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Rejecting jobs to Minimize Load and Maximum Flow-time
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Abstract

Online algorithms are usually analyzed using the notion of competitive ratio which compares
the solution obtained by the algorithm to that obtained by an online adversary for the worst
possible input sequence. Often this measure turns out to be too pessimistic, and one popular
approach especially for scheduling problems has been that of “resource augmentation” which
was first proposed by Kalyanasundaram and Pruhs. Although resource augmentation has been
very successful in dealing with a variety of objective functions, there are problems for which even
a (arbitrary) constant speedup cannot lead to a constant competitive algorithm. In this paper
we propose a “rejection model” which requires no resource augmentation but which permits the
online algorithm to not serve an epsilon-fraction of the requests.

The problems considered in this paper are in the restricted assignment setting where each
job can be assigned only to a subset of machines. For the load balancing problem where the
objective is to minimize the maximum load on any machine, we give O(log2 1/ε)-competitive
algorithm which rejects at most an ε-fraction of the jobs. For the problem of minimizing the
maximum weighted flow-time, we give an O(1/ε4)-competitive algorithm which can reject at
most an ε-fraction of the jobs by weight. We also extend this result to a more general setting
where the weights of a job for measuring its weighted flow-time and its contribution towards
total allowed rejection weight are different. This is useful, for instance, when we consider the
objective of minimizing the maximum stretch. We obtain an O(1/ε6)-competitive algorithm in
this case.

Our algorithms are immediate dispatch, though they may not be immediate reject. All these
problems have very strong lower bounds in the speed augmentation model.
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1 Introduction

Online algorithms are usually analyzed using the notion of competitive ratio which compares the
solution obtained by the algorithm to that obtained by an offline adversary for the worst possible
input sequence. Researchers have tried to address the criticism of this measure being too pessimistic
by either limiting the power of the adversary – oblivious adversary, stochastic adversary – or giving
more power to the online algorithm – lookahead, additional resources, etc. One popular approach
especially for scheduling problems has been that of “resource augmentation” and was first proposed
by Kalyanasundaram and Pruhs [29]. In this model the machines of the online algorithm have
more speed than those of the offline algorithm. Many scheduling problems for which no constant
competitive online algorithm is possible now have such algorithms in this resource augmentation
model. The success of the speed augmentation model lies in the fact that many natural algorithms
can be analysed in this framework.

In this paper, we propose a “rejection model” in which there is no resource augmentation, but
we allow the online algorithm to not serve an ε-fraction of requests. There are two principal reasons
for considering this model: (i) although resource augmentation has been very successful in dealing
with a variety of objective functions, there are problems for which even a (arbitrary) constant
speedup cannot lead to a constant competitive algorithm – we consider two such problems in this
paper, and (ii) this might be a natural assumption in many settings where job rejection is part of
the service provided by a system (e.g., “Server busy: Please try again later” message we often see
when accessing popular websites).

For most scheduling problems, an algorithm in the resource augmentation model can be “simu-
lated” in this rejection model by roughly letting each machine drop every (1/ε)th job assigned to it.
However, the rejection model is much more powerful than the resource augmentation model since
we are not restricted to drop an ε-fraction of jobs assigned to each machine, i.e., we could drop
many more jobs assigned to one machine as compared to another as long as the overall number of
rejected jobs stays within ε-fraction of the total number of jobs. We demonstrate this by consid-
ering two classical problems – load balancing and maximum (weighted) flow time. For both these
problems we give constant competitive algorithms in the rejection model while no such algorithms
are possible in the resource augmentation model. This is the key contribution of this paper.

The problems considered in this paper are in the restricted assignment setting where each job
can be assigned only to a subset of machines. All our algorithms are pre-emptive, immediate
dispatch – a job is assigned to a machine as soon as it is released and non-migratory – a job is
processed only on the machine to which it is assigned. While ideally we would also like to make
rejection decisions immediately when the job is released, we also allow for the job being rejected
while it is waiting in the queue. We justify this by showing that no online algorithm with immediate
dispatch and immediate rejection can be constant competitive for the load balancing problem (and
hence, the maximum flow-time problem).
Our Results: For the load balancing problem(LoadBalancing) where the objective is to minimize
the maximum load on any machine, we give an O(log

(

1
ε

)

) competitive immediate rejection algo-
rithm when all jobs have unit processing time and the online algorithm can reject an ε-fraction of
the jobs. For general processing times our algorithm is not immediate reject and is O(log2

(

1
ε

)

)-
competitive. We show that one cannot get a constant competitive algorithm if we require immediate
rejection. Note that there is a Ω(logm) lower bound on the competitive ratio of any online algo-
rithm for this problem where m is the number of machines [10]. Further, making the machines an
ε-fraction faster has no significant impact on this lower bound.
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For the maximum flow-time problem Anand et. al [4] show that no immediate dispatch algorithm
can be constant competitive even when the jobs are unit length and we allow resource augmentation.
For this setting of unit jobs we show an immediate reject algorithm which is O(1/ε)-competitive and
rejects at most an ε fraction of the jobs. When jobs have weights(WtdMaxFlowTime), the objective
is to minimize the maximum weighted flow-time of a job. For this setting Anand et. al [4] show that
no online algorithm can be constant competitive even when we allow non-immediate dispatch and
resource augmentation. Our algorithm for this setting is immediate dispatch but not immediate
reject and is allowed to reject jobs of total weight at most an ε-times the total weight of all jobs
and has a competitive ratio of O(1/ε4). We also show that it is not possible to get better than
O(1/ε)-competitive algorithm in this model, and that one cannot get a good competitive algorithm
if we are required to perform immediate reject and immediate dispatch.

We further generalize our result to a setting where each job has two kinds of weight – rejection
weight and flow-time weight. The weighted flow-time of the job is defined as its flow-time times its
flow-time weight, and the goal, as before, is to minimize the maximum weighted flow-time of a job.
However, the total rejection weight of the jobs which get rejected should be at most ε fraction of the
total rejection weight of all the jobs. We obtain an O(1/ε6)-competitive algorithm for this problem.
The problem of minimizing maximum stretch is a special case of this setting in the rejection model.
Here, the rejection weights are all unit while the flow-time weights are the inverse of processing
sizes.

2 Related Work

Load Balancing. Graham [26] considered this problem in the context of identical machines and
showed that the simple greedy heuristic of assigning the next task to the least loaded machine is 2-
competitive (see also the survey by Azar [8]). Albers [1] improved the competitive ratio to 1.923 and
also showed a lower bound of 1.852 on the competitive ratio of any deterministic online algorithm,
while Albers et al. [2] shows improved bounds in the special case where the online algorithm knows
the sum of job sizes at any point. For related machines model, Berman et al. [14] gave constant
competitive algorithms. However, the problem becomes significantly harder in the unrelated ma-
chines model, where a job can have different processing time on different machines. Azar et al. [10]
considered the problem in the restricted assignment setting, and gave an O(logm)-competitive
algorithm for load balancing(m being the number of machines). They also complemented this
result by proving lower bound of Ω(logm) for any deterministic and Ω(lnm) for any randomized
online algorithm under the restricted assignment model. Buchbinder et al.[15] gave an alternative,
more general upper bound on the load on any prefix of the most loaded machines. For the unre-
lated machines setting, Aspnes et al. [6] gave an O(logm)-competitive algorithm. There has been
some work on resource augmentation in this setting. Azar et al.[9] showed a competitive ratio of
1 + 1/2

n
m
(1−o(1)) when the online algorithm is allowed to use n identical machines while the offline

optimal is restricted to m < n identical machines.
Flow-time minimization. There has been considerable work on scheduling with the objective
of minimizing a suitable norm of the flow-time of jobs. For the objective of average flow-time of
jobs, a logarithmic competitive algorithm in the identical machines setting is known [30, 7]. Garg
and Kumar [23] extended this result to the related machines setting. Garg and Kumar [24] showed
that the problem becomes considerably harder in the restricted assignment setting and no online
algorithm with bounded competitive ratio is possible. Bansal and Pruhs [12] showed that the
competitive ratio can be as high as Ω(nc) for the problem of minimizing ℓp (for any 1 < p < ∞)
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norm, where n is the number of jobs, even for a single machine. For minimizing the maximum
flow-time in the identical machines model, Ambühl and Mastrolilli [3] gave a simple 2-competitive
algorithm. However, Anand et al. [4] showed that the competitive ratio of any online algorithm for
the restricted assignment setting is as high as Ω(m), where m is the number of machines.

One approach for circumventing such strong lower bounds has been speed augmentation, where
we allow each machine in the online algorithm ε-fraction more speed than the corresponding machine
in the offline algorithm. This model was first proposed by Kalyanasundaram and Pruhs [29] who
used it to get an O(1/ε)-competitive algorithm for minimizing total flow time on a single machine in
the non clairvoyant setting. Bansal and Pruhs [12] proved that several natural scheduling algorithms
are O(1/ε)-competitive algorithm for minimizing ℓp norm (for any 1 < p <∞) of flow-time of jobs
in the single machine setting. Golovin et al. [25] extended this result to parallel machines setting.
Chekuri et al. [19] showed that the immediate dispatch algorithm of Avrahami and Azar [7] is also
O(1/ε)-competitive for all ℓp norms (p ≥ 1).

In the more general setting of unrelated machines with speed augmentation, Chadha et al.
[16] gave an O(1/ε2)-competitive algorithm for minimizing the sum of flow-time of jobs, which
was improved and extended to the case of ℓp norm of flow-time by Im and Moseley [28] and
Anand et al. [5]. However, the competitive ratio remained a function of p, and in fact, Anand

et al. [4] showed that one cannot obtain competitive ratio better than Ω
(

p
ε1−O(1/p)

)

even in the

restricted assignment model.
For the objective of minimizing the maximum (unweighted) flow time on unrelated machines

under the speed augmentation model, Anand et al. [4] gave aO(1/ε)-competitive algorithm; however
their algorithm is not an immediate dispatch algorithm. In fact, Azar et al. [10] showed that any
immediate dispatch algorithm for minimizing maximum flow time will have a competitive ratio can
be as high as Ω(logm) in the restricted assignment setting even with constant speed augmentation.
In the maximum weighted flow-time case, this lower bound holds even if we allow non-immediate
dispatch [4]. Chekuri et al. [21, 20] considered the problem of minimizing the maximum delay factor
of a job in the parallel machines setting, where jobs come with deadlines and the delay factor of
a job is the ratio of its flow-time to the difference between the deadline and its release date. This
problem is equivalent to minimizing the maximum weighted flow time, where the weight of a job j
can be seen as (dj − rj)

−1. They gave a (1 + ε)-speed O(1/ε)-competitive algorithm.
Scheduling with Rejection. There has been considerable work on online scheduling with job
rejections in the prize collecting setting. Here, each job comes with a specified penalty which is
to be incurred in case it is not scheduled. The goal is to minimize the sum of a suitable objective
function of the completion times of the jobs (which are not rejected) and the total penalty cost of
rejected jobs. Bartal et al. [13] considered the problem of minimizing makespan in the identical
machines model with penalties and gave a 2.618-competitive algorithm. Epstein et al. [22] extended
this work to the problem of minimizing makespan on two related machines. Bansal et al. [11]
considered the online problem of minimizing total flow-time of jobs and total idle time on a single
machine along with uniform rejection penalty for all jobs. They gave 2-competitive algorithms
for both the objectives. For the case of arbitrary penalties and average weighted flow-time, they
showed strong lower bound of Ω(max(n

1
4 , C

1
2 )) on the competitive ratio of any randomized online

algorithm. They complemented this with an O(1ε (logW + logC)2)-competitive algorithm with
(1 + ε)-speed augmentation, where W is the ratio between maximum and minimum weights and
C is the ratio between maximum and minimum penalties. These results were extended to non-
clairvoyant settings (i.e., the size of a job is not known till the time it finishes processing) in the
identical machines setting by Chan et al. [17] – they considered an objective function which also
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had an energy term, and gave constant competitive 2(1 + ε)-speed algorithm. Minimizing average
flow-time and completion time with rejections has also been studied in the offline context [27].

Charikar and Khuller [18] studied the online problem of minimizing maximum flow-time in more
general context of broadcast scheduling, where both the online algorithm and the offline optimum
are allowed to ignore a fixed fraction of the jobs. They showed that no randomized online algorithm
can be constant competitve, while the offline problem admits a 5-approximation.

3 Problem Statement

We formally define the problems considered in this paper. We consider the online problem of
scheduling in the restricted assignment setting. The input instance specifies a small enough positive
parameter ε. We have a set of m machines, and jobs arrive in an online manner. A job j arrives at
time rj , and can only be scheduled on a subset Sj of machines. Further, it specifies a processing
requirement (or size) of pj units.

In the LoadBalancing problem, a solution needs to dispatch each job to a machine. It can also
choose to reject a job (either when it arrives or after a job has been dispatched to a machine).
However, for any time t, the total number of jobs rejected by the algorithm till time t must be
at most ε fraction of the number of jobs that have arrived till time t. The load assigned to a
machine at any point of time t is defined as the total processing requirement of jobs which have
been dispatched to it till time t – note that this does not count jobs which get rejected by time t,
but it counts jobs which will get rejected after time t. The goal of the scheduling algorithm is to
minimize (for all time t) the maximum load assigned to any machine.

