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Abstract

In this paper we design FPT-algorithms for two parameterized problems. The

first is List Digraph Homomorphism: given two digraphs G and H and

a list of allowed vertices of H for every vertex of G, the question is whether

there exists a homomorphism from G to H respecting the list constraints. The

second problem is a variant of Multiway Cut, namely Min-Max Multiway

Cut: given a graph G, a non-negative integer ℓ, and a set T of r terminals, the

question is whether we can partition the vertices of G into r parts such that

(a) each part contains one terminal and (b) there are at most ℓ edges with only

one endpoint in this part. We parameterize List Digraph Homomorphism

by the number w of edges of G that are mapped to non-loop edges of H and we

give a time 2O(ℓ·logh+ℓ
2
·log ℓ)·n4 ·logn algorithm, where h is the order of the host

graph H . We also prove that Min-Max Multiway Cut can be solved in time

2O((ℓr)2 log ℓr) ·n4·logn. Our approach introduces a general problem, called List

Allocation, whose expressive power permits the design of parameterized

reductions of both aforementioned problems to it. Then our results are based

on an FPT-algorithm for the List Allocation problem that is designed using

a suitable adaptation of the randomized contractions technique (introduced by

[Chitnis, Cygan, Hajiaghayi, Pilipczuk, and Pilipczuk, FOCS 2012]).
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1 Introduction

The Multiway Cut problem asks, given a graph G, a set of r terminals T , and

a non-negative integer ℓ, whether it is possible to partition V (G) into r parts such

that each part contains exactly one of the terminals of T and there are at most

ℓ edges between different parts (i.e., at most ℓ crossing edges). In the special

case where |T | = 2, this gives the celebrated Minimum Cut problem, which is

polynomially solvable [31]. In general, when there is no restriction on the number

of terminals, the Multiway Cut problem is NP-complete [8] and a lot of research

has been devoted to the study of this problem and its generalizations, including

several classic results on its polynomial approximability [3, 14,17,18,24,30].

More recently, special attention to the Multiway Cut problem was given from

the parameterized complexity point of view. The existence of an FPT-algorithm for

Multiway Cut (when parameterized by ℓ), i.e., an f(ℓ) ·nO(1)-step algorithm, had

been a long-standing open problem. This question was answered positively by Marx

in [26] with the use of the important separators technique which was also used for

the design of FPT-algorithms for several other problems such as Directed Mul-

tiway Cut [4], Vertex Multicut, and Edge Multicut [28]. This technique

has been extended to the powerful framework of randomized contractions tech-

nique, introduced in [5]. This made it possible to design FPT-algorithms for several

other problems such as Unique Label Cover, Steiner Cut, Edge/Vertex

Multiway Cut-Uncut. We stress that this technique is quite versatile.

In this paper we use it in order to design FPT-algorithms for parameteriza-

tions of two problems that do not seem to be directly related to each other: the

Min-Max-Multiway Cut problem [32] and the List Digraph Homomorphism

problem.

1.1 Min-Max-Multiway Cut

In the Multiway Cut problem the parameter ℓ bounds the total number of cross-

ing edges (i.e., edges with endpoints in different parts). Svitkina and Tardos [32]

considered a “min-max” variant of this problem, namely the Min-Max-Multiway

Cut, where ℓ bounds the maximum number of outgoing edges of the parts1. In [32],

it was proved that Min-Max-Multiway Cut is NP-complete even when the num-

ber of terminals is r = 4. As a consequence of the results in [32] and [29], Min-

Max-Multiway Cut admits an O(log2 n)-approximation algorithm. This was

improved recently in [1] to a O((log n · log r)1/2)-approximation algorithm.

To our knowledge, nothing is known about the parameterized complexity of this

problem. We prove the following.

1Notice that under this viewpoint Multiway Cut can be seen as Min-Sum-Multiway Cut.
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Theorem 1. There exists an algorithm that solves the Min-Max-Multiway Cut

problem in 2O((rℓ)2 log rℓ) · n4 · log n steps, i.e., Min-Max-Multiway Cut belongs

to FPT when parameterized by both r and ℓ.

(Throughout the paper, we use n = |V (G)| when we refer to the number of

vertices of the graph G in the instance of the considered problem.)

1.2 List Digraph Homomorphism

Given two directed graphs G and H, an H-homomorphism of G is a mapping

χ : V (G)→ V (H) such that if (x, y) is an arc of G, then (χ(x), χ(y)) is also an arc

in H. In the List Digraph Homomorphism problem, we are given two graphs

G and H and a list function λ : V (G) → 2V (H) and we ask whether G has a H-

homomorphism such that for every vertex v of G, χ(v) ∈ λ(v). Graph and digraph

homomorphisms have been extensively studied both from the combinatorial and

the algorithmic point of view (see e.g., [2, 13,15,16,21]).

Especially for the List Digraph Homomorphism problem, a dichotomy char-

acterizing the instantiations of H for which the problem is hard was given in [22]

(see also [12]). Notice that the standard parameterization of List Digraph Ho-

momorphism by the size of the graph H is para-NP-complete as it yields the 3-

Coloring problem when G is restricted to be a simple graph and H = K3. A

more promising parameterization of List Homomorphism (for undirected graphs)

has been introduced in [10], where the parameter is a bound on the number of

pre-images of some prescribed set of vertices of H (see also [9, 11, 27]). Another

parameterization, again for the undirected case, was introduced in [6], where the

parameter is the number of vertices to be removed from the graph G so that the

remaining graph has a list H-homomorphism.

We introduce a new parameterization of List Digraph Homomorphism where

the parameter is, apart from h = |V (H)|, the number of “crossing edges”, i.e., the

edges of G whose endpoints are mapped to different vertices of H. For this, we

enhance the input with an integer ℓ and ask for a list digraph homomorphism

with at most ℓ crossing edges. Clearly, when ℓ = |E(G)|, this yields the original

problem. We call the new problem Bounded List Digraph Homomorphism

(in short, BLDH). Notice that the fact that List Digraph Homomorphism is

NP-complete even when h = 3, implies that BLDH is para-NP-complete when

parameterized only by h. The input of BLDH is a quadruple (G,H, λ, ℓ) where

G is the guest graph, H is the host graph, λ : V (G) → 2V (H) is the list function

and ℓ is a non-negative integer. Our next step is to observe that BLDH is W[1]-

hard, when parameterized only by ℓ. To see this consider an input (G, k) of the

Clique problem and construct the input (K, Ḡ, λ, ℓ) where K is a the complete

digraph on k vertices, Ḡ is the digraph obtained by G by replacing each edge by two
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opposite direction arcs between the same endpoints, λ = {(v, V (G)) | v ∈ V (K)},

and ℓ = k(k − 1). Notice that (G, k) is a yes-instance of Clique iff (K, Ḡ, λ, ℓ) is

a yes-instance of BLDH.

We conclude that when BLDH is parameterized by ℓ or h only, then one may

not expect it to be fixed parameter tractable. This means that the parameterization

of BLDH by h and ℓ is meaningful to consider. Our result is the following.

Theorem 2. There exists an algorithm that solves the Bounded List Digraph

Homomorphism problem in 2O(ℓ·logh+ℓ2·log ℓ) · n4 · log n steps, i.e., Bounded List

Digraph Homomorphism belongs to FPT when parameterized by the number ℓ of

crossing edges and the number h of vertices of H.

1.3 List Allocation

In order to prove Theorems 1 and 2, we prove that both problems are Turing

FPT-reducible2 to a single new problem that we call List Allocation (in short,

LA).

The List Allocation problem is defined as follows: We are given a graph G

and a set of r “boxes” indexed by numbers from {1, . . . , r}. Each vertex v of G

is accompanied with a list λ(v) of indices corresponding to the boxes where it is

allowed to be allocated. Moreover, there is a weight function α assigning to every

pair of different boxes a non-negative integer. The question is whether there is a

way to place each of the vertices of G into some box of its list such that, for any

two different boxes i and j, the number of crossing edges between them is exactly

α(i, j).

As we easily see in Subsection 2.3, List Allocation is NP-complete, even

when r = 2. Throughout this paper, we parameterize the List Allocation

problem by the total number w of “crossing edges” between different boxes, i.e.,

w =
∑

1≤i<j≤r α(i, j).

Our main result is that this parameterization of LA is in FPT.

Theorem 3. There exists an algorithm that, given as input an instance I =

(G, r, λ, α) of List Allocation, returns an answer to this problem in 2O(w2·logw) ·

n4 · log n steps, where w =
∑

1≤i<j≤r α(i, j).

To witness the expressive power of List Allocation, let us first exemplify why

Multiway Cut, parameterized by w, is T-FPT-reducible to List Allocation.

2Let A and B be two parameterized problems. We say that a parameterized problem A is

Turing FPT-reducible to B when the existence of an FPT-algorithm for B implies the existence of

an FPT-algorithm for A. (For brevity, in this paper, we write “T-FPT” instead of “Turing FPT”.)
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Given an instance of Multiway Cut, we first discard from its graph all the con-

nected components that have at most 1 terminal. Clearly, this gives an equivalent

instance (G,T = {t1, . . . , tr}, w) where r ≤ w + 1.

