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Abstract

We apply the collision-based hybrid introduced in [1] to the Boltzmann equation with the BGK

operator and a hyperbolic scaling. An implicit treatment of the source term is used to handle stiffness

associated with the BGK operator. Although it helps the numerical scheme become stable with a large

time step size, it is still not obvious to achieve the desired order of accuracy due to the relationship

between the size of the spatial cell and the mean free path. Without asymptotic preserving property, a

very restricted grid size is required to resolve the mean free path, which is not practical. Our approaches

are based on the noncollision-collision decomposition of the BGK equation. We introduce the arbitrary

order of nodal discontinuous Galerkin (DG) discretization in space with a semi-implicit time-stepping

method; we employ the backward Euler time integration for the uncollided equation and the 2nd order

predictor-corrector scheme for the collided equation, i.e., both source terms in uncollided and collided

equations are treated implicitly and only streaming term in the collided equation is solved explicitly.

This improves the computational efficiency without the complexity of the numerical implementation.

Numerical results are presented for various Knudsen numbers to present the effectiveness and accuracy

of our hybrid method. Also, we compare the solutions of the hybrid and non-hybrid schemes.

1 Introduction

The Bhatnagar-Gross-Krook (BGK) equation is a well-known kinetic theory model used to simulate the

non-equilibrium behavior of dilute gases. It is an approximation of the Boltzmann equation that replaces the

Boltzmann collision operator, a nonlinear integral operator modeling binary collisions, by the BGK operator

[2, 3], a simpler nonlinear relaxation model. This modification significantly reduces the computational cost

of kinetic simulations of dilute gases while still recovering both the equilibrium and streaming behavior of

the Boltzmann equation in collision-dominated and collisionless limits, respectively. The BGK operator also

preserves the conservation and entropy dissipation properties of the Boltzmann operator, and recent work

has extended these properties to the multispecies setting [4, 5, 6].

Approximation with the BGK equation does have two major drawbacks. First, it does not capture all of

the transport properties of the Boltzmann equation in collisional regimes. Most notably, it fails to capture the

correct Prandtl number (essentially the ratio of viscosity to thermal conductivity). Hence it may not agree

with the compressible Navier-Stokes equations that are derived from the Boltzmann equation in collisional

regimes. However, this problem can be remedied via a slight modification that leads to an ellipsoidal statistical

operator [7, 8], sometimes referred to as ES-BGK [9, Section 3.6]. The second drawback is that the structural
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properties of the BGK operator rely on the assumption that the collision frequency is independent of the

microscopic velocity, which is known to be unphysical [9, 10]. Extensions to velocity-dependent frequencies

have been explored in single species [11] and multi-species [5, 12] settings. While these models add more

physical realism, they come with a significant increase in computational cost.

1.1 Related work

On the numerical side, the BGK equation has been the object of extensive study. Aside from the cost of

discretizing phase space, there are two primary challenges, both of which occur in collisional regimes. The

first challenge is the stiffness of the BGK operator, which suggests an implicit treatment in order to avoid

excessively small time steps. (See, however, [13] for a recent alternative approach.) The second challenge

is to recover—at the numerical level—consistent numerical discretizations of the Euler and Navier-Stokes

system for compressible gas flow that are derived from the BGK model via a Chapman-Enskog expansion

[9, Chapter 4].

In [14], it was shown that a backward Euler time discretization of the BGK operator could be implemented

in an explicit fashion. This numerical “trick” enables stable time stepping for large time steps across a wide

range of collisional regimes, and for this reason, it has become the basis of many subsequent numerical

schemes. In [15], various discretizations of the BGK and Shaskov model [16] are considered and compared.1

In [17], a method based on the decomposition of the kinetic distribution into macroscopic (equilibrium) and

microscopic (non-equilibrium) parts is proposed in order to recover a consistent Navier-Stokes limit when

the Knudsen number is sufficiently small. Simulations of the ES-BGK model for small Knudsen numbers

have also been developed [18, 19, 20] in order to recover the correct Navier-Stokes equations at the numerical

level. There has also been extensive research on implicit–explicit schemes for the BGK equations and ES-

BGK equation; see for instance [21, 22, 23]. A gas-kinetic scheme for the BGK model was proposed and

compared to the compressible Navier–Stokes equations in the collisional regime [24].

Even when the collision operator is treated implicitly, an explicit treatment of the advection operator

in the BGK equation can lead to restrictive time steps. There are two common reasons: long time scales

(i.e. a diffusive-type scaling) that lead to incompressible equations in the infinite collisional limit [25] or

problems for which the maximum velocity in the computational domain is significantly larger than the fluid

sound speed. One way to address such restrictions is to take a fully implicit approach, which is common for

time-dependent kinetic equations in radiation transport contexts [26, Section 1.2] and has been proposed for

electron transport problems in [27, 28]. In both these cases, diffusive limits are important. Fully implicit

methods have also been proposed for collisional dilute gases [29, 30, 31] and collisionless plasmas [32]. All of

these approaches require sophisticated iterative strategies to manage the cost and memory requirement of the

implicit update. An alternative is to use semi-Lagrangian methods [33, 34, 35], which rely on a characteristic

formulation. There the main effort lies in the interpolation of point-wise values since characteristics of the

advection operator in the BGK equation do not always intersect grid points.

1.2 Hybrid approach: benefits and drawbacks

In the current paper, we focus on the BGK equation in a hyperbolic scaling and propose a method to

address stiffness due to large phase space velocities. Rather than use an IMEX or fully implicit time-stepping

strategy, we instead leverage the hybrid approach introduced in [1]. While this approach was originally

proposed for linear transport equations with fully implicit time integration [1, 36, 37], we use it here to solve

the BGK model in a semi-implicit fashion [38, 39].

1The Shaskov model is designed to capture the correct Prandtl number, but unlike BGK, it is not guaranteed to generate a positive

solution.
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The hybrid strategy is based on the method of first-collision source [40, 41], in which the kinetic equation

is decomposed into the sum of an uncollided equation and a collided equation. The uncollided equation is

a damped linear advection equation with no in-scattering and hence can be solved implicitly rather easily

with high resolution and in parallel; meanwhile, the collided equation is expected to have a solution that

can be approximated with a low-fidelity velocity discretization. We use the Euler fluid approximation as the

velocity discretization for the collided equation, but unlike previous applications of similar hybrid methods,

the advection is solved explicitly with a 2nd-order Runge-Kutta (predictor-corrector) time integrator. These

choices are flexible; for example, a Navier-Stokes model can be used for the collided equation and a semi-

Lagrangian approach can be taken for the uncollided equation.

There are two main benefits of the hybrid decomposition. The first benefit is the simplicity of the numeric

implementation. Indeed, if a fluid code is readily available, then one need only add a relatively simple implicit

solver for the uncollided equations. Moreover, as mentioned above, the choice of discretization for each

equation can be flexible. The second benefit is a less restrictive CFL condition that is based on the maximum

eigenvalues of the flux Jacobian in the fluid solver rather than the maximum velocity in the computational

domain. As a consequence, larger time steps can be taken.

The main drawback of the hybrid approach is that it induces both general time-stepping errors and

consistency errors in the coarse approximation of the collided equation that depend on the collisionality

of the problem. Because the method includes a remapping procedure after each time step, the mixing of

errors can be difficult to track, making even a formal analysis difficult. What is certain, however, is that

the consistency error from the hybrid approximation will eventually cause saturation in convergence as the

space-time mesh is resolved. In our experiments, we observe that this saturation happens only at very low

error levels, and if saturation does become a concern, there are ways to correct it [36, 37].

The remainder of the paper is organized as follows. We begin with a derivation of the uncollided-collided

decomposition of a BGK equation in Section 2. We present the discretization details for the uncollided and

collided equations in Section 3 and perform an asymptotic analysis. In Section 4, we present numerical results

on several benchmark problems to demonstrate the simplicity, robustness, efficiency, asymptotic properties

of the hybrid approach. We also compare the hybrid method to a previously developed implicit-explicit

method. Finally, in Section 5, we draw conclusions and make suggestions for future work.

2 The hybrid formulation

2.1 The BGK equation

Given a positive integer 3, let - ⊂ R3 be an open bounded domain with Lipschitz boundary. Let

Γ = ∂- × R3 and Γ± = {(x, v) ∈ Γ : ± n(x) · v > 0}, where n(x) is the outward normal with respect to

- , defined at a.e. x ∈ ∂- . The BGK model for the kinetic distribution function � with a source term ( is

∂C� (x,v, C) + v · ∇x� =

1

n
(M� (x,v, C) − � (x,v, C)) + ((x, v, C), (x,v) ∈ - × R3, C > 0, (1a)

� (x,v, C) = �− (x,v, C), (x,v) ∈ Γ−, C > 0, (1b)

� (x,v, 0) = �0(x,v), (x,v) ∈ - × R3, (1c)

where the inflow �−, initial condition �0, and source term ( are given non-negative functions. The function

�, which depends on position x ∈ - , velocity v ∈ R3, and time C ≥ 0, gives the mass density of particles

with respect to the phase space measure dvdx. The parameter n > 0 is the Knudsen number, i.e., the ratio

of the mean free path between collisions to the length scale of the domain; in this work, we assume n is a

fixed constant. The functionM� is given by

M� =M� (x, v, C) =
d� (x, C)

(2c\� (x, C))3/2
exp

(
− |v − u� (x, C) |2

2\� (x, C)

)
, (2)
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where the primitive variables d� (x, C) ≥ 0, u� (x, C) ∈ R3, and \� (x, C) ≥ 0 are the local mass density,

mean velocity, and temperature, respectively; functions of the form in (2) are referred to as Maxwellians.

2.2 Moment equations

The local mass density d� , momentum density m� , and total energy density �� , are given by

q� :=
©«
d�
mF

��

ª®¬
=

∫
R3

e� dv =

∫
R3

©«
�

v�
1
2
|v |2�

ª®¬
dv, (3)

where the components of e = e(v) := (1, v, 1
2
|v |2)) are referred to as collision invariants, since∫

R3

(M� − �)e3E = 0. (4)

We also denote by E the map which takes a set of moments to the associated Mawellian, i.e.,M� = E(q�).
The condition in (4), which is intended to mimic properties of the Boltzmann collision operator (see e.g.

[42, Chapter 3]), uniquely determines the primitive variables d� , u� , \� that parameterize the Maxwellian

in (2). It also establishes the relationship between the moments m� and �� and the variables u� and \� .