In the WtdMaxFlowTime problem, an input instance can be described as above. Further, we also
have a weight wj associated with each job j. A solution needs to process a job j on one of the
machines in Sj for pj amount of time. Note that any machine can perform 1 unit of processing
in unit time, and we allow jobs to be pre-empted. However, migration is not allowed – a job
dispatched to a machine i must be completed on i or rejected. The flow-time of a job is defined
as the difference between its completion time Cj and its release time rj . The goal is to minimize
the maximum weighted flow-time of a job, i.e., maxj wj · (Cj − rj). As before, till any time t, our
algorithm is allowed to reject ε-fraction of jobs which have arrived till this time. This rejection can
either happen on arrival of a job or later.

In the GenWtdMaxFlowTime problem, the setting is same as above, but the weights for flow-time
and the weight for rejection are different. In other words, instead of having one weight wj , a job

j has two weights associated with it, the rejection-weight wr
j and flow-time-weight wf

j . Again the

objective is to minimize the maximum over all jobs j of wf
j Fj , where Fj denotes the flow-time of job

j in a schedule; and we are allowed to reject jobs of total rejection-weight at most ε times the total
rejection-weight of all the jobs. Note that in the case of WtdMaxFlowTime problem, wr

j happens to

be same as wf
j .

Our algorithms for MaxFlowTime and WtdMaxFlowTime (and GenWtdMaxFlowTime) satisfy the
immediate dispatch property – when a job j arrives, it is dispatched to a machine at time rj . Note
that it may still get rejected later.

We now give an outline of rest of the paper. In Section 4, we give a brief outline of our algorithms
and the ideas involved. In Section 5, we give an algorithm for the LoadBalancing problem. In
Section 6, we describe our algorithm for the WtdMaxFlowTime problem. To illustrate some of the
ideas, we first consider the special case of unit size and unit weight in Section 6.1. Although one
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does not need to invoke an LP relaxation here, we give a more detailed explanation in this section
so that similar ideas in later section can be clearer. In Section 6.2, we describe the algorithm for the
general case. The algorithm is split in two parts – A and B. We first describe these two algorithms
and give their analysis in Section 6.2.1. In Section 7, we show how to extend our results to the
GenWtdMaxFlowTime problem. Finally, in Section 8, we give lower bounds on competitive ratios for
the problems considered in this paper.

4 Our Techniques

In both the LoadBalancing and the WtdMaxFlowTime problems, we assume that we know the value
of the offline optimum solution, denoted by T ⋆. Removing this assumption requires standard ideas
in online algorithms (details are given in Section 5.3 and Section 6.3).

In the LoadBalancing problem, we first consider the special case when all jobs are of unit
size. Here, the algorithm is quite natural – when a job arrives, it is dispatched to the least loaded
machine (among the ones it can be dispatched to). However, we do not allow the load on a machine
to exceed αT ⋆ where α = log

(

1
ε

)

– if we dispatch a job to a machine on which the load is already
at this limit, we reject this job. Clearly, the algorithm is O(log

(

1
ε

)

)-competitive. To bound the
number of rejected jobs, we use the following argument. Let ml denote the number of machines
where the algorithm dispatches at least lT ⋆ jobs (l is some integer between 1 and log

(

1
ε

)

). A
naive argument will show that the total number of jobs is at least ml · lT

⋆, but a slightly more
careful argument can show that the number of jobs in the system is at least ml · 2

lT ⋆. A rough
argument goes as follows: let Ml be the set of machines where the algorithm assigns at least lT ⋆

jobs. Consider the jobs dispatched to Ml which are at level (l− 2)T ⋆ or above (level of a job is its
position in the queue of the corresponding machine). There will be 2|Ml|T

⋆ such jobs, and so there
must be a set of 2|Ml| machines where such jobs can be processed (otherwise optimum value cannot
be T ⋆). Each of these machines must have at least (l− 2)T ⋆ jobs assigned to them (because of the
job dispatch policy). Thus, the total number of jobs is at least 2(l − 2)|Ml|T

⋆. Continuing this
argument gives the exponential scaling with l. Now, if the number of rejected jobs is large, then
there must be many machines where the load is up to the maximum limit, which means that there
must be a huge (exponential in α times number of such machines) number of jobs in the system.

For the more general case of the LoadBalancing problem when job sizes are arbitrary, we can
reduce the problem to the case of unit size jobs. Assume wlog that all job sizes are powers of 2.
For each value of index j, we run the above algorithm independently for jobs of size 2j . This will
ensure that for any fixed j, the total load (i.e., processing time) of jobs of size 2j assigned to a
machine is at most αT ⋆. In case this limit is reached on a machine for many values of the index j,
one can show that we can reject many (large) jobs. Note that this algorithm may reject a job after
it gets dispatched to a machine. We show that this is unavoidable (details in Theorem 8.2).

In the WtdMaxFlowTime problem, each job j has a weight wj and the goal is to minimize the
maximum over all jobs j, of wjFj , where Fj is the flow-time of j. In this problem, the ideas are
more subtle and technically involved. In fact, we show that unlike the LoadBalancing problem,
one cannot obtain better than O(1/ε)-competitive algorithm (details in Theorem 8.3). To give
intuition about our algorithm and analysis techniques, we consider some special cases:
Unit size and unit weight: Suppose all jobs are of size 1 and weight 1. In this case a natural
algorithm is as follows: each machine maintains a queue of jobs assigned to it. When a new job
arrives, it is dispatched to the machine with the smallest queue (among the machines to which it
can be processed on). However, if all such machines have at least T ⋆/ε jobs in their queue, we
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reject this job. The analysis is somewhat trickier than the corresponding case for LoadBalancing.
The reason is as follows: suppose there is a job j which can go on two machines i1 and i2, and
both have the same queue size when j is released. Suppose we dispatch j to i1. But in future, i1
will continue to get more jobs assigned to it (because perhaps these jobs could only get processed
on i1), whereas i2’s queue will decrease with time. In the LoadBalancing problem, queues do not
dissipate with time, and so the proof gets much simpler.

Our proof idea is as follows. For each machine i and parameter l (l varies between 1 and 1/ε),
we define a set of disjoint intervals I(i,l). An interval I in this set is a minimal interval such that
the queue size in i at the left end-point is (l − 1)T ⋆ and that at the right end-point is lT ⋆ (see
Figure 1). For different values of l and fixed i, these intervals form a laminar family. Let ml be the
number of intervals in ∪iI

(i,l). Suppose the algorithm rejects kT ⋆ jobs. Then it is not difficult to
show that

ml−1T
⋆ + Ll−1 ≥ mlT

⋆ + Ll + kT ⋆, (1)

where Ll denotes the total length of all the intervals in ∪iI
(i,l). Indeed, the RHS above denotes a

set of jobs which get released during an interval in ∪iI
(i,l), and each such interval can only take T ⋆

jobs beyond its own length. Summing the above for all l between 1 and 1/ε shows that the number
of jobs is at least kT ⋆/ε, and so the algorithm rejects only ε fraction of the jobs. The formal proof
is given in Section 6.1. Although one can simply formalize the argument given above, we give a
somewhat longer proof which sets dual variables for a natural LP relaxation of this problem. This
proof generalizes to the more general case.

In more general settings, we split the algorithm in two parts: the first part ensures that the
queues on each machine are bounded, and the second part uses this property to ensure that all
jobs which do not get rejected finish within the required time. We describe details of the first part
below.
Unit weight and arbitrary size For sake of simplicity, assume that job sizes are 1 or 2. Each
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machine i maintains two queues: Qi,1 and Qi,2 for the two job sizes respectively. When a job of
size p arrives, it goes to that machine i for which Qi,p has the least load (load of a queue is the
total remaining processing time of jobs in it). Again, if the load on all such queues is more than
αT ⋆, we reject the job – here α is a parameter which is O(1/ε). Thus, the algorithm ensures that
all queue sizes remain bounded. The non-triviality lies in figuring out which job a machine chooses
to process. Given the above dispatch rule, popular and simple heuristics like always processing the
shortest sized job or the job with shortest remaining processing time will not guarantee bounded
rejection ratio: Below we provide an example on how this fails.

Assume ε = 1/4, i.e., we are allowed to reject at most 1
4th of the jobs; and the maximum queue

length of any job size which our online algorithm can afford on any machine is 4T ⋆. In this example,
T ⋆ will be 2. Suppose there are 8 machines m1, m2, · · · , m8; also let the jobs can be of two sizes
1 and 2. At time t = 0, seven jobs each of size 2 and one of size 1 arrive; the online algorithm
sees the jobs in the following order: the first four jobs of size 2 can be processed on any machine,
so our algorithm dispatches them to machines, say m1, m2, · · · , m4; the fifth (sixth) job of size 2
can be processed on m1, m2 (respectively m3, m4), so our algorithm dispatches them to machines
m1 and m3 respectively; the seventh job of size 2 can be processed on m1 only. The eighth job
of size 1 can be processed on any machine, suppose our algorithm dispatches it to m1. Thus at
end of time t = 0, the load on machine m1 for size 2 jobs and size 1 jobs are 6 and 1 respectively.
Since our processing rule picks the shortest sized (or the shortest remaining processing timed) job,
the 1 sized job will be processed on machine m1 at this time step. Now suppose for every time
steps t = 1, 2, · · · , a job of size 1 arrives which can be processed on any machine, and for every
alternate time steps t = 2, 4, 6, · · · , a job of size 2 arrives which can be processed only on machine
m1. Suppose our algorithm dispatches the size 1 jobs to m1 (since the algorithm will always prefer
processing size 1 jobs over size 2 jobs, the queue size of size 1 jobs on all machines at the end of
a time step will be zero, and hence the algorithm may dispatch the size 1 job arriving in the next
time step to m1). The algorithm will start rejecting all the size 2 jobs arriving in time 4, 6, 8, · · · .
Thus the fraction of the rejected jobs will be close to 1/2.

Note that the optimum solution of the scenario will always dispatch the size 2 jobs of time steps
t = 2, 4, 6, · · · to m1 and the size 1 jobs to some other machine. Thus the optimal solution will
have a maximum flow time of 2.

The processing policy which our algorithm employs is as follows. For a machine i, let loadi,1(t)
and loadi,2(t) denote the load in the two queues at time t. At time t, the machine processes job
from the queue for which loadi,p(t)/p is largest – this quantity is roughly equal to the number of
jobs in the corresponding queue. Let us see why this strategy works. First we consider jobs of size
1. Note that the queue for size 1 jobs can contain up to αT ⋆ jobs, while that for size 2 jobs can only
contain αT ⋆/2 jobs. As in the above case, we can define the intervals I(i,l) for the size 1 queues,
and write down inequalities (1) as long as l ≥ α/2 (because as long as the load on size 1 queue is
more than αT ⋆/2, the machine will not give preference to a size 2 job, and so we can pretend that
there are size 1 jobs only). This suffices to bound the number of size 1 jobs which get rejected in
terms of the total number of size 1 jobs that has arrived.

When we need to bound the number of size 2 rejected jobs, we need to define the intervals more
carefully. For a parameter l, I(i,l) consists of those minimal intervals I where the load of Qi,1 is at
most (l − 1)T ⋆/2 and that of Qi,2 is at most (l − 1)T ⋆ at the left end point of I, whereas the load
of Qi,1 is at least lT ⋆/2 or that of Qi,2 is at least lT ⋆ at the right end-point. Using these intervals,
one can again write down inequalities similar to (1) involving both size 1 and size 2 jobs. Using
these inequalities, one can prove that the total number of rejected size 2 jobs is at most the total
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number of size 2 jobs and half the total number of size 1 jobs.
More generally, suppose jobs sizes are powers of 2. Then each machine i maintains a separate

queueQi,k for jobs of size 2
k, and jobs are dispatched to machines according to load on corresponding

queues only. At any time t, a machine i processes job from the queue Qi,k for which the load divided
by 2k is highest. Another way of thinking about this rule, which forms the intuition in more general
case, is that we prioritize the queues on a machine based on how full they are. Suppose the queue
Qi,k is full to a fraction of fk (i.e., load on it is equal to fk · αT

⋆). Then, we prefer the queue for
which fk/2

k is largest.
Arbitrary weight and unit size Again assume that all weights are powers of 2. Each machine
i maintains queues Qi,w for jobs with weight 2w, and as before, jobs are dispatched based on their
corresponding queue. A machine i prioritizes these queues in the decreasing order of w. Drawing
analogy from the above case, if fw denotes the fraction to which the queue Qi,w is full (note that a
queue for jobs of weight 2w is full, if the total number of jobs in it is αT ⋆/2w, where α is O(1/ε)),
then machine i picks the next job from the queue for which fw · 2

w is highest.
General Case For simplicity, assume all jobs sizes and weights are powers of 2. For each machine
i, we have queues Qi,w,p for jobs of size 2p and weight 2w. However, it is unclear how to prioritize
these queues because we can have two queues Qi,w1,p1 and Qi,w2,p2 for which w1 < w2 but p1 < p2.
Suppose the queues Qi,w1,p1 and Qi,w2,p2 are full to the extent of f1 and f2 respectively. We know
fraction f1 for Qi,w1,p1 corresponds to fraction f1/2

p1−p2 for Qi,w1,p2 (using the argument above
for unit weight and arbitrary size), and the fraction f1/2

p1−p2 for Qi,w1,p2 corresponds to fraction

f1 ·
2w1−w2

2p1−p2
for Qi,w2,p2 (using the argument for unit size and arbitrary weight). Thus, machine i

prefers a job from Qi,w2,p2 over Qi,w1,p1 iff f2 ≥ f1 ·
2w1−w2

2p1−p2
. Our algorithm is based on this rule.

