 2vdt,

(2.2)

where p(0) = Re(ϕ0), q(0) = Im(ϕ0), and v(0) = 1
2µ0. Assume that (ϕ0, u0, µ0) ∈ E0 := H1

0 × H1
0 ×

H, and η1 ∈ H1
0 , η2 ∈ H , and then the stochastic KGS equation (2.1) has a unique solution in space

L2(Ω, C(0, T ; E0)). This result is obtained by a priori estimates for (ϕ, u, ut) in different energy spaces,
and most discussions are similar to those in [7]. If the size of the noises equals 0, i.e., the noise terms are
eliminated, we get the deterministic KGS equation. In this case, it possesses charge conservation law and
energy conservation law, where

• charge:
‖ϕ‖2 = ‖p‖2 + ‖q‖2

• energy:
H(ϕ, u, v) = 2〈u, |ϕ|2〉 − (‖u‖2 + 4‖v‖2 + ‖u‖21 + 2‖ϕ‖21)

Different from the deterministic case of C1, C2 = 0, the charge and energy of (2.1) are not conserved. Below
we shall introduce the averaged charge evolution law.

Lemma 2.1. Assume that (ϕ0, u0, µ0) ∈ E0 := H1
0 ×H1

0 ×H, and η1 ∈ H1
0 , η2 ∈ H. Then the stochastic

KGS equation (2.1) satisfies the following averaged charge evolution law.

E[‖ϕ(t)‖2] = E[‖ϕ0‖2] + 2C2
1‖η1‖2t. (2.3)

Proof. According to the Itô’s formula, we have

‖p(t)‖2 =‖p(0)‖2 −
∫ t

0

〈2p(s), qxx(s) + u(s)q(s)〉ds+
∫ t

0

〈2p(s), C1dW1(s)〉+ C2
1‖η1‖2t,

‖q(t)‖2 =‖q(0)‖2 +
∫ t

0

〈2q(s), pxx(s) + u(s)p(s)〉ds−
∫ t

0

〈2q(s), C1dW0(s)〉+ C2
1‖η1‖2t.

Taking the expectation and using the integration by parts yield the result.
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It is obvious that the averaged charge increases linearly with respect to t. The following lemma presents
the averaged energy evolution law of stochastic KGS equation (2.1).

Lemma 2.2. Assume that (ϕ0, u0, µ0) ∈ E0 := H1
0 ×H1

0 ×H, and η1 ∈ H1
0 , η2 ∈ H. The averaged energy

evolution law of stochastic KGS equation (2.1) meets

E[H(ϕ(t), u(t), v(t))] = E[H(ϕ0, u0, µ0)]− C2
2‖η2‖2t− 4C2

1‖η1‖21t+ 4C2
1E

[ ∫ t

0

〈u(s), η21〉ds
]
. (2.4)

Proof. Notice that H(ϕ(t), u(t), v(t)) = 2〈u(t), |ϕ(t)|2〉− (‖u(t)‖2+4‖v(t)‖2+‖u(t)‖21+2‖ϕ‖21). By the Itô’s
formula, we deduce

‖u(t)‖21 =‖u0‖21 + 4

∫ t

0

〈∇u(s),∇v(s)〉ds,

‖u(t)‖2 =‖u0‖2 +
∫ t

0

〈2u(s), 2v(s)〉ds,

‖v(t)‖2 =‖µ0‖2 +
∫ t

0

〈v(s), uxx(s)〉ds +
∫ t

0

〈v(s),−u(s) + |ϕ(s)|2〉ds

+

∫ t

0

〈v(s), C2dW2(s)〉+
1

4

∫ t

0

〈C2η2, C2η2〉ds.

Combining the above three equations, we obtain

‖u(t)‖2 + 4‖v(t)‖2 + ‖u(t)‖21 − ‖u0‖2 − 4‖µ0‖2 − ‖u0‖21

=4

∫ t

0

〈v(s), |ϕ(s)|2〉ds+ 4C2

∫ t

0

〈v(s), dW2(s)〉+ C2
2‖η2‖2t.

For the terms ‖ϕ(t)‖21 and 〈u(t), |ϕ(t)|2〉, a straight calculation yields

‖p(t)‖21 + ‖q(t)‖21 − ‖p(0)‖21 − ‖p(0)‖21

=−
∫ t

0

〈2px(s), qxxx(s) + ux(s)q(s) + u(s)qx(s)〉ds +
∫ t

0

〈2px(s), C1d(W1)x(s)〉

+

∫ t

0

〈2qx(s), pxxx(s) + ux(s)p(s) + u(s)px(s)〉ds−
∫ t

0

〈2qx(s), C1d(W0)x(s)〉

+

∫ t

0

〈C1(η1)x, C1(η1)x〉ds+
∫ t

0

〈C1(η1)x, C1(η1)x〉ds

=2

∫ t

0

〈∇ϕ(s), i∇u(s)ϕ(s)〉ds − 2C1

∫ t

0

〈∇ϕ(s), i∇dW (s)〉 + 2C2
1‖η1‖21t,

and

〈u(t), |ϕ(t)|2〉 − 〈u0, |ϕ0|2〉

=

∫ t

0

〈2v(s), |ϕ(s)|2〉ds−
∫ t

0

〈u(s), 2p(s)(qxx(s) + u(s)q(s))〉ds +
∫ t

0

〈u(s), 2p(s)C1dW1(s)〉

+

∫ t

0

〈u(s), 2q(s)(pxx(s) + u(s)p(s)〉ds−
∫ t

0

〈u(s), 2q(s)C1dW0(s)〉+ 2

∫ t

0

〈u(s), C2
1η

2
1〉ds

=

∫ t

0

〈2v(s), |ϕ(s)|2〉ds+ 2

∫ t

0

〈∇ϕ(s), i∇u(s)ϕ(s)〉ds + 2C1

∫ t

0

〈u(s), p(s)dW1(s)〉

− 2C1

∫ t

0

〈u(s), q(s)dW0(s)〉+ 2C2
1

∫ t

0

〈u(s), η21〉ds.
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Combining the above equations leads to

2〈u(t), |ϕ(t)|2〉 − (‖u(t)‖2 + 4‖v(t)‖2 + ‖u(t)‖21 + 2‖ϕ(t)‖21)
=2〈u0, |ϕ0|2〉 − (‖u0‖2 + 4‖µ0‖2 + ‖u0‖21 + 2‖ϕ0‖21)− 4C2

1‖η1‖21t− C2
2‖η2‖2t

+ 4C2
1

∫ t

0

〈u(s), η21〉ds− 4

∫ t

0

〈v(s), C2dW2(s)〉 + 4C1

∫ t

0

〈∇ϕ(s), i∇dW (s)〉

+ 4C1

∫ t

0

〈u(s), p(s)dW1(s)〉 − 4C1

∫ t

0

〈u(s), q(s)dW0(s)〉.

Taking expectation completes the proof.

The stochastic KGS equation can also be rewritten as an infinite-dimensional stochastic Hamiltonian
system. In detail, denoting

H(p, q, u, v) =
1

2
〈u, |ϕ|2〉 − 1

4
(‖u‖2 + 4‖v‖2 + ‖u‖21 + 2‖p‖21 + 2‖q‖21),

H0(p, q, u, v) := −C1

∫ b

a

pdx, H1(p, q, u, v) := −C1

∫ b

a

qdx, H2(p, q, u, v) :=
C2

2

∫ b

a

udx,

we have 



dp = −δH
δq
dt− δH1

δq
dW1(t), p(0) = Re(ϕ0),

du = −δH
δv
dt, u(0) = u0,

dq =
δH

δp
dt+

δH0

δp
dW0(t), q(0) = Im(ϕ0),

dv =
δH

δu
dt+

δH2

δu
dW̃ (t), v(0) =

1

2
µ0.