Specifically,

m� = d�u� and �� =
1

2
d� |u� |2 +

3

2
d�\� . (5)

If � is a solution to the BGK equation (1a), its moments satisfy the following system of conservation

laws:

∂d�

∂C
+ ∇G · (d�u�) = 0, (6a)

∂(d�u�)
∂C

+ ∇G · (d�u� ⊗ u� + P�) = 0, (6b)

∂��

∂C
+ ∇G · (��u� + P�u� + &�) = 0, (6c)

where

P� =

∫
R3

(v − u�) ⊗ (v − u�)� dv and &� =

∫
R3

1

2
(v − u�) |v − u� |2� dv (7)

are the pressure tensor and heat flux, respectively. The equations in (6), which are not closed, are derived by

integrating (1a) against the vector e of collision invariants and then invoking (4) to make the right-hand side

vanish. To close (6), one must specify formulas for P� and &� in terms of the moments d� , m� , and ��

or, equivalently, the primitive variables d� , m� , and \� . In the fluid limit, when n → 0, the scaling in (1a)

suggests that � can be approximated byM� in the formulas for P� and &� (see for example [43, Section

2.8]), in which case

P� ≈
∫
R3

(v − u�) ⊗ (v − u�)M� dv = d�\�I and &� ≈
∫
R3

1

2
(v − u�) |v − u� |2M� dv = 0,

(8)

where I is the 3 × 3 identity matrix. Using these approximations for P� and &� to close (6) recovers the

Euler equations for a gamma-law gas with pressure law ?(d, \) = d\. Because a generic gamma-law gas

has equation of state ? =
3
2
(W − 1)d�\� (see .g. [44, pg. 13]), it follows that W =

3+2
3

.
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2.3 The hybrid method

We adopt the collision-based hybrid approach introduced in [1] and decompose the distribution function

� as the sum of an uncollided component �u and an uncollided component �c. Let 0 = C0 < C1 < . . . be a

sequence of points in a temporal grid. For C ∈ (C=, C=+1), let �u and �c solve



∂C�u(x,v, C) + v · ∇x�u +

1

n
�u(x,v, C) = ((x,v, C), (x, v) ∈ - × R3, C ∈ (C=, C=+1), (9a)

�u(x,v, C) = �− (x,v, C), (x, v) ∈ Γ−, C ∈ (C=, C=+1), (9b)

�u(x,v, C+=) = �= (x,v), (x, v) ∈ - × R3, (9c)



∂C�c(x, v, C) + v · ∇x�c +

1

n
�c(x, v, C) =

1

n
M� , (x, v) ∈ - × R3, C ∈ (C=, C=+1), (10a)

�c(x,v, C) = 0, (x, v) ∈ Γ−, C ∈ (C=, C=+1), (10b)

�c(x,v, C+=) = 0, (x, v) ∈ - × R3, (10c)

where �0(x,v) is given as in (1c) and for = ≥ 1,

�= (x,v) = �u(x,v, C−= ) + �c(x,v, C−= ), (11)

and ( is a source term. We assume the source ( to be zero unless otherwise stated. The initial data and

boundary conditions of the original system are inherited by the uncollided equation, while the collided

equation is assigned zero inflow and initial condition. For B ≥ 1, the uncollided solution is reinitialized by

adding together the current values of �u and �c. However, no splitting error is incurred by writing (1) as the

sum of (9) and (10) until the equations are further discretized.

The basic idea of the hybrid approach is to discretize (9) with a high-resolution method in velocity with

the expectation that collisions will allow (10) to be solved with a low-resolution method in velocity without

significantly degrading the accuracy of the solution over a time step. However, in the limit of zero collisions,

the uncollided equation is exact and the collided equation plays no role. At the end of the time step, the

collided solution is reconstructed in the high-resolution space and then added to the uncollided solution in

order to approximate �= in (11). The combined solution is then used to reinitialize the uncollided equation

at the next time step, while the initial condition for the collided equation is again reset to zero. To advance

numerically within each time step, we employ a predictor-corrector method, the details of which are given

in Section 3.2.

In the original hybrid formulation [1], the procedure summarized above resulted in a significant im-

provement in the time-to-solution for a fully implicit time-stepping scheme when applied to a linear, kinetic

transport equation. In the current context, we consider hyperbolic time scales of the bulk flow which typically

do not require fully implicit approaches, unless the mesh is highly unstructured. Instead, only (9) is solved

fully implicitly in order to step over hyperbolic time-scale restrictions imposed by high-velocity components

of the distribution. Meanwhile, (10) can be solved using an approximate model with a less restrictive time

step.

3 Discretization of the hybird method

For the purposes of this paper, we consider the one-dimensional case, which implies that the gas constant

W = 3. We set - = (GL, GR) and restrict the velocity domain to a bounded set + = [−Emax, Emax].

5



3.1 Velocity discretization

Many velocity discretization methods can easily fit into the hybrid strategy outlined above. In the current

paper, we choose to solve (9a) with a discrete velocity method [18, 45, 46, 30] and (10a) using the Euler

equations as an moment-based velocity approximation.

3.1.1 Discrete velocity model (DVM) for the uncollided equation

Let {E:}#E

:=1
and {l:}#E

:=1
be the points and weights, respectively, of a one-dimensional, #E-point Gauss-

Legendre quadrature set scaled to a truncated velocity domain [−Emax, Emax], and for each : ∈ 1, . . . , #E,

let W±
:
= {G ∈ - : ±=(G)E: > 0}. Then the discrete velocity model for (9a) which governs 5u,: (G, C) ≃

�u(G, E: , C) is given by



∂C 5u,: (G, C) + E:∂G 5u,: (G, C) +

1

n
5u,: (G, C) = 0, G ∈ -, C ∈ (C=, C=+1), (12a)

5u,: (G, C) = �− (G, E: , C), G ∈ W−
:
, C ∈ (C=, C=+1), (12b)

5u,: (G, C+=) = 6=: (G), G ∈ - . (12c)

where 60
:
(G) = �0(G, E:) and, for = ≥ 1,

6=: (G) = 5u,: (G, C−= ) + 5c,: (G, C−= ), (13)

with 5c defined in (19) below. The approximate uncollided moments qu ≈ q�u
are obtained from 5u,: via the

quadrature formula

qu (G, C) =
#E∑
:=1

l:e: 5u,: (G, C), (14)

where e: = (1, E: , 1
2
|E: |2)T. In vectorized form, the discrete velocity equation (12a) and the initial condition

(12c) can be written as 2



∂Cfu(G, C) + V ∂Gfu(G, C) +

1

n
fu(G, C) = 0, G ∈ -, C ∈ (C=, C=+1), (15a)

fu(G, C+=) = g=, G ∈ - , (15b)

where fu = (fu,1, . . . , fu,#E
)T, g= = (6=

1
, . . . , 6=

#E
)T, and V = diag(E1, . . . , E#E

).

3.1.2 Moment equations for the collided equation

The exact equations for the mass, momentum, and energy moments of �c are given by the quadrature

formula

∂Cq�c
+ ∂G

∫
R

Ee�23E =
1

n
q�u

, (16)

where q�c
=

∫
R
e�c3E. We approximate the evolution of q�c

by a function q2 that satisfies the Euler

approximation to (16); that is,

∂Cqc + ∂G�(qc) =
1

n
qu, where �(qc) =

∫
R

EeE(q2)3E, (17)

2Unfortunately it is difficult to specify (12b) cleanly in vectorized form since W−
:

depends on : .
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and qu is computed according to (14). With initial and boundary conditions, the complete system is




∂Cqc (G, C) + ∂G�(qc (G, C)) =
1

n
qu (G, C), G ∈ -, C ∈ (C=, C=+1), (18a)

�(qc (G, C)) =
∫
{E:=(G)E>0}

EeE(qc(G, C))3E, G ∈ ∂-, C ∈ (C=, C=+1), (18b)

qc (G, C+=) = 0, G ∈ - , (18c)

and the approximate kinetic solution is

5c,: (G, C) = E(qc(G, C)) (E:). (19)

Remark 1. The boundary condition in (18b) is derived by separating the flux integral in (16) into incoming

and outgoing data, using the kinetic data (which is zero) for the incoming data and the approximation

�c ≈ E(q�c
) for the outgoing data; that is, for G ∈ ∂- ,

�(qc (G, C)) ≈
∫
R

Ee(E)�c(G, E, C)3E

=

∫
{E:=(G)E<0}

Ee(E)�c(G, E, C)3E +
∫
{E:=(G)E>0}

Ee(E)�c(G, E, C)3E

≈
∫
{E:=(G)E>0}

EeE(q�c
(G, C)) (E)3E ≈

∫
{E:=(G)E>0}

EeE(qc(G, C)) (E)3E.

(20)

There are other approaches to assigning boundary conditions, including asymptotic conditions derived via

half-space problems; see for example [47].

3.1.3 Euler Limit

An important property of the hybrid is that it recovers (at least formally) the Euler equations in the limit

n → 0. To investigate this limit, we apply the quadrature rule in (14) to the discrete velocity equation in

(12) and add the result to the moment equation for qc in (17). This gives the following conservation law for

q = qu + qc:




∂Cq(G, C) + ∂G

(
#E∑
:=1

l:E:e: 5u,: (G, C)
)
+ ∂G�(qc (G, C)) = 0, G ∈ -, C ∈ (C=, C=+1), (21a)

�(q(G, C)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E:) +
∫

{E:=(G)E>0}

EeE(qc(G, C)) (E)3E, G ∈ ∂-, C ∈ (C=, C=+1), (21b)

q(G, C+=) =
#E∑
:=1

l:e:

(
5u,: (G, C−= ) + E(qc(G, C)) (E:)

)
, G ∈ - , (21c)

which depends on n via fu and qc. To assess the limiting behavior of (21), we use the exact solution for (12).

For each G ∈ - , : ∈ {1, . . . , #E}, and = ≥ 0 fixed, let

C∗ := C∗(G, E: , C) = min
g>0
{g : G − E: (C − g) ∈ W−: }. (22)

Then for C ∈ (C=, C=+1) and a.e. G ∈ - ,

5u,: (G, C) =
{
4−

C−C=
n 6= (G − E: C=, E:), C − C∗ < C=,

4−
C−C∗
n �− (G − E: C∗, E: , C − C∗), C − C∗ > C=.