Next, we consider the set A containing every weight function α such that
∑

1≤i<j≤r α(i, j) ≤ w. Let also λ : V (G) → 2[r] be the list function such that

if v = ti ∈ T , then λ(v) = {i}, otherwise λ(v) = {1, . . . , r}. It is easy to verify

that (G,T,w) is a yes-instance of Multiway Cut if and only if there exists some

α ∈ A such that (G, r, λ, α) is a yes-instance of List Allocation. This yields the

claimed reduction, as |A| is clearly bounded by some function of w. This reduction

to the List Allocation problem turns out to be quite flexible and, as we will

see in Subsection 3.1 (Theorem 4), it can easily be adapted to a T-FPT-reduction

of Min-Max-Multiway Cut to List Allocation. The reduction of Bounded

List Digraph Homomorphism to List Allocation is more complicated and is

described in Subsection 3.2 (Theorem 6). Theorem 3, together with the aforemen-

tioned reductions, yields Theorems 1 and 2.

2 Preliminaries and the definition of List Allocation

2.1 Functions and allocations

We use the notation log(n) to denote ⌈log2(n)⌉ for n ∈ Z≥1 and we agree that

log(0) = 1. Given a non-negative integer n, we denote by [n] the set of all positive

integers no bigger than n. Given a finite set A and an integer s ∈ Z≥0, we denote by
(A
s

)

(resp.
( A
≤s

)

) the set of all subsets of A with exactly (resp. at most) s elements.

Given a function f : A→ Z≥0 we define
∑

f =
∑

x∈A f(x). An r-allocation of a set

S is an r-tuple V = (V1, . . . , Vr) of, possibly empty, sets that are pairwise disjoint

and whose union is the set S. We refer to the elements of V as the parts of V and

we denote by V(i) the i-th part of V, i.e., V(i) = Vi.

2.2 Definitions about graphs

In this paper, when giving the running time of an algorithm of some problem whose

instance involves a graph G, we agree that n = |V (G)| and m = |E(G)|.

All graphs in this paper are loopless and they may have multiple edges. The

only exception to this agreement is in Subsection 3.2 where we also allow loops. If

G is a graph and X, Y are two disjoint vertex subsets of V (G), we define δG(X,Y )

as the set of edges with one endpoint in X and the other in Y . Given a graph G,

denote by C(G) the collection of all connected components of G.
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2.3 The list allocation problem

We define the problem LA as follows.

List Allocation (LA)

Input: A tuple I = (G, r, λ, α) where G is a graph, r ∈ Z≥1, λ : V (G)→ 2[r], and

α :
([r]
2

)

→ Z≥0.

Output: An r-allocation V of V (G) such that

1. ∀{i, j} ∈
([r]
2

)

, |δG(V
(i),V(j))| = α(i, j) and

2. ∀v ∈ V (G),∀i ∈ [r], if v ∈ V(i) then i ∈ λ(v),

or a correct report that no such r-allocation exists.

For simplicity, in the above definition we write α({i, j}) as α(i, j) and we agree that

α(i, j) = α(j, i). Also, given an instance I of LA, we denote3 w(I) =
∑

α. We

will also use w instead of w(I) when it is clear what is the instance we are working

with. We assume that the multiplicity of each edge in G does not exceed w as, if

this happens, then reducing it to w creates an equivalent instance of the problem.

In the definition of LA each vertex v of G carries a list λ(v) indicating the parts

where v can be possibly allocated. Moreover, α is a function assigning weights

to pairs of parts in V. The weights defined by α prescribe the precise number of

crossing edges between distinct parts of V.

Notice that LA is an NP-hard problem by a simple reduction from the Max

Cut problem, asking whether, for an input graph G and some w ∈ Z≥0, whether

there is a partition V1, V2 of V (G) such that there are exactly4 w edges each with

endpoints in both V1 and V2. Indeed, given an instance I = (G,w) of Max Cut,

construct the instance I ′ = (G, 2, λ, α) where λ(v) = {1, 2} for every v ∈ V (G)

and α(1, 2) = w. Note also that when r = 2, LA is polynomially solvable on

planar graphs as it directly reduces to Planar Max Cut that is polynomially

solvable [20].

3 Main reductions

In this section we formally define Min-Max-Multiway Cut and List Digraph

Homomorphism and we reduce them to List Allocation.

3Given a function τ : A → Z≥0, we denote
∑

τ =
∑

x∈A
τ (x).

4It is straightforward to see that the standard reduction from Nae-3-Sat also works when the

question of Max Cut asks for exactly w crossing edges instead of at least w crossing edges.
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3.1 Min-Max-Multiway Cut

The Min-Max-Multiway Cut problem is formally defined as follows:

Min-Max-Multiway Cut

Input: A tuple I = (G, ℓ, r, T ) where G is an undirected graph, ℓ, r ∈ Z≥0, and

T ⊆ V (G) with |T | = r.

Output: A partition {P1, . . . ,Pr} of V (G) such that for every i ∈ [r], it holds

that |Pi ∩ T | = 1 and |δG(Pi, V (G) \ Pi)| ≤ ℓ, or a correct report that no such

partition exists.

Similarly to the case of LA, we assume that the multiplicity of each edge in G

does not exceed ℓ.

Theorem 4. If there is an algorithm that solves LA in T (n,w(I)) steps, then there

exists an algorithm that solves Min-Max-Multiway Cut in 2O(r·min{ℓ·log r,r·log ℓ}) ·

T (n, rℓ) steps.

Proof. Given an input I = (G, ℓ, r, T ) of Min-Max-Multiway Cut, we fix (arbi-

trarily) a bijection µ : V (T )→ [r] and we define λ : V (G)→ 2[r] such that

λ(x) =

{

[r] if x ∈ V (G) \ T

{µ(x)} if x ∈ T.

We now consider the family U(I) of instances of LA containing one element I ′ =

(G, r, λ, α) for each choice of function α :
(

[r]
2

)

→ Z≥0 satisfying

∀i ∈ [r],
∑

j∈[r]\i

α(i, j) ≤ ℓ.

Notice that I is a yes-instance of Min-Max-Multiway Cut if and only if there

exists some I ′ ∈ U(I) that is a yes-instance of LA. As |U(I)| = 2O(r·min{ℓ·log r,r·log ℓ})

and for each I ′ ∈ U(I) it holds that w(I ′) = O(rℓ), the result follows.

3.2 List Digraph Homomorphism

Let G and H be directed graphs where G is simple and H may have loops but not

multiple directed edges. A (directed) edge in the digraph G from the vertex x to

the vertex y is denoted by (x, y). Let also λ : V (G)→ 2V (H). We denote by E1(H)

the loops of H and by E2(H) the edges of H between distinct vertices. An λ-list

H-homomorphism of G is a function χ : V (G)→ V (H) such that

• χ(v) ∈ λ(v) for every v ∈ V (G), and
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• (χ(u), χ(v)) ∈ E(H) for every (u, v) ∈ E(G).

Given a list H-homomorphism χ of G and an edge e = (a, b) ∈ E2(H) we define

C(e) = {(u, v) ∈ E(G) | χ(u) = a and χ(v) = b}.

Bounded List Digraph Homomorphism is formally defined as follows.

Bounded List Digraph Homomorphism (BLDH)

Input: A tuple I = (G,H, λ, ℓ) where G and H are digraphs, λ : V (G) → 2V (H),

and ℓ ∈ N≥0.

Output: A λ-list H-homomorphism of G where
∑

e∈E(H) |C(e)| ≤ ℓ or a correct

report that no such homomorphism exists.

We now define the following more general problem.

Arc-Specified List Digraph Homomorphism (ASLDH)

Input: A tuple I = (G,H, λ, α) where G and H are digraphs, λ : V (G)→ 2V (H),

and α : E2(H)→ Z≥0.

Output: A λ-list H-homomorphism χ of G such that ∀e∈E2(H) |C(e)| = α(e) or

a correct report that no such λ-list H-homomorphism exists.

Given an instance I = (G,H, λ, α) of ASLDH we define d(I) =
∑

α. As we

already did for the cases of LA and Min-Max-Multiway Cut, we assume that

the multiplicity of the edges of the instance of BLDH (resp. ASLDH) does not

exceed ℓ (resp. d(I)).

In the next sections we will prove that there exists an FPT-algorithm forASLDH,

when parameterized by both h = |V (H)| and d = d(I). This fact together with the

following result yields Theorem 2.

Theorem 5. If there is an algorithm that solves ASLDH in T (n, d(I)) steps, then

there exists an algorithm that solves BLDH in 2O(ℓ log h) · T (n, ℓ) steps where h =

|V (H)|.

Proof. Given an instance I = (G,H, λ, ℓ) of BLDH we set U(I) = {(G,H, λ, α) |
∑

α ≤ ℓ} and we observe that I is a yes-instance of BLDH if and only if some

I ′ ∈ U(I) is a yes-instance of ASLDH. The lemma follows as |U(I)| = 2O(ℓ log h)

and d(I ′) ≤ ℓ.
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3.3 A sparsifier for ASLDH

In order to prove that ASLDH admits an FPT-algorithm when parameterized by

both h = |V (H)| and d = d(I), we will give a Turing-FPT reduction of ASLDH

to LA in Subsection 3.4. The latter problem can be solved by an FPT-algorithm

due to the result of Section 4. The reduction of Subsection 3.4 receives an instance

(G,H, λ, α) ofASLDH and returns an equivalent instance (G′, r, λ′, α′) of LA where

|V (G′)| = O(|E(G)|) which is O(w·|V (G)|2), in general. In order to avoid this blow-

up in the polynomial running time of our final FPT-algorithm, we give a way to

transform the instances of ASLDH to equivalent instances of the same problem

whose graphs are sparse. This “sparsification” procedure is described below.