The proof that all queues remain bounded again relies on carefully defining a set of intervals,
and corresponding dual variables for an LP relaxation. However there are subtle and non-trivial
details. While defining the intervals for a particular type of jobs (say of size 2p and weight 2w),
it may happen that the algorithm processes other kinds of jobs during these intervals: (i) if these
jobs are of very high density, then we are completing lot of weight in small time, and so this should
be somehow beneficial, (ii) if there are jobs whose density is close to the density of such jobs, then
we cannot handle these directly; in fact, we need to go back and define these intervals for a group
of jobs of similar density, and (iii) if these jobs have low density, then we need to somehow prove
that either they have very high weight and so need to finish soon in any solution, or else such jobs
cannot be processed during such intervals.

This completes our informal description of the first part of our algorithm where we ensure that
queues remain of bounded size. The second part of the algorithm makes sure that a job of weight
wj does not starve for too long (much longer than a constant times T ⋆/wj). To accomplish this,
it runs the algorithm above in background. If the first algorithm tries to process a job j at some
time t on a machine, the second algorithm processes j as well unless there is a job of much higher
density in the queue of machine i. If the latter case happens, it processes such a job. A job which
waits for too long (compared to T ⋆/wj) gets rejected. We prove that the weight of such jobs is
small. The difficulty in the analysis arises for the following reasons: (i) the algorithm A ensures
that the size of each of the queues on a machine remains within a limit, whereas we would like the
total size of the queues to remain close to this limit; to ensure this, we need to prove that many of
these jobs will get rejected, (ii) we may reject a job after processing it for a while – the time used
for processing such jobs gets wasted, and so we need to ensure that this remains very small.

Finally, we consider the more general problem GenWtdMaxFlowTime where a job j has two
weights – wf

j and wr
j . Recall that the weight w

f
j is used for computing weighted flow-time, whereas

8



we do not want to reject jobs whose total wr
j weight is high. This is a generalised version of the

problem of minimizing the maximum stretch. It turns out that the first part of the algorithm
described above carries over without much change to this problem as well. However, the second
part of the algorithm requires some subtle changes – in particular, we cannot bound the amount
of time in which a machine processes jobs which eventually get rejected, and so the above ideas do
not apply directly.

5 Algorithm for the LoadBalancing problem

In this section, we describe our algorithm for the LoadBalancing problem. We first consider a
special case when all jobs have size 1. This will illustrate the main ideas involved, and then we
shall extend it to the case of general processing time. We shall assume that we know the optimal
value, denoted by T ⋆. We shall show how to get rid of this assumption later.

5.1 Unit size jobs

Our algorithm A is greedy. We pick a threshold α (which depends on ε) to be defined later. Each
machine maintains the current load on it, i.e., the number of jobs assigned to it so far (not counting
the jobs which have been rejected). Let loadi(t) be the load on machine i at time t. When a job j
arrives, it is dispatched to the machine in Sj with the least load, provided the load on this machine
is less than αT ⋆. If the load on this machine happens to be greater than αT ⋆, we reject this job.

Clearly, our algorithm ensures that we do not exceed the load on a machine by more than αT ⋆.
We need to prove that we will not reject more than ε fraction of the jobs. Suppose this fact is not
true, and let n be the first time when we reject more than ε fraction of the jobs – call these rejected
jobs JR.

We divide the machines into several groups. Let Mα denote the set of machines i for which
loadi(n) = αT ⋆. For an integer s, 0 ≤ s < α, let Ms be the set of machines i for which loadi(n) ≥
s · T ⋆. Note that Ms ⊆Ms−1. Let ms denote |Ms|. Now we show that ms increases exponentially
as we decrease s.

Consider a job j which arrives at time t. Suppose it is dispatched to machine i. Define level(j)
as loadi(t) (not counting j) – we can think of this as the position of j in the queue of machine i.
For an index u, let J(u) be the set of jobs whose level is at least u.

Claim 5.1. For any s, 0 ≤ s < α, ms ≥ 2α−1−s ·mα.

Proof. For any job j ∈ J(sT ⋆), Sj ⊆ Ms. Indeed, if a machine i /∈ Ms, then loadi(n) < sT ⋆.
Further if i ∈ Sj, then j had the option of getting dispatched to i, and then level(j) should be
less than sT ⋆, a contradiction. Therefore, we get the following lower bound on T ⋆:

T ⋆ ≥
|J(sT ⋆)|

ms
. (2)

Now, it is easy to see that |J(sT ⋆)| is at least T ⋆ · (ms+1+ . . .+mα). Substituting this in the lower
bound above, we get ms ≥ ms+1 + . . .+mα.

Corollary 5.2. The number of jobs is at least (2α − 1) · T ⋆ ·mα.

9



Proof. Using the lemma above, the number of jobs is at least

(m0 +m1 + . . .+mα−1)T
⋆ ≥ (2α − 1) ·mαT

⋆.

.

Corollary 5.2 implies that |JR| is more than ε · (2α − 1) · T ⋆m0 > T ⋆m0, if we pick α to be
log

(

1
ε

)

+ 2 . Now, observe that for any job j ∈ JR, Sj ⊆ M0. Indeed, the fact this job is
rejected means that all the machines in Sj were loaded to the maximum capacity. Now we get a
contradiction – we have a set of jobs JR of cardinality greater than T ⋆mα which can be scheduled
only on a subset of mα machines. Hence, the optimal value must be larger than T ⋆.
Remarks: If instead of unit size jobs, the processing times of jobs were in the range [1, 2], the above
analysis would still apply provided we pick α to be slightly larger – 2 · log

(

1
ε

)

+ 2. The algorithm
remains unchanged, except for the fact that loadi(t) is now defined as the total processing times of
jobs dispatched to machine i till time t . We highlight the main changes in the analysis. Claim 5.1
continues to hold – in inequality (2), the numerator on the right hand side gets replaced by the total
processing time of jobs in J(sT ⋆). Corollary 5.2 holds with a weaker bound of (2α−1 − 1) · T ⋆mα

on the number of jobs – this is because the jobs could have size 2. Rest of the arguments remain
unchanged. Thus, we get the following result.

Theorem 5.3. Consider an input instance where all job sizes lie between 1 and 2, and the optimum
value is T ⋆. Then the algorithm described above is O(α)-competitive and rejects at most ε-fraction
of the jobs.

5.2 General Processing Times

We now extend the above result to general processing times. Some definitions first. We say that a
job j is of class k if pj ∈ [2k, 2k+1). We do not know the smallest job size, and so cannot assume
(by scaling) that all job sizes are at least 1. Hence, the class of a job could be negative as well. We
say that a set of jobs is ∆-separated for a positive integer ∆ > 0, if there exists an integer k such
that the class of any job j in this set belongs to {k + i∆ : i is an integer}.
∆-separated jobs: We first assume that the jobs are ∆-separated. Our scheduling algorithm
works in two stages. In the first stage, it may violate the objective value by a large amount, but
this will get fixed in the second stage. However, we shall ensure that in the first stage, the number
of rejected jobs is at most ε-fraction of the total number of jobs. As before, assume that we know
the optimal value T ⋆.
Stage 1: Each machine i maintains a queue of jobs assigned to it. For a class l, let loadi,l(t)
denote the total processing time of jobs of class l in the queue of machine i at time t. We say that
i is full with respect to class l at time t if loadi,l(t) ≥ α · T ⋆, for some parameter α to be specified
later. The dispatch algorithm is as follows: when a job j of class l arrives at time t, dispatch it to
the machine i ∈ S(j) for which loadi,l(t) is smallest; unless all such machines are full with respect
to class l. If the latter case happens, we reject the job.
Stage 2: This is a pruning step. Note that (and this is important) this step does not affect stage 1
at all. So, while computing loadi,l(t) in the algorithm described above, we will assume that no
pruning happens. However, without this step, the queue sizes may go much beyond T ⋆. For a
machine i, and time t, let loadi(t) =

∑

l loadi,l(t) denote the total load on this machine at time t.
In this stage, we do the following for each machine i and time t: if at time t, loadi(t) > 2α · T ⋆,
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we keep removing the largest jobs in the queue of machine i till loadi(t) becomes at most 2α · T ⋆

(we can assume a fixed way of breaking ties).
This completes the description of the algorithm. We now analyze the algorithm. We fix a time

t⋆ (and we assume that the offline optimum has objective value T ⋆).
For a fixed class l, the stage 1 algorithm is same as the algorithm for unit size jobs (or when

the job sizes differ by a factor of 2 only) described in the previous section. Hence, Theorem 5.3
implies that the total processing time of jobs of class l dispatched to any particular machine is at
most α · T ⋆. Further, the total number of rejected jobs in stage 1 is only ε-times the total number
of jobs.

Now, in Stage 2, we ensure that the total load on a machine is at most 2α · T ⋆. We need to
bound the number of jobs which get rejected. Fix a machine i. Let the jobs which get dispatched
to i (in Stage 1) till t⋆ be j1, . . . , jn. We assume that the total processing time of these jobs is
more than 2αT ⋆, otherwise we do not reject any of these jobs in Stage 2. Also assume that these
jobs are arranged in ascending order of processing time. Let rT ⋆ be the smallest index u for which
pj1 + · · ·+ pju ≥ α ·T ⋆ and r2T ⋆ be the smallest index u such that pj1 + · · ·+ pju ≥ 2α ·T ⋆. Clearly,
r2T ⋆ ≥ rT ⋆ . We make some important observations:

(i) During stage 2, we will not remove the jobs j1, . . . , jr2T⋆ . Indeed, in order to remove a job j,
there must be at least 2 · α · T ⋆ volume of smaller jobs.

(ii) During stage 2, we will remove all jobs ju for u > r2T ⋆ . This is true because at time t⋆, we
have at least 2 · α · T ⋆ volume of jobs which are smaller than this job.

(iii) The class of job jrT⋆ is strictly less than that of jr2T⋆ : Since jrT⋆ comes before jr2T⋆ in the
ordering, the class of jrT⋆ is at most that of jr2T⋆ . Suppose the two jobs are of the same
class. Then, the jobs in jrT⋆ , jrT⋆+1, . . . , jr2T⋆ are of the same class, and their total processing
volume is strictly larger than αT ⋆. But this is a contradiction – we argued above that for any
particular class, we will not dispatch more than α · T ⋆ volume to a machine. Since the jobs
are ∆-separated, class of jrT⋆ is at least ∆ less than that of jr2T⋆ .

Let cT ⋆ and c2T ⋆ denote the class of the jobs jrT⋆ and jr2T⋆ respectively. As observed in (iii)
above, c2T ⋆ ≥ cT ⋆+∆. We are only rejecting jobs of class c2T ⋆ or higher (from the queue of machine
i). Further, the total number of jobs of a class l that can be rejected is at most α·T ⋆

2l
, because the

total volume of jobs of class l assigned to this machine is at most α · T ⋆. Thus, the total number
of rejected jobs (among those dispatched to machine i) in Stage 2 is at most

∑

l≥c2T⋆

α · T ⋆

2l
≤

α · T ⋆

2c2T⋆−1
≤

α · T ⋆

2cT⋆+∆−1
≤

ε · α · T ⋆

2cT⋆+1
,

provided ∆ = log
(

1
ε

)

+ 2. Now, observe that the jobs in j1, . . . , jrT⋆ have volume at least α · T ⋆,
and their class is at most cT ⋆ . Hence, the number of these jobs, rT ⋆ , is at least

α · T ⋆

2cT⋆+1
.

Comparing this with the expression above, we see that at most ε fraction of the jobs are removed
in a Stage 2.

Combining the above observations, we get (replacing ε by ε/2 in the argument above)
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Lemma 5.4. Assuming we know the value of the offline optimum and that the jobs are ∆-separated,
the above algorithm is O

(

log
(

1
ε

))

-competitive, where ∆ = log
(

1
ε

)

+ 2. Further, it rejects at most
ε-fraction of the jobs.

Any set of jobs can be partitioned into ∆ disjoint sets, each of which is ∆-separated. Running
the above algorithm on each such set independently, we get

Corollary 5.5. Assuming the value of the offline optimum is at most T ⋆, the algorithm described
above assigns load O

(

log2
(

1
ε

))

· T ⋆ on any machine, and rejects at most ε-fraction of the jobs.

5.3 Removing the assumption about T
⋆

So far we have assumed that we know the value of the offline optimum solution. We now show
how to relax this assumption. The idea is fairly standard. We start with a small guess for T ⋆,
and double it whenever we realize that the guess was less than the actual offline optimum value.
The details are given in Figure 2. For a parameter T ⋆, let A(T ⋆) denote the algorithm given by
Corollary 5.5 where the estimate for the optimal value is T ⋆. We shall call each iteration of Step 2

as a phase. Note that when we run A(T ⋆) in the beginning of a phase, the algorithm ignores the
jobs that have been assigned in the previous phase. It only considers the jobs that arrive next
(and hence, quantities like loadi(t) needed by A(T ⋆) do not take into account the jobs which were
assigned in previous phases).