(23)
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In either case above, 5u,: → 0 as n → 0 in the interior of the domain. Thus the contribution of 5u to the flux

in (21a) and (21c) vanishes. Furthermore, q2 ≡ q −qD → q as n → 0, so that (21) recovers the Euler system

for q; that is, in the limit as n → 0,




∂Cq(G, C) + ∂G�(q(G, C)) = 0, G ∈ -, C ∈ (C=, C=+1), (24a)

�(q(G, C)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E:) +
∫

{E:=(G)E>0}

EeE(q(G, C)) (E)3E, G ∈ ∂-, C ∈ (C=, C=+1), (24b)

q(G, C+=) =
{ ∑#E

:=1
l:e:�0(G, E:), = = 0,∑#E

:=1
l:e:E(q(G, C)) (E) = > 1,

G ∈ - . (24c)

The system (24) is a consistent discretization of the Euler equations. However,

1. There is an error introduced at the beginning of each time step due to the quadrature error in velocity.

At time C=+1 the moment q(G, C−= ), which is extracted at the end of the interval (C=, C=+1) from the

solution of (24a), is replaced by the reinitialization value q(G, C+=) =
∑#E

:=1
l:e:E(qc(G, C)) (E).

2. In practice (i.e. for finite n), fu will decay to zero over a boundary layer of width n . If this boundary

layer is not well-resolved by the spatial and velocity discretization, the boundary condition (24b) will

introduce errors into the overall solution. Such issues are well-known in the transport [48] and gas

kinetic theory literature [47] and are not specifically induced by the hybrid method. In the numerical

results of the current paper, solutions are computed on domains with equilibrium boundary conditions

that are imposed far away from the interesting dynamics of the solution. In such situations, these

boundary issues will not pollute the solution.

3.2 Time Discretization

In this section, we introduce two different time discretizations methods used to evolve the hybrid

algorithm, formed by the components in (12) and (18), over a fixed time interval (C=, C=+1).

3.2.1 The hybrid BERK2 time discretization

The base method combines two backward Euler steps for (12) with a second-order predictor-corrector

method for (18). This Backward Euler Runge-Kutta (BERK2) method for a single time step is given in

Algorithm 1. The fully implicit treatment of (12) removes the time step restrictions otherwise induced by the

advection operator. When combined with upwind DG discretizations in space, the resulting triangular linear

system can be solved using sweep techniques that are especially easy to implement on regular Cartesian

grids. Moreover, because the discrete velocity components of fu are independent, the implementation is easy

to parallelize. The explicit predictor-corrector method for (18) then induces a time step that scales inversely

with Λ, the magnitude of the largest eigenvalue in the Euler system. Meanwhile, standard IMEX methods

such as [49] require a time step that scales inversely with Emax.

3.2.2 The Euler limit

We investigate the formal limit of the BERK2 scheme when n → 0. Similar to the time-continuous

setting in Section 3.1.3, we take moments of 5u in Lines 3 and 6 of Algorithm 1 and add to Lines 5 and 8,

respectively. Let qU = qU
D + qU

2 , for U ∈ {=, = + 1/2, = + 1}. Then

8



Algorithm 1 Hybrid BERK2 temporal update from C= to C=+1
Require: �− ⊲ Boundary data (used in (3) and (6) )

Require: {E:}#E

:=1
⊲ Discrete velocities

Require: {e:}#E

:=1
⊲ Discrete collision invariants

Require: {F:}#E

:=1
⊲ Quadrature weights

Input: g=, q=
2 (= 0) ⊲ Initial data

1: E ← [F1e1 | · · · |F#E
e#E
]

2: f =
u ← g=

3: Solve
f
=+1/2
u − f =

u

ΔC/2 + V ∂Gf
=+1/2
u + 1

n
f
=+1/2
u = 0 for f

=+1/2
u ⊲ Uncollided backward Euler

4: q
=+1/2
u ← Ef

=+1/2
u ⊲ Uncollided moments

5: Solve
q
=+ 1

2
c − q=

c

ΔC/2 + ∂G�(q=
c ) =

1

n
q
=+ 1

2
u for q

=+ 1
2

c ⊲ Collided moment predictor

6: Solve
f
=+1/2
u − f =

u

ΔC
+ V ∂Gf

=+1
u = −1

n
f =+1

u for f =+1
u ⊲ Uncollided backward Euler

7: q=+1
u ← Ef =+1

u ⊲ Uncollided moments

8: Solve
q=+1

c − q=
c

ΔC
+ ∂G�(q

=+ 1
2

c ) = 1

n
q=+1

u for q=+1
c ⊲ Collided moment corrector

9: for : = 1, . . . , #E do

10: 5 =+1
c,:
← E(q=+1

c ) (E:) ⊲ Collided reconstruction

11: end for

12: g=+1 = fu
=+1 + fc

=+1 ⊲ Uncollided relabeling

13: q=+1
c ← 0 ⊲ Collided relabeling

Output: g=+1, q=+1
2




q=+1/2 (G) − q= (G)
ΔC/2 +

#E∑
:=1

l:e:E:∂G 5
=+1/2
u,:

(G) + ∂G�(q=
2 (G)) = 0, G ∈ - , (25a)

�(q= (G)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E:) +
∫
{E:=(G)E>0}

EeE(q=
c (G)) (E)3E, G ∈ ∂- , (25b)




q=+1 (G) − q= (G)
ΔC

+
#E∑
:=1

l:e:E:∂G 5
=+1
u,: (G) + ∂G�(q

=+1/2
2 (G)) = 0, G ∈ - , (26a)

�(q= (G)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E:) +
∫
{E:=(G)E>0}

EeE(q=+1/2
c (G)) (E)3E, G ∈ ∂- . (26b)

The update equations for fu in Lines 3 and 6 of Algorithm 1 take the form

5 U
u,:
(G) − 5 =

u,:
(G)

g
+ E:∂G 5 ∗u,: (G) = −

1

n
5 ∗u,: (G), (27)

for some g > 0 and U ∈ {= + 1/2, = + 1}. Let

B∗ := B∗ (G, E:) = min
B>0
{B : G − E:B ∈ W−: } and G∗ := G∗ (G, E:) = G − E:B∗. (28)

9



Then the solution of (27) is

5 Uu,: (G) =
{
4
− f (G−G∗ )

E: �− (G∗, E: , CU) + 1
gE:

∫ G

G∗
4
− f (G−b )

E: 5 =
u,:
(b)3b, E: ≠ 0,

n
g+n 5 =

u,:
(G), E: = 0,

(29)

where f =
1
g
+ 1

n
. Assume that supb | 5 =u,: (b) | ≤ " < ∞. Then

1

gE:

∫ G

G∗

4
− f (G−b )

E: 5 =u,: (b)3b ≤
"

gE:

∫ G

G∗

4
− f (G−b )

E: 3b =
"

gf

(
1 − 4−

f (G−G∗ )
E:

)
≤ "n

1 + n , (30)

whereas the other terms in (29) clearly decay as n → 0. Thus if 5 =
u,:

is bounded in b, it follows that

5 U
u,:
(G) → 0 and qU

2 → qU as n → 0 for any G ∈ - . As a result, in the limit n → 0, (25) and (32) transition

to a second-order predictor-corrector method for the Euler equations:




q=+1/2 − q=

ΔC/2 + ∂G�(q=) = 0, G ∈ - , (31a)

�(q= (G)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E: , C=+1/2) +
∫
{E:=(G)E>0}

EeE(q= (G)) (E)3E, G ∈ ∂- , (31b)




q=+1 − q=

ΔC
+ ∂G�(q=+1/2) = 0, G ∈ - , (32a)

�(q= (G)) =
∑

{::=(G)E:<0}
l:E:e:�

− (G, E: , C=+1) +
∫
{E:=(G)E>0}

EeE(q=+1/2 (G)) (E)3E, G ∈ ∂- . (32b)

3.2.3 Correction and conservation fix

A modified version of the BERK2 time discretization is given in Algorithm 1. This modified version

includes (i) a conservation fix to fix the deficiency caused by consistency errors in the discrete velocity

quadrature and (ii) a relabeling step that solves the original BGK equation using a Maxwellian constructed

from the hybrid strategy. The details of these modifications are given in Algorithm 2.

Conservation of mass, momentum, and energy in the BGK equation is a consequence of (4). To correct

consistency errors that violate (4), we adopt the technique first introduced in [50]. Given a discrete velocity

vector f = [ 51, . . . , 5#E
]T ∈ R#E , let E = [F1e1 | · · · |F#E

e#E
] and let

qf =

#E∑
:=1

F:e: 5: = Ef ∈ R3 (33)

be the moments associated to f . In order to match a moment q̃ ∈ R3 where q̃ ≠ q 5 , the corrected discrete

velocity vector f̃ is given by

f̃ = argmin
g∈R#E

{‖f − g‖22 : Eg = q̃}. (34)

The solution to this optimization problem satisfies q
f̃
≡ Ef = q̃ and is given by

f̃ = f +ET(EET)−1(q̃ −Ef ). (35)

The relabeling step constructs a discrete Mawellian from the moments q=+1 = q=+1
u + q=+1

c . A final

implicit update of the BGK equation uses this discrete Maxwellian as a fixed source. Because there is a fixed

source, this update can be efficiently completed without iteration. The implicit update has been done through

the backward differentiation formula (BDF2) discretization. This approach to relabeling was introduced in

[51] and tends to yield more accurate answers because errors in the moments that are induced by the hybrid

approximation are smaller than the errors in the kinetic distribution.
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Algorithm 2 Hybrid BERK2 temporal update from C= to C=+1 with BDF2 correction and

conservation fix

Require: �− ⊲ Boundary data (used in (3) and (6) )

Require: {E:}#E

:=1
⊲ Discrete velocities

Require: {e:}#E

:=1
⊲ Discrete collision invariants

Require: {F:}#E

:=1
⊲ Quadrature weights

Input: g=, q=
2 (= 0) ⊲ Initial data

1: E ← [F1e1 | · · · |F#E
e#E
]