A graph is d-edge connected if it has at least two vertices and for every two

vertices there are d edge disjoint paths between them. We use the following result

from [25].

Proposition 1. For every d ∈ Z≥1, every graph G where |E(G)| ≥ d · (|V (G)| − 1)

contains a d-edge connected subgraph.

We need first the following known result. For completeness, we provide the

proof.

Lemma 1. Let G be a d-edge connected graph and let S = (s1, . . . , sd) and T =

(t1, . . . , td) be two orderings of vertices of V (G), possibly with repetitions. Then,

there exists a bijection σ : [d] → [d] and a collection C of d pairwise edge-disjoint

paths such that for each i ∈ [d], si and tσ(i) are the endpoints of some path in C.

Proof. We add in G two new vertices s and t and connect s with each vertex in

S and t with each vertex in T such that the multiplicity of each edge {s, x} is

equal to the number of times x appears in S and multiplicity of each edge {t, x} is

equal to the number of times x appears in T . We observe that there are d-edge-

disjoint paths from s to t. To see this, suppose that a set of fewer than d edges

in E(G′) disconnects s and t. This means that removal of fewer than d edges of

E(G) disconnects si and tj for some i, j ∈ [d], contradicting d-edge-connectivity of

G. Hence, we can find d edge-disjoint paths between s and t by Menger’s Theorem.

Removing s and t from these paths yields d edge-disjoint paths between S and T

having the desired property.

The following Lemma is based on Lemma 1.

Lemma 2. Let G be a graph and let C = {C1, . . . , Cr} be a collection of vertex

disjoint connected subgraphs of G. Let also G′ be the graph obtained if we contract

in G all edges in the graphs in C. If G′ is d-edge connected and each graph in C

is d-edge connected or a single vertex, then G contains a subgraph that is d-edge

connected.

9



Proof. Let H be the subgraph of G induced by the vertices in the graphs in C.

Given a vertex v ∈ V (H), we denote by Cv the graph in C that is either v itself

or is contracted in G to create v in H. We prove that for every two vertices s

and t in V (H) there are d-edge-disjoint paths between them. This follows easily

in the case where both s and t belong in the same Cv ∈ C because of the d-edge

connectivity of Cv. Assume now that x ∈ C(s) and y ∈ C(t) where C(s) and C(t)

are different graphs in C. Let also vs and vt be vertices of G′ such that Cvs = C(s)

and Cvt = C(t). As G′ is d-edge connected, there is a collection P = {P1, . . . , Pd}

of d edge-disjoint paths in G′ from vs to vt. We direct all these paths from vs

to vt and we set W =
⋃

i∈[d] Pi. Let v ∈ W and let Ev be the set of edges in

G′ incident to v. Notice that Ev has a partition {E1
v , . . . , E

d
v} such that Ei

v are

the edges of Pi that are incident to v. Clearly, each Ei
vs has only one edge and

the same holds for each Ei
vt . Moreover, each Ei

v with v 6∈ {vs, vt} has cardinality

two. We enhance the notation of the sets Ei
v as follows: if Ei

v = {e} and v = vs

then we write Ei
v = (s, e). If Ei

v = {e} and v = vt then we write Ei
v = (e, t). If

v 6∈ {vs, vt} and Ei
v = {e, e′} such that e is ingoing to v in Pi and e′ is outgoing

to v in Pi then we write Ei
v = (e, e′). We now define the pair pv

i as follows: if

Ei
v = (s, e) and y is the endpoint the edge e in G′ that belongs in Cs then we set

pv
i = (s, y), if Ei

v = (e, t) and y is the endpoint the edge e in G′ that belongs in

Ct, then we set pv
i = (y, t), and if Ei

v = (e, e′), then y and y′ are the endpoint the

edges e and e′ respectively that belong in Cv, then pv
i = (y, y′). For each v ∈W we

create two orderings Sv = (sv1, . . . , s
v
d) and Tv = (tv1, . . . , t

v
d) of vertices in Cv such

that (svi , t
v
i ) = pv

i for every i ∈ [d]. For each v, we apply Lemma 1 and obtain a

collection Pv of edge-disjoint paths between the vertices of Sv and the vertices of

Tv. It is now easy to observe that the subgraph of H consisting of the edges in the

paths in P (that are also edges of G′) and the edges of the paths in Pv for every

v ∈W is the union of d edge-disjoint paths in H between s and t.

Given a graph H and a positive integer d, we say that a subgraph H of G is a

d-edge connected core of G if every connected component of H is d-edge connected

and, among all such subgraphs of G, H has maximum number of edges. The proof

of the next lemma uses Proposition 1.

Lemma 3. For every d ∈ Z>0, every graph G with m ≥ d · (n − 1) contains a

unique d-edge connected core that can be found in O(d · n4) steps.

Proof. The claimed d-edge connected core exists because of Proposition 1. Also, it

is unique because if there are two d-edge connected cores J1 and J2, then it can

be easily checked that the graph J1 ∪ J2 is also a d-edge connected core of G. The

algorithm repetitively removes from G edges of min-cuts of size at most d − 1 in

its connected components (each can be found in O(d · n3) steps according to [31])

10



until this is not possible anymore (isolated vertices, when appearing during this

procedure, are removed).

Note that the total number of steps of this procedure is bounded by the running

time of the algorithm in [31] times the number of connected components of the

resulting graph. This justifies the claimed running time. Let J be the d-edge

connected core of G. Notice that none of the edges of J will be deleted by this

procedure. Indeed, assuming the opposite, let G′ be the graph where for the first

time a cut (V1, V2) is found where the set F of crossing edges contains some edge

e = {x, y} in J . Let also C be the connected component of G′ containing this cut

and let CJ be a connected component of J that is a subgraph of C containing e.

Notice that x and y belong to different connected components of C \ F and

therefore also to different connected components of CJ \ F , contradicting the fact

that CJ is d-edge connected. We just proved that the output of the algorithm will

be a subgraph of J . Notice also that each connected component of this output is

d-edge connected. By the maximality of J , this output is necessarily J .

Lemma 4. There is an O(d(I) · n4)-step algorithm that given in instance I =

(G,H, λ, α) of ASLDH, outputs an equivalent instance I ′ = (G′,H, λ′, α) of the

same problem where |E(G′)| = O(d(I) · |V (G′)|).

Proof. Let G̃ be the underlying graph of G (multiplicities of edges of opposite

direction are summed up) and d = d(I). If G̃ does not contains a (d + 1)-edge

connected core, then, from Proposition 1, |E(G)| = O(d · |V (G)|).

Suppose now that G̃ has a (d+ 1)-edge connected core J that, from Lemma 3,

can be found in O(d · |V (G)|4) steps. We create a new graph G′ as follows: for

each C ∈ C(J) we contract all vertices of C to a single vertex vC and we update

λ to λ′ so that if x 6∈ {vC | C ∈ C(J)}, then λ′(x) = λ(x) and if x = vC , then

λ′(x) = ∩y∈V (C)λ(y). We claim that I ′ = (G′,H, λ′, α) is an equivalent instance of

ASLDH. Indeed, this is based on the fact that, given a λ-list H-homomorphism χ

of G and a connected component C of J , all vertices of J should be the preimages

via χ of the same vertex of H. To verify this fact, just observe that, if this is

not the case, then the removal of the ≤ d crossing edges from C (i.e., edges with

endpoints mapped to different vertices of H) will disconnect C, a contradiction to

the (d+ 1)-edge-connectivity of C.

It now remains to prove that |E(G′)| = O(d · |V (G′)|). If |E(G′)| ≥ (d + 1) ·

(|V (G)′| − 1), then, again from Proposition 1, G′ contains a (d+1)-edge connected

subgraph. This, because of Lemma 2, implies that G contains a subgraph that is

(d+ 1)-edge connected and has more edges than J , a contradiction.
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3.4 A reduction of ASLDH to LA

Given the results of the previous section we are now in position to prove the fol-

lowing.

Theorem 6. If there is an algorithm that solves LA in T (n,w(I)) steps, then there

exists an algorithm that solves ASLDH in T
(

O(d(I) · n), O(d(I))
)

+ O(d(I) · n4)

steps.

Proof. Let I = (G,H, λ, α) be an instance of ASLDH. Using the algorithm of

Lemma 4, we may assume that |E(G)| = O(d(I) · |V (G)|). We then use I to

generate an instance I ′ = (G′, r, λ′, α′) of LA, as follows:

• G′ = (V ′, E′), where

◦ V ′ = V ∪ VF ∪ VL, where V = V (G), VF = {fuv | (u, v) ∈ E(G)}, and

VL = {ℓuv | (u, v) ∈ E(G)} and

◦ E′ = E ∪ EF ∪ EL, where E = {{fuv, ℓuv} | (u, v) ∈ E(G)}, EF =

{{u, fuv} | (u, v) ∈ E(G)}, EL = {{ℓuv, v} | (u, v) ∈ E(G)}.