(2.5)

One of the inherent canonical properties of the infinite-dimensional stochastic Hamiltonian system is the
infinite-dimensional symplecticity of its flow. For (2.1) or (2.5), the associated symplectic form is given by

ω̄(t) =

∫ b

a

(dq(t) ∧ dp(t) + dv(t) ∧ du(t))dx,

where the overbar on ω is a reminder that differential two-forms dq ∧ dp and dv ∧ du are integrated over
the space, and d denotes the differential with respect to the initial value.

Lemma 2.3. Assume (ϕ0, u0, µ0) ∈ E0 := H1
0 × H1

0 × H, η1 ∈ H1
0 , η2 ∈ H, and that the solution of

stochastic KGS equation (2.1) is differentiable with respect to the initial data. Then (2.1) satisfies the

infinite-dimensional stochastic symplectic structure, i.e.,

ω̄(t) = ω̄(0) :=

∫ b

a

(dq(0) ∧ dp(0) + dµ0 ∧ du0)dx.

The lemma implies that the spatial integral of the oriented areas of projections onto the coordinate
planes is an integral invariant. As shown above, (2.1) is regarded as a stochastic evolution equation in time.
When the spatial variable is also of interest, both the stochastic multi-symplectic Hamiltonian system and
stochastic multi-symplectic structure are involved.

Lemma 2.4. The stochastic KGS equation (2.1) satisfies the stochastic multi-symplectic conservation law.

Proof. Let ϕ(t) = p(t) + iq(t), ϕx(t) = f(t) + ig(t) and set r := ut, w := ux. Then the stochastic KGS
equation (2.1) can be reformulated as

Kdz+ Lzxdt = ∇S(z)dt +∇S0(z)dW0(t) +∇S1(z)dW1(t) +∇S2(z)dW̃ (t), (2.6)
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where z = (p, q, f, g, u, r, w)⊤ and

S(z) = −1

2
u(p2 + q2)− 1

2
(f2 + g2) +

1

4
(u2 + r2 − w2),

S0(z) = C1p, S1(z) = C1q, S2(z) = −1

2
C2u,

K =




0 −1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 − 1

2 0
0 0 0 0 1

2 0 0
0 0 0 0 0 0 0




, L =




0 0 1 0 0 0 0
0 0 0 1 0 0 0
−1 0 0 0 0 0 0
0 −1 0 0 0 0 0
0 0 0 0 0 0 1

2
0 0 0 0 0 0 0
0 0 0 0 − 1

2 0 0




.

From (2.6) it follows that (2.1) possesses the stochastic multi-symplectic conservation law locally

dt (dz ∧Kdz) + ∂x (dz ∧ Ldz) = 0, a.s., (2.7)

equivalently,

d(2dq ∧ dp+ dr ∧ du) + ∂x(2dp ∧ df + 2dq ∧ dg + du ∧ dw)dt = 0, a.s.,

which implies the result.

As shown above, the stochastic Klein–Gordon–Schrödinger equation possesses the infinite-dimensional
stochastic symplectic structure, stochastic multi-symplectic conservation law, averaged charge evolution law,
and averaged energy evolution law. Now we introduce the fully-discrete schemes inheriting the properties
of the original system.

3. Fully-discrete schemes preserving averaged energy and charge evolution law

In this section, we introduce fully-discrete schemes, which preserve both the averaged charge evolution
law and energy evolution law of (2.1).

For spatial discretization, we first introduce a uniform partition with xi = a+ ih, 0 ≤ i ≤ M , where M
is a positive integer, Ωh = {xi | 1 ≤ i ≤M − 1} , Ii = (xi, xi+1) and h = (b− a)/M denotes the spatial step
size. Denoting the approximations of p(xi, t), q(xi, t), v(xi, t), u(xi, t) at xi ∈ Ωh by Pi(t), Qi(t), Vi(t), Ui(t)
and making use of the central difference, we have





dQi(t) =
(
δ2xPi(t) + Ui(t) · Pi(t)

)
dt− C1η1(xi)dB0(t),

dPi(t) = −
(
δ2xQi(t) + Ui(t) ·Qi(t)

)
dt+ C1η1(xi)dB1(t),

dVi(t) =
1
2

(
δ2xUi(t)− Ui(t) + Pi(t) · Pi(t) +Qi(t) ·Qi(t)

)
dt+ 1

2C2η2(xi)dB2(t),

dUi(t) = 2Vi(t)dt.

(3.1)

where δ2xPi = (Pi−1 − 2Pi + Pi+1) /h
2, δ2xQi = (Qi−1 − 2Qi +Qi+1) /h

2, and δ2xUi = (Ui−1 − 2Ui + Ui+1) /h
2

for i ∈ {1, . . . ,M − 1} approximate pxx, qxx and uxx at xi ∈ Ωh , respectively. Let

PM = (P1, P2, . . . , PM−1)
⊤
, QM = (Q1, Q2, . . . , QM−1)

⊤
,

UM = (U1, U2, . . . , UM−1)
⊤
, VM = (V1, V2, . . . , VM−1)

⊤
,

η1 = (η1(x1), η1(x2), . . . , η1(xM−1))
⊤ , η2 = (η2(x1), η2(x2), . . . , η2(xM−1))

⊤ ,
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and

A =
1

h2




−2 1 0 0 · · · 0 0 0

1 −2 1 0 · · · 0 0 0
...

...
...

...
...

...
...

0 0 0 0 · · · 1 −2 1

0 0 0 0 · · · 0 1 −2




(M−1)×(M−1)

. (3.2)

We obtain the semi-discretization (3.1) in matrix-vector form as follows





dQM (t) = (APM (t) +UM (t) ·PM (t)) dt− C1η1dB0(t),

dPM (t) = − (AQM (t) +UM (t) ·QM (t)) dt+ C1η1dB1(t),

dVM (t) =
1

2
(AUM (t)−UM (t) +PM (t) ·PM (t) +QM (t) ·QM (t)) dt+

1

2
C2η2dB2(t),

dUM (t) = 2VM (t)dt.

(3.3)

Here, UM (t) · PM (t) denotes the components multiplication one by one between UM (t) and PM (t), the
same as UM (t) ·QM (t),PM (t) ·PM (t),QM (t) ·QM (t). Denote the inner products of discrete Hilbert space

l2h by 〈f, g〉h = h
M−1∑
i=1

Re(fiḡi) and ‖f‖h =
√
〈f, f〉h. As a result, the charge and energy of (3.3) read

N (PM ,QM ) = ‖PM‖2h + ‖QM‖2h,
H(PM ,QM ,UM ,VM ) = 2〈UM ,PM ·PM +QM ·QM 〉h − ‖UM‖2h − 4‖VM‖2h

+ 〈UM ,AUM 〉h + 2〈PM ,APM 〉h + 2〈QM ,AQM 〉h,

respectively. The central difference (3.3) preserves the averaged charge and energy evolution law, which are
shown in the following theorems.

Theorem 3.1. Assume (ϕ0, u0, µ0) ∈ E0 := H1
0 × H1

0 × H, η1 ∈ H1
0 , η2 ∈ H. The averaged charge for

semi-discretization (3.3) has the following evolutionary relationship

E[N (PM (t),QM (t))] = E[N (PM (0),QM (0))] + 2C2
1‖η1‖2ht. (3.4)

Proof. By the Itô’s formula for ‖PM (t)‖2h and ‖QM (t)‖2h, respectively, we deduce

‖PM (t)‖2h =‖PM (0)‖2h −
∫ t

0

〈2PM (s),AQM (s) +UM (s) ·QM (s)〉hds+
∫ t

0

〈2PM (s), C1η1〉hdB1(s)

+ C2
1‖η1‖2ht,

‖QM (t)‖2h =‖QM (0)‖2h +

∫ t

0

〈2QM (s),APM (s) +UM (s) ·PM (s)〉hds−
∫ t

0

〈2QM (s), C1η1〉hdB0(s)

+ C2
1‖η1‖2ht.