2: f =
u ← g=

3: Solve
f
=+1/2
u − f =

u

ΔC/2 + V ∂Gf
=+1/2
u = −1

n
f
=+1/2
u for f

=+1/2
u ⊲ Uncollided backward Euler

4: q
=+ 1

2
u ← Efu ⊲ Uncollided moments

5: Solve
q
=+ 1

2
c − q=

c

ΔC/2 + ∂G�(q=
c ) = 1

n
q
=+ 1

2
u for q

=+ 1
2

c

6: f
=+ 1

2
c ← E(q=+ 1

2
c ) ⊲ Discrete collided distribution

7: g=+ 1
2 ← f

=+ 1
2

u + f =+ 1
2

c ⊲ midstep for BDF2 correction

8: Solve
f =+1

u − f =
u

ΔC
+ V ∂Gf

=+1
u = −1

n
f =+1

u for f =+1
u ⊲ Uncollided backward Euler

9: q=+1
u ← Efu ⊲ Uncollided moments

10: Solve
q=+1

c − q=
c

ΔC
+ ∂G�(q

=+ 1
2

c ) = 1

n
q=+1

u for q=+1
c ⊲ Collided moment corrector

11: q=+1 = q=+1
u + q=+1

c ⊲ Full moments

12: for : = 1, . . . , #E do

13: "=+1
:
← E(q=+1) (E:) ⊲ Discrete Maxwellian

14: end for

15: M=+1 ← ["=+1
1

, . . . , "=+1
#E
]T

16: M=+1 ←M=+1 +ET (EET)−1(q=+1 −EM=+1) ⊲ Conservation fix

17: Solve
f =+1 − 4

3
g=+ 1

2 + 1
3
g=

ΔC
3

+ V ∂Gf
=+1 + 1

n
f =+1 =

1

n
M=+1 for f =+1 ⊲ BDF2 correction

18: f =+1 ← f =+1 +ET (EET)−1(q=+1 −Ef =+1) ⊲ Conservation fix

19: g=+1 ← f =+1

20: q=+1
2 ← 0

Output: g=+1, q=+1
2

3.3 Spatial discretization

Both (12) and (17) are discretized with a discontinuous Galerkin method [52, 53]. Since this method

is by now well-known, the presentation here will be naturally brief. For simplicity, we discretize the time

continuous equations.

Given #G + 1 grid points GL = G1/2 < G3/2 < · · · < G#G+1/2 = GR, let (8 = (G8−1/2, G8+1/2) be a cell of

width ℎ8 = G8+1/2 − G8−1/2 and center 1
2
(G8+1/2 + G8−1/2). Let P# be the set of all polynomials with maximum

11



polynomial degree # , and let ℎ = max8 ℎ8. Define the broken finite element space

Wℎ
# :=

{
Fℎ ∈ !2 [GL, GR] : Fℎ

��
(8
∈ P# ∀8 ∈ {1, . . . , #G}

}
. (36)

A basis forWℎ
#

is formed by the functions

F8,ℓ (G) = ?ℓ

(
G − G8
ℎ8/2

)
, 8 ∈ {1, . . . , #G}, ℓ ∈ {1, . . . , # + 1}, (37)

where {?ℓ }#+1ℓ=1
is a set of degree # Lagrange polynomials on [−1, 1]. These polynomials are constructed

from the Gauss-Lobatto points {bℓ }#+1ℓ=1
on [−1, 1]:

?ℓ (b) =
#+1∏
ℓ′=1
ℓ′≠ℓ

(b − bℓ′)
(bℓ − bℓ′)

, ℓ ∈ {1, . . . , # + 1}. (38)

3.3.1 Uncollided equation

To discretize (12), we seek for each : ∈ {1, . . . , #E}, a function

5 ℎu,: (G, C) =
#G∑
8=1

#+1∑
ℓ=1

5:,8,ℓ (C)F8,ℓ (G), (39)

such that for all 8 ∈ {1, . . . , #G} and ℓ ∈ {1, . . . , # + 1},

∂C

∫
(8

5 ℎu,: (G, C)F8,ℓ 3G + E:
(
5
ℎ,∗
u,:
(G8+1/2, C)F8,ℓ (G−8+1/2) − 5

ℎ,∗
u,:
(G8−1/2, C)F8,ℓ (G+8−1/2)

)

− E:
∫
(8

5 ℎu,: (G, C)F
′
8,ℓ (G) 3G +

1

Y

∫
(8

5 ℎu,: (G, C)F8,ℓ (G) 3G = 0,

(40)

where 5
ℎ,∗
u,:

is the upwind trace:

5
ℎ,∗
u,:
(G8+1/2, C) =

{
5 ℎu,: (G

−
8+1/2, C), E: > 0, (41a)

5 ℎu,: (G+8+1/2, C), E: < 0. (41b)

In terms of f:,8 = ( 5:,8,1 , . . . , 5:,8,#+1)T, (40) takes the form, for 8 ∈ {1, . . . , #G},




ℎ8

2
J

3f:,8

3C
(C) + E:

[
L1 f:,8 (C) −L2 f:,8−1 (C) −K f:,8 (C)

]
+ ℎ8

2Y
J8 f:,8 (C) = 0, a: > 0, (42a)

ℎ8

2
J

3f:,8

3C
(C) + E:

[
L3 f:,8+1 (C) −L4 f:,8 (C) −K f:,8 (C)

]
+ ℎ8

2Y
J f:,8 (C) = 0, a: < 0, (42b)

where J ∈ ' (#+1)×(#+1) and K ∈ ' (#+1)×(#+1) have components

Jℓ,ℓ′ =

∫ 1

−1

Φℓ (b)Φℓ′ (b) db and Kℓ,ℓ′ =

∫ 1

−1

Φℓ (b)Φ′ℓ′ (b) db, (43)

and the matrices LA , A ∈ {1, 2, 3, 4}, have components

(L1)ℓ,ℓ′ = Φℓ (1)Φℓ′ (1) = Xℓ,# Xℓ′,# , (L2)ℓ,ℓ′ = Φℓ (−1)Φℓ′ (1) = Xℓ,1Xℓ′ ,# , (44a)
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(L3)ℓ,ℓ′ = Φℓ (1)Φℓ′ (−1) = Xℓ,# Xℓ′ ,1, (L4)ℓ,ℓ′ = Φℓ (−1)Φℓ′ (−1) = Xℓ,1Xℓ′ ,1, (44b)

with X the usual Kronecker delta.

The implementation of (42) requires the specification of ghost values f:,0 when a: > 0 and f:,#G+1
when a: < 0. In the numerical examples of Section 4, either periodic or Dirichlet boundary conditions are

used. For the periodic case, we set {
f:,0 (C) = f:,0, a: > 0, (45)

f:,#G+1 (C) = f:,0 (C), a: < 0. (46)

For the Dirichlet case, we set the nodal values equal to the boundary condition on each end:{
5:,0,ℓ (C) = �− (GL, a: , C), a: > 0, ℓ = 1, . . . , # + 1, (47)

5:,#G+1,ℓ (C) = �− (GR, a: , C), a: < 0, ℓ = 1, . . . , # + 1. (48)

In practice, the equations in (42) are solved using backward Euler or BDF2. In either case, an effective steady-

state problem is created which can be solved efficiently using sweeps that update f:,8 using the information

from f:,8−1 when a: > 0 and information from f:,8+1 when a: < 0. The sweeps are independent across

angles and require only the inversion of an (# + 1) × (# + 1) per angle to update the degrees of freedom in

each spatial cell. For problems with incoming boundary data given, only one sweep across the spatial mesh

is needed for each angle. For problems with periodic or reflecting boundaries, several sweep iterations are

needed to reach convergence. For the numerical examples in Section 4 with periodic boundary conditions,

we update the ghost cells after each sweep and observe that only one or two iterations are required for

convergence.

3.3.2 Collided equation

To discretize (17), we seek for each a vector-valued function

qℎ
c =

#G∑
8=1

#+1∑
ℓ=1

q8,ℓ (C)F8,ℓ (G), (49)

such that for all 8 ∈ {1, . . . , #G} and ℓ ∈ {1, . . . , # + 1},

∂C

∫
(8

qℎ
c (G, C)F8,ℓ (G)3G +�∗ (qℎ

c (G−8+1/2, C), (q
ℎ
c (G+8+1/2, C))F8,ℓ (G−8+1/2)

−�∗(qℎ
c (G−8−1/2, C), q

ℎ
c (G+8−1/2, C))F8,ℓ (G+8−1/2)

+
∫
(8

�(qℎ
c (G, C))F′8,ℓ (G) 3G =

1

Y

∫
(8

qℎ
u (G, C)F8,ℓ (G) 3G,

(50)

where

qℎ
u (G, C) =

#E∑
:=1

l:e: 5
ℎ
u,k (G, C), (51)

and the numerical flux �
∗ is the local Lax-Friedrichs flux:

�
∗(q) = �

∗ (q+, q−) = 1

2

(
�(q+) +�(q−) − max

q∈{q− ,q+ }
|_(�′ (q)) | (q+ − q−)

)
. (52)
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The flux Jacobian matrix

�
′ (q) =

©«

0 1 0

(W−3)
2

@2
2

@2
1

(3 − W) @2

@1
(W − 1)

−W @2@3

@1
2 + (W − 1) @2

3

@1
3 W

@3

@1
− 3

2
(W − 1) @2

2

@1
2 W

@2

@1

ª®®®¬
=

©«
0 1 0

0 0 2

−3
@2@3

@1
2 + 2

@2
3

@1
3 3

@3

@1
− 3

@2
2

@1
2 3

@2

@1

ª®®¬
(53)

has eigenvalues _ = {D, D − 2, D + 2}, with

D =
@2

@1

and 2 =

√
W(2@1@3 − @2

2)
@1

2
=

√
W\ =

√
3\. (54)

Thus

Λ = max
q∈{q− ,q+ }

|_(�′ (q)) | = max
q∈{q− ,q+ }

(
max ( |D |, |D − 2 |, |D + 2 |)

)
. (55)

Once qℎ
c is computed, the associated Maxwellian E(qℎ

c ) can be computed at each DG node.

In order to prevent spurious oscillations, we post-process the moments after each update qℎ
c using the

total variation bounded (TVB) slope limiter introduced in [54]. This limiter requires the specification of a

TVB parameter " which is chosen to be " = 20. However, it is only applied to certain test problems; see

details in the next section.

4 Numerical Results

In this section, we present numerical results. For all tests, we compare the BERK2 hybrid methods to

the solutions obtained using the IMEX-DG scheme. Both implementations utilize the same discrete velocity

quadratures for velocity discretization. Additionally, the IMEX-DG scheme relies on the stiffly accurate

IMEX-SSP2(3,2,2) scheme [55] for 2nd order and the IMEX-ARS(4,4,3) scheme [56] for the 3rd-order in

the temporal domain. See [55, 56] for more details about these IMEX schemes. Note that DG: refers to the

:-th order DG scheme, contrasting with the conventional (: + 1)-th order scheme.