• r = |V (H)| + 2 · |E2(H)| and σ : V (H̃) → [r] is a bijection where H̃ is the

graph obtained from H by subdividing twice each of its arcs that are not

loops. For each arc (x, y) ∈ E2(H), we denote its corresponding path in H̃ as

Pxy, where V (Pxy) = {x, f̃xy, ℓ̃xy, y}.

• λ′ : V (G′)→ [r] such that

λ′(w) =















































{σ(x) | x ∈ λ(w)} if w ∈ V

{σ(f̃xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪

{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = fuv ∈ VF

{σ(ℓ̃xy) | x ∈ λ(u) ∧ y ∈ λ(v) ∧ x 6= y} ∪

{σ(x) | x ∈ λ(u) ∩ λ(v) ∧ (x, x) ∈ E1(H)} if w = ℓuv ∈ VL.

• α′ :
(

[r]
2

)

→ Z≥0 such that

α′(i, j) =



















α(x, y) if there exists some (x, y) ∈ E2(H) such that

(i, j) ∈
{

(σ(x), σ(f̃xy)), (σ(f̃xy)), σ(ℓ̃xy)), (σ(ℓ̃xy), σ(y))
}

0 otherwise.
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Let χ : V (G)→ V (H) be a λ-listH-homomorphism ofG where ∀e∈E2(H) |C(e)| =

α(e). We construct an r-allocation V of V (G′) as follows:

• for every u ∈ V = V (G), u belongs to the part V i, where i = σ(χ(u))

• for every fuv ∈ VF , fuv belongs to the part V i, where

i =

{

σ(χ(u)) if χ(u) = χ(v)

σ(f̃xy) if x = χ(u) 6= y = χ(v)

• for every ℓuv ∈ VL, ℓuv belongs to the part V i, where

i =

{

σ(χ(u)) if χ(u) = χ(v)

σ(ℓ̃xy) if x = χ(u) 6= y = χ(v)

It is easy to verify that V is a solution for I ′.

Now consider a solution V for I ′. From V, we define a mapping χ : V (G) →

V (H) so that for every u ∈ V , we have that χ(u) = σ−1(i) if and only if u ∈ V(i).

We claim that χ is a λ-list H-homomorphism of G where ∀e∈E2(H) |C(e)| = α(e).

For this, we investigate χ upon two conditions: firstly, we verify that χ is a λ-list

H-homomorphism, and secondly that ∀e∈E2(H) |C(e)| = α(e).

Let us prove that χ is a λ-list H-homomorphism. To see that χ(u) ∈ λ(u)

for every u ∈ V (G), let u be in the i-th part of V. Since i ∈ λ′(u), the con-

struction of λ′ implies that σ−1(i) ∈ λ(u), and thus χ(u) ∈ λ(u). To see that χ

is an H-homomorphism, for an arbitrary edge (u, v) ∈ E(G) we shall show that

(χ(u), χ(v)) ∈ E1(H) ∪ E2(H). Let u and v respectively belong to σ(x)-th and

σ(y)-th parts of V, for some x, y ∈ V (H̃). Note that x ∈ λ(u) ⊆ V (H) and

y ∈ λ(v) ⊆ V (H). There are two possibilities: x 6= y or x = y.

Case 1: x 6= y. Since σ is a bijection, this means σ(x) 6= σ(y). From the way

we construct α′, the vertices fuv and ℓuv can be only allocated into the σ(f̃xy)-

th part and the σ(ℓ̃xy)-th part, respectively, in the solution V. Furthermore, the

construction of α′ also implies (x, y) ∈ E2(H).

Case 2: x = y. This means σ(x) = σ(y). The construction of α′ implies fuv and

ℓuv are allocated into the σ(x)-th part of V as well. This, in turn, means that

σ(x) ∈ λ′(fuv) and σ(x) ∈ λ′(ℓuv). Recall that λ′(fuv) contains σ(x) only when

(x, x) ∈ E1(H). Hence, (x, y) ∈ E1(H).

Now we verify that ∀e∈E2(H) |C(e)| = α(e). Consider an arc e = (x, y) ∈ E2(H).

Note that for every directed edge (u, v) in the χ-arc charge C(e), the (u, fuv) of

13



E(G′) contributes to α′(σ(x), σ(f̃xy)) exactly by one unit. Conversely, for every

edge (u, fuv) of E(G′) which contributes to α′(σ(x), σ(f̃xy)), we have χ(v) = y and

thus the directed arc (u, v) contributes to C(e) by one unit. This establishes that

∀e∈E2(H) |C(e)| = α(e).

The claimed running time follows from the fact that w(I ′) =
∑

α′ = 3 ·
∑

α =

O(d(I)) and |V (G′)| = O(|E(G)|) = O(d(I) · |V (G)|).

4 An FPT-algorithm for List Allocation

In this section we give the proof that LA admits an FPT-algorithm. Before we

proceed with the details of the proof let us summarize the main steps of the proof

that consists of a series of T-FPT-reductions.

1. List Allocation is T-FPT-reduced to its restriction, called CLA, where G

is a connected graph and only O(w) boxes are used. This reduction takes

care of the different ways connected components of G can entirely be placed

into the boxes and is based on dynamic programming (see Subsection 4.2).

2. CLA is T-FPT-reduced to a restriction of it, called HCLA, where G is highly

connected in the sense that there is no set of w edges that can separate G

into two “big” connected components. This reduction is presented in detail in

Subsection 4.3 and uses the technique of recursive understanding, introduced

in [23] and further developed in [7] and [5] (see also [19]), for generalizations

of the Multiway Cut problem).

3. HCLA is T-FPT-reduced to a special enhancement of it, called S-HCLA,

whose input additionally contains some set S ⊆ V (G) and the problem asks

for a solution where all vertices of S are placed in a unique “big” box and

all vertices of this box which are incident to crossing edges are contained in

S. This variant of the problem permits the application of the technique of

randomized contractions, introduced in [5] (see Subsection 4.4).

4. Finally, S-HCLA is T-FPT-reduced to List Allocation restricted to in-

stances whose sizes are bounded by a function of the parameter. This is

presented in Subsection 4.5. It is a dynamic programming based on the fact

that an essentially equivalent instance of the problem can be constructed if,

apart from S, we remove from G all but a bounded number of the connected

components of G \ S.
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4.1 Some (more) definitions

Given two sets A and B we denote by BA the set containing every function f : A→

B. Given a function h : A → B and S ⊆ A, we define h|S = {(x, y) ∈ h | x ∈ S}.

Given two functions f1, f2 : A → Z≥0 we define f1 + f2 : A → Z≥0 such that

(f1 + f2)(x) = f1(x) + f2(x). Let X be a set and let ζ1, ζ2 be two functions

mapping X to non-negative integers. We say that ζ1 ≤ ζ2 if ∀i ∈ X, ζ1(i) ≤ ζ2(i).

Given a (possibly partial) function ζ : X → Z≥0 we define F≤(ζ) = {ζ ′ : X →

Z≥0 | ζ
′ ≤ ζ}. Given a set T ⊆ S, we define the restriction of V to S as the

r-allocation V ∩ T = (V(1) ∩ T, . . . ,V(r) ∩ T ). Notice that V ∩ T is an r-allocation

of T . Given two r-allocations V1 = (V 1
1 , . . . , V

1
r ) and V2 = (V 2

1 , . . . , V
2
r ), we define

V1 ∪ V2 = (V 1
1 ∪ V

2
1 , . . . , V

1
r ∪ V

2
r ).

Given two graphs G and G′ we set G ∪ G′ = (V (G) ∪ V (G′), E(G) ∪ E(G′)).

Given a graph G and a set S ⊆ V (G), we define ∂G(S) as the set of all vertices in

S that are adjacent to vertices in V (G) \ S.

Let G be a connected graph. A partition (V1, V2) of V (G) is a (q, y)-good sep-

aration if |V1|, |V2| > q, |δG(V1, V2)| ≤ y, and G[V1] and G[V2] are both connected.

A graph G is called (q, y)-connected if it does not contain any (q, y − 1)-good sep-

aration. (Note that for q = 0, (q, y)-connectivity corresponds exactly to classical

y-edge-connectivity.)

Proposition 2 (Chitnis et al. [5]). There exists a deterministic algorithm that, with

input a n-vertex connected graph G, a q ∈ Z≥1 and y ∈ Z≥0, either finds a (q, y)-

good separation, or reports that no such separation exists, in 2O(min{q,y}·log(q+y))n3 log n

steps.

For a solution V to an instance I = (G, r, λ, α) of LA, we define

E(V) =
⋃

{i,j}∈([r]2 )

δG(V
(i),V(j)).

We say that H is (i, λ)-friendly if i ∈
⋂

v∈V (H) λ(v).

Observation 1. If V is a solution for some instance I = (G, r, λ, α) of LA then

every connected component of G \ E(V) is also a connected component of G[V(i)]

for some i ∈ [r].