Making use of the symmetric property of matrix A i.e., 〈PM (s),AQM (s)〉h = 〈QM (s),APM (s)〉h and
taking the expectation yield the result.

Theorem 3.2. Assume (ϕ0, u0, µ0) ∈ E0 := H1
0 ×H1

0 ×H, η1 ∈ H1
0 , η2 ∈ H. The semi-discretization (3.3)

has the following averaged energy evolution law

E[H(PM (t),QM (t),UM (t),VM (t))]

=E[H(PM (0),QM (0),UM (0),VM (0))]− C2
2Q2t+ 4C2

1Q̃1t+ 4C2
1E

[ ∫ t

0

〈UM (s),η1 · η1〉hds
]
, (3.5)

where Q2 = ‖η2‖2h, Q̃1 = 〈η1,Aη1〉h.
7



Proof. Applying the Itô’s formula to ‖UM (t)‖2h and ‖VM (t)‖2h, we obtain

‖UM (t)‖2h =‖UM (0)‖2h + 4

∫ t

0

〈UM (t),VM (t)〉hds,

‖VM (t)‖2h =‖VM (0)‖2h +

∫ t

0

〈VM (s),−UM (s) +PM (s) ·PM (s) +QM (s) ·QM (s)〉hds

+

∫ t

0

〈VM (s), AUM (s)〉hds+
∫ t

0

〈VM (s), C2η2〉hdB2(t) +
1

4
C2

2‖η2‖2ht,

〈UM (t), AUM (t)〉h =〈UM (0), AUM (0)〉h + 2

∫ t

0

〈dUM (s)

ds
,AUM (s)

〉
h
ds

=〈UM (0), AUM (0)〉h + 4

∫ t

0

〈VM (s), AUM (s)〉hds.

Based on the above three equations, we have

E[‖UM (t)‖2h + 4‖VM (t)‖2h − 〈UM (t), AUM (t)〉h]− E[‖UM (0)‖2h + 4‖VM (0)‖2h − 〈UM (0), AUM (0)〉h]

=E

[ ∫ t

0

4〈VM (s),PM (s) ·PM (s) +QM (s) ·QM (s)〉hds
]
+ C2

2‖η2‖2ht.
(3.6)

A straight calculation leads to

〈UM (t),PM (t) ·PM (t)〉h − 〈UM (0),PM (0) ·PM (0)〉h

=

∫ t

0

2〈VM (s),PM (s) ·PM (s)〉hds−
∫ t

0

2〈UM (s),PM (s) · (AQM (s) +UM (s) ·QM (s))〉hds

+ 2C1

∫ t

0

〈UM (s),PM (s) · η1〉hdB1(s) + C2
1

∫ t

0

〈UM (s),η1 · η1〉hds.

〈UM (t),QM (t) ·QM (t)〉h − 〈UM (0),QM (0) ·QM (0)〉h

=

∫ t

0

2〈VM (s),QM (s) ·QM (s)〉hds+
∫ t

0

2〈UM (s),QM (s) · (APM (s) +UM (s) ·PM (s))〉hds

− 2C1

∫ t

0

〈UM (s),QM (s) · η1〉hdB0(s) + C2
1

∫ t

0

〈UM (s),η1 · η1〉hds.

〈PM (t),APM (t)〉h − 〈PM (0),APM (0)〉h

=−
∫ t

0

2〈APM (s),AQM (s) +UM (s) ·QM (s)〉hds+ 2C1

∫ t

0

〈APM (s),η1〉hdB1(s) + C2
1

∫ t

0

〈Aη1,η1〉hds.

〈QM (t),AQM (t)〉h − 〈QM (0),AQM (0)〉h

=

∫ t

0

2〈AQM (s),APM (s) +UM (s) ·PM (s)〉hds− 2C1

∫ t

0

〈AQM (s),η1〉hdB0(s) + C2
1

∫ t

0

〈Aη1,η1〉hds.

Combining the above equations and taking expectation complete proof.

For any T > 0, we partition the time domain [0, T ] uniformly with nodes tn = n∆t, n = 0, 1, . . . , N
and N = [T/∆t]. The fully-discrete scheme preserving charge and energy evolution law also depends on
the numerical discretization in time, which confronts the difficulty brought by the treatment of the time
approximation on both drift and diffusion coefficients. By introducing some modified terms and taking
advantage of finite difference method to solve (3.3), we have the following fully-discrete scheme

Pn
M =Pn−1

M −∆t

(
A
Qn

M +Qn−1
M

2
+

1

2
Un

M ·
(
Qn

M +Qn−1
M

))
+ C1η1∆B

n
1

8



+
1

2
∆tC1∆B

n
0 (Aη1 +Un

M · η1) , (3.7a)

Qn
M =Qn−1

M +∆t

(
A
Pn

M +Pn−1
M

2
+

1

2
Un

M ·
(
Pn

M +Pn−1
M

))
− C1η1∆B

n
0

+
1

2
∆tC1∆B

n
1 (Aη1 +Un

M · η1) , (3.7b)

Vn
M =Vn−1

M +
1

2
∆t

(
A
Un

M +Un−1
M

2
− Un

M +Un−1
M

2
+Pn−1

M ·Pn−1
M +Qn−1

M ·Qn−1
M

)
(3.7c)

+
1

2
C2η2∆B

n
2 +∆t

(
C1P

n−1
M · η1∆B

n
1 − C1Q

n−1
M · η1∆B

n
0 +∆tC2

1η1 · η1

)
,

Un
M =Un−1

M +∆t
(
Vn

M +Vn−1
M

)
+

1

2
∆tC2η2∆B

n
2 , (3.7d)

where ∆Bn
0 = B0(tn)−B0(tn−1), ∆B

n
1 = B1(tn)−B1(tn−1), ∆B

n
2 = B2(tn)−B2(tn−1).

Theorem 3.3. Assume (ϕ0, u0, µ0) ∈ E0 := H1
0 × H1

0 × H, η1 ∈ H1
0 , η2 ∈ H. The averaged charge for

fully-discrete scheme (3.7) has the following evolutionary relationship

E[N (Pn
M ,Qn

M )] = E[N (P0
M ,Q0

M )] + 2C2
1‖η1‖2htn,

where n ∈ {0, 1, . . . , N}.
Proof. From (3.7) it follows that the associated one-step approximation is

P
1

M = P0
M + C1∆W1

1, Q
1

M = Q0
M − C1∆W1

0, V
1

M = V0
M +

1

2
C2∆W1

2, U
1

M = U0
M ,

P1
M = P

1

M −∆t

(
A
Q1

M +Q
1

M

2
+

1

2
U1

M ·
(
Q1

M +Q
1

M

))
,

Q1
M = Q

1

M +∆t

(
A
P1

M +P
1

M

2
+

1

2
U1

M ·
(
P1

M +P
1

M

))
, (3.8)

V1
M = V

1

M +∆t

(
1

2
A
U1

M +U
1

M

2
− 1

2

U1
M +U

1

M

2
+

1

2

(
P

1

M ·P1

M +Q
1

M ·Q1

M

))
,

U1
M = U

1

M +∆t
(
V1

M +V
1

M

)
,

where ∆W1
0 = η1(B0(h) − B0(0)), ∆W1

1 = η1(B1(h) − B1(0)), and ∆W1
2 = η2(B2(h) − B2(0)). Taking

expectation leads to

E[〈P1

M ,P
1

M 〉h + 〈Q1

M ,Q
1

M 〉h] = E[〈P0
M ,P

0
M 〉h + 〈Q0

M ,Q
0
M 〉h] + 2C2

1‖η1‖2h∆t,

Making use of (3.8), we obtain

〈P1
M ,P

1
M 〉h − 〈P1

M ,P
1

M 〉h = −∆t
〈
A
Q1

M +Q
1

M

2
+

1

2
U1

M ·
(
Q1

M +Q
1

M

)
,P1

M +P
1

M

〉
h
,

〈Q1
M ,Q

1
M 〉h − 〈Q1

M ,Q
1

M 〉h = ∆t
〈
A
P1

M +P
1

M

2
+

1

2
U1

M ·
(
P1

M +P
1

M

)
,Q1

M +Q
1

M

〉
h
.