Load Balance:

1. Initialize T ⋆ ← pj, where j is the first released job.
2. Repeat

(i) Run A(T ⋆) on the jobs which arrive next.
(ii) If the algorithm rejects more than ε-fraction of the jobs which arrived

after the time it started running,
Stop the algorithm and update T ⋆ ← 2T ⋆.

Figure 2: Algorithm for LoadBalancing

Now we analyze the competitive ratio of this algorithm. It is clear that it does not reject more
than ε-fraction of the jobs because in each phase, the algorithm rejects at most ε-fraction of the
jobs which arrive in that phase. Let TO denote the objective value of the offline optimum solution.
We first argue that the estimate T ⋆ always stays (almost) below TO.

Claim 5.6. Except perhaps for the last phase, the value of T ⋆ is at most TO.

Proof. Consider the first phase for which T ⋆ is more than TO. Note that the optimal value for the
set of jobs which arrive during this period will be at most TO, which is at most T ⋆. Corollary 5.5
now implies that A(T ⋆) will not reject more than ε-fraction of the jobs released during this phase,
and so this is the last phase of the algorithm.

The main result now follows easily from the above claim.

Theorem 5.7. The algorithm Load Balance is O
(

log2
(

1
ε

))

-competitive and rejects at most ε-
fraction of the jobs.
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Proof. We have already argued that for any time t, the total number of jobs rejected by the
algorithm till time t is at most ε-fraction of the jobs released till this time. The final value of T ⋆

is at most 2TO. Since T ⋆ increases by a factor of 2 after each phase, Corollary 5.5 and Claim 5.6
imply that the total load assigned to a particular machine is at most

O

(

log2
(

1

ε

))

·

(

2TO +
2TO

2
+

2TO

4
+ . . .

)

≤ O

(

log2
(

1

ε

))

TO.

This proves the desired result.

6 Algorithms for the MaxFlowTime problem

In this section, we consider the MaxFlowTime problem. Again, we shall begin by assuming that we
know the optimal value T ⋆. In Section 6.1, we consider the special case when all jobs have unit
size. Here, the algorithm turns out to be a natural one: when a job arrives, send it to the least
loaded machine (among the ones it can be processed on). However, the extension to arbitrary job
sizes and arbitrary weight turns out to be quite tricky, and although the algorithm remains simple,
it does not correspond to a natural idea. We give details of this algorithm in Section 6.2. Finally,
we show how to remove the assumption about the knowledge of T ⋆.

6.1 Unit Job Size

We consider the special case when all jobs have size 1. The algorithm is greedy: for each machine
i and time t, it maintains the number of jobs waiting in the queue of machine i at (the beginning
of) time t, call this value loadi(t). When a new job j arrives at time t, it gets dispatched to the
machine i ∈ Sj for which loadi(t) is smallest, unless the load on every machine i ∈ Sj is at least
αT ⋆, where α = 1

ε . If the latter happens, we reject the job. Each machines processes jobs in order
they are dispatched to it. This completes the description of the algorithm.
Analysis: We first give a way of proving lower bounds on the optimum value. A machine interval
is defined as a pair (I, i) where I is an interval and i is a machine.

Lemma 6.1. Let I be a set of machine intervals and J be a set of jobs. Let αj be non-negative
values assigned to the jobs j ∈ J such that the following condition is satisfied for all jobs j and
machines i ∈ Sj:

αj ≤ |{(I, i) ∈ I : rj ∈ I}|.

Then,

T ⋆ ≥

∑

j αj −
∑

(I,i)∈I length(I)

|I|
(3)

Proof. This result follows from weak duality. Consider the following LP relaxation for (the offline
optimum of) this problem. For a job j and machine i ∈ Sj , we have a variable xij which is 1 iff j
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is dispatched to i. It is easy to check that the following is a valid LP relaxation:

min T

T ≥
∑

j:rj∈I,i∈Sj

xij − length(I) for all machine intervals (I, i)

∑

i:i∈Sj

xij ≥ 1 for all jobs j

xij ≥ 0 for all i, j

The dual LP is as follows (variables are αj and β(I,i)):

max
∑

j

αj −
∑

(I,i)

length(I) · β(I,i)

αj ≤
∑

(I,i):rj∈I,i∈Sj

β(I,i) for all j and i ∈ Sj

∑

(I,i)

β(I,i) ≤ 1

αj , β(I,i) ≥ 0

The desired lemma now follows by setting β(I,i) = 1 for all machine intervals (I, i) ∈ I.

We now prove correctness of our algorithm. It is easy to see that the flow-time of any job
which does not get rejected is at most αT ⋆. When a job is dispatched to a machine, the load on
the machine is at most α · T ⋆, and since the machine processes jobs in the order in which they
get dispatched to it, this job will finish within α · T ⋆ time. We now need to bound the number of
rejected jobs. Fix a time t⋆ – we shall bound the number of rejected jobs till time t⋆. Recall that
we are assuming that the value of the optimal solution for this input (till time t⋆) is at most T ⋆.

We now give some definitions. For a time t and machine interval (I, i), we shall often abuse
notation and say t lies in (I, i) (or (I, i) contains t) when t ∈ I. Similarly, we shall say that two
machine intervals (I1, i1) and (I2, i2) are disjoint if the corresponding intervals I1 and I2 are disjoint.
Given a set I of machine intervals, the set of intervals in I refers to the multi-set {I : (I, i) ∈ I}.
For each index l, 0 ≤ l < α, and machine i, we define a set (possibly empty) of mutually disjoint
machine intervals I(i,l). The procedure for defining these intervals is described in Figure 3.

It is easy to see that for any value of l and machine i, the set of machine intervals in I(i,l) are
mutually disjoint. We now prove a few simple properties of these sets of intervals. For a job j
which gets released at time t and dispatched to machine i, let level(j) denote loadi(t) (without
counting the job j itself).

Lemma 6.2. Fix a machine i and parameter l. The sets of machine intervals I(i,l) satisfy the
following properties:

• (covering) Suppose a job j satisfies level(j) ≥ l · T ⋆, and assume i ∈ Sj . Then, there exists
a machine interval (I, i) ∈ I(i,l) such that rj ∈ I.

• (nesting) Given any machine interval (Il, i) ∈ I
(i,l), there exists a machine interval (Il−1, i) ∈

I(i,l−1) such that Il−1 contains Il.
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Constructing I(i,l):

1. Initialize t← t⋆.
2. Repeat

(i) Let t2 be the highest time before (or equal to) t such that loadi(t2) ≥ l · T ⋆.
(ii) Let t1 be the earliest time before t2 such that loadi(t

′) > (l − 1)T ⋆ for all t′ ∈ (t1, t2].
(iii) Add the machine interval ([t1, t2], i) to I

(i,l).
(iv) t← t1.

3. Until No more machine intervals can be added to I(i,l).

Figure 3: Construction of the set of intervals in I(i,l)

• For any machine interval (Il, i) ∈ I
(i,l), the total number of jobs which get dispatched to i

during Il is at least length(Il) + T ⋆.

Proof. Consider a job j such that level(j) ≥ l · T ⋆, and a machine i ∈ Sj . Then loadi(rj) ≥ l · T ⋆

as well. Suppose, for the sake of contradiction that there is no machine interval in I(i,l) such that
rj lies in it. Among the set of intervals in I(i,l), let If be the first interval (if any) to the right of rj ,
and suppose s is the starting time of If (if If does not exist, s is defined as t⋆). After adding (If , i)
to I(i,l), our algorithm for constructing I(i,l) would have tried t2 = rj , and hence there should be
a machine interval containing rj in I(i,l).

The argument above shows that if for any time t, loadi(t) ≥ l · T ⋆, then there exists a machine
interval in (I, i) ∈ I(i,l) containing t. Consider (Il = (sl, el), i) ∈ I

(i,l). Since loadi(el) ≥ lT ⋆, there
exists an interval (Il−1 = (sl−1, el−1), i) ∈ I

(i,l−1) such that el ∈ Il−1. Since loadi(t) > (l − 1)T ⋆

for all t ∈ (sl, el), the left end-point of Il−1 will appear before sl.
The third claim is easy to see. If Il = [s, t], then loadi(t)−loadi(s) ≥ T ⋆. Further, the machine

is busy during [s, t], and so must have processed t− s volume during this period.

For an index l, let I(l) denote the union over all machines i of the machine intervals in I(i,l).
Let L(l) denote the total length of the intervals in I(l), and ml denote the cardinality of I(l). Let
J (l) be the set of jobs which get dispatched to a machine i during the intervals in I(i,l).

Let I denote ∪αl=1I
(l). Let JR denote the set of rejected jobs. Consider the following assignment

of dual variables: if j ∈ JR, then we set αj = α, otherwise if level(j) ∈ [(l− 1) · T ⋆, lT ⋆), then we
set αj = l − 1. The following claim is easy to see.

Claim 6.3. The set of machine intervals I and the αj values defined above satisfy the conditions
of Lemma 6.1.

Proof. If j ∈ JR, loadi(rj) ≥ α · T ⋆ for all i ∈ Sj. Lemma 6.2 now shows that for any i ∈ Sj and
all l, 1 ≤ l ≤ α, there exists a machine interval (I, i) ∈ I(i,l) containing rj . Hence, for any i ∈ Sj ,
|{(I, i) : rj ∈ I}| is equal to α. Now suppose j /∈ JR. Let k denote αj . Since level(j) ≥ k · T ⋆,
Lemma 6.2 again implies that if i ∈ Sj , then for all l, 1 ≤ l ≤ k, there is a machine interval
(I, i) ∈ I(i,l) such that rj ∈ I. Hence, the desired result holds in this case as well.

Using the above claim, we can applying Lemma 6.1 to I and αj values to get

T ⋆ · (m1 + . . .+mα) ≥
∑

j

αj −
α
∑

l=1

L(l) (4)

15



Claim 6.4.
∑

j /∈JR

αj ≥
∑

l>1

L(l) +
∑

l>1

mlT
⋆.

Proof. We first argue that
∑

j /∈JR αj ≥
∑

l>1 |J
(l)|. Consider a job j with αj = k. This implies that

level(j) < (k+1) · T ⋆. So j /∈ J (l) for any l > k+1. Indeed, suppose j is dispatched to machine i
and there is a machine interval (I, i) ∈ I(i,l) for some l > k+ 1 such that rj ∈ I. Then the load on
machine i stays above (k+1) ·T ⋆ during I. So level(j) ≥ (k+1) ·T ⋆, a contradiction. Therefore, j
can only contribute towards J (2), . . . , J (k+1) in the right hand side of the above inequality. Hence,
∑

j /∈JR αj ≥
∑

l>1 |J
(l)|. The claim now follows from Lemma 6.2 (third part).

We can now show that the number of rejected jobs is small.

Corollary 6.5. The total number of rejected jobs is at most ε times the total number of jobs.
Further, the flow-time of any job is at most T ⋆/ε.

Proof. Applying Claim 6.4 to inequality (4), we get

T ⋆ ·m1 + L(1) ≥
∑

j∈JR

αj = α · |JR|.

Observe that the number of jobs is at least T ⋆ · m1 + L(1) – this follows from the third part of
Lemma 6.2 and the fact that for any machine i, all intervals in I(i,1) are disjoint. If we pick α = 1

ε ,
the desired result follows. The second statement follows from the fact that the queue size never
exceeds αT ⋆.

6.2 Extension to WtdMaxFlowTime

We now extend the above result to the case of arbitrary job sizes and associated weights. We can
assume without loss of generality that weight of a job is a power of 2 – this will affect the objective
function by a factor of 2 only. Further, the weight of rejected jobs could be off by a factor of 2 –
but we can replace ε by ε/2 to take care of this (this will affect the flow-time of a job only by a
constant factor).

We shall describe the scheduling algorithm in two stages. First we describe an algorithm A –
this algorithm may not ensure that flow-time of all jobs (which are not rejected) are small, but it
will ensure that the queue sizes at all times (on any machine) will be small. Our actual algorithm,
which we call B, will use A in the background. It will emulate A, but will periodically reject more
jobs, and may prefer to process higher density jobs at a time slot (as compared to A).

Algorithm A: Before we describe the algorithm A, we give some definitions. These definitions
group jobs into various classes depending on their processing requirement or weight or density. We
say that a job j is of size class p if pj ∈ [2p, 2p+1). We say that it is of weight class w if wj = 2w

(recall that weight of a job is a power of 2), and of density class d if its density, i.e., wj/pj lies in
the range [2d, 2d+1). Observe that if the size, weight and density classes of a job are p,w, and d
respectively, then d = w − p− 1.

Note that we cannot assume any lower bound on pj or wj, and so, the classes could be negative.
Define type(j) = (w, d), if its density class is d, and its weight class is w.