Observation 2. If V is a solution for an instance I = (G, r, λ, α) of LA, where

G has ℓ connected components, then G \ E(V) contains at most w + ℓ connected

components.

Lemma 5. There exists an algorithm that, given an instance I = (G, r, λ, α) of LA,

correctly solves the problem in nO(w) · 2O((w+ℓ)·log r) steps, where ℓ is the number of

connected components of G.
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Proof. The algorithm considers each subset F of E(G) of size w. Notice that there

are nO(w) such subsets. From Observation 2, G \ F has at most w + ℓ connected

components. From Observation 1, if V is a solution of LA for I, and E(V) = F ,

then the vertex set of each connected component of G \ F is entirely contained

in some V(i). The algorithm considers all possible ways to assign the ≤ w + ℓ

connected components of GF to the r indices of I and checks whether this creates

a solution for I. As there are 2O((w+ℓ)·log r) such assignments, the claimed running

time follows.

4.2 Connected list allocation

We define the Connected List Allocation problem (CLA, in short) as the List

Allocation with the additional demand that the input graph G is connected and

r ≤ 2w. The reason why we may assume that r ≤ 2w is the following. First, we

may assume that w ≥ 1 since otherwise, we can check whether G is (i, λ)-friendly

for some i ∈ [r] and solve the instance for CLA. Suppose r > 2w > 0. Then there

exists an index i ∈ [r] such that α(i, j) = 0 for every j ∈ [r]\{i}. As G is connected,

no vertex can be allocated to V(i) in any solution V and thus we can remove the

i-th part from the instance.

Lemma 6. If there exists an algorithm solving CLA in f(w) ·p(n) steps, then there

is an algorithm that solves LA in ℓ · 22w · f(w) · p(n) steps.

Proof. We present a dynamic programming for LA using an algorithm for CLA

as a subroutine. Let C1, . . . , Cℓ be the connected components of G and let Gi =
⋃i

j=1Cj. Define a table P for dynamic programming in which the entries P (i, α′)

run over all 1 ≤ i ≤ ℓ and α′ ∈ F≤(α). The value of P (i, α′) is yes if the instance

(Gi, r, λ|V (Gi), α
′) is yes. Otherwise, P (i, α′) = no. Note that the given instance

(G, r, λ, α) is yes to LA if and only if P (ℓ, α) = yes.

For i = 1, G1 = C1 is connected and thus the value of P (1, α′) can be correctly

determined by solving CLA on the instance (C1, r, λ|V (C1), α
′). For 2 ≤ i ≤ ℓ, we

assume that all values P (j, α′′) have been determined for j < i and α′′ ∈ F≤(α
′).

Let g be a function mapping instances of CLA to {yes,no} in a canonical way.

The following recursion for P (i, α′) is easy to verify.

P (i, α′) =
∨

α′′∈F≤(α′)

P (i− 1, α′ − α′′) ∧ g(Ci, r, λ|V (Ci), α
′′).

As w =
∑

α by definition, the table P consists of ℓ · |F≤(α)| ≤ ℓ · 2w en-

tries. Determining each entry amounts to at most |F≤(α)| ≤ 2w table lookups and

computations of g. The latter, equivalent to solving an instance to CLA, takes

at most f(w) · p(n) steps. Overall, the entire entries of P can be determined in

ℓ · 22w · f(w) · p(n) steps.

16



4.3 Highly connected list allocation

We fix two functions f1(w) = 2w · (2w)2w and f2(w) = w · f1(w) + 1, which will

appear through this section. We define theHighly Connected List Allocation

problem (HCLA, in short) as the Connected List Allocation problem with the

only difference that we additionally demand that the input graph is (f2(w), w+1)-

connected, where w is the parameter of the problem.

We aim to shrink the size of a given instance I = (G, r, λ, α) of CLA by finding

out a set EC of edges such that I/EC (formal definition given below) is equivalent

to I. If it is possible to recursively contract edges so that the obtained instance is

of size bounded by a function of w, then we can apply the algorithm of Lemma 5

to solve the final instance of CLA.

For an instance I = (G, r, λ, α) of CLA and B ∈
(V (G)
≤2w

)

, we set U(I,B) = [r]B×

F≤(α). Given a w = (ψ,α′) ∈ U(I,B), we define the instance Iw = (G,λ′, r, α′) of

CLA, where λ′ = λ|V (G)\B ∪ ψ. The set Ũ(I,B) is a collection of all w ∈ U(I,B)

such that Iw is a yes-instance of CLA.

Observation 3. For every instance I = (G, r, λ, α) of CLA and B ∈
(V (G)
≤2w

)

, it

holds that |U(I,B)| ≤ f1(w).

Given an instance I = (G, r, λ, α) of LA and a set of edges EC ⊆ E(G), we define

the instance I/EC of LA as (G/EC , r, λ
′, α), where G/EC is the graph obtained from

G by contracting all the edges in EC , and λ
′ is defined as follows: for each vertex

u ∈ V (G/EC), let Vu ⊆ V (G) be the set of vertices of G that have been identified

into u after contracting the edges in EC (note that, possibly, Vu = {u}). Then we

define λ′(u) :=
⋂

v∈Vu
λ(v).

Let I = (G, r, λ, α) be an instance of CLA and let Q ⊆ V (G). We set I[Q] =

(G[Q], r, λ|Q, α). For a bipartition (V1, V2) of V (G), let EC be a set of edges in G[V1].

Then the gluing of G[V1]/EC and G[V2] along δG(V1, V2), denoted as G[V1]/EC ⊕δ

G[V2], can be naturally defined: starting from the disjoint union of G[V1]/EC and

G[V2], for each edge e = (u, v) ∈ δG(V1, V2) with u ∈ V1, we add an edge e′ whose

one endpoint is the vertex into which u is identified and the other endpoint is v.

Notice that G[V1]/EC ⊕δ G[V2] = G/EC .

The next lemma demonstrates the condition for a set of edges EC under which

I and I/EC are equivalent.

Lemma 7. Let I = (G, r, λ, α) be an instance of CLA, let (V1, V2) be a bipartition

of V (G) such that I[V1] is an instance of HCLA with |V1| > f2(w), let B ⊆

V1 with |B| ≤ 2w, let S = {Vw | w ∈ Ũ(I[V1], B)} be a collection of (arbitrary

chosen) solutions to I[V1]w for every w ∈ Ũ(I[V1], B), and let EC = E(G[V1]) \
⋃

Vw∈S E(Vw). Then EC 6= ∅. Furthermore, I and I/EC are equivalent instances of

CLA.
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Proof. Note also that by Observation 3, |
⋃

Vw∈S E(Vw)| ≤ w · |Ũ(I[V1], B)| ≤ w ·

f1(w). Since by hypothesis the graph G[V1] is connected and satisfies |V1| > f2(w),

it holds that |E(G[V1])| ≥ f2(w), and thus |EC | = |E(G[V1]) \
⋃

Vw∈S E(Vw)| ≥

f2(w) −w · f1(w) = 1, hence there exists at least one edge in EC .

We need to prove that I is a YES-instance of CLA if and only if I/EC is. First

note that contracting edges does not harm the connectivity of G and, as r and α are

the same in I and in I/EC , r ≤ 2
∑

α holds. Therefore I/EC is indeed an instance

of CLA.

Assume first that I is a YES-instance, and let V be a solution of CLA for

I. Let ψB = {(v,V(v)) | v ∈ B}, where V(v) denotes the integer i ∈ [r] such that

v ∈ V(i). Let also α1 be the element of F≤(α) such that for any two distinct integers

i, j ∈ [r], α1(i, j) = |δG[V1](V
(i),V(j))|, and let w1 = (ψB , α1). Note that by the

definition of w1 and since we assume that I[V1] is an instance of HCLA, it holds

that w1 ∈ Ũ(I[V1], B). Let Vw1 be the solution to I[V1]w1 in the collection S and

note that by the definition of the set EC , the endpoints of any edge in EC belong to

the same part of Vw1 . We now proceed to define an r-allocation V ′ for I/EC . For

each vertex u ∈ V (G/EC), let Vu ⊆ V (G) be the set of vertices of G that have been

identified into u after contracting the edges in EC , so each of the sets Vu belongs

entirely to the same part of Vw1 . For every u ∈ V2, we define V
′(u) = V(u), and for

every u ∈ V (G/EC) \ V2, we define V ′(u) = Vw1(v), for an arbitrary vertex v ∈ Vu.

The above discussion implies that the r-allocation V ′ is well-defined and constitutes

a solution of CLA for I/EC .

Conversely, assume now that I/EC is a YES-instance, and let V ′ be a solution

of CLA for I ′. For each vertex u ∈ V (G/EC), let again Vu ⊆ V (G) be the set of

vertices of G that have been identified into u after contracting the edges in EC .

We proceed to define an r-allocation V for I. For every v ∈ V (G), if v ∈ Vu for

a vertex u ∈ V (G/EC), we define V(v) = V ′(u). We claim that the r-allocation V

is a solution of CLA for I. Indeed, by definition of λ′ of the instance I/EC , we

have that for every vertex v ∈ V (G) belonging to a set Vu ⊆ V (G), it holds that

V(v) ∈ λ′(u) =
⋂

w∈Vu
λ(w) ⊆ λ(v). On the other hand, since edge multiplicities

are summed up when contracting edges, it holds that for any two distinct integers

i, j ∈ [r], |δG(V
(i),V(j))| = |δG/EC

(V ′(i),V ′(j))| = α(i, j).