The time step for BERK2-DG is ΔC = �Λ−1ΔG, where

Λ ≡ max
0≤8≤#G

max
q∈{q (G−

8+1/2 ) ,q (G
+
8+1/2 ) }

|_(�′ (q)) | (56)

approximates the maximum wave speed associated to the flux matrix Φ′ (q) for (18a) over the spatial domain

- . Meanwhile, the time step for the IMEX-DG is ΔC = �E−1
maxΔG, where Emax is chosen to ensure that the

amount of mass lost in the distribution function is within acceptable bounds. For the tests in Sections 4.1 and

4.2, the CFL constant � for the BERK2-DG4 hybrid is given in Table 1. In the accuracy test case (Section

4.2), the constants are chosen to be smaller to postpone saturation in convergence due to temporal error. In

Sections 4.3-4.6 a DG3 scheme is used for all spatial discretizations and the CFL constant � is given in

Table 2.

DG slope limiters are not used for the tests in Sections 4.1 and 4.2, which focus on smooth solutions. In

the remaining tests, the TVB slope limiter [54] is used in the simulation of the collided moments qc and for

simulations of the Euler equations.

In all the numerical tests, the initial distribution function 5 is given by a Maxwellian, as defined in (2).

That is, 5 (G, E, C = 0) = E(q(G, C = 0)) (E), where q(G, C = 0) is determined from the variables d(G, C = 0),
D(G, C = 0), and ?(G, C = 0).

Reference solutions for the Euler equations are computed with the DoGPack software package [57]

using a 4th-order DG scheme with #G = 3000 spatial points and a 4th-order low-storage strong stability
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Runge-Kutta method [58] for time integration. Reference solutions for the BGK equations are computed

using the 3rd-order IMEX3 scheme with refined grid points. To be more specific, the reference solution

named IMEX3H is used in Sections 4.3-4.5 and in Section 4.6. This is a highly resolved IMEX3-DG3

solution with a grid size of #G = #E = 1000 in Sections 4.3-4.5 and #G = 800 and #E = 1100 in Section

4.6.

The purpose of each numerical test is as follows: The asymptotic test in Section 4.1 is to assess

convergence to the Euler limit as n → 0. The accuracy test in Section 4.2 is to investigate the accuracy

of the BERK2-DG method for different values of n . In particular, it is expected that high-resolution, high-

order schemes will experience temporal accuracy saturation; understanding where this saturation occurs

is important for practical applications. The tests in Sections 4.3-4.5 are standard benchmarks from gas

dynamics, meant to assess how the BERK2-DG scheme captures shocks, contacts, and rarefactions. Finally,

the test in Section 4.6 is designed to emphasize the main advantage of the hybrid BERK2 scheme which is

the efficiency afforded by the relaxed time step restriction when Λ < Emax.

Table 1: CFL constant �, used in sections 4.1 and 4.2.

section CFL constant BERK2-DG2 BERK2-DG3 BERK2-DG4

4.1 � - - 0.1

4.2 � 0.2 0.1 0.05

Table 2: Comparisons of the number of time steps, CFL constant �, maximum velocity Emax, and the wave speed Λ in each of the benchmark

problems from Sections 4.3-4.6. The IMEX3L is an IMEX-ARS(4,4,3), IMEX2L is an IMEX-SSP2(3,2,2), BERK2L is a BERK2 solution, and

BERK2LS is BERK2 solutions with reduced CFL constants. Since the wave-speed Λ changes dynamically in each time-step, the time-step size for

the BERK2 methods also changes, especially for the gas-injection problem. Note that the ratio Emax/Λ indicates the efficiency of BERK2 scheme

in general.

section time-stepping # of time steps � Emax Λ Emax/Λ
n = 1 10−2 10−6

4.3

(Sod)

IMEX3L 429 429 429 0.14

6.0 1.732-2.934 2.045-3.464IMEX2L 300 300 300 0.2

BERK2L 134 137 138 0.2

BERK2LS 274 274 274 0.1

4.4

(Lax)

IMEX3L 536 536 536 0.14

15.0 5.575-8.110 1.850-2.691IMEX2L 375 375 375 0.2

BERK2L 140 140 189 0.2

BERK2LS 280 280 280 0.1

4.5

(Shu-Osher)

IMEX3L 1800 1800 1800 0.14

14.0 6.206-8.085 1.732-2.256IMEX2L 1260 1260 1260 0.2

BERK2L 559 583 686 0.2

BERK2LS 1148 1148 1148 0.1

4.6

(gas-injection)

IMEX3L 1000 1000 1000 0.1

110.0 0.548-8.549 12.867-200.730IMEX2L 1000 1000 1000 0.1

BERK2L 14 27 49 0.1

BERK2LS 61 117 210 0.025
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4.1 Asymptotic test

In this test, we confirm numerically the Euler limit established in Sections 3.1.3 and 3.2.2. The domain

is - × + = [−c, c] × [−7, 7] and the boundary conditions are periodic. The initial data is �0(G, E) =
E(q(G, 0)) (E), where q is determined from the variables

d(G, C = 0) = 1 + 0.2 sin 10G, D(G, C = 0) = 1, ?(G, C = 0) = 1, (57)

and n = 10−12. Here, the Euler solution is used as the reference solution with the initial condition d0(G) = 1+
0.2 sin 10G. The results for the mass density at time C = 0.1 are given in Table 3. All three versions—standard

BERK2, BERK2 with BDF2 correction step, and BERK2 with BDF2 correction and the conservation fix—

exhibit the 2nd-order temporal convergence rate that is expected based on the limiting equations in (31) and

(32).

Table 3: Asymptotic test from Section 4.1. The !2 errors and order of accuracy for the density at C = 0.1 with n = 10−12. The spatial discretization

is DG4. Left: BERK2 without the correction step. Middle: BERK2 with BDF2 correction step. Right BERK2 with both BDF2 correction step and

conservation fix. The bulk velocity D is excluded since D = 1. The influences of the BDF2 correction and the conservation fix on accuracy are very

small in the asymptotic test.

No correction BDF2 correction BDF2 Correction + conservation fix

n #G !2 (d − dEuler) order !2 (d − dEuler) order !2(d − dEuler) order

8 2.376e-01 - 2.376e-01 - 2.376e-01 -

16 3.455e-02 2.781 3.455e-02 2.781 3.455e-02 2.781

32 2.612e-03 3.726 2.612e-03 3.726 2.612e-03 3.726

d 10−12 64 1.078e-04 4.599 1.078e-04 4.599 1.078e-04 4.599

128 1.427e-05 2.917 1.425e-05 2.919 1.425e-05 2.919

256 3.261e-06 2.129 3.242e-06 2.136 3.242e-06 2.136

512 8.136e-07 2.003 7.960e-07 2.026 7.960e-07 2.026

8 2.542e-01 - 2.542e-01 - 2.542e-01 -

16 4.384e-02 2.536 4.384e-02 2.536 4.384e-02 2.536

32 4.088e-03 3.423 4.088e-03 3.423 4.088e-03 3.423

\ 10−12 64 3.189e-04 3.680 3.189e-04 3.680 3.189e-04 3.680

128 6.083e-05 2.390 6.083e-05 2.390 6.083e-05 2.390

256 1.467e-05 2.052 1.467e-05 2.052 1.467e-05 2.052

512 3.487e-06 2.073 3.487e-06 2.073 3.487e-06 2.073

4.2 Accuracy test

In this test, we consider the smooth initial condition from [49] to test the order of accuracy of the hybrid

for arbitrary various n . The domain is - ×+ = [−c, c] × [−7, 7], and the boundary conditions are periodic.

The initial data is �0(G, E) = E(q(G, 0)) (E), where q is determined from the variables

d(G, C = 0) = 1 + 0.2 sin 10G, D(G, C = 0) = 1, ?(G, C = 0) = 1. (58)

The final time is C = 0.1. A velocity grid with #E = 100 is used throughout. Because the analytic solution is

not available, the solution with the half mesh size is used as the reference solution. We consider the !2-errors

for d, given by �ℎ
2

:= ‖dℎ − dℎ/2‖!2 . The convergence order a is defined by a = log
(
�ℎ

2
/�ℎ/2

2

)
/log 2.

The results are given in Table 4. While the standard BERK2 method exhibits degradation in convergence

order, especially for n ∈ {1, 0.1, 0.01}, the order improves significantly when the BDF2 correction step and

the conservation fix are employed.
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Table 4: Accuracy test from Section 4.2. The !2-errors �2
ℎ

and convergence order a of the density for various n . The time step size isΔC = �ΔGΛ−1,

where � = 0.2 for DG2, � = 0.1 for DG3, and � = 0.05 for DG4. The final time is C = 0.1. BERK2 without the correction step is on the left and

BERK2 with both the BDF2 correction step and the conservation fix is on the right.

No correction BDF2 correction + conservation fix

DG2 DG3 DG4 DG2 DG3 DG4

n #G �2
ℎ

a �2
ℎ

a �2
ℎ

a �2
ℎ

a �2
ℎ

a �2
ℎ

a

16 2.56e-02 - 1.13e-03 - 6.34e-05 - 2.61e-02 - 1.16e-03 - 6.40e-05 -

32 1.04e-02 1.3 2.03e-04 2.5 4.84e-06 3.7 1.02e-02 1.3 1.93e-04 2.6 4.64e-06 3.8

1 64 3.76e-03 1.5 2.91e-05 2.8 3.39e-07 3.8 3.29e-03 1.6 2.46e-05 3.0 3.00e-07 3.9

128 1.16e-03 1.7 4.38e-06 2.7 2.42e-08 3.8 8.34e-04 2.0 3.05e-06 3.0 1.89e-08 4.0

256 3.82e-04 1.6 7.34e-07 2.6 1.88e-09 3.7 2.03e-04 2.0 3.80e-07 3.0 1.18e-09 4.0

16 2.56e-02 - 1.13e-03 - 6.34e-05 - 2.61e-02 - 1.16e-03 - 6.40e-05 -

32 1.03e-02 1.3 1.99e-04 2.5 4.85e-06 3.7 1.02e-02 1.3 1.95e-04 2.6 4.70e-06 3.8

10−1 64 3.64e-03 1.5 2.81e-05 2.8 3.35e-07 3.9 3.31e-03 1.6 2.48e-05 3.0 3.04e-07 4.0