Each machine i maintains a queue for jobs of a particular type. For a machine i, time t, and
pair (w, d), let Qi,w,d(t) denote the jobs of type (w, d) waiting in the queue of machine i at time t.
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Let loadi,w,d(t) denote the total weighted remaining processing time of the jobs in Qi,w,d(t) – if a
job j has remaining processing time p′j, then its weighted remaining processing time is defined as
wjp

′
j.
When a job j of type (w, d) arrives at time t, we dispatch it to the machine i ∈ Sj for which

loadi,w,d(t) is minimum, unless for all i ∈ Sj, loadi,w,d(t) + pj.2
w ≥ α2 · T ⋆. If the latter case

happens, we reject this job. Here α = 76
ε . It remains to specify which job is processed at any time

by a machine.
For a time t and machine i, let (w⋆

i (t), d
⋆
i (t)) be the pair (w, d) with the highest 2d · loadi,w,d(t)

value. We process the earliest released job from the queue Qi,w⋆
i (t),d

⋆
i (t)

(t) on machine i at time t.
Assume a fixed rule of breaking ties.

This completes the description of the algorithm A. We note a few important aspects: (i) For
a machine i and pair (w, d), the algorithm always prefers the earliest released job in the queue of
type (w, d) jobs. Hence, at any time t, there will be at most one job in Qi,w,d(t) which is partially
processed, (ii) The policy which decides which job to process at a time t on a machine i balances
two aspects: it prefers jobs of higher density, but also prefers jobs for which the corresponding
queue is close to the maximum limit – the total weighted remaining processing times of jobs in the
queue Qi,w,d(t) should not exceed a constant times T ⋆.

Algorithm B: Now we describe the actual scheduling algorithm B. When a job j arrives at time
t, it is dispatched according to A: if A rejects this job, B also rejects it; and if A dispatched it
to machine i, then B also dispatches this job to i. Now, we describe the processing policy for a
fixed machine i. Consider a time t. Let dA(t) denote the density class of the job processed by A
at time t. Then, B processes the following job at time t: if there is a job of density class at least
dA(t) + log

(

1
ε

)

in the queue of machine i at time t, then B processes any such job; otherwise it
processes the job of density class dA(t) with the highest weight class (it prefers the earliest released
job in case of ties). Also note that if the second case happens and there is no job of density dA(t)
in the queue of machine i at time t (in B), we can process any job at this time.

The algorithm B may reject some more jobs. For a weight class w, we divide the time line into
segments of length α2T ⋆

ε22w
. Suppose a job of weight class w gets released during such a segment S,

and let S′ be the segment immediately to the right of S. If the job does not complete processing
by the end of S′, the algorithm B rejects the job. This completes the description of B.

6.2.1 Analysis

We now analyze the scheduling algorithm. We first consider the algorithm A and prove that the
queues remain bounded in size.
Analysis for algorithm A: As in the case of unit sized jobs, we first give a lower bound for T ⋆. A
weighted machine interval is defined as a triplet (I, i, w) where I is a time interval, i is a machine,
and w denotes a weight class. We say that a time t lies in (or belongs to) a weighted machine
interval (I, i, w) if t ∈ I. Similarly, we say that two machine intervals are disjoint (or nested) if the
same holds for the associated time intervals.

Lemma 6.6. Let I be a set of weighted machine intervals. Let αj be non-negative values assigned
to the jobs j ∈ J such that the following condition is satisfied for all jobs j and machines i ∈ Sj:

αj

pj
≤ |{(I, i, w′) ∈ I : rj ∈ I, w′ ≤ w}|, (5)
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where w denotes the weight class of j, i.e., wj = 2w. Then,

T ⋆ ≥

∑

j αj −
∑

(I,i,w)∈I length(I)
∑

(I,i,w)∈I
1
2w

(6)

Proof. The proof again follows from LP duality. It is easy to check that the following is a valid LP
relaxation – here xij is a variable which is 1 if job j is assigned to machine i, 0 otherwise.

min T
∑

j:rj∈I,i∈Sj ,wj≥2w

pj · xij − length(I) ≤
T

2w
for all weighted machine intervals (I, i, w)

∑

i:i∈Sj

xij ≥ 1 for all jobs j

xij ≥ 0 for all jobs j and machines i, i ∈ Sj

The dual LP is as follows (variables are αj and β(I,i,w)):

max
∑

j

αj −
∑

(I,i,w)

length(I) · β(I,i,w)

αj

pj
≤

∑

(I,i,w):rj∈I,2w≤wj

β(I,i,w) for all jobs j and machines i ∈ Sj

∑

(I,i,w)

β(I,i,w)

2w
≤ 1

αj , β(I,i,w) ≥ 0

The lemma now follows by setting β(I,i,w) to 1 if (I, i, w) ∈ I, 0 otherwise.

Now we bound the weight of jobs rejected by A. We fix a time t⋆ – this is the time by which
all the jobs finish processing. For rest of the discussion, we shall also fix a density class d⋆. We
shall first bound the total weight of jobs of density class d⋆ which are rejected by the algorithm A.
Finally, we shall take a sum over all values of d⋆ to bound the total weight of jobs rejected by A.

We begin with some definitions. Define ∆ = log(α) (assume wlog that α is a power of 2). We
shall be interested in jobs whose density class lies in the range [d⋆, d⋆ +∆]. For an integer l, let γl
denote 4lαT ⋆. We will ensure that α/8 ≤ l ≤ α/4, and hence, γl will lie in the range [α2T ⋆/2, α2T ⋆].
For a machine i, density class d and time t, let loadi,d(t) denote the maximum, over all pairs (w, d)
of the total weighted remaining processing time of jobs in the queue Qi,w,d, i.e.,

loadi,d(t) = max
w

loadi,w,d(t).

Consider a job j of type (w, d) which gets dispatched to machine i. We define level(j) as
loadi,w,d(rj) +wj · pj – this is the load it sees on machine i (including its own weighted processing
size). For a parameter l, we define a set of jobs J (l,d⋆) as follows: a job j of density class d ∈
[d⋆, d⋆ +∆] lies belongs to J (l,d⋆) iff level(j) ≥ γl

2d−d⋆ .
For each machine i and parameter l lying the range as mentioned above, we define a set of

disjoint weighted machine intervals I(i,l,d
⋆). The procedure for this is given in Figure 4. For a

machine i and time t, maxloadi,d⋆(t) is defined as maxd∈[d⋆,d⋆+∆] 2
d−d⋆ · loadi,d(t).

We now prove the analogue of Lemma 6.2.

18



Constructing I(i,l,d
⋆):

1. Initialize t as t⋆ and I(i,l,d
⋆) ← ∅

2. Repeat
(i) Let t2 be the highest time before (or equal to) t such that maxloadi,d⋆(t2) ≥ γl.
(ii) Let t1 be the earliest time such that maxloadi,d⋆(t

′) > γl−1 for all t′ ∈ (t1, t2].
(iii) Let w be the smallest weight class of a job j ∈ J (l−1,d⋆) such that rj ∈ (t1, t2] and i ∈ Sj .
(iv) Add the weighted machine interval ([t1, t2], i, w) to I

(i,l,d⋆).
(v) t← t1.
Until No more intervals can be added to I(i,l,d

⋆).

Figure 4: Construction of the set of intervals in I(i,l,d
⋆) for a machine i and parameter l.

Lemma 6.7. The sets of intervals in I(i,l,d
⋆) satisfy the following properties:

• (covering)Consider a job j ∈ J (l,d⋆) and a machine i ∈ Sj Then there exists a weighted
machine interval (I, i, w) ∈ I(i,l−1,d⋆) such that rj ∈ I and wj ≥ 2w.

• (nesting) Given any weighted machine interval (Il, i, w) ∈ I
(i,l,d⋆), there exists a weighted

machine interval (Il−1, i, w
′) ∈ I(i,l−1,d⋆) for some w′ ≤ w such that Il−1 contains Il.

• (processing) For any weighted machine interval (I, i, w) ∈ I(i,l,d
⋆), the total duration in I

during which jobs of density class in [d⋆, d⋆ + ∆] are processed on machine i is at most the
total processing size of jobs in J (l−1,d⋆)∩{j : wj ≥ 2w, rj ∈ I} which get dispatched to i during
I.

Proof. Consider a job j ∈ J (l,d⋆) of type (w, d), and a machine i ∈ Sj:

loadi,d(rj) ≥ loadi,w,d(rj) ≥ level(j)− wj · pj ≥
γl

2d−d⋆
− 4T ⋆ ≥

γl
2d−d⋆

−
4αT ⋆

2d−d⋆
=

γl−1

2d−d⋆
,

where the second inequality follows by our dispatch rule and the third inequality follows from the
fact that T ⋆ ≥ wj · pj for any j. Therefore, maxloadi,d⋆(rj) ≥ γl−1. Suppose, for the sake of
contradiction that there is no weighted machine interval in I(i,l−1,d⋆) containing rj . Let If be the
first interval (if any) in I(i,l−1,d⋆) to the right of rj, and suppose s is the starting time of If (if If does
not exist, s is defined as t⋆). After adding If to I(i,l−1,d⋆), our algorithm for constructing I(i,l−1,d)

would have tried t2 = rj , and hence there should be a weighted machine interval in I(i,l−1,d⋆)

containing rj . This is a contradiction. Therefore, there is a (I, i, w′) ∈ I(i,l−1,d⋆) containing rj .
Since j ∈ J (l−1,d⋆), and rj ∈ I, i ∈ Sj, it must be the case that w′ ≤ w. This proves the first part
of the lemma.

The argument above shows that if for any time t, machine i and density class d ∈ [d⋆, d⋆ +∆],
loadi,d(t) ≥

γl
2d−d⋆ , then there exists a weighted machine interval (I, i, w) ∈ I(i,l−1,d⋆) containing

t. Suppose (Il = (sl, el), i, w) ∈ I
(i,l,d⋆). Since maxloadi,d⋆(el) ≥ γl, there is a density class d ∈

[d⋆, d⋆ +∆] such that loadi,d(el) ≥
γl

2d−d⋆ . Hence, there exists (Il−1 = (sl−1, el−1), i, w
′) ∈ I(i,l−1,d⋆)

containing el. Since maxloadi,d⋆(t) > γl−1 for all t ∈ (sl, el), the left end-point of Il−1 will appear
before sl. Moreover, w′ ≤ w (follows from the definition of w or w′ in Step 2(iii) of Figure 4 and
the fact that Il is contained in Il−1). This proves the second part of the lemma.

It remains to prove the third part. Consider a weighted machine interval (I, i, w) ∈ I(i,l,d
⋆).
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Claim 6.8. Suppose we process a job j of type (w, d) on machine i at a particular time t ∈ I. Then
it must be the case that d ≥ d⋆ and

loadi,d(t) = loadi,w,d(t) >
γl−1

2d−d⋆
.

Proof. Suppose d < d⋆. We know that there is a density class d′ ∈ [d⋆, d⋆+∆] such that loadi,d′(t) >
γl−1

2d′−d⋆
. The job processing rule for A implies that 2d · loadi,w,d(t) ≥ 2d

′
· loadi,d′(t) > 2d

⋆
γl−1, and

so, loadi,w,d(t) > 2γl−1 ≥ α2T ⋆, because γl−1 ≥ αT ⋆/2. But this is a contradiction (because of the
job dispatch policy of A). Hence, d ≥ d⋆.

If loadi,d(t) > loadi,w,d(t), then let w′ be the weight class for which loadi,d(t) = loadi,w′,d(t).
But then 2d · loadi,w,d(t) < 2d · loadi,w′,d(t), and so A cannot process j on machine i at time t.
Similarly, if d′ is as above, then it must be the case that

2d · loadi,w,d(t) ≥ 2d
′

· loadi,d′(t) > γl−1 · 2
d⋆ .

This implies the claim.

Now consider a density class d ∈ [d⋆, d⋆+∆], and a weight class w′. Let tf be the first time in I at
which A processes a job j of type (w′, d). The claim above shows that loadi,d(tf ) = loadi,w′,d(tf ) >
γl−1

2d−d⋆ . Further, loadi,w′,d(t) remains at least
γl−1

2d−d⋆ after tf till the end of the interval I – indeed,

Claim 6.8 says that if loadi,w′,d(t) is at most
γl−1

2d−d⋆ for some time t ∈ I, then the algorithm does
not process a job of type (w′, d) at this time on machine i. Hence, loadi,w′,d(t) will not go below
γl−1

2d−d⋆ after tf (during I). Also, for any time t during [t1, tf ), loadi,w′,d(t) <
γl−1

2d−d⋆ , where t1 is the
left end-point of I (by definition of tf and the fact that this statement holds for t1). Let V denote
the total volume of time during I when we process a job of type (w′, d). Then it must happen that
at least V volume of jobs of type (w′, d) are released during [tf , te], where te is the right end-point
of I – if this does not happen then we will end up processing a job of type (w′, d) at a time t in
I even when loadi,w′,d(t) <

γl−1

2d−d⋆ , a contradiction. For any job j′ of type (w′, d) released during

[tf , te], loadi,w′,d(rj) ≥
γl−1

2d−d⋆ , and so, j′ ∈ J (l−1,d⋆). Recall that the weighted machine interval was
denoted by (I, i, w) – by definition of w, it must be satisfy w ≤ w′. Summing over all w′ gives us
the lemma.