Due to Lemma 7, an edge set EC to be contracted can be obtained if we can

compute a collection of solutions S = {Vw | w ∈ Ũ(I[V1], B)} to the instances Iw

of HCLA. This can be done by solving the instance Iw for each w ∈ U([V1], B)

and this requires at most f1(w) iterations of HCLA-solver by Observation 3. This

point is formalized in the next observation.

Observation 4. If there exists an algorithm that can find, if it exists, a solution

of HCLA in f(w) · p(n) steps, then there is an algorithm that, given an instance

18



I = (G, r, λ, α) of HCLA and a set B ⊆ V (G) where |B| ≤ 2 · w, computes the

set Ũ(I,B), a set S = {Vw | w ∈ Ũ(I,B)} in case Ũ(I,B) 6= ∅, and the set

EC = E(G[V1]) \
⋃

Vw∈S E(Vw) in f(w) · p(n) · f1(w) steps.

Algorithm : shrink(H,B)

Input : A graph H and a set B ⊆ V (H) s.t. |B| ≤ 2 · w,

|V (H)| > f2(w).

Output : A graph Hnew having at most f2(w) vertices or a

report that I is a no-instance.

Global Variable: An instance I ′ of CLA.

1. if H has a (f2(w), w)-separation (V1, V2) then

2. let i be an integer in {1, 2} such that |B ∩ Vi| ≤ w

3. let B′ = (B ∩ Vi) ∪ (V (δ(V1, V2)) ∩ Vi)

4. let H ′ = shrink(H[Vi], B
′), Hnew = H ′ ⊕δ H[V3−i]

5. let Bnew be the vertices of Hnew onto which the vertices of B

are identified

6. if |V (Hnew)| > f2(w) then

7. return shrink(Hnew, Bnew)

8. end

9. return Hnew

10. else

11. compute Ũ(I ′[V (H)], B)

12. if Ũ(I ′[V (H)], B) = ∅ then

13. report that I is a no-instance

14. else

15. compute S = {Vw | w ∈ Ũ(I ′[V (H)], B)},

EC = E(H) \
⋃

Vw∈S E(Vw)

16. let I ′ ← I ′/EC

17. return H/EC

18. end

19. end

CLA is solved by reducing the instance size via iteratively contracting edges,

and finding contractible edges boils down to solving HCLA by Observation 4. The

next lemma formalize this as a TFT-reduction from CLA to HCLA. Although

the idea of the reduction itself is straightforward, we provide rather a nontrivial

reduction to achieve a better running time for CLA.

Lemma 8. If HCLA can be solved in f(w) · p(n) steps, then CLA can be solved

in max{2O(w2·logw) · n4 · log n, f(w) · p(n) · 2O(w·logw)} steps.
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Proof. Let I = (G, r, λ, α) be an instance of CLA. If G has less than f2(w) vertices

then, because of Lemma 5 and the fact that r ≤ 2w, the problem can be solved in

2O(w2·logw) steps. If not, we call the algorithm shrink(G, ∅) with the given instance

I = (G, r, λ, α) as the global variable I ′. The global variable I ′ is initialized (only

once) at the initial call shrink(G, ∅), and is considered to be out of the scope of

the subsequent calls shrink(H,B). Hence, the subsequent calls share the access to

the same global variable at line 16.

Let G(I ′) refer to the input graph of the current global variable I ′. We need

the following claim, which ascertains the property of shrink(G, ∅) and also ensure

that I ′[V (H)] referred to at line 15 is a valid instance.

Claim 1. The follow statements hold.

(a) Throughout the execution of shrink(G, ∅), whenever a call shrink(H,B) is

made, the graph H is an induced subgraph of G(I ′) for the current global

variable I ′.

(b) The graph5 returned by each call shrink(H,B) can be obtained by contracting

edges of H and has at most f2(w) vertices.

Proof of the Claim: Let m be the number of calls for shrink(H,B) during

the performance of shrink(G, ∅), including the initial call itself. At any step in

shrink(G, ∅), let i be the number of calls invoked so far (in Lines 4 and 7) and

j be the number of return calls (in Lines 7, 9, and 17). Intuitively, (i, j) stands

for the current position in the recursion tree during the course of the algorithm

shrink(G, ∅). Before we make the first call shrink(G, ∅), we have (i, j) = (0, 0).

Clearly, j ≤ i during the entire execution, and the inequality is strict unless

shrink(G, ∅) terminates. We prove the statements (a) and (b) by induction on

i + j. Notice that the algorithm traverses from (i, j) to (i + 1, j) exactly when a

(i + 1)-st call shrink(H,B) is made, and it traverses from (i, j) to (i, j + 1) when

a call shrink(H,B) returns a (j + 1)-st output. Therefore, we prove the following

modification of (a) and (b).

(a′) Whenever the traversal (i, j) → (i+1, j) is made by a call shrink(H,B),

H is an induced subgraph of G(I ′), where I ′ is the current global variable.

(b′) Whenever the traversal (i, j) → (i, j+1) is made by a return of shrink(H,

B), the returned graph can be obtained by contracting edges of H, and has

at most f2(w) vertices (unless shrink(H,B) reports that I is a no-instance).

5For notational convenience, we abuse shrink(H,B) also to denote the graph returned by the

call shrink(H,B) whenever it is clear from the context.
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In the base case, that is, when the first call shrink(G, ∅) makes the traversal

(0, 0) → (1, 0), then it is clear that the statement (a′) holds. Now we consider the

case when a traversal is made to (i, j). As an induction hypothesis, we assume that

any traversal to (i′, j′) with i′ + j′ < i+ j satisfies either (a′) or (b′), depending on

whether it increase the first or the second cordinate.

Case A: when the traversal (i, j) → (i+1, j) is made at Line 4: Let shrink(H[Vi],

B′) be the (i + 1)-st call invoked at line 4. By induction hypothesis, H is an

induced subgraph of G(I ′), H[Vi] is an induced subgraph of H, and I ′ does not

changes between i-th and (i+ 1)-st calls. Hence, the statement (a′) holds.

Case B: when the traversal (i, j) → (i, j+1) is made at Line 17: Clearly the graph

returned by shrink(H,B) is obtained by contracting edges of H. The number of

vertices in the graph returned by shrink(H,B) is at most f2(w) since we contract all

edges except for those in
⋃

Vw∈S E(Vw), whose size is bounded by w ·f1(w) < f2(w),

and the obtained graph is connected. Therefore, the statement (b′) holds in this

case.

Case C: when the traversal (i, j) → (i, j+1) is made at Line 9: Here we consider the

case when shrink(H,B) returns an output at line 9. By induction hypothesis, H ′

is obtained by contracting edges of H[Vi]. Notice that H
new = H ′⊕δH[V3−i] can be

obtained from H by contracting the same set of edges that have been contracted in

H[V1], resulting in H ′. It clearly contains at most f2(w) vertices, thereby satisfying

the statement (b′).

Case D: when the traversal (i, j) → (i + 1, j) is made at Line 7: Let I ′ be the

global variable when shrink(H,B) is called, and I ′′ be the global variable when

shrink(Hnew, Bnew) is called at Line 7. By induction hypothesis, H ′ and thus

Hnew can be obtained by contracting edges of H. During the traversal from the call

shrink(H,B) and the call shrink(Hnew, Bnew), the contracted edges that trans-

formed I ′ to I ′′ are exactly those which transformed H[V1] to H
′, and equivalently

H to Hnew. Since H is an induced subgraph of G(I ′), we conclude that Hnew is an

induced subgraph of G(I ′′), and the statement (a′) holds.

Case E: when the traversal (i, j)→ (i, j+1) is made at Line 7: Here we consider the

case when shrink(H,B) returns an output at Line 7. By case D, we know thatHnew

is an induced subgraph of the current global variable I ′. By induction hypothesis,

the graph returned by shrink(Hnew, Bnew) can be obtained by contracting edges

of Hnew. Since Hnew itself can be obtained by contraction edges of H by the same

argument as in Case C, the graph returned can be obtained by contracting edges

of H. To see that the number of vertices in the returned graph is at most f2(w),

we resort to the induction hypothesis, Case B and C. Therefore, (b′) holds as well.

✸

In order to establish the correctness of the algorithm shrink(H,B), we need
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the following claim.

Claim 2. While the initial call shrink(G, ∅) is carried out, the global variable I ′

remains equivalent to I.

Proof of the Claim: Claim 1 implies that at Line 15, I ′ and I ′[V (H)] are

indeed instances of CLA and HCLA meeting the conditions of Lemma 7. Hence,

any current global variable I ′ and the new global variable I ′/EC updated at line 16

are equivalent by Lemma 7. As I ′ = I at the outset of shrink(G, ∅), the current

global variable I ′ is equivalent to I during the course of shrink(G, ∅). ✸

If shrink(G, ∅) reports that I is a no-instance, it means that Ũ(I ′[V (H)], B) = ∅

for some call shrink(H,B). Note that if I ′ is a yes-instance, Ũ(I ′[V (H)], B) 6= ∅

for every subgraph H of G(I ′). By Claim 1, the graph H is indeed a subgraph of

G(I ′) for any call shrink(H,B) incurred in the course of shrink(G, ∅) and thus I ′

is a no-instance. Together with Claim 2, this implies that I indeed a no-instance.