Taking advantage of the symmetric property of matrix A and taking expectation, we derive the result.

Theorem 3.4. Assume (ϕ0, u0, µ0) ∈ E0 := H1
0 × H1

0 × H, η1 ∈ H1
0 , η2 ∈ H. The averaged energy for

fully-discrete scheme (3.7) has the following evolutionary relationship

E[H(Pn
M ,Q

n
M ,U

n
M ,V

n
M )]

9



=E[H(P0
M ,Q

0
M ,U

0
M ,V

0
M )]− C2

2Q2tn + 4C2
1Q̃1tn + 4C2

1

n−1∑

i=0

E[〈Ui
M ,η1 · η1〉h]∆t,

where n ∈ {0, 1, . . . , N}, Q2 = ‖η2‖2h, Q̃1 = 〈η1,Aη1〉h.

Proof. By the one-step approximation (3.8),

〈U1

M ,U
1

M 〉h = 〈U0
M ,U0

M 〉h, 〈U1

M ,AU
1

M 〉h = 〈U0
M ,AU0

M 〉h,

〈V1

M ,V
1

M 〉h = 〈V0
M ,V

0
M 〉h + 〈V0

M , C2∆W1
2〉h +

C2
2

4
Q2∆t,

〈P1

M ,AP
1

M 〉h = 〈P0
M ,AP0

M 〉h + 2〈AP0
M , C1∆W1

1〉h + C2
1Q̃1∆t,

〈Q1

M ,AQ
1

M 〉h = 〈Q0
M ,AQ0

M 〉h − 2〈AQ0
M , C1∆W1

0〉h + C2
1Q̃1∆t,

〈U1

M ,P
1

M ·P1

M +Q
1

M ·Q1

M 〉h = 〈U0
M ,P0

M ·P0
M +Q0

M ·Q0
M 〉h − 2〈U0

M , C1Q
0
M ·∆W1

0〉h
+ 2〈U0

M , C1P
0
M ·∆W1

1〉h + C2
1 〈U0

M ,∆W1
0 ·∆W1

0〉h + C2
1 〈U0

M ,∆W1
1 ·∆W1

1〉h.

Further we employ the definition of H, take expectation, and then obtain

E[H(P
1

M ,Q
1

M ,U
1

M ,V
1

M )]

=E[H(P0
M ,Q

0
M ,U

0
M ,V0

M )]− C2
2Q2∆t+ 4C2

1Q̃1∆t+ 4C2
1E[〈U0

M ,η1 · η1〉h]∆t.

Moreover, from (3.8) it follows that

〈P1
M −P

1

M ,A(P1
M +P

1

M )〉h = −∆t
〈
A
Q1

M +Q
1

M

2
+

1

2
U1

M ·
(
Q1

M +Q
1

M

)
,A(P1

M +P
1

M )
〉
h
,

〈Q1
M −Q

1

M ,A(Q1
M +Q

1

M )〉h = ∆t
〈
A
P1

M +P
1

M

2
+

1

2
U1

M ·
(
P1

M +P
1

M

)
,A(Q1

M +Q
1

M )
〉
h
,

P1
M ·P1

M +Q1
M ·Q1

M = P
1

M ·P1

M +Q
1

M ·Q1

M −∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M )

+ ∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M ),

and

〈U1
M −U

1

M ,U
1
M +U

1

M 〉h = 〈∆t(V1
M +V

1

M ),U1
M +U

1

M 〉h,
〈U1

M −U
1

M ,A(U1
M +U

1

M )〉h = 〈∆t(V1
M +V

1

M ),A(U1
M +U

1

M )〉h,
〈V1

M −V
1

M ,V
1
M +V

1

M 〉h

=
∆t

4

〈
A(U1

M +U
1

M )− (U1
M +U

1

M ) +P1
M ·P1

M +Q1
M ·Q1

M +P
1

M ·P1

M +Q
1

M ·Q1

M

+∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M )−∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M ),V1
M +V

1

M

〉
h
.

Then we obtain

2〈U1
M ,P

1
M ·P1

M +Q1
M ·Q1

M 〉h

=〈U1
M +U

1

M ,P
1

M ·P1

M +Q
1

M ·Q1

M −∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M ) + ∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M )〉h

+ 〈∆t(V1
M +V

1

M ),P1
M ·P1

M +Q1
M ·Q1

M 〉h
10



=〈U1
M +U

1

M ,P
1

M ·P1

M +Q
1

M ·Q1

M 〉h + 〈∆t(V1
M +V

1

M ),P1
M ·P1

M +Q1
M ·Q1

M 〉h

− 〈U1
M +U

1

M ,∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M )〉h + 〈U1
M +U

1

M ,∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M )〉h.

Since U1
M +U

1

M = 2U1
M +∆t(V1

M +V
1

M ),

2〈U1
M ,P

1
M ·P1

M +Q1
M ·Q1

M 〉h
=〈2U1

M ,P
1

M ·P1

M +Q
1

M ·Q1

M 〉h + 〈∆t(V1
M +V

1

M ),P
1

M ·P1

M +Q
1

M ·Q1

M 〉h

+ 〈∆t(V1
M +V

1

M ),P1
M ·P1

M +Q1
M ·Q1

M 〉h − 〈U1
M +U

1

M ,∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M )〉h

+ 〈U1
M +U

1

M ,∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M )〉h

=2〈U1

M ,P
1

M ·P1

M +Q
1

M ·Q1

M 〉h +∆t〈V1
M +V

1

M ,P
1
M ·P1

M +Q1
M ·Q1

M +P
1

M ·P1

M +Q
1

M ·Q1

M 〉h

−
〈
U1

M +U
1

M ,∆tA
Q1

M +Q
1

M

2
· (P1

M +P
1

M )
〉
h
+
〈
U1

M +U
1

M ,∆tA
P1

M +P
1

M

2
· (Q1

M +Q
1

M )
〉
h
.

Combining the above equations leads to

E[H(P1
M ,Q

1
M ,U

1
M ,V

1
M )] = E[H(P

1

M ,Q
1

M ,U
1

M ,V
1

M )], (3.9)

which finishes the proof.