We now define a set of weighted machine intervals I and dual values αj for all jobs j which will
satisfy the conditions of Lemma 6.6. Let I be the set of weighted machine intervals defined above,

i.e., ∪
α/4
l=α/8

∪i I
(i,l,d⋆) – note that this is a multi-set, i.e., if a weighted machine interval (I, i, w)

appears in several of the sets I(i,l,d
⋆), it is counted these many times. For each job j ∈ ∪

α/4
l=α/8J

(l,d⋆)

which does not get rejected, define αj = pj · (lj − α/8), where lj is the largest value l such that
j ∈ J (l,d⋆). Further, if j is a job of density class d⋆ gets rejected, we set αj = pj ·α/8. For remaining
jobs, we set αj = 0.

Claim 6.9. The set of intervals I and the values αj defined above satisfy the feasibility condi-
tions (5).

Proof. Consider a job j for which αj = pj · (lj−α/8), and a machine i ∈ Sj. Lemma 6.7 shows that
there are weighted machine intervals (Il, i, wl) ∈ I

(i,l,d⋆) for l = α/8, . . . , lj − 1, such that rj ∈ Il
and 2wl ≤ wj. Thus, the conditions (5) are satisfied for j. Similarly, if j is a job of density class d⋆

which gets rejected, and i ∈ Sj, then level(j) ≥ α2T ⋆ ≥ γl, for l = α/4. Thus, j ∈ J (α/4,d⋆), and
so, the same argument as above applies here as well.

20



Claim 6.9 implies that we can apply Lemma 6.6. We give some notation first. For a parameter
l and weight class w, let I(l,w,d⋆) denote the following set of weighted machine intervals:

{(I, i, w) : (I, i, w) ∈ ∪i′I
(i′,l,d⋆)}.

Let ml,w,d⋆ denote |I(l,w,d⋆)|, and L(l,w,d⋆) denote the total length of (associated intervals in) the
weighted machine intervals in I(l,w,d⋆). Applying Lemma 6.6, we get

T ⋆ ·
∑

w

α/4
∑

l=α/8

ml,w,d⋆

2w
≥

∑

j

αj −
∑

w

α/4
∑

l=α/8

L(l,w,d⋆). (7)

Claim 6.10. Let JR(d⋆) denote the jobs of density class d⋆ which get rejected. Also let P≥d⋆+∆

denote the total processing time of jobs of density class higher than d⋆ +∆. Then,

∑

j /∈JR(d⋆)

αj ≥
∑

w

α/4
∑

l=α/8+1

L(l,w,d⋆) − α/8 · P≥d⋆+∆.

Proof. We split L(l,w,d⋆) into two parts – let L(l,w,d⋆)′ denote the volume during intervals in I(l,w,d⋆)

where A processes a job of density class lying in the set [d⋆, d⋆ +∆], and L(l,w,d⋆)′′ be the volume
during intervals in I(l,w,d⋆) where A processes a job of class density higher than d⋆ +∆. Claim 6.8
implies that L(l,w,d⋆) = L(l,w,d⋆)′ + L(l,w,d⋆)′′.

Lemma 6.7 (third part) implies that
∑

w L(l,w,d⋆)′ ≤
∑

j∈J(l−1,d⋆),j /∈JR(d⋆) pj (the intervals in

I(w,l,d⋆) ∩ I(i,l,d
⋆) are disjoint). Summing over l = α/8 + 1, . . . , α/4, we get

α/4
∑

l=α/8+1

∑

w

L(l,w,d⋆)′ ≤

α/4
∑

l=α/8+1

∑

j∈J(l−1,d⋆),j /∈JR(d⋆)

pj =
∑

j /∈JR(d⋆)

pj · (lj − α/8) =
∑

j /∈JR(d⋆)

αj

Now we bound L(l,w,d⋆)′′. For a fixed l,
∑

w L(l,w,d⋆)′′ is at most P≥d⋆+∆. Thus,

α/4
∑

l=α/8+1

∑

w

L(l,w,d⋆)′′ ≤ α/8 · P≥d⋆+∆.

Combining the above inequalities gives us the desired result.

Hence, inequality (7) can be simplified as

T ⋆ ·
∑

w

α/4
∑

l=α/8

ml,w,d⋆

2w
+ α/8 · P≥d⋆+∆ +

∑

w

L(α/8,w,d⋆) ≥
∑

j∈JR(d⋆)

αj =
∑

j∈JR(d⋆)

α · pj
8

(8)

We simplify the above expression to bound the weight of jobs of density class d⋆ which get rejected.
Some more notation. For a weight class w and density class d, let Vw,d denote the total weighted
processing size of jobs of type (w, d), and let Ww,d be the total weight of such jobs, i.e.,

Vw,d =
∑

j:type(j)=(w,d)

wjpj , Ww,d =
∑

j:type(j)=(w,d)

wj.
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For parameters a, b, a ≤ b, let Vw,d(a, b) and Ww,d(a, b) denote the corresponding sum for jobs
j with level(j) ∈ [a, b], i.e,

Vw,d(a, b) =
∑

j:type(j)=(w,d),level(j)∈[a,b]

wjpj , Ww,d(a, b) =
∑

j:type(j)=(w,d),level(j)∈[a,b]

wj.

Claim 6.11.

T ⋆ ·
∑

w

α/4
∑

l=α/8

ml,w,d⋆

2w
+

∑

w

L(α/8,w,d⋆) ≤
∑

d∈[d⋆,d⋆+∆]

∑

w

1

2α2d⋆
Ww,d + P≥d⋆ ,

where P≥d⋆ denote the total processing time of jobs of density class at least d⋆.

Proof. First we consider
∑

w L(α/8,w,d⋆) – this is just the total length of the weighted machine
intervals ∪iI

(i,α/8,d⋆). Note that these weighted machine intervals are disjoint and Lemma 6.7
implies that we will only process jobs of density class at least d⋆ during these intervals. Hence,
∑

L(α/8,w,d⋆) is at most P≥d⋆ .

Finally, we consider the term T ⋆ ·
∑

w

∑α/4
l=α/8

ml,w,d⋆

2w . We shall upper bound each term of the

summation as follows. Consider a machine interval (I, i, w) ∈ I(i,l,d
⋆). Let I = [s, t]. We know that

there exits a pair (w, d) such that loadi,w,d(s) <
γl−1

2d−d⋆ , but loadi,w,d(t) ≥
γl

2d−d⋆ . Let j1 be the first

job of type (w, d) dispatched to i during I for which level(j1) ≥
γl−1

2d−d⋆ and j2 be the first such
job for which level(j2) ≥

γl
2d−d⋆ . All jobs of type (w, d) dispatched to i after j1 and before j2 will

have level in the range
(

γl−1

2d−d⋆ ,
γl

2d−d⋆

)

, because as argued in the proof of Lemma 6.7(third part),

once loadi,w,d(t) goes above γl
2d−d⋆ , it will never go below this quantity till the end of I. Further

the total weighted volume of such jobs will be at least

γl
2d−d⋆

−
γl−1

2d−d⋆
−wj1pj1 − wj2pj2 ≥

4αT ⋆

2d−d⋆
− 2T ⋆ ≥

2αT ⋆

2d−d⋆
,

where the last inequality follows from the fact that α ≥ 2d−d⋆ . Thus, we get

T ⋆

2w
≤

2d−d⋆

2α2w
·

∑

j:rj∈I,type(j)=(w,d),level(j)∈
(

γl−1

2d−d⋆
,

γl
2d−d⋆

)

wjpj

Summing over all weighted machine intervals in ∪iI
(i,l,d⋆), we get

∑

w

T ⋆ ·ml,w,d⋆

2w
≤

∑

d∈[d⋆,d⋆+∆]

∑

w

2d−d⋆

2α2w
· Vw,d

( γl−1

2d−d⋆
,

γl
2d−d⋆

)

.

Summing over all l and using the fact that if a ≤ b ≤ c, then V (a, b) + V (b, c) = V (a, c), we get

α/4
∑

l=α/8

∑

w

T ⋆ ·ml,w,d⋆

2w
≤

∑

d∈[d⋆,d⋆+∆]

∑

w

2d−d⋆

2α2w
· Vw,d

(γα/8−1

2d−d⋆
,
γα/4

2d−d⋆

)

≤
∑

d∈[d⋆,d⋆+∆]

∑

w

2d−d⋆

2α2w
· Vw,d ≤

∑

d∈[d⋆,d⋆+∆]

1

2α2d⋆
·
∑

w

Ww,d,

22



where the last inequality follows from the fact that for any job j of type (w, d) 2w

2d+1 < pj ≤
2w

2d
and

so,
2d

2w
Vw,d ≤

∑

j:type(j)=(w,d)

wj/pj · pj = Ww,d.

Thus we have shown the desired result.

We are now ready to bound the weight of jobs rejected by A.

Lemma 6.12. The total weight of jobs rejected by A is at most ε times the total weight of all the
jobs, provided we pick α = 76

ε .

Proof. We first bound the total weight of jobs of density class d⋆ which get rejected by A. We have

∑

j∈JR(d⋆)

wj ≤ 2d
⋆+1 ·

∑

j∈JR(d⋆)

pj
(8)
≤

16 · 2d
⋆
T ⋆

α
·
∑

w

α/4
∑

l=α/8

ml,w,d⋆

2w
+ 2d

⋆+1 · P≥d⋆+∆ +
16 · 2d

⋆

α

∑

w

L(α/8,w,d⋆)

Claim 6.11
≤

∑

d∈[d⋆,d⋆+∆]

∑

w

8

α2
Ww,d +

16 · 2d
⋆

α
P≥d⋆ + 2d

⋆+1 · P≥d⋆+∆

=
8

α2
·
d⋆+∆
∑

d=d⋆

∑

j∈Jd

wj +
16 · 2d

⋆

α

∑

d≥d⋆

∑

j∈Jd

pj + 2d
⋆+1

∑

d≥d⋆+∆

∑

j∈Jd

pj

where Jd denotes the jobs of density class d. Summing over all values of d⋆, the total weight of
rejected jobs can be expressed as

∑

d⋆

∑

j∈JR(d⋆)

wj ≤
8

α2

∑

d⋆

d⋆+∆
∑

d=d⋆

∑

j∈Jd

wj +
∑

d⋆

16 · 2d
⋆

α

∑

d≥d⋆

∑

j∈Jd

pj +
∑

d⋆

2d
⋆+1

∑

d≥d⋆+∆

∑

j∈Jd

pj

≤
8∆

α2

∑

d

∑

j∈Jd

wj +
∑

d

∑

j∈Jd

pj
∑

d⋆≤d

16 · 2d
⋆

α
+

∑

d

∑

j∈Jd

pj
∑

d⋆≤d−∆

2d
⋆+1

≤
8∆

α2

∑

j

wj +
64

α

∑

d

∑

j∈Jd

pj2
d+1 +

4

α

∑

d

∑

j∈Jd

pj2
d

≤

(

8∆

α2
+

64

α
+

4

α

)

∑

j

wj ≤ ε ·
∑

j

wj ,

if we pick α = 76
ε .

Thus we have shown the main theorem of this section.

Theorem 6.13. The algorithm A rejects jobs of total weight at most ε times the total weight of
all jobs, and ensures that for any machine i, time t, and pair (w, d), the total weighted remaining
processing time of jobs of type (w, d) at time t on machine i is at most α2T ⋆. Further, A is an
immediate dispatch algorithm which rejects jobs on arrival only.

Analysis for algorithm B: Now we analyze the algorithm B. It is clear that the weighted flow-
time of any job j is at most 2βT ⋆, where β denotes α2

ε2
. We need to bound the weight of jobs
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rejected by B. We can restrict our attention to a fixed machine because B processes the same set
of jobs on a machine as A does. Further, A does not reject any job once it gets dispatched to a
machine. For rest of the discussion we fix a machine i⋆, and bound the weight of jobs which were
dispatched by A to i⋆, but got rejected by B. We also fix a density class d⋆ and first bound the
jobs of density class d⋆ which get rejected by B. Let JA

i⋆,d⋆ denote the set of jobs of density class d⋆

which are dispatched by A to the machine i⋆.
Let J

rej

i⋆,d⋆ denote the subset of jobs in JA
i⋆,d⋆ which get rejected by B. First we divide the time

line into disjoint intervals I1, I2, . . . with the following properties: (i) for any j ∈ J
rej

i⋆,d⋆ , there is an
interval Ir which contains the time period when j was waiting in the queue of machine i⋆ (i.e., the
time period from rj to the time when it gets rejected), (ii) for any interval Ir and time t ∈ Ir, there

is a job from J
rej

i⋆,d⋆ which is waiting in the queue of machine i⋆. We can easily form these intervals
by a greedy procedure. For sake of completeness, this procedure is described in Figure 5.

Constructing I1, I2, . . .:

1. Initialize t as 0
2. For r = 1, 2, . . .

(i) Let t1 be the first time after t when a job from J
rej

i⋆,d⋆ gets dispatched to i⋆.
(ii) Let t2 be the first time after t1 when there is no job from

J
rej

i⋆,d⋆ in the queue of machine i⋆ (in the algorithm B).
(iii) Ir ← [t1, t2), and update t← t2.