Suppose that shrink(G, ∅) returns a graph (i.e. does not report that I is a no-

instance). By Claim 1 this means that the graph shrink(G, ∅) can be obtained from

G by contracting edges of G, and has at most f2(w) vertices. Let I
new be the final

global variable when shrink(G, ∅) terminates. The sequence of edge contractions

applied to G leading to shrink(G, ∅) is also applied to the initial global variable I ′ =

I. Therefore, G(Inew) contains no more vertices than the graph shrink(G, ∅) does,

which is at most f2(w). From Claim 2, Inew is indeed equivalent to I. Therefore,

by applying the algorithm of Lemma 5 to Inew, we can correctly solve the instance

I.

What remains is to prove that CLA can be solved in the claimed running time,

assuming an algorithm which solves HCLA in f(w)·p(n) steps. Let now T (n,w) be

the running time of Algorithm shrink when it runs on an instance I = (G, r, λ, α)

where |V (G)| = n and w =
∑

α. Notice that

T (n,w) ≤ max
f1(w)≤n′≤n−f1(w)

{T1(n,w) + T (n′, w) + T (f2(w) + n− n′, w), T2(n,w)},

where T1 is the running time of required by line 1 and T2 is the running time required

to compute EC in line 15. From Proposition 2, T1(n,w) = 2O(w2·logw) · n3 · log n

and, from Observation 4, T2(n,w) = f(w) · p(n) · f1(w). By resolving the above

recursion, we obtain that T (n,w) = max{T1(n,w) · n, T2(n,w)}. Lastly, solving an

instance with at most f2(w) vertices using an algorithm of Lemma 5 requires at

most 2O(w2·logw) steps, which yields the claimed running time.

4.4 Split highly connected list allocation

Given a graph G, an integer r ∈ Z≥1, an allocation V = {V(1), . . . ,V(r)} of V (G)

and two integers j ∈ [r] and x ∈ Z≥0, we say that V is x-bounded out of j if
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∑

i∈[r]\{j} |V
(i)| ≤ x. We define the Split Highly Connected List Allocation

problem (S-HCLA, in short) so that its instances are as the instances of Highly

Connected List Allocation enhanced with some subset S of V (G) and where

we impose that |V (G)| > 2w ·f2(w) and that the requested solution V, additionally,

satisfies the following condition: There exists some j ∈ [r], such that

A. V is w · f2(w)-bounded out of j and

B. ∂G(V
(j)) ⊆ S ⊆ V(j).

Lemma 9. Let V be a solution of HCLA for an instance I = (G, r, λ, α) where

|V (G)| > 2w ·f2(w). Then there is a unique j ∈ [r] such that V is w ·f2(w)-bounded

out of j and a unique C ∈ C(G \ E(V)) with |V (C)| > f2(w). Moreover, for such

C and j, C is a subgraph of G[V(j)].

Proof. Let C be a connected component of G\E(V) that has maximum number of

vertices. As G \ E(V) has at most w + 1 connected components and 2w · f2(w) ≥

(w + 1) · f2(w) + 1, we deduce that |V (C)| > f2(w). Using Observation 1, we

know that C belongs entirely in some V(j). As G is (f2(w), w+1)-connected, every

connected component of G\E(V) that is different from C has at most f2(w) vertices.

This implies that the union of the parts of V that are different from V(j) contains at

most w ·f2(w) vertices. Moreover j is unique as, otherwise, |V (G)| ≤ 2w ·f2(w).

Proposition 3 (Chitnis et al. [5]). There exists an algorithm that given a set

U of size n and two integers a, b ∈ [0, n], outputs a set F ⊆ 2U with |F| =

2O(min{a,b}·log(a+b+1)) · log n such that for every two sets A,B ⊆ U , where A∩B = ∅

and |A| ≤ a and |B| ≤ b, there exists a set S ∈ F with A ⊆ S and B ∩ S = ∅, in

2O(min{a,b}·log(a+b+1)) · n · log n steps.

The proof of the following lemma uses Proposition 3 and Lemmata 5 and 9.

Lemma 10. Given an algorithm solving S-HCLA in f(w) · p(n) steps, then there

is an algorithm solving HCLA in f(w) · 2O(w2·logw) · log n ·max{n, p(n)} steps.

Proof. Let I be an instance of HCLA. If |V (G)| ≤ 2w ·f2(w), HCLA can be solved

in (2w · f1(w))
w · 2O(w·logw) = 2O(w2·logw) steps because of Lemma 5 (applied for

ℓ = 1 and r ≤ 2w).

Let F be a family of subsets of V (G) such that the condition of Proposition 3 is

satisfied for a = w and b = w ·f2(w). We claim that I is a yes-instance of HCLA if

and only if for some S ∈ F , (I, S) is a yes-instance of S-HCLA. Recall that (I, S)

is an instance of S-HCLA, as |V (G)| > 2w · f2(w).

In the non-trivial direction, assume that V is a solution for I. By applying

Lemma 9 on I, we know that there is a unique j such that V is w · f2(w)-bounded

out of j. Let A = ∂G(V
(j)) and B =

⋃

i∈[r]\{j} V
(i). Clearly, |A| ≤ w and |B| ≤
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w · f2(w). By the definition of F , there exists some set S ∈ F such that A ⊆ S and

B ∩S = ∅. Therefore ∂G(V
(j)) ⊆ S ⊆ V(j) and (I, S) is a yes-instance of S-HCLA

as required.

Suppose now that A is an algorithm that solves S-HCLA in f(w) · p(n) steps.

To solve HCLA, we apply A on (I, S) for all S ∈ F . If we obtain a solution to (I, S)

for some S ∈ F we output this solution as a solution to I, otherwise we output that

I is a no-instance of HCLA. As |F| = 2O(w·log(w·f2(w))) · log n = 2O(w2·logw) · log n,

this algorithm runs in 2O(w2·logw) · log n · n+2O(w2·logw) · log n · f(w) · p(n) steps as

required.

4.5 An algorithm for solving S-HCLA

Below we present a dynamic programming algorithm for solving S-HCLA.

Lemma 11. S-HCLA can be solved in 2O(w2·logw) · n steps.

Proof. We present a dynamic programming for S-HCLA using the brute-force al-

gorithm of Lemma 5 as a subroutine. Let (I, S) be an instance of SHCLA where

I = (G, r, λ, α) and S ⊆ V (G), and let C1, . . . , Cℓ be the vertex sets of the graphs

in C(G \ S). Let Gi = G[S ∪
⋃

1≤i′≤iCi′ ] for 1 ≤ i ≤ ℓ and specifically G0 = G[S].

For s ∈ [r], we define two functions λs, λ
∗
s : V (G)→ 2[r] such that

λs(x) =

{

{s} x ∈ S

λ(x) x ∈ V (G) \ S

and

λ∗s(x) =

{

{s} x ∈ S,

λ(x) \ {s} x ∈ V (G) \ S.

For each s ∈ [r], we have a table Ps for dynamic programming in which the

entries Ps(i, α
′, c′) are either yes or no, and run over all 0 ≤ i ≤ ℓ, α′ ∈ F≤(α) and

0 ≤ c′ ≤ w · f2(w). The entries of Ps are determined recursively as follows.

• Ps(0, α
′, c′) = yes if and only if α′ = 0, c′ = 0 and G[S] is (s, λ)-friendly.

• For 1 ≤ i ≤ ℓ, Ps(i, α
′, c′) = yes if and only if

(i) Ps(i− 1, α′, c′) = yes and G[Ci] is (s, λ)-friendly, or

(ii) |Ci| ≤ c
′, and there exists α′′ ∈ F≤(α

′) such that Ps(i−1, α′′, c′−|Ci|) =

yes and (G[S ∪ Ci], r, λ
∗
s |S∪Ci

, α′ − α′′) is a yes-instance for LA.

Claim 3. Ps(i, α
′, c′) = yes if and only if the instance (Gi, r, λs|V (Gi), α

′) admits a

solution V for LA such that
∑

i∈[r]\{s} |V
(i)| = c′, and either Cj ⊆ V

(s) or Cj∩V
(s) =

∅ for each 1 ≤ j ≤ i.
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Proof of the Claim: When i = 0, it is tedious to verify the claim. We prove by

induction on i.

Firstly, we prove the forward direction. Suppose that Ps(i, α
′, c′) = yes and

consider the instance (Gi, r, λs|V (Gi), α
′) of LA. If case (i) of the recursion holds,

then by induction hypothesis, there exists a solution V ′ to (Gi−1, r, λs|V (Gi−1), α
′) =

(Gi \ Ci, r, λs|V (Gi)\Ci
, α′) such that

∑

i∈[r]\{s} |V
′(i)| = c′, and either Cj ⊆ V

(s) or

Cj ∩ V
(s) = ∅ for each 1 ≤ j ≤ i − 1. Let V be an r-allocation obtained from

V ′ by adding all vertices of Ci to the part V(s). Since G[Ci] is (s, λ)-friendly and

Ci ∩ ∂Gi
(V(s)) = ∅, it follows that V is a solution to (Gi, r, λs|V (Gi), α

′). Note that

V meets the two conditions of our claim.