128 1.11e-03 1.7 4.23e-06 2.7 2.37e-08 3.8 8.41e-04 2.0 3.07e-06 3.0 1.91e-08 4.0

256 3.72e-04 1.6 7.18e-07 2.6 1.83e-09 3.7 2.03e-04 2.0 3.78e-07 3.0 1.18e-09 4.0

16 2.56e-02 - 1.13e-03 - 6.34e-05 - 2.61e-02 - 1.16e-03 - 6.40e-05 -

32 1.08e-02 1.2 1.89e-04 2.6 5.07e-06 3.6 1.03e-02 1.3 1.94e-04 2.6 4.94e-06 3.7

10−2 64 3.77e-03 1.5 3.23e-05 2.5 3.89e-07 3.7 3.37e-03 1.6 2.54e-05 2.9 3.20e-07 4.0

128 1.75e-03 1.1 7.91e-06 2.0 3.77e-08 3.4 9.17e-04 1.9 3.27e-06 3.0 2.01e-08 4.0

256 9.78e-04 0.8 2.09e-06 1.9 4.42e-09 3.1 2.37e-04 2.0 4.10e-07 3.0 1.24e-09 4.0

16 2.56e-02 - 1.13e-03 - 6.34e-05 - 2.61e-02 - 1.16e-03 - 6.40e-05 -

32 1.28e-02 1.0 1.79e-04 2.7 5.17e-06 3.6 1.28e-02 1.0 1.79e-04 2.7 5.17e-06 3.6

10−6 64 3.49e-03 1.9 2.34e-05 2.9 3.26e-07 4.0 3.49e-03 1.9 2.34e-05 2.9 3.26e-07 4.0

128 8.67e-04 2.0 3.19e-06 2.9 2.21e-08 3.9 8.67e-04 2.0 3.19e-06 2.9 2.21e-08 3.9

256 2.25e-04 1.9 6.75e-07 2.2 4.14e-09 2.4 2.25e-04 1.9 6.73e-07 2.2 4.09e-09 2.4

Table 5: Comparisons of CPU time and speed-up for each problem. I3L, I2L, B2L, and B2LS denote IMEX3L, IMEX2L, BERK2L, and BERK2LS,

respectively.

CPU time (s) Speed-up (B2L) Speed-up (B2LS)

n I3L I2L B2L B2LS vs I3L vs I2L vs I3L vs I2L

Sod

1 19.87 8.64 1.06 2.29 18.75 8.15 8.68 3.77

10−2 20.94 8.71 1.11 2.35 18.86 7.85 8.91 3.71

10−6 18.71 8.57 1.05 2.31 17.82 8.16 8.10 3.71

Lax

1 25.56 11.91 1.74 3.71 14.69 6.84 6.89 3.21

10−2 24.99 12.16 1.74 3.77 14.36 6.99 6.63 3.23

10−6 25.21 11.37 1.71 3.82 14.74 6.65 6.60 2.98

Shu-Osher

1 292.33 120.93 29.77 62.1 9.82 4.06 4.71 1.95

10−2 287.11 121.02 29.50 61.2 9.73 4.10 4.69 1.98

10−6 291.56 120.36 29.92 61.7 9.74 4.02 4.73 1.95

gas-injection

1 697.96 399.83 3.09 10.33 225.88 129.39 67.57 38.71

10−2 699.51 404.01 6.09 18.84 114.86 66.34 37.13 21.44

10−6 700.4 405.88 10.21 33.85 68.60 39.75 20.69 11.99
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4.3 Sod shock tube problem

The Sod shock tube problem [59] is used to determine how well a numerical solver captures fundamental

flow features. The initial conditions are �0(G, E) = E(q(G, 0)) (E), where q is determined from the variables

(d(G, 0), D(G, 0), ?(G, 0)) =
{
(1, 0, 1), 0 ≤ G ≤ 0.5,

(0.125, 0, 0.1), 0.5 < G ≤ 1.
(59)

The spatial domain [0, 1] is discretized with #G = 100 spatial cells and the velocity domain [−6, 6] is

discretized with a #E = 100 point Gauss-Legendre quadrature set, scaled to fit the velocity domain. The

boundary conditions are chosen to coincide with the initial constant moments at both ends of the spatial

domain. The final time is C = 0.1. Numerical solutions are computed with the hybrid BERK2 time

discretization and a 3rd-order DG discretization in space.

Figure 1 includes five solutions. EulerH is the Euler solution that is obtained by the Euler solver from

DoGPack [57] with #G = 3000. IMEX3H is a highly resolved IMEX3-DG solution with #G = #E = 1000; it

is used as a reference. IMEX3L is an IMEX3-DG solution with #G = #E = 100. IMEX2L is an IMEX3-DG

solution with #G = #E = 100. BERK2L is the hybrid BERK2 solution with #G = #E = 100. All schemes

are plotted with the CFL constant � given in Table 2. The differences in wave speeds, time-step size, and

the size of the velocity domain are presented in Table 2 to facilitate an effective comparison of efficiency for

all of the test problems in Sections 4.3-4.6.

We plot three differences to compare the accuracy and CPU time for each method of the IMEX-DG

and BERK2 methods: (i) IMEX3H-IMEX3L, (ii) IMEX3H-IMEX2L, and (iii) IMEX3H-BERK2L. From

the results in Figure 1, we conclude that the BERK2L scheme provides a good approximation within a

smaller CPU time than IMEX2L and IMEX3L. In this particular velocity domain setting, BERK2L shows

the CPU time corresponding to approximately 1/8 of the CPU time for IMEX2L and 1/18 of the CPU time

for IMEX3L as shown in Table 5. The only significant differences in accuracy occur when n = 0.01. In

that instance, the IMEX-DG schemes provide better accuracy. For this reason, we have included a plot of

the three solutions together to highlight that these differences occur primarily near the sharp transitions in

the solution profile. The fourth row (BERK2LS) of Figure 1 emphasizes the BERK2L solutions with a

smaller CFL constant of � = 0.1, which yields comparable accuracy with less computation time than the

IMEX solutions. Within the BERK2LS configuration, the CPU time is roughly 1/3 that of IMEX2L and

approximately 1/8 the time of IMEX3L.

4.4 Lax shock tube problem

The Lax shock tube problem [60] is another Riemann problem that is similar to the previous Sod problem,

but uses a non-zero initial bulk velocity. The initial conditions are �0(G, E) = E(q(G, 0)) (E), where q is

determined from the variables

(d(G, 0), D(G, 0), ?(G, 0)) =
{
(0.445, 0.698, 3.528), −0.5 ≤ G ≤ 0.5,

(0.5, 0, 0.571), 0.5 < G ≤ 1.5.
(60)

The spatial domain [−0.5, 1.5] is discretized with #G = 100 spatial cells and the velocity domain [−15, 15]
is discretized with #E = 100 points. Numerical results are obtained through the 3rd order nodal DG scheme

up to time C = 0.1. The boundary conditions are set to be the same way as the previous Sod shock tube

problem.

Similar to the Sod problem, Figure 2 includes five solutions. EulerH is the Euler solution that is obtained

by the Euler solver from DoGPack [57] with #G = 3000. IMEX3H is a highly resolved IMEX3-DG solution

with #G = #E = 1000 that will be used as a reference solution. IMEX2L is an IMEX3-DG solution with
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#G = #E = 100. IMEX2L is an IMEX3-DG solution with #G = #E = 100. BERK2L is the hybrid BERK2

solution with #G = #E = 100. All schemes are plotted with the CFL constant C given in Table 2.

We plot three differences to compare the accuracy and CPU time for each method of the IMEX-DG and

BERK2 methods: (i) IMEX3H-IMEX3L, (ii) IMEX3H-IMEX2L, and (iii) IMEX3H-BERK2L. The results

in Figure 2 are similar to those from the Sod problem. Again, we conclude that the BERK2L scheme provides

a good approximation within a smaller CPU time than IMEX2L and IMEX3L. In this particular velocity

domain setting, BERK2L shows the CPU time corresponding to approximately 1/6 of the CPU time for

IMEX2L and 1/14 of the CPU time for IMEX3L as shown in Table 5. Again, the only significant differences

in accuracy occur when n = 0.01. In that instance, the IMEX-DG schemes provide better accuracy. To fix

this, we have included the fourth row in which the BERK2LS solutions are presented with a reduced CFL

constant of � = 0.1, resulting in comparable accuracy with less computation time compared to the IMEX

solutions. In the context of the BERK2LS framework, the CPU time is estimated to be about 1/3 of the time

required for IMEX2L and roughly 1/6 of the time required for IMEX3L.

4.5 Shu-Osher problem

The Shu-Osher problem [61] is a simulation of a shock-turbulence interaction where a shock propagates

into a perturbed density field, thus it can be used to determine the ability of a numerical solver to capture

a shock wave, its interaction with an unsteady density field, and the waves propagating downstream of the

shock [62]. The initial conditions are �0(G, E) = E(q(G, 0)) (E), where q is determined from the variables

(d(G, 0), D(G, 0), ?(G, 0)) =
{
(1.756757, 2.005122, 10.333333), G ≤ −4,

(1 + 0.2 sin 5G, 0, 1), G > −4.
(61)

The initial shock is located at G = −4. In this problem, more spatial and angular grids are used due to the

increased size of the spatial and velocity domain. The spatial domain [−10, 10] and the velocity domain

[−14, 14] are discretized with #G = 200 uniform grid points and #E = 200 Gauss-Legendre quadrature

points, respectively. We compute the solutions with the 3rd order DG scheme up to time C = 1.8. The same

boundary conditions are used as before.

Similar to the Sod and Lax problems, Figure 3 includes five solutions. EulerH is the Euler solution

that is obtained by the Euler solver from DoGPack [57] with #G = 3000. IMEX3H is a highly resolved

IMEX3-DG solution with #G = #E = 1000 that will be used as a reference solution. All IMEX2L, IMEX3L,

and BERK2L solutions are computed with #G = #E = 200. All schemes are plotted with the CFL constant

C given in Table 2.

We plot three differences to compare the accuracy and CPU time for each method of the IMEX-DG and

BERK2 methods in the same order as before. The results in Figure 3 are similar to those from the Sod

problem. Again, we conclude that the BERK2L scheme provides a good approximation within a smaller

CPU time than IMEX2L and IMEX3L. In this particular velocity domain setting, BERK2L shows the CPU

time corresponding to 1/4 of the CPU time for IMEX2L and 1/9 of the CPU time for IMEX3L as shown

in Table 5. In this problem, we do not observe significant differences in accuracy found in the previous

problems when n = 0.01. However, we still include BERK2LS in the 4th row to demonstrate the efficiency

of the BERK2 scheme. Operating within the BERK2LS environment, the computational time used is nearly

half of what is used for IMEX2L and close to 1/4 of the time consumed by IMEX3L.