Figure 5: Construction of the set of intervals I1, I2, . . ..

For an interval Ir, let J
rej

i⋆,d⋆(Ir) denote the jobs in J
rej

i⋆,d⋆ which are released during Ir. Define

JA
i⋆,d⋆(Ir) similarly. We fix an interval Ir and bound the weight of jobs in J

rej

i⋆,d⋆(Ir). Let wmin(Ir)

denote the smallest weight class of a job in J
rej

i⋆,d⋆(Ir). For a time t and density class d, we define

an indicator variable 1Ai,d(t) which is 1 iff A processes a job of density class d at time t on machine

i. Define 1Bi,d(t) similarly. Let PA
i⋆,d⋆(Ir) be the total volume of processing of density class d⋆ jobs

performed by A during Ir on machine i⋆, i.e.,

PA
i⋆,d⋆(Ir) =

∫

t∈Ir

1Ai⋆,d⋆(t)dt.

Claim 6.14. The total processing size of jobs in JA
i⋆,d⋆(Ir) whose weight class is at least wmin(Ir)

is at most PA
i⋆,d⋆(Ir) +

2α2T ⋆

2wmin(Ir)
.

Proof. In the schedule A, the jobs in JA
i⋆,d⋆(Ir) will either get processed during Ir or will appear

in the queue of machine i⋆ at the end of Ir. The total volume of the former quantity is at most
PA
i⋆,d⋆(Ir). For the latter quantity, observe that we are interested in weight classes wmin(Ir) and

higher. Theorem 6.13 shows that this quantity can be at most

∑

w≥wmin(Ir)

α2T ⋆

2w
≤

2α2T ⋆

2wmin(Ir)
.

24



Define another indicator variable 1i⋆,d⋆(t) which is 1 iff both 1Ai⋆,d⋆(t) and 1Bi⋆,d⋆(t) are 1 (the
absence of superscript means it is applied to both A and B). Again, define Pi⋆,d⋆(Ir) as the volume
of time during Ir for which 1i⋆,d⋆(t) = 1. Note a few important points: (i) If 1i⋆,d⋆(t) = 1, for
some t ∈ Ir, then B processes a job of density class d⋆ and weight class at least wmin(Ir) at time
t, because among all jobs of density d⋆, it prefers jobs of higher weight, and there is always a job
of weight class at least least wmin(Ir) waiting in the queue of machine i⋆, (ii) If 1Ai⋆,d⋆(t) = 1, t ∈ Ir

and 1Bi⋆,d⋆(t) = 0, then B processes a job of density class at least d⋆ + log
(

1
ε

)

at time t.
Now, we want to disregard the part of Pi⋆,d⋆(Ir) where B processes a job which eventually gets

rejected. We say that a time t satisfying 1i⋆,d⋆(t) = 1 is bad if B processes a job from J
rej

i⋆,d⋆(Ir) at
time t on i⋆. We first show that the total volume of bad time is small.

Lemma 6.15. The total volume of bad time in Ir is at most 8length(Ir)
β .

Proof. For each weight class w ≥ wmin(Ir), we bound the volume of bad time at which B is
processing a job of weight class w. Note that for a job of density class d⋆ and weight class w, its
processing time lies in the range [2w−d⋆ , 2w−d⋆−1). Let pw denote w − d⋆.

Fix a weight class w. Recall that the algorithm B divides the time line into segments of length
βT ⋆/2w. Consider such a segment S which intersects with Ir. Let SL be the segment to the left of
S. Any job of weight class w processed by B during S must have been released in S or SL (if it
were released earlier, B would have rejected it by the end of SL). Since B processes jobs in order
of release dates, there will be at most one job j for which rj ∈ SL and B processes j during a bad
time in S. If there were two such jobs j and j′ (and say rj ≤ rj′), then B would have completed j
before starting j′ (note that j can get rejected at the end of S only). But then it could not have
rejected j, a contradiction (recall that a job processed during a bad time gets rejected). Hence, the
total number volume of bad time in Ir during which B processes a job of weight class w is at most
the number of such segments which intersect Ir times the maximum size of a job of weight class w
(and density class d⋆), i.e.,

(

length(Ir)

βT ⋆/2w
+ 2

)

· 2pw ≤
3 · 2pw · length(Ir)

βT ⋆/2w
=

3 · 22wlength(Ir)

βT ⋆2d⋆
,

where the first inequality follows from the fact that Ir must contain at least one segment for the
weight class wmin(Ir), and so, length(Ir) ≥

βT ⋆

2wmin(Ir)
≥ βT ⋆/2w.

We sum over all w ≥ wmin(Ir), and let wmax be the highest weight class among all jobs of
density class d⋆. The total volume of bad time in Ir can now be bounded as

∑

w≤wmax

3 · 22wlength(Ir)

βT ⋆2d⋆
≤

4 · 22wmaxlength(Ir)

βT ⋆2d⋆
≤

8 · length(Ir)

β
,

where the last inequality follows from the fact that T ⋆ ≥ 2wmax · 2wmax−d⋆−1 (the weighted size of
a job of density class d⋆ and weight class wmax).

Corollary 6.16. The total processing time of density class d⋆ jobs which are rejected by B during
Ir on machine i⋆ is at most

PA
i⋆,d⋆(Ir) + 4 · ε2length(Ir)− Pi⋆,d⋆(Ir)
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Proof. The result follows from combining Lemma 6.15 and Claim 6.14. Claim 6.14 shows that the
total processing time of such jobs is PA

i⋆,d⋆(Ir) +
2α2T ⋆

2wmin(Ir)
. minus the processing times of such jobs

which complete processing in B. Lemma 6.15 shows that the latter quantity is at least Pi⋆,d⋆(Ir)−
8length(Ir)

β . Therefore, the processing time of density class d⋆ jobs which are rejected by B during
Ir on machine i⋆ is at most

PA
i⋆,d⋆(Ir) +

2α2T ⋆

2wmin(Ir)
+

8length(Ir)

β
− Pi⋆,d⋆(Ir).

Since length(Ir) ≥
βT ⋆

2wmin(Ir)
= α2T ⋆

ε22wmin(Ir)
, the result follows.

Theorem 6.17. The total weight of jobs rejected by B is at most 20ε times the total weight of all
jobs.

Proof. Fix an interval Ir. Corollary 6.16 gives the total weight of density d⋆ jobs which get rejected.
We write it in a form which will be more useful. For a density class d and time t, let 1Bi⋆,d(t) be
the indicator variable which is 1 iff B processes a job of density class d at time t on machine i⋆.
Similarly, define 1Bi⋆,≥d(t) to be 1 iff B processes a job of density class at least d during t on machine
i⋆.

We first observe that

PA
i⋆,d⋆(Ir)− Pi⋆,d⋆(Ir) ≤

∫

t∈Ir

1B
i⋆,≥d⋆+log( 1

ε)
(t)dt,

because the LHS is 1 iff at time t, B processes a job of density class at least d⋆ + log
(

1
ε

)

at time t.
Further,

length(Ir) =

∫

t∈Ir

1B
i⋆,≥d⋆−log( 1

ε)
(t)dt,

because if at any time t ∈ Ir, there is a job of density class d⋆ waiting in the queue at machine i at
time t, and so, the processing rule for B dictates that it cannot process a job of density class less
than d⋆ − log

(

1
ε

)

at time t. Combining the above two inequalities with Corollary 6.16, the total
weight of jobs of density d⋆ rejected during Ir is at most

4ε2 · 2d
⋆+1

∫

t∈Ir

1B
i⋆,≥d⋆−log( 1

ε )
(t)dt+ 2d

⋆+1 ·

∫

t∈Ir

1B
i⋆,≥d⋆+log( 1

ε)
(t)dt.

Summing the above for all intervals Ir and noting that these intervals are disjoint for a fixed d⋆,
the total weight of jobs of density class d⋆ rejected is at most

4ε2 · 2d
⋆+1

∫

t
1B
i⋆,≥d⋆−log( 1

ε )
(t)dt+ 2d

⋆+1 ·

∫

t
1B
i⋆,≥d⋆+log( 1

ε)
(t)dt.

Summing the above for all density classes d⋆, we see that the total weight of jobs rejected by B is
at most

4ε2
∑

d⋆

2d
⋆+1

∫

t

∑

d≥d⋆−log( 1
ε )

1Bi⋆,d(t)dt+
∑

d⋆

2d
⋆+1 ·

∫

t

∑

d≥d⋆+log( 1
ε)

1Bi⋆,d(t)dt

= 4ε2
∫

t

∑

d

∑

d⋆≤d+log( 1
ε )

2d
⋆+11Bi⋆,d(t)dt+

∫

t

∑

d

∑

d⋆≤d−log( 1
ε)

2d
⋆+11Bi⋆,d(t)dt

≤ 10ε

∫

t

∑

d

2d1Bi⋆,d(t)dt
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Now note that
∑

i

∫

t

∑

d 2
d1Bi,d(t)dt is at most twice the total weight of all jobs processed by B (a

job of class density d has density at most 2d+1). This proves the theorem.

6.3 Removing the assumption about T
⋆

So far we have assumed that we know the value of T ⋆. Now we explain how to get rid of this
assumption. Our algorithm starts with an estimate for T ⋆ and updates it whenever we end up
rejecting more than the desired weight of jobs. For a parameter T , let A(T ) denote the algorithm
A when the estimate for T ⋆ is given by T . Define B(T ) similarly. The modification to the scheduling
algorithm is described in Figure 6. Note that when running A(T ) in Step 2(i), the algorithm A(T )
completely ignores the jobs dispatched before j, and so, these jobs do not figure in the calculation
of load. In fact, these jobs will never get processed by A(T ). We shall refer to each iteration in
Step 2 as a phase. When we run B(T ) in Step 2(ii), we treat the unfinished jobs of previous phase
as being released at the beginning of this phase. So even though such jobs do not affect A(T ) in
the current phase, B(T ) may schedule them (or reject them).

Modified Scheduling Algorithm :

1. Initialize T ← pjwj, where j is the first released job, and time t← rj.
2. Repeat

(i) Run A(T ) on the jobs arriving after j (including j).
(ii) Run B(T ) alongside A(T ) while treating all unfinished jobs released

before j (including j) as being released at time t.
(iii) If the algorithm A(T ) rejects jobs of total weight more than

ε-fraction of the jobs which arrived after j (including j),
Stop the algorithm A(T ) and update T ← 2T.
Let j be the last job which was rejected by A(T ). Update t← rj .

Figure 6: Scheduling algorithm without any assumption on T ⋆.

We now analyze the scheduling algorithm.

Theorem 6.18. The above algorithm is O(1/ε4)-competitive, and rejects jobs of total weight O(ε)
times the total weight of all jobs.

Proof. Let T ⋆ denote the value of the offline optimum. Let Ti be the value of T at the beginning
of phase u. First observe that in the last phase u⋆, Tu⋆ ≤ 2T ⋆. Indeed, if Tu becomes larger than
T ⋆, then A(Tu) will not reject jobs of weight more then ε-fraction of the weight of all the jobs in
this phase (the offline optimum for jobs released in this phase can only be at most T ⋆).

Also, observe that A(Tu) rejects jobs of weight at most ε-times the weight of all jobs released in
this phase, and so, the total weight of jobs rejected by it is within ε-fraction of all the jobs. Now,
observe that in a phase u, the total load of jobs of type (w, p) waiting in the queue of a machine i
at time t is at most

∑

u′≤u

α2Tu

2w
≤

2α2Tu

2w
.

This follows from Theorem 6.13 about the properties of A. Thus, the previous phases worsen the
queue size by a factor of 2 only.
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Now, we consider B. Suppose it completes a job j in a phase u which was released in phase

u′ ≤ u. In a phase u′′ between u′ and u, j could have waited for at most
2α2Tu′′

ε2wj
amount of time

(otherwise it would get rejected). So, the total waiting time for this job is at most 4α2Tu
ε2wj

≤ 8α2T ⋆

ε2wj
.

Thus, the scheduling algorithm is O(1/ε4)-competitive.
Further in a phase u, the total weight of jobs rejected by B(Tu) is at most O(ε)-times the total

weight processed by B(Tu) – this follows from the analysis for algorithm B. The fact that the queue
sizes in A(Tu) are twice the estimate from Theorem 6.13 (because of the effect of previous phases)
only doubles the weight of rejected jobs. This proves the theorem.

7 Extension to GenWtdMaxFlowTime

We now extend our result to the GenWtdMaxFlowTime problem. Recall that in this problem a a
job j has two weights associated with it, the rejection-weight wr

j and flow-time-weight wf
j ; the first

one is used for counting the rejection weight of rejected jobs, while the second one is used in the
weighted flow-time expression.

It turns out that almost all the details for the algorithm A carry over with cosmetic changes
in notation to this problem as well, however the algorithm B needs some change; in particular
Lemma 6.15 cannot be applied as it because this is the only place where we critically need the fact
that the two weights are same. We now outline the modified algorithm and then the changes that
are needed in the analysis. As before we shall assume that the offline optimum value T ⋆ is known
– the details for removing this assumption are exactly as in the case of WtdMaxFlowTime problem.