Remark 3.5. If we use the midpoint method, we obtain a fully-discrete scheme as follows

Pn
M =Pn−1

M −∆t

(
A
Qn

M +Qn−1
M

2
+

1

4

(
Un

M +Un−1
M

)
·
(
Qn

M +Qn−1
M

))
+ C1η1∆B

n
1

+
1

2
∆tC1∆B

n
0

(
Aη1 +

Un
M +Un−1

M

2
· η1

)
, (3.10a)

Qn
M =Qn−1

M +∆t

(
A
Pn

M +Pn−1
M

2
+

1

4

(
Un

M +Un−1
M

)
·
(
Pn

M +Pn−1
M

))
− C1η1∆B

n
0

+
1

2
∆tC1∆B

n
1

(
Aη1 +

Un
M +Un−1

2
· η1

)
, (3.10b)

Vn
M =Vn−1

M +
1

2
∆t

(
A
Un

M +Un−1
M

2
− Un

M +Un−1
M

2
+

1

2

(
Pn−1

M ·Pn−1
M +Qn−1

M ·Qn−1
M

))

+
1

2
C2η2∆B

n
2 +

1

2
∆t
(
C1P

n−1
M · η1∆B

n
1 − C1Q

n−1
M · η1∆B

n
0 +∆tC2

1η1 · η1

)
, (3.10c)

Un
M =Un−1

M +∆t
(
Vn

M +Vn−1
M

)
+

1

2
∆tC2η2∆B

n
2 , (3.10d)

which preserves both the averaged energy evolution law and averaged charge evolution law via similar argu-

ments.

When simulating various partial differential equations, sine pseudo-spectral methods play an impor-
tant role due to their superior properties like high-order accuracy, good stability, and high efficiency
(see [8, 15]). Now we adopt the sine pseudo-spectral method to approximate the stochastic KGS equa-
tion (2.2) in space. Concretely, we let IM be the trigonometric polynomial interpolation operator onto
SM := span{sin (ℓµ(x− a)) , ℓ = 1, 2, . . . ,M − 1}, with µ = π

b−a , i.e.,

(IMu) (x) :=

M−1∑

ℓ=1

ũℓ sin (ℓµ(x− a)) , ũℓ :=
2

M

M−1∑

i=1

ui sin (ℓµ (xi − a)) ,

11



where ui is interpreted as u (xi). Substituting ũℓ into IMu, we derive

(IMu) (x) =

M−1∑

i=1

uiXi(x) (3.11)

with the interpolation basis function

Xi(x) =
2

M

M−1∑

ℓ=1

sin (ℓµ(xi − a)) sin (ℓµ (x− a)) . (3.12)

To obtain an approximation of the second-order derivative, we differentiate Xi(x) twice, evaluate the re-
sulting expressions of Xi(x) at the collocation points xj , and then derive the elements of second-order

differentiation operator Ã as follows

Ãi,j =





(−1)i+j+1µ
2

2

[
csc2

(µ
2
(i − j)h

)
− csc2

(µ
2
(i+ j)h

)]
, if i 6= j,

− µ2

6
− M2µ2

3
+
µ2

2
csc2 (iµh) , if i = j.

(3.13)

Applying the sine pseudo-spectral method, we derive the semi-discrete scheme in matrix-vector form





dQM (t) =
(
ÃPM (t) +UM (t) ·PM (t)

)
dt− C1η1dB0(t),

dPM (t) = −
(
ÃQM (t) +UM (t) ·QM (t)

)
dt+ C1η1dB1(t),

dVM (t) =
1

2

(
ÃUM (t)−UM (t) +PM (t) ·PM (t) +QM (t) ·QM (t)

)
dt+

1

2
C2η2dB2(t),

dUM (t) = 2VM (t)dt,

(3.14)

Applying the modified techniques to time discretization, we have the fully-discrete scheme

Pn
M =Pn−1

M −∆t

(
Ã
Qn

M +Qn−1
M

2
+

1

2
Un

M ·
(
Qn

M +Qn−1
M

))
+ C1η1∆B

n
1

+
1

2
∆tC1∆B

n
0

(
Ãη1 +Un

M · η1

)
, (3.15a)

Qn
M =Qn−1

M +∆t

(
Ã
Pn

M +Pn−1
M

2
+

1

2
Un

M ·
(
Pn

M +Pn−1
M

))
− C1η1∆B

n
0

+
1

2
∆tC1∆B

n
1

(
Ãη1 +Un

M · η1

)
, (3.15b)

Vn
M =Vn−1

M +
1

2
∆t

(
Ã
Un

M +Un−1
M

2
− Un

M +Un−1
M

2
+Pn−1

M ·Pn−1
M +Qn−1

M ·Qn−1
M

)

+
1

2
C2η2∆B

n
2 +∆t

(
C1P

n−1
M · η1∆B

n
1 − C1Q

n−1
M · η1∆B

n
0 +∆tC2

1η1 · η1

)
, (3.15c)

Un
M =Un−1

M +∆t
(
Vn

M +Vn−1
M

)
+

1

2
∆tC2η2∆B

n
2 , (3.15d)

where n ∈ {1, . . . , N}. Making use of similar procedures as in Theorems 3.3 and 3.4, we have the following
result.

Remark 3.6. The fully-discrete scheme (3.15) satisfies averaged charge evolution law

E[N (Pn
M ,Qn

M )] = E[N (P0
M ,Q0

M )] + 2C2
1‖η1‖2htn,
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and averaged energy evolution law

E[H(Pn
M ,Q

n
M ,U

n
M ,V

n
M )]

=E[H(P0
M ,Q

0
M ,U

0
M ,V

0
M )]− C2

2Q2tn + 4C2
1 〈η1, Ãη1〉htn + 4C2

1

n−1∑

i=0

E[〈Ui
M ,η1 · η1〉h]∆t,

where n ∈ {0, 1, . . . , N},

H(Pn
M ,Q

n
M ,U

n
M ,V

n
M )

=2〈Un
M ,P

n
M ·Pn

M +Qn
M ·Qn

M 〉h − ‖Un
M‖2h − 4‖Vn

M‖2h
+ 〈Un

M , ÃUn
M 〉h + 2〈Pn

M , ÃPn
M 〉h + 2〈Qn

M , ÃQn
M 〉h.

The finite element method, as a type of classic and mature numerical method, can deal with the irregular
computational domain and have high flexibility (see [10, 11]). We now apply the finite element method
to discretize (2.2). First, we introduce some notations. Let Th be the uniform partition of [a, b] with
step size h defined above, and denote Ii = (xi, xi+1), i = 0, 1, 2, . . . ,M − 1. Set Vh to be the space of
piecewise linear continuous functions with respect to Th which vanish on the boundary of [a, b]. Multiplying
uxx by ζ(x) and integrating by parts on each interval Ii respectively, with ζ(x) being functions in Vh for
i ∈ {0, 1, 2, . . . ,M − 1}, we get

∫ xi+1

xi

uxx(x)ζ(x)(x)dx = −
∫ xi+1

xi

ux(x)ζx(x)dx.

Summing the above equations from i = 0 to M − 1, we obtain the following discrete bilinear form

Bh(u, ζ) = −
M−1∑

i=0

∫ xi+1

xi

ux(x)ζx(x)dx, (3.16)

which defines a discrete linear operator Ah : Vh → Vh as

(AhUh, ζ) = Bh(Uh, ζ) ∀ ζ, Uh ∈ Vh.