Suppose that case (i) of the recursion does not hold for the entry Ps(i, α
′, c′) =

yes, but case (ii) does. From Ps(i−1, α
′′, c′−|Ci|) = yes and induction hypothesis,

there exists a solution V ′ to (Gi−1, r, λs|V (Gi−1), α
′′) = (Gi \ Ci, r, λs|V (Gi)\Ci

, α′′)

such that
∑

i∈[r]\{s} |V
(i)| = c′− |Ci|, and either Cj ⊆ V

(s) or Cj ∩V
(s) = ∅ for each

1 ≤ j ≤ i − 1. Let V ′′ be a solution to (G[S ∪ Ci], r, λ
∗
s |S∪Ci

, α′ − α′′), and let V

be V ′ ∪ V ′′. Indeed, V is an r-allocation of V (Gi) since V (Gi−1) ∩ (S ∪ Ci) = S,

S ⊆ V ′(s) and S ⊆ V ′′(s). It is easy to see that V is a solution to (Gi, r, λs|V (Gi), α
′).

Furthermore, due to the definition of λ∗s, we have
∑

i∈[r]\{s} |V
′′(i)| = |Ci|, and thus

∑

i∈[r]\{s} |V
(i)| =

∑

i∈[r]\{s} |V
′(i)|+

∑

i∈[r]\{s} |V
′′(i)| = (c′−|Ci|)+ |Ci| = c′. Notice

that V(s) = V ′(s) as Ci ∩ V
′′(s) = ∅. This implies that we have Cj ⊆ V

′(s) = V(s) or

Cj∩V
(s) = Cj∩V

′(s) = ∅ for 1 ≤ j ≤ i−1. It remains to observe that Ci∩V
′′(s) = ∅

also implies Ci ∩ V
(s) = ∅.

Secondly, let us prove the opposite direction. Let V be a solution to (Gi, r,

λs|V (Gi), α
′) meeting the conditions of the claim. Consider the two cases.

Case 1: Suppose Ci ⊆ V
(s). Clearly, G[Ci] is (s, λ)-friendly. We argue that

Ps(i − 1, α′, c′) = yes, which implies Ps(i, α
′, c′) = yes by the recursion case (i)

for Ps. Let V ′ be the restriction of V to V (Gi−1), i.e. (V(1) \ Ci, . . . ,V
(r) \ Ci).

By induction hypothesis, in order to prove Ps(i − 1, α′, c′) = yes, it suffices to

show that V ′ is a solution to (Gi−1, r, λs|V (Gi−1), α
′) such that

∑

j∈[r]\{s} |V
′(j)| =

c′, and either Cj ⊆ V
(s) or Cj ∩ V

(s) = ∅ for each 1 ≤ j ≤ i − 1. Indeed,

V ′ is a solution to (Gi−1, r, λs|V (Gi−1), α
′) for Ci ⊆ V

(s) \ ∂Gi
(V(s)), which im-

plies δGi−1(V
′(j),V ′(k)) = δGi

(V(j),V(k)) for every 1 ≤ j < k ≤ r. Note that
∑

j∈[r]\{s} |V
′(j)| =

∑

j∈[r]\{s} |V
(j)| = c′. Moreover, from V ′(s) = V(s) \ Ci, V

′(j) =

V(j) for j 6= s, and the fact that either Cj ⊆ V
(s) = V ′(s) ∪Ci or Cj ∩V

(s) = ∅ holds

for each 1 ≤ j ≤ i− 1, we have either Cj ⊆ V
′(s) or Cj ∩ V

′(s) = Cj ∩ (V(s) \ Ci) =

Cj ∩ V
(s) = ∅ for each 1 ≤ j ≤ i− 1.

Case 2: Suppose Ci ∩ V
(s) = ∅. For

∑

j∈[r]\{s} |V
(j)| = c′, we have |Ci| ≤ c

′. Let V ′

be the restriction of V to V (Gi−1), i.e. (V(1) \ Ci, . . . ,V
(r) \ Ci) and let V ′′ be the

restriction of V to S∪Ci. Also let α′′ be such that α′′(j, k) = |δGi−1(V
′(j),V ′(k))| for

25



every 1 ≤ j < k ≤ r. In order to show Ps(i, α
′, c′) = yes, it suffices to verify that

Ps(i − 1, α′′, c′ − |Ci|) = yes and (G[S ∪ Ci], r, λ
∗
s |S∪Ci

, α′ − α′′) is a yes-instance

for LA.

To verify Ps(i − 1, α′′, c′ − |Ci|) = yes, notice that V ′ is a solution to (Gi−1, r,

λs|V (Gi), α
′′) and

∑

i∈[r]\{s} |V
′(i)| =

∑

i∈[r]\{s} |V
(i) \Ci| =

∑

i∈[r]\{s} |V
(i)| − |Ci| =

c′−|Ci|. For each 1 ≤ j ≤ i−1, if Cj ⊆ V
(s), then Cj ⊆ V

′(s) since V(s) = V ′(s)∪Ci

and Cj∩Ci = ∅. Otherwise, Cj∩V
′(s) = Cj∩V

(s) = ∅ for V ′(s) = V(s). By induction

hypothesis, that Ps(i− 1, α′′, c′− |Ci|) = yes follows. It is routine to check that V ′′

is a solution to (G[S ∪Ci], r, λ
∗
s |S∪Ci

, α′ − α′′) is a yes-instance for LA. ✸

The next claim, together with Claim 3, asserts that we can correctly solve S-

HCLA by computing the tables Ps for s ∈ [r].

Claim 4. The given instance (I, S) is yes to S-HCLA if and only if Ps(ℓ, α, c) =

yes for some s ∈ [r] and c ≤ w · f2(w).

Proof of the Claim: To see the forward direction, let V be a solution to (I, S)

of S-HCLA. By definition of S-HCLA there exists an index j ∈ [r] such that the

two conditions A. V is w · f2(w)-bounded out of s and B. ∂G(V
(s)) ⊆ S ⊆ V(s) are

met. Let c :=
∑

i∈[r]\{s}. Notice that V is a solution to the instance (G, r, λs, α)

of LA as S ⊆ V(s), and c ≤ w · f2(w) by Condition A.. Hence, to prove that

Ps(ℓ, α, c) = yes, it suffices to verify that Cj ⊆ V
(s) or Cj ∩V

(s) = ∅ holds for every

1 ≤ j ≤ ℓ by Claim 3. Suppose that Cj * V(s) and Cj ∩ V
(s) 6= ∅ for some j. Then

Cj ∩ V
(s) constains a vertex of ∂G(V

(s)), and thus contains a vertex of S by B..

However, this contradicts the fact that Cj and S are disjoint.

For the backward implication, suppose Ps(ℓ, α, c) = yes for some s ∈ [r] and

c ≤ w ·f2(w). Then, there exists a solution V to the instance (Gℓ, r, λs, α) satisfying

the condition of Claim 3. It suffices to show that ∂G(V
(s)) ⊆ S ⊆ V(s). If ∂G(V

(s))\

S 6= ∅, this means that there exists a vertex sets C of C(G\S) such that C \V(s) 6= ∅

and C ∩V(s) 6= ∅, a contradiction to the second condition of Claim 3. The fact that

S ⊆ V(s) is an immediate consequence of the definition of λs. ✸

In the recursion for Ps, verifying (i) takes O(|Ci|) steps and verifying (ii)

amounts to solving an instance to LA whose instance size is at most c ≤ w · f2(w).

The latter takes 2O(w2·logw) using the algorithm of Lemma 5. As the size of each

table Ps is (ℓ+ 1) · |F≤(α)| · w · f2(w), we obtain the claimed running time.

Composing the running times of Lemmata 6, 8, 10, and 11 and the fact that

f1(w) = 2O(w·logw) and f2(w) = 2O(w·logw) we can derive the correctness of Theo-

rem 3.
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5 Further research

In the definition of List Allocation we ask for a λ-list H-homomorphism of G

where
∑

e∈E(H) |C(e)| ≤ ℓ. A different parameterization of List Allocation, that

is similar in flavor to Min-Max Multiway Cut, may instead ask for a λ-list H-

homomorphism of G where maxv∈V (H)

∑

e is incident to v |C(e)| ≤ ℓ. We call this

new problemMax Bounded List Digraph Homomorphism (in shortMBLDH)

As it is straightforward to prove an analogue of Theorem 5, where BLDH is now

replaced byMBLDH and instead of 2O(ℓ log h) ·T (n, ℓ) steps we now have a reduction

that takes 2O(ℓ2 log h)·T (n, ℓ) steps. This implies thatMBLDH, when parameterized

by ℓ and h admits an FPT-algorithm that runs in 2O(ℓ2·max{log ℓ,log h}) ·n4 ·log n steps.

A natural research direction is to improve the running time of our FPT-algorithms

for Min-Max Multiway Cut and Bounded List Digraph Homomorphism.

If we want to improve our running times using the techniques used in this paper

it seems that we need to crucially improve upon the recursive understanding and

randomized contractions technique.
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