4.6 Gas injection problems

The gas injection problem was designed to emphasize the benefit of the BERK2 method when Emax is

very large relative to Λ, i.e., the ratio Emax/Λ is large. The initial condition is

�0(G, E) = E(q1(G, 0)) (E), (62)
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where q1 is determined from the variables

d1 (G, 0) = 1, D1 (G, 0) = 0, \1(G, 0) = 0.1. (63)

The source is

((G, E, C) = [(G)E (q2(G, 0)) (E), (64)

where q2 is determined from the variables

d2(G, 0) = 0.01, D2 (G, 0) = 100, \2(G, 0) = 100, (65)

and [ is

[(G) = 20 exp

(
−(G − G0)2

2f2

)
, G0 = 0.5, f = 0.1. (66)

Here, 20 is a normalization constant, defined such that
∫ 1

0
[(G) 3G = 1. This problem requires a large

velocity domain by construction. The spatial domain and the velocity domain are chosen to be [−3, 19]
and [−Emax, Emax], respectively, where Emax = 110. We present our results for BERK2L in Figures 4-6 and

BERK2LS in Figures 7-9.

The first rows of Figures 4-9 use the IMEX3H solutions as a reference. The remaining rows of Figure 4-9

show the d, D, and \ of the gas injection problem, and the leftmost column tells the computational time for

the IMEX3L, IMEX2L, and hybrid BERK2L schemes. Setting D2 = 100 greatly magnifies the computation

time differences between BERK2L and IMEX2,3L schemes due to the increased size of the velocity domain

with Emax = 110. We choose more angular grids with #E = 1000 to correctly capture the velocity integration

with minimal quadrature error. The spatial grid is chosen to be uniform with #G = 200. All schemes are

plotted with the CFL constant C given in Table 2.

Table 5 shows CPU time for the gas injection problem, and it is clear to see the time difference between

the hybrid BERK2L and the rest. On average, for the D2 = 100 case, the speed-up is about 225.88X, 114.86X,

and 68.60X versus IMEX3L and 129.39X, 66.34X, and 39.75X versus IMEX2L when n = 1.0, n = 10−2,

and n = 10−6, respectively. The corresponding solution profiles are shown in Figure 4-6. The figure format

in this section has been altered from earlier sections to enhance the visualization of the shock wave front. It

is clear from these plots that the BERK2L solution has smeared out the high-speed structure due to stepping

over the fastest time scales in the problem when n = 1 and n = 10−2. This is the price to be paid for

the efficiency and stability of the implicit calculation of the uncollided solution. The required number of

time-step in BERK2 is significantly smaller than IMEX schemes as it is shown in Table 5, i.e., BERK2 can

handle a much larger time-step size than IMEX schemes due to the relaxed CFL condition in this problem.

For BERK2LS, which uses a small CFL constant � = 0.025, the speed-up is 67.57X, 37.13X, and 20.69X

versus IMEX3L and 38.71X, 21.44X, and 11.99X versus IMEX2L when n = 1.0, n = 10−2, and n = 10−6,

respectively. The corresponding solution profiles are shown in Figure 7-9. In this case, the profile accuracy

(BERK2LS) is more comparable to IMEX3H. Note that, for this particular problem, the explicit advection

of IMEX schemes handle the bump-on-tail more accurately, though the errors are small in BERK2LS.

5 Conclusion

Our hybrid BERK2 scheme for the uncollided-collided decomposition works uniformly for all Knudsen

numbers. The comparisons of the scheme with non-splitting IMEX schemes indicate that the hybrid BERK2

scheme is more effective than the IMEX scheme with a coarse spatial discretization especially when the ratio

of Emax to Λ is large.
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Fully implicit treatment for the uncollided equation can be easily achieved by the linearity of the uncollided

equation. This approach can remove the velocity CFL restriction existing in IMEX time discretizations, which

is especially beneficial for problems that have a large ratio of Emax to Λ. The obtained uncollided solution

is updated as a source term in the collided equation. This approach makes the collided equation possible

to be solved semi-implicitly with explicit calculations, which allows much less restrictive CFL conditions.

The biggest potentiality of this scheme is that the kinetic equations can be coupled to existing high-order

hydrodynamic codes without suffering from very restrictive CFL conditions. The splitting error in our hybrid

scheme can be further reduced by the method, e.g., the integral deferred correction scheme [36]. Reducing

the splitting error of the hybrid method is another interesting topic that can be studied in the future.
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Figure 1: Comparison of numerical solutions for the Sod problem at t=0.1 with various n . Row 1: Euler and IMEX3H at different values of n .

Row 2: For n = 1, and for each unknown (d, D, \), we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L. Row

3: Same as Row 1, but for n = 10−2, Row 4: Same as Row 3, but with a smaller CFL constant � = 0.1. Row 5: Same as Row 1, but for n = 10−6.

The computation time for each method is shown in the leftmost column. (Parameters for each method - Euler: #G = 3000, � = 0.1; IMEX3H:

#G = #E = 1000, � = 0.14; IMEX3L: #G = #E = 100, � = 0.14; IMEX2L: #G = #E = 100, � = 0.2; BERK2L: #G = #E = 100,

� = 0.2)
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Figure 2: Comparison of numerical solutions for the Lax problem at t=0.1 with various n . Row 1: Euler and IMEX3H at different values of n .

Row 2: For n = 1, and for each unknown (d, D, \), we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L. Row

3: Same as Row 1, but for n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first

column. Row 5: Comparisons of low-resolution solution for n = 0.01. (Parameters for each method - Euler: #G = 3000, � = 0.1; IMEX3H:

#G = #E = 1000, � = 0.14; IMEX3L: #G = #E = 100, � = 0.14; IMEX2L: #G = #E = 100, � = 0.2; BERK2L: #G = #E = 100,

� = 0.2)
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Figure 3: Comparison of numerical solutions for the Shu-Osher problem at t=1.8 with various n . Row 1: Euler and IMEX3H at different values of

n . Row 2: For n = 1, and for each unknown (d, D, \), we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L.

Row 3: Same as Row 1, but for n = 10−2 , Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first

column. Row 5: Comparisons of low-resolution solution for n = 0.01. (Parameters for each method - Euler: #G = 3000, � = 0.1; IMEX3H:

#G = #E = 1000, � = 0.14; IMEX3L: #G = #E = 200, � = 0.14; IMEX2L: #G = #E = 200, � = 0.2; BERK2L: #G = #E = 200,

� = 0.2)
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Figure 4: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for d, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L. Row 3: Same as Row 1, but for

n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2L: #G = 200, #E = 1000, � = 0.1).
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Figure 5: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for D, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L. Row 3: Same as Row 1, but for

n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2L: #G = 200, #E = 1000, � = 0.1).
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Figure 6: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for \, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2L. Row 3: Same as Row 1, but for

n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2L: #G = 200, #E = 1000, � = 0.1).
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Figure 7: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for d, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2LS. Row 3: Same as Row 1, but

for n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2LS: #G = 200, #E = 1000, � = 0.025).
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Figure 8: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for D, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2LS. Row 3: Same as Row 1, but

for n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2LS: #G = 200, #E = 1000, � = 0.025).
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Figure 9: Comparison of numerical solutions for the gas injection problem at t=0.1 with various n . Row 1: IMEX3H at different values of n . Row

2: For n = 1, and for \, we plot the differences; IMEX3H-IMEX3L, IMEX3H–IMEX2L and IMEX3H–BERK2LS. Row 3: Same as Row 1, but

for n = 10−2, Row 4: Same as Row 1, but for n = 10−6. The computation time for each method is shown in the first column. (Parameters for each

method - IMEX3H: #G = 800, #E = 1100, � = 0.1; IMEX3L: #G = 200, #E = 1000, � = 0.1; IMEX2L: #G = 200, #E = 1000, � = 0.1;

BERK2LS: #G = 200, #E = 1000, � = 0.025).

30



References

[1] C. D. Hauck and R. G. McClarren. A collision-based hybrid method for time-dependent, linear, kinetic

transport equations. Multiscale Model. Simul., 11(4):1197–1227, 2013.

[2] P. L. Bhatnagar, E. P. Gross, and M. Krook. A model for collision processes in gases. I. Small amplitude

processes in charged and neutral one-component systems. Phys. Rev., 94:511–525, 1954.

[3] B. Perthame. Global existence to the BGK model of Boltzmann equation. J. of Differ. Equ., 82(1):191–

205, 1989.

[4] C. Klingenberg, M. Pirner, and G. Puppo. A consistent kinetic model for a two-component mixture

with an application to plasma. Kinetic & Related Models, 10(2):445, 2017.

[5] J. Haack, C. D. Hauck, C. Klingenberg, M. Pirner, and S. Warnecke. A consistent BGK model with

velocity-dependent collision frequency for gas mixtures. Journal of Statistical Physics, 184(3), 9 2021.

[6] J. R. Haack, C. D. Hauck, and M. S. Murillo. A conservative, entropic multispecies BGK model.

Journal of Statistical Physics, 168(4):826–856, 2017.

[7] L. H. Holway Jr. Kinetic theory of shock structure using an ellipsoidal distribution function. Rarefied

Gas Dynamics, Volume 1, 1:193, 1965.

[8] P. Andries, P. Le Tallec, J.-P. Perlat, and B. Perthame. The gaussian-BGK model of boltzmann equation

with small prandtl number. European Journal of Mechanics-B/Fluids, 19(6):813–830, 2000.

[9] H. Struchtrup. Macroscopic transport equations for rarefied gas flows. In Macroscopic transport

equations for rarefied gas flows, pages 145–160. Springer, 2005.

[10] Y. T. Lee and R. M. More. An electron conductivity model for dense plasmas. The Physics of Fluids,

27(5):1273–1286, 1984.

[11] H. Struchtrup. The BGK-model with velocity-dependent collision frequency. Continuum Mechanics

and Thermodynamics, 9(1):23–31, 1997.

[12] J. Haack, C. Hauck, C. Klingenberg, Ma. Pirner, and S. Warnecke. Numerical schemes for a multi-

species bgk model with velocity-dependent collision frequency. arXiv preprint arXiv:2202.05652,

2022.