As a consequence, the finite element approximation of stochastic KGS equation (2.2) can be regarded as:
find Qh, Ph, Vh, Uh ∈ Vh such that





dQh = (AhPh + PhUhPh) dt− C1Phη1dB0(t),

dPh = − (AhQh + PhUhQh) dt+ C1Phη1dB1(t),

dVh =
1

2

(
AhUh − Uh + Ph(P

2
h +Q2

h)
)
dt+

1

2
C2Phη2dB2(t),

dUh = 2Vhdt,

(3.17)

where Ph : L2([a, b]) → Vh is the projection defined by (Phµ, φ) = (µ, φ), ∀φ ∈ Vh. Further, we have

Pn
h =Pn−1

h −∆t

(
Ah

Qn
h +Qn−1

h

2
+

1

2
PhU

n
h

(
Qn

h +Qn−1
h

))
+ C1Phη1∆B

n
1

+
1

2
∆tC1 (AhPhη1∆B

n
0 + PhU

n
hPhη1∆B

n
0 ) ,

Qn
h =Qn−1

h +∆t

(
Ah

Pn
h + Pn−1

h

2
+

1

2
PhU

n
h

(
Pn
h + Pn−1

h

))
− C1Phη1∆B

n
0

+
1

2
∆tC1 (AhPhη1∆B

n
1 + PhU

n
hPhη1∆B

n
1 ) , (3.18)
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V n
h =V n−1

h +∆t

(
1

2
Ah

Un
h + Un−1

h

2
− 1

2

Un
h + Un−1

h

2
+

1

2
Ph

(
(Pn−1

h )2 + (Qn−1
h )2

))

+
1

2
C2Phη2∆B

n
2 +∆tC1Ph

(
Pn−1
h Phη1∆B

n
1 −Qn−1

h Phη1∆B
n
0 + C1∆t(Phη1)

2
)
,

Un
h =Un−1

h +∆t
(
V n
h + V n−1

h

)
+

1

2
∆tC2Phη2∆B

n
2 .

Remark 3.7. The fully-discrete scheme (3.18) preserves the averaged charge evolution law

E[Ň (Pn
h , Q

n
h)] = E[Ň (P 0

h , Q
0
h)] + 2C2

1 (Phη1,Phη1)tn

with Ň (Pn
h , Q

n
h) = (Pn

h , P
n
h ) + (Qn

h, Q
n
h), and averaged energy evolution law

E[Ȟ(Pn
h , Q

n
h, U

n
h , V

n
h )] = E[Ȟ(P 0

h , Q
0
h, U

0
h , V

0
h )]− C2

2 Q̌2tn + 4C2
1Q̌3tn + 4C2

1

n−1∑

i=0

E[(U i
h, (Phη1)

2)]∆t,

where n ∈ {0, 1, . . . , N},

Ȟ(Pn
h , Q

n
h, U

n
h , V

n
h ) =2(Un

h ,Ph(P
n
h )

2 + Ph(Q
n
h)

2)− (Un
h , U

n
h )− 4(V n

h , V
n
h )

+ (Un
h , AhU

n
h ) + 2(Pn

h , AhP
n
h ) + 2(Qn

h, AhQ
n
h),

and Q̌2 = (Phη2,Phη2), Q̌3 = (Phη1, AhPhη1).

4. Symplectic and multi-symplectic method

For a stochastic Hamiltonian system, symplectic methods are shown to be superior to nonsymplectic
ones especially in long time computation, owing to their preservation of the symplecticity of the underlying
continuous differential equation system [1, 14]. In this section, we present symplectic and multi-symplectic
methods for (2.1).

Runge–Kutta methods, as a class of efficient derivative-free numerical methods, are important tools for
the treatment of stochastic Hamiltonian systems. Beneath the complexity and variety, all Runge–Kutta
methods have a common form that can be summarized by a matrix and two vectors. In detail, for s-stage
Runge–Kutta methods with s ≥ 1, the corresponding Butcher chart reads

c1 a11 · · · a1s
...

...
. . .

...
cs as1 · · · ass

b1 · · · bs

.

By exploiting the symplectic Runge-Kutta method, we get a temporal discretization for (2.1) as follows

Qn,m = Qn−1 +

s∑

l=1

aml

(
1

2
Pn,l
xx ∆t+ Un,lPn,l∆t− C1η1∆B

n
0

)
,

Qn = Qn−1 +

s∑

m=1

bm

(
1

2
Pn,m
xx ∆t+ Un,mPn,m∆t− C1η1∆B

n
0

)
,

Pn,m = Pn−1 −
s∑

l=1

aml

(
1

2
Qn,l

xx∆t+ Un,lQn,l∆t− C1η1∆B
n
1

)
,

Pn = Pn−1 −
s∑

m=1

bm

(
1

2
Qn,m

xx ∆t+ Un,mQn,m∆t− C1η1∆B
n
1

)
,
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V n,m = V n−1 +
1

2

s∑

l=1

aml

(
Un,l
xx ∆t− Un,l∆t+ (Pn,l)2∆t+ (Qn,l)2∆t+ C2η2∆B

n
2

)
,

V n = V n−1 +
1

2

s∑

m=1

bm
(
Un,m
xx ∆t− Un,m∆t+ (Pn,m)2∆t+ (Qn,m)2∆t+ C2η2∆B

n
2

)
,

Un,m = Un−1 + 2∆t

s∑

l=1

amlV
n,l, Un = Un−1 + 2∆t

s∑

m=1

bmV
n,m,

where n ∈ {1, . . . , N},
aijbj + ajibi = bibj , i, j = 1, . . . , s. (4.2)

Here, Qn, Pn, V n, Un are approximations of q(tn), p(tn), v(tn), u(tn), respectively, Q
n,m, Pn,m, V n,m,

Un,m stand for the approximation of q(tn,m), p(tn,m), v(tn,m), u(tn,m) which are the mth middle-value for

tn,m ∈ (tn−1, tn), and Q
n,m
xx , Pn,m

xx , Un,m
xx represent ∂2q

∂x2 (tn,m), ∂2p
∂x2 (tn,m), ∂2u

∂x2 (tn,m), respectively.

Example 4.1. Let s = 2, a11 = 1
4 , a21 = 1

4 +
√
3
6 + α, a12 = 1

4 −
√
3
6 − α, a22 = 1

4 , b1 = b2 = 1
2 with α ∈ R.

Exploiting the parametric Runge–Kutta method to (2.1), we obtain

Qn,1 =Qn−1 +
1

4

(
1

2
Pn,1
xx ∆t+ Un,1Pn,1∆t− C1η1∆B

n
0

)

+

(
1

4
−

√
3

6
− α

)(
1

2
Pn,2
xx ∆t+ Un,2Pn,2∆t− C1η1∆B

n
0

)
,

Qn,2 =Qn−1 +

(
1

4
+

√
3

6
+ α

)(
1

2
Pn,1
xx ∆t+ Un,1Pn,1∆t− C1η1∆B

n
0

)

+
1

4

(
1

2
Pn,2
xx ∆t+ Un,2Pn,2∆t− C1η1∆B

n
0

)
,

Qn =Qn−1 +
1

2

(
1

2
Pn,1
xx ∆t+ Un,1Pn,1∆t− C1η1∆B

n
0

)
+

1

2

(
1

2
Pn,2
xx ∆t+ Un,2Pn,2∆t− C1η1∆B

n
0

)
,

Pn,1 =Pn−1 − 1

4

(
1

2
Qn,1

xx ∆t+ Un,1Qn,1∆t− C1η1∆B
n
1

)
,

−
(
1

4
−

√
3

6
− α

)(
1

2
Qn,2

xx ∆t+ Un,2Qn,2∆t− C1η1∆B
n
1

)

Pn,2 =Pn−1 −
(
1

4
+

√
3

6
+ α

)(
1

2
Qn,1

xx ∆t+ Un,1Qn,1∆t− C1η1∆B
n
1

)
,

− 1

4

(
1

2
Qn,2

xx ∆t+ Un,2Qn,2∆t− C1η1∆B
n
1

)

Pn =Pn−1 − 1

2

(
1

2
Qn,1

xx ∆t+ Un,1Qn,1∆t− C1η1∆B
n
1

)