[13] W. Melis, T. Rey, and G. Samaey. Projective and telescopic projective integration for the nonlinear bgk

and boltzmann equations. The SMAI journal of computational mathematics, 5:53–88, 2019.

[14] F. Coron and B. Perthame. Numerical passage from kinetic to fluid equations. SIAM J. Numer. Anal.,

28(1):26–42, 1991.

[15] J. Y. Yang and J. C. Huang. Rarefied flow computations using nonlinear model Boltzmann equations.

J. Comput. Phys., 120:323–339, 1995.

[16] E. M. Shakhov. Generalization of the krook kinetic relaxation equation. Fluid dynamics, 3(5):95–96,

1968.

[17] M. Bennoune, M. Lemou, and L. Mieussens. Uniformly stable numerical schemes for the Boltzmann

equation preserving the compressible Navier–Stokes asymptotics. J. Comput. Phys., 227:3781–3803,

2008.

31



[18] L. Mieussens. Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in

Plane and Axisymmetric Geometries. J. Comput. Phys., 162(2):429–466, 2000.

[19] P. Andries, J. F. Bourgat, P. Le-Tallec, and B. Perthame. Numerical comparison between the Boltzmann

and ES-BGK models for rarefied gases. Comput. Method Appl. M., 191(31):33–69, 2002.

[20] J. Hu and X. Zhang. On a class of implicit–explicit Runge–Kutta schemes for stiff kinetic equations

preserving the Navier–Stokes limit. J. Sci. Comput., 73:797––818, 2017.

[21] S. Pieraccini and G. Puppo. Implicit–explicit schemes for BGK kinetic equations. J. Sci. Comput.,

32:1–28, 2007.

[22] S. Pieraccini and G. Puppo. Microscopically implicit–macroscopically explicit schemes for the BGK

equation. J. Comput. Phys., 231:299–327, 2012.

[23] F. Filbet and S. Jin. An asymptotic preserving scheme for the ES–BGK model of the Boltzmann

equation. J. Sci. Comput., 46:204–224, 2011.

[24] K. Xu. A gas-kinetic BGK scheme for the Navier–Stokes equations and its connection with artificial

dissipation and Godunov method. J. Comput. Phys., 171:289–335, 2001.

[25] C. Bardos, F. Golse, and D. Levermore. Fluid dynamic limits of kinetic equations. i. formal derivations.

Journal of statistical physics, 63(1):323–344, 1991.

[26] E. W. Larsen and J. E. Morel. Advances in discrete-ordinates methodology. Nuclear Computational

Science, pages 1–84, 2010.

[27] V. P. DeCaria, C. D. Hauck, and M. T. P. Laiu. Analysis of a new implicit solver for a semiconductor

model. SIAM Journal on Scientific Computing, 43(3):B733–B758, 2021.

[28] M. P. Laiu, Z. Chen, and C. D. Hauck. A fast implicit solver for semiconductor models in one space

dimension. Journal of Computational Physics, 417:109567, 2020.

[29] W. T. Taitano, D. A. Knoll, L. Chacón, J. M. Reisner, and A. K. Prinja. Moment-based acceleration for

neutral gas kinetics with bgk collision operator. Journal of Computational and Theoretical Transport,

43(1-7):83–108, 2014.

[30] A. V. Bobylev, A. Palczewski, and J. Schneider. On approximation of the Boltzmann equation by

discrete velocity models. C. R. Acad. Sci. Paris Ser. I Math., 320:639–644, 1995.

[31] L. Mieussens. Discrete velocity model and implicit scheme for the bgk equation of rarefied gas

dynamics. Mathematical Models and Methods in Applied Sciences, 10(08):1121–1149, 2000.

[32] C. K. Garrett and C. D. Hauck. A fast solver for implicit integration of the vlasov–poisson system in

the eulerian framework. SIAM Journal on Scientific Computing, 40(2):B483–B506, 2018.

[33] M. Ding, J.-M. Qiu, and R. Shu. Semi-lagrangian nodal discontinuous galerkin method for the bgk

model. arXiv preprint arXiv:2105.02421, 2021.

[34] S. Cho, S. Boscarino, G. Russo, and S. Yun. Conservative semi-lagrangian schemes for kinetic equations

part ii: Applications. Journal of Computational Physics, 436:110281, 2021.

[35] M. Groppi, G. Russo, and G. Stracquadanio. High order semi-lagrangian methods for the bgk equation.

arXiv preprint arXiv:1411.7929, 2014.

32



[36] M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck. An arbitrary-order, fully implicit,

hybrid kinetic solver for linear radiative transport using integral deferred correction. J. Comput. Phys.,

346:212–241, 2017.

[37] M. M. Crockatt, A. J. Christlieb, C. K. Garrett, and C. D. Hauck. Hybrid methods for radiation transport

using diagonally implicit Runge–Kutta and space–time discontinuous Galerkintime integration. J.

Comput. Phys., 376:455–477, 2019.

[38] R. G. McClarren, J. A. Rossmanith, and M. Shin. Semi-implicit hybrid discrete (H)
#

) approximation

of thermal radiative transfer. Journal of Scientific Computing, 90(1):2, Nov 2021.

[39] R. G. McClarren, T. M. Evans, R. B. Lowrie, and J. D. Densmore. Semi-implicit time integration for

PN thermal radiative transfer. Journal of Computational Physics, 227(16):7561–7586, 2008.

[40] R. E. Alcouffe. A first collision source method for coupling Monte Carlo and discrete ordinates for

localized source problems. In Raymond Alcouffe, Robert Dautray, Arthur Forster, Guy Ledanois, and

B Mercier, editors, Monte-Carlo Methods and Applications in Neutronics, Photonics and Statistical

Physics, pages 352–366, Berlin, Heidelberg, 1985. Springer Berlin Heidelberg.

[41] R. E. Alcouffe, R. D. O’Dell, and F. W. Brinkley. A First-Collision Source Method That Satisfies

Discrete Sn Transport Balance. Nuclear Science and Engineering, 105(2):198–203, 1990.

[42] C. Cercignani, R. Illner, and M. Pulvirenti. The mathematical theory of dilute gases, volume 106.

Springer Science & Business Media, 2013.

[43] C. Cercignani. The Boltzmann equation and its applications. Springer, 1988.

[44] E. F. Toro. Riemann solvers and numerical methods for fluid dynamics: a practical introduction.

Springer Science & Business Media, 2013.

[45] L. Mieussens. Discrete velocity model and implicit scheme for the BGK equation of rarefied gas

dynamic. Math Models Methods Appl Sci., 10(8):1121–1149, 2000.

[46] A. Palczewski, J. Schneider, and A. V. Bobylev. A consistency result for a discrete-velocity model of

the Boltzmann equation. SIAM J. Numer. Anal., 34:1865–1883, 1997.

[47] C. Bardos, F. Golse, and Y. Sone. Half-space problems for the boltzmann equation: A survey. Journal

of statistical physics, 124, 2006.

[48] A. Bensoussan, P.-L. Lions, and G. C. Papanicolaou. Boundary layers and homogenizatlon of transport

processes. Publications of the Research Institute for Mathematical Sciences, 15(1):53–157, 1979.

[49] T. Xiong, J. Jang, F. Li, and J.-M. Qiu. High order asymptotic preserving nodal discontinuous Galerkin

IMEX schemes for the BGK equation. J. Comput. Phys., 284:70–94, 2015.

[50] I. M. Gamba and S. H. Tharkabhushanam. Spectral-lagrangian methods for collisional models of

non-equilibrium statistical states. Journal of Computational Physics, 228(6):2012–2036, 2009.

[51] M. M. Crockatt, A. J. Christlieb, and C. D. Hauck. Improvements to a class of hybrid methods for

radiation transport: Nyström reconstruction and defect correction methods. Journal of Computational

Physics, 422:109765, 2020.

[52] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron transport equation. Technical

report, Los Alamos Scientific Lab., N. Mex.(USA), 1973.

33



[53] C.-W. Shu. Discontinuous galerkin methods: general approach and stability. Numerical solutions of

partial differential equations, 201, 2009.

[54] B. Cockburn and S.-Y. Lin. TVB Runge–Kutta Local Projection Discontinuous Galerkin Finite Element

Method for Conservation laws III: One-Dimensional Systems. J. Comput. Phys., 84:90–113, 1989.

[55] L. Pareschi and G. Russo. Implicit–Explicit Runge–Kutta Schemes and Applications to Hyperbolic

Systems with Relaxation. J. Sci. Comput., 25:129–155, 2005.

[56] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri. Implicit-explicit runge-kutta methods for time-dependent

partial differential equations. Applied Numerical Mathematics, 25(2):151–167, 1997. Special Issue on

Time Integration.

[57] J. A. Rossmanith. DoGPack: Discontinuous Galerkin package. http://dogpack-code.org/.

[58] D. I. Ketcheson. Highly efficient strong stability-preserving Runge-Kutta methods with low-storage

implementations. SIAM J. on Scientific Computing, 30(4):2113–2136, 2008.

[59] G. A. Sod. A survey of several finite difference methods for systems of nonlinear hyperbolic conservation

laws. J. Comp. Phys., 27:1–31, 1978.

[60] P. D. Lax. Weak solution of non-linear hyperbolic equations and their numerical computations.

Commun. Pure Appl. Math., 7:159–193, 1954.

[61] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing

schemes, II. J. Comp. Phys., 83:32–78, 1989.

[62] R. Bürger, S. K. Kenettinkara, and D. Zorı́o. Approximate Lax–Wendroff discontinuous Galerkin

methods for hyperbolic conservation laws. Comput. Math. with Appl., 74(6):1288–1310, 2017.

34

http://dogpack-code.org/

	Introduction
	Related work
	Hybrid approach: benefits and drawbacks

	The hybrid formulation
	The BGK equation
	Moment equations
	The hybrid method

	Discretization of the hybird method
	Velocity discretization
	Discrete velocity model (DVM) for the uncollided equation
	Moment equations for the collided equation
	Euler Limit

	Time Discretization
	The hybrid BERK2 time discretization 
	The Euler limit
	Correction and conservation fix

	Spatial discretization
	Uncollided equation
	Collided equation


	Numerical Results
	Asymptotic test
	Accuracy test
	Sod shock tube problem
	Lax shock tube problem
	Shu-Osher problem
	Gas injection problems

	Conclusion
	References