− 1

2

(
1

2
Qn,2

xx ∆t+ Un,2Qn,2∆t− C1η1∆B
n
1

)
,

V n,1 =V n−1 +
1

8

(
Un,1
xx ∆t− Un,1∆t+ (Pn,1)2∆t+ (Qn,1)2∆t+ C2η2∆B

n
2

)

+

(
1

8
−

√
3

12
− α

2

)
(
Un,2
xx ∆t− Un,2∆t+ (Pn,2)2∆t+ (Qn,2)2∆t+ C2η2∆B

n
2

)
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V n,2 =V n−1 +

(
1

8
+

√
3

12
+
α

2

)
(
Un,1
xx ∆t− Un,1∆t+ (Pn,1)2∆t+ (Qn,1)2∆t+ C2η2∆B

n
2

)

+
1

8

(
Un,2
xx ∆t− Un,2∆t+ (Pn,2)2∆t+ (Qn,2)2∆t+ C2η2∆B

n
2

)
,

V n =V n−1 +
1

4

(
Un,1
xx ∆t− Un,1∆t+ (Pn,1)2∆t+ (Qn,1)2∆t+ C2η2∆B

n
2

)

+
1

4

(
Un,2
xx ∆t− Un,2∆t+ (Pn,2)2∆t+ (Qn,2)2∆t+ C2η2∆B

n
2

)
,

Un,1 =Un−1 +
1

2
∆tV n,1 +

(
1

2
−

√
3

3
− 2α

)
∆tV n,2,

Un,1 =Un−1 +

(
1

2
+

√
3

3
+ 2α

)
∆tV n,1 +

1

2
∆tV n,2,

Un =Un−1 +∆tV n,1 +∆tV n,2.

When α = 0, the corresponding parametric Runge-Kutta method becomes the traditional Legendre-Gauss

collocation method.

When s > 2, the family of parametric Runge–Kutta methods can be defined by the following tableau

c1
... A(α) = lXs(α)l

−1

cs
b1 . . . bs

, (4.4)

where

l =




l1(c1) l2(c1) . . . ls(c1)
l1(c2) l2(c2) . . . ls(c2)

...
...

...

l1(cs) l2(cs) . . . ls(cs)



s×s

, Xs(α) =




1
2 −(ξ1 + α1)

ξ1 + α1 0
. . .

. . .
. . . −(ξs−1 + αs−1)

ξs−1 + αs−1 0




with α1, · · · , αs−1 ∈ R, ξi = 1

2
√

(2i+1)(2i−1)
, i = 1, . . . , s − 1, and li(τ) being the Legendre polynomials of

degree i− 1 shifted and normalized in the interval [0, 1] for i = 1, . . . , s satisfying

∫ 1

0

li(τ)lj(τ)dτ = δij , i, j = 1, . . . , s.

In this case, c1 ≤ c2 ≤ · · · ≤ cs and b1, . . . , bs are the abscissae and the weights of the Gauss–Legendre

quadrature formula in the interval [0, 1], respectively. For any value of α1, · · · , αs−1, the corresponding

parametric Runge–Kutta method defined by (4.4) is symplectic, since

BA(α) +A(α)⊤B = bb⊤

holds, where B = diag{b1, . . . , bs}, b = [b1, . . . , bs]
⊤. Introducing parameters into Gauss collocation formulae

leads to the numerical method which is symplectic and much greater degree of flexibility.

In the following, we prove that the semi-discrete scheme (4.1) preserves the discrete symplectic conser-
vation law almost surely.

Theorem 4.2. The temporal discretization (4.1) admits the discrete symplectic conservation law, i.e.,

dQ1 ∧ dP 1 + dV 1 ∧ dU1 = dQ0 ∧ dP 0 + dV 0 ∧ dU0, a.s..
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Proof. By utilizing (4.1), we obtain

dQ1 ∧ dP 1 − dQ0 ∧ dP 0

=− dQ0 ∧∆t

s∑

m=1

bm

(
1

2
dQ1,m

xx +Q1,mdU1,m + U1,mdQ1,m

)

+∆t

s∑

m=1

bm

(
1

2
dP 1,m

xx + P 1,mdU1,m + U1,mdP 1,m

)
∧ dP 0

−∆t2
s∑

k,m=1

bm

(
1

2
dP 1,m

xx + P 1,mdU1,m + U1,mdP 1,m

)
∧ bk

(
1

2
dQ1,k

xx +Q1,kdU1,k + U1,kdQ1,k

)
.

(4.5)

From

dQ0 = dQ1,m −∆t

s∑

l=1

aml

(
1

2
dP 1,l

xx + P 1,ldU1,l + U1,ldP 1,l

)
,

dP 0 = dP 1,m +∆t
s∑

l=1

aml

(
1

2
dQ1,l

xx +Q1,ldU1,l + U1,ldQ1,l

)

and symplectic condition (4.1) it follows that

dQ1 ∧ dP 1 =dQ0 ∧ dP 0 − dQ1,m ∧∆t

s∑

m=1

bm

(
1

2
dQ1,m

xx +Q1,mdU1,m

)

+∆t

s∑

m=1

bm

(
1

2
dP 1,m

xx + P 1,mdU1,m

)
∧ dP 1,m. (4.6)

Similarly,

dV 1 ∧ dU1

=dV 0 ∧ dU0 + dV 0 ∧ 2∆t

s∑

m=1

bmdV 1,m

+
1

2
∆t

s∑

m=1

bm
(
dAU1,m − dU1,m + 2P 1,mdP 1,m + 2Q1,mdQ1,m

)
∧ dU0

+∆t

s∑

m=1

bm
(
dAU1,m − dU1,m + 2P 1,mdP 1,m + 2Q1,mdQ1,m

)
∧∆t

s∑

k=1

bkdV
1,k.

Further, based on symplectic condition (4.1), we obtain

dV 1 ∧ dU1 = dV 0 ∧ dU0 +∆t
s∑

m=1

bm
(1
2
dU1.m

xx + P 1.mdP 1.m +Q1.mdQ1.m
)
∧ dU1.m. (4.7)

We combine (4.6) and (4.7) to get

dQ1 ∧ dP 1 + dV 1 ∧ dU1 − ( dQ0 ∧ dP 0 + dV 0 ∧ dU0)

=
1

2
∆t

s∑

m=1

bm
(
dQ1,m

xx ∧ dQ1,m + dP 1,m
xx ∧ dP 1,m + dU1,m

xx ∧ dU1,m
)
.

Combining the property of ∂xx,, we have dQ1,m
xx ∧ dQ1,m + dP 1,m

xx ∧ dP 1,m + dU1,m
xx ∧ dU1,m = 0, which

completes the proof.

17



Applying the finite difference to (2.6) yields the following semi-discretization





dPi(t) = − (δxGi(t) + Ui(t) ·Qi(t)) dt+ C1η1(xi)dB1(t),

dQi(t) = (δxFi(t) + Ui(t) · Pi(t)) dt− C1η1(xi)dB0(t),

δxPi(t) = Fi(t),

δxQi(t) = Gi(t),

dUi(t) = Ri(t)dt,

dRi(t) = (δxOi(t)− Ui(t) + Pi(t) · Pi(t) +Qi(t) ·Qi(t)) dt+ C2η2(xi)dB2(t),

δxUi(t) = Oi(t),

(4.8)

where i = 1, 2, . . . ,M − 1. Here, δx is the numerical approximation of one-order spatial derivative, for

instance, δxGi(t) =
Gi+1(t)−Gi(t)

h
, δxFi(t) =

Fi+1(t)− Fi(t)

h
, δxOi(t) =

Oi+1(t)−Oi(t)

h
. Then utilizing

the symplectic Runge–Kutta method to (4.8) leads to

Pn,m
i = Pn−1

i −
s∑

l=1

aml

(
δxG

n,l
i ∆t+ Un

i Q
n,l
i ∆t+ C1η1(xi)∆B

n
1 )
)
, (4.9a)

Pn
i = Pn−1

i −
s∑

m=1

bm (δxG
n,m
i ∆t+ Un,m

i Qn,m
i ∆t+ C1η1(xi)∆B

n
1 ) , (4.9b)

Qn,m
i = Qn−1

i +

s∑

l=1

aml

(
δxF

n,l
i ∆t+ Un,l

i Pn,l
i ∆t− C1η1(xi)∆B

n
0

)
, (4.9c)

Qn
i = Qn−1

i +

s∑

m=1

bm (δxF
n,m
i ∆t+ Un,m

i Pn,m
i ∆t− C1η1(xi)∆B

n
0 ) , (4.9d)

δxP
n
i = Fn

i , δxQ
n
i = Gn

i , (4.9e)

Un,m
i = Un−1

i +∆t

s∑

l=1

amlR
n,l
i , Un

i = Un−1
i +∆t

s∑

m=1

bmR
n,m
i , (4.9f)

Rn,m
i = R0

i +
s∑

l=1

aml

(
δxO

n,l
i ∆t− Un,l

i ∆t+ (Pn,l
i )2∆t+ (Qn,l

i )2∆t+ C2η2(xi)∆B
n
2

)
, (4.9g)

Rn
i = R0

i +

s∑

m=1

bm
(
δxO

n,m
i ∆t− Un,m

i ∆t+ (Pn,m
i )2∆t+ (Qn,m

i )2∆t+ C2η2(xi)∆B
n
2

)
, (4.9h)

δxU
n
i = On

i , (4.9i)

where i = 1, . . . ,M − 1, m = 1, . . . , s, and n = 1, . . . , N.

Theorem 4.3. The fully-discrete scheme (4.9) admits the following discrete multi-symplectic conservation

law
1

∆t
(2dQ1

i ∧ dP 1
i + dR1

i ∧ dU1
i − 2dQ0

i ∧ dP 0
i − dR0

i ∧ dU0
i ) = 0, a.s.. (4.10)

Proof. According to the discrete variational equations of (4.9b) and (4.9d), we obtain

dQ1
i ∧ dP 1

i − dQ0
i ∧ dP 0

i

=− dQ0
i ∧∆t

s∑

m=1

bm (dδxG
m
i +Qm

i dUm
i + Um

i dQm
i )

+ ∆t

s∑

m=1

bm (dδxF
m
i + Pm

i dUm
i + Um

i dPm
i ) ∧ dP 0

i
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−∆t

s∑

m=1

bm (dδxF
m
i + Pm

i dUm
i + Um

i dPm
i ) ∧∆t

s∑

m=1

bm (dδxG
m
i +Qm

i dUm
i + Um

i dQm
i ) .

Applying (4.9a), (4.9c) and the symplectic condition (4.1) yields

dQ1
i ∧ dP 1

i =dQ0
i ∧ dP 0

i − dQm
i ∧∆t

s∑

m=1

bmdδxG
m
i − dQm

i ∧∆t

s∑

m=1

bmQ
m
i dUm

i

+∆t

s∑

m=1

bmdδxF
m
i ∧ dPm

i +∆t

s∑

m=1

bmP
m
i dUm
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(4.11)

Analogously, we derive the following equation according to (4.9f), (4.9g), (4.9h)

dR1
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i =dR0
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i dPm

i ∧ dUm
i

+ 2∆t
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bmQ
m
i dQm

i ∧ dUm
i .

(4.12)

Combining (4.11) and (4.12), we deduce

1

∆t
(2dQ1

i ∧ dP 1
i + dR1

i ∧ dU1
i − 2dQ0

i ∧ dP 0
i − dR0

i ∧ dU0
i )

=

s∑

m=1

bm(dδxF
m
i ∧ dPm

i + dδxG
m
i ∧ dQm

i + dδxO
m
i ∧ dUm

i )dt = 0,

where implies the proof.

5. Numerical experiments

This section presents various numerical experiments to verify the properties of the proposed fully-discrete
schemes for the 1-dimensional stochastic Klein-Gordon-Schrödinger equation with the homogeneous Dirichlet
boundary condition. In all numerical experiments, the expectation is calculated by taking average over 2000
realizations.
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Figure 1: Mean-square errors of FD-SRK in time with T=1.

For the sake of simplicity, we denote the fully-discrete scheme (4.1) as FD-SRK, which implies that the
numerical scheme is based on the finite difference in space and symplectic parametric Runge–Kutta method
with α = 0.001 and s = 2 in time. Similarly, for the case that central difference, sine pseudo-spectral method,
or finite element method is employed in the spatial direction, and the modified finite difference method (3.7)
or midpoint method (3.10) is applied in the temporal direction, the corresponding numerical schemes are
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Figure 2: Mean-square errors of fully-discrete schemes in time with T=1.
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Figure 3: Mean-square errors of fully-discrete schemes in time with T=1.

denoted by CFD-I, SPS-I, FEM-I and CFD-II, SPS-II, FEM-II, respectively. Here, we use piecewise linear
polynomials for the finite element method. Figs. 1-3 show the mean-square error for seven fully-discrete
schemes against ∆t = 2−s, s = 3, 4, 5, 6 on log-log scale at time T = 1, when a = −15, b = 15, and the initial
conditions are

ϕ(0) =
3
√
2

4
√
1− θ2

sech2
(

x

2
√
1− θ2

)
exp (iθx) ,

u(0) =
3

4 (1− θ2)
sech2

(
x

2
√
1− θ2

)
,

ut(0) =
3θ

4 (1− θ2)
3/2

sech2
(

x

2
√
1− θ2

)
tanh

(
x

2
√
1− θ2

)
,

with θ = 0.3. The exact solution is computed by implementing the proposed numerical schemes with a
small time step size ∆t = 2−8 and small space step size h = 15× 2−7. It can be observed that the slopes of
seven fully-discrete schemes are close to 1 on the temporal convergence order. The theoretical result will be
studied in future work.

When testing the long-time behaviors for proposed schemes, we choose a = 0, b = 1, T = 50 and
ϕ(0) = 0, u(0) = 0, ut(0) = 1 as the initial conditions. The reference line (black line) in Figs. 4-5 stands
for the averaged charge evolution law and averaged energy evolution law of the exact solution, respectively.
It can be observed that the proposed schemes named CFD-I, SPS-I, FEM-I, CFD-II, SPS-II, and FEM-II
reproduce the linear growth of the averaged charge and the evolution of the averaged energy. It implies that
the proposed schemes preserve perfectly both the averaged charge and energy evolution law.
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Figure 4: Averaged charge evolution relationship with ∆t = 25/28, h = 1/24.
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Figure 5: Averaged energy evolution relationship with ∆t = 25/210, h = 1/23.

6. Conclusion

In this paper, novel structure-preserving schemes are proposed for solving stochastic KGS equations
with additive noise. We prove that the fully-discrete scheme based on central difference, sine pseudo-
spectral method, or finite element method in space and the finite difference method in time, preserves
the averaged charge and energy evolution law. Besides, we propose a class of multi-symplectic methods
through finite difference method in space and symplectic Runge–Kutta method in time. Compared with the
classical Runge–Kutta method, the proposed multi-symplectic method is more flexible due to the flexibility
of the parameter α. In reality, there are still many important and challenging problems that remain to be
solved, such as, studying the strong convergence analysis and estimating the strong convergence order for
the proposed schemes; constructing ergodic fully-discrete scheme for damped stochastic KGS equations. We
will investigate these problems in our near future.
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