Algorithm A We define the notion of weight class and density class for each of these two weights.
Again, assume wlog that both the weights are powers of 2. We say that a job j is of rejection-
weight class wr if wr

j = 2w
r
. Define flow-time-weight class similarly. The rejection-density of a

job is defined as wr
j/pj ; and we say that its rejection-density class is dr if its rejection-density lies

in [2d
r
, 2d

r+1). Define flow-time-density and flow-time-density class similarly. We now go over the
definitions that were used in defining A and mention the changes in them.

A job j is said to be of type (wf , dr) if its rejection-density class is dr and flow-time-weight class
is wf . For a machine i, time t, and pair (wf , dr), let Qi,wf ,dr(t) denote the jobs of type (wf , dr)
waiting in the queue of machine i at time t; and define the loadi,wf ,dr(t) as the total weighted
remaining processing time of the jobs in Qi,wf ,dr(t) – if a job j has remaining processing time p′j ,

then its weighted remaining processing time is defined as wf
j p

′
j. When a job j of type (wf , dr)

arrives at time t, we dispatch it to the machine i ∈ Sj for which loadi,wf ,dr(t) is minimum, unless

for all i ∈ Sj, loadi,wf ,dr(t) + pj.2
wf
≥ α2 · T ⋆. If the latter case happens, we reject this job.

It remains to specify which job is processed at any time by a machine. For a time t and machine
i, let (wf

i (t), d
r
i (t)) be the pair (wf , dr) with the highest 2d

r
· loadi,wf ,dr(t) value. We process the

earliest released job from the queue Q
i,wf

i (t),d
r
i (t)

(t) on machine i at time t. Assume a fixed rule of

breaking ties.

Algorithm B: Now we describe the modified algorithm B. When a job j arrives at time t, it is
dispatched according to A: if A rejects this job, B also rejects it; and if A dispatched it to machine
i, then B also dispatches this job to i. Now, we describe the processing policy for a fixed machine i.
Consider a time t. Let dA(t) denote the rejection-density class of the job processed by A at time t.
Then, B processes the following job at time t: if there is a job of rejection-density class higher than
dA(t) + 2log

(

1
ε

)

in the queue of machine i at time t, then B processes any such job; otherwise it
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processes the job of rejection-density class dA(t) with the highest flow-time-weight class (it prefers
the earliest released job in case of ties). Also note that if the second case happens and there is no
job of rejection-density class dA(t) in the queue of machine i at time t (in B), we can process any
job at this time.

The algorithm B may reject some more jobs. There are two kinds of rejections: (i) immediate

rejection: for each triplet (wf , dr, p), B rejects every
(

1
ε

)th
job of type (wf , dr) and size-class p

dispatched to it – note that these jobs are rejected as soon as they are released (the algorithm A is
immediate dispatch), (ii) delayed rejection: for every flow-time-weight class wf , we divide the time

line into segments of length 6(α2+2)T ⋆

ε42w
f . Suppose a job of flow-time-weight class wf gets released

during such a segment S, and let S′ be the segment immediately to the right of S. If the job does
not complete processing by the end of S′, the algorithm B rejects the job. This completes the
description of B.

Now we outline how the analyses of these two algorithms change.
Analysis of A: The goal is to prove the following extension of Theorem 6.13.

Theorem 7.1. The algorithm A rejects jobs of total rejection-weight at most ε times the total
rejection-weight of all jobs, and ensures that for any machine i, time t, and pair (wf , dr), the total
weighted remaining processing time of jobs of type (wf , dr) at time t on machine i is at most α2T ⋆.
Further, A is an immediate dispatch algorithm which rejects jobs on arrival only.

Proof. We give a brief description of the changes that are needed from the proof of Theorem 6.13.
A weighted machine interval is again a triplet (I, i, wf ), where wf corresponds to a flow-time-weight
class. Lemma 6.6 holds if we replace weight by flow-time-weight (the lemma gives a lower bound on
T ⋆, which does not depend on rejection at all). Again, we fix a time t⋆, and a rejection-density class
d⋆. The quantities α and γl are defined as before. For a machine i, time t, and rejection-density
class dr, loadi,dr(t) is defined as the maximum over all flow-time-weight class wf , of loadi,wf ,dr(t).

The quantities level(j), J (l,d⋆) and maxloadi,d⋆(t) are defined analogously.
The weighted machine intervals I(i,l,d

⋆) are constructed as in Figure 4 (in Step 2(iii), w refers to
flow-time-weight class). Lemma 6.7 follows without any change (in the proof, we use d to refer to
rejection-density class and w to flow-time-weight class). The dual variables are defined as before,
and so, Claim 6.8 follows without any change.

For a parameter l and flow-time-weight class wf , let I(l,w
f ,d⋆) is defined as before, and the

quantities ml,wf ,d⋆ , L
(l,wf ,d⋆) are defined analogously. Inequality (7) holds without any change (if

we replace w by wf ). The same applies to Claim 6.10 and inequality (8). The definitions Vw,d

and Ww,d get replaced by (note the subtle change below – the weights in the summation are the
flow-time weights in the definition of V but the rejection-weights in the definition of W ) :

Vwf ,dr =
∑

j:type(j)=(wf ,dr)

wf
j pj, Wwf ,dr =

∑

j:type(j)=(wf ,dr)

wr
j .

Vwf ,dr(a, b) is defined analogously. Claim 6.11 goes through without any changes (if we replace

w by wf and d by dr). Note that in the proof of this claim, the last line will now read as

2d
r

2wf
Vwf ,dr =

∑

j:type(j)=(wf ,dr)

2d
r

wf
j

wf
j pj =

∑

j:type(j)=(wf ,dr)

2d
r
pj ≤

∑

j:type(j)=(wf ,dr)

wr
j = Wwf ,dr .

Proof of Lemma 6.12 now follows without any changes.
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Figure 7: The intervals I11 , I
2
1 , I

3
1 are maximal intervals where a job of flow-time weight class at least

w1 is waiting in the queue. Out of these I(w1) = {I
1
1 , I

2
1} because these are the intervals where a

delayed rejected job of type (w1, d
⋆) is released. Similarly, for a flow-time weight class w2, w2 ≥ w1,

I(w2) = {I
1
2 , I

4
2}. Finally, I = {I11 , I

2
1 , I

4
2 .}

Analysis of B: We give some intuition about where the analysis differs from that in the case of
WtdMaxFlowTime. As noted earlier, in the case of WtdMaxFlowTime, we needed to bound the volume
of bad time slots, i.e., time where B processes a job, but then decides to reject it later. For this,
we crucially needed the fact that the two kind of weights are same. However, we do not have this
luxury anymore. This is where we use the immediate rejection – if volume V of jobs (of a certain
rejection density class d) are dispatched to a machine i, about εV of this will get immediately
rejected. Now, it may happen that B rejects the remaining jobs after processing them to almost
completion, but even then the volume of bad jobs will remain at most (1− ε)V . In the remaining
εV time slots (meant for such jobs), B must process very high density jobs, and so will be able to
bound the weight of rejected jobs.

We now proceed with the analysis of B. We only need to bound the total rejection weight of
jobs which are rejected. The case of immediate rejection is easy.

Claim 7.2. The total rejection weight of jobs which are rejected by B using immediate reject is at
most 4ε times the total rejection weight of all jobs.

Proof. Consider a job of flow-time weight class wf , rejection density class dr and size class p. Its
rejection weight is at least 2p · 2d

r
and at most 2p+1 · 2d

r+1. In other words, any two such jobs will
differ in their rejection weight by a factor 4 only. Since B rejects such jobs after every 1/ε arrivals,
the claim follows.

The case of delayed rejects is more non-trivial. Again, we fix a machine i⋆ and rejection density
class d⋆. For ease of notation, we shall remove the subscripts involving i⋆ and d⋆. Let JR denote
the set of jobs of rejection density class d⋆ which are rejected (using delayed reject) by B. We shall
again define a set of disjoint intervals but their definition is more tricky. For a flow-time weight
class wf , we can divide the time line into disjoint set of intervals I(wf ) such that any interval
I ∈ I(wf ) satisfies: (i) at any point of time t ∈ I, there is a job of type (w, d⋆), w ≥ wf , in the
queue of machine i⋆ in B, and (ii) at least one job of type (wf , d⋆) in JR is released during I. In
other words, we first divide the time line into disjoint maximal intervals where we have a job of
type (w, d⋆), w ≥ wf , in the queue of machine i⋆. From these intervals, we pick out those where a
job in JR of type (wf , d⋆) is released.

Note that if I ∈ I(wf
1 ), I

′ ∈ I(wf
2 ), then either I and I ′ are disjoint or one is contained in the

other. Let I denote the (containment wise) maximal intervals in ∪wfI(wf ), i.e., any two intervals in
I are disjoint and no interval in I is contained inside any other interval in ∪wfI(wf ) (see Figure 7).
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Fix an interval I ∈ I for rest of the discussion. Let JR(I) be the set of jobs in JR which are released
during I.

Let wmin(I) be the smallest flow-time weight class of a job in JR(I) – observe that I ∈
I(wmin(I)). Further, at every point of time in I, there is a job of type (w, d⋆), w ≥ wmin(I) in
the queue of machine i⋆ in the algorithm B. The maximality of I shows that there is no such job
in the queue of machine i⋆ just before the left end-point of I.

For a size class p and flow-time weight class wf , let PA
d⋆,p,wf (I) denote the total volume of time

in I during which A processes jobs of type (wf , d⋆) and size class p (on the machine i⋆). Let
JA
d⋆,p,wf (I) denote the set of jobs of type (wf , d⋆) and size-class p which are dispatched by A to i⋆

during I, and nd⋆,p,wf denotes the cardinality of this set. Note that A will either process these jobs
during I or they will end up in the queue of i⋆ at the end of I.

First observe that for any wf ,
∑

p

∑

j∈JA

d⋆,p,wf (I)

pj ≤
∑

p

PA
d⋆,p,wf (I) + α2T ⋆/2w

f
, (9)

because any job in the LHS will either be processed by A during I or will end up in the queue of
type (wf , dr) jobs at the end of i⋆, and the latter part can have total remaining processing volume

at most α2T ⋆/2w
f
(Theorem 7.1).

Claim 7.3. The total volume of time in I during which B processes jobs of type (wf , d⋆), wf ≥
wmin(I), is at most

(1− ε/2)PA
d⋆(I) + 2(α2 + 2)T ⋆/2wmin(I),

where PA
d⋆(I) denotes

∑

p

∑

wf≥wmin(I)
PA
d⋆,p,wf (I), i.e., the total volume of time in I during which

A processes jobs of rejection-density class d⋆ and weight-flow-time class wmin(I) or higher.

Proof. Observe that any job of type (wf , d⋆), wf ≥ wmin(I), processed by B during I (on machine
i⋆) has to either: (i) appear in the queue of B on machine i⋆ at the beginning of I, or (ii) dispatched
to i⋆ byA during I and not get immediately rejected by B. By definition of I (maximality property),
there is no job in (i). We now estimate (ii). Note that for any flow-time weight class wf and size
class p, B will immediately reject at least

∑

p(ε ·nd⋆,p,wf −1) jobs from JA
d⋆,p,wf (I), and so, the total

volume of such jobs rejected by B is at least
∑

p

(ε · nd⋆,p,wf − 1) · 2p ≥
∑

p

ε · nd⋆,p,wf · 2p − 2T ⋆/2w
f
≥ ε/2 ·

∑

p

∑

j∈JA

d⋆,p,wf (I)

pj − 2T ⋆/2w
f
,

where the first inequality follows from the fact that the maximum processing time of any job of
flow-time-weight class wf is at most T ⋆/2w

f
. Inequality (9) and the above inequality now imply

that the total volume of time during I at which B processes a job of type (wf , d⋆) is at most

∑

p

∑

j∈JA

d⋆,p,wf (I)

pj − ε/2 ·
∑

p

∑

j∈JA

d⋆,p,wf (I)

pj + 2T ⋆/2w
f
≤ (1− ε/2)

∑

p

PA
d⋆,p,wf (I) + (α2 + 2)T ⋆/2w

f

Summing over all wf ≥ wmin(I), we get the desired result.

It follows from the above claim that there must be at least

PA
d⋆(I)−

(

(1− ε/2)PA
d⋆(I) + 2(α2 + 2)T ⋆/2wmin(I)

)

= ε/2 · PA
d⋆(I)− 2(α2 + 2)T ⋆/2wmin(I) (10)
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volume of time during I at which B is performing jobs of rejection-density class d⋆ + 2log
(

1
ε

)

or
higher – indeed, there is always a job of type (wf , d⋆), wf ≥ wmin(I) in the queue of i⋆ during I, and
yet, B processes such jobs during (1− ε/2)PA

d⋆(I)+ 2(α2 +2)T ⋆/2wmin(I) out of the possible PA
d⋆(I)

volume (during which A processes such jobs in I). Now, define an indicator variable 1Bi⋆,≥d⋆(t)
which is 1 if B processes job of rejection-density class at least d⋆ at time t on i⋆.

Lemma 7.4. The total processing time of JR(I), the jobs of rejection-density class d⋆ which get
delayed rejected by B during I, is at most

2

ε

∫

t∈I
1B
i⋆,≥d⋆+2log( 1

ε)
dt+ ε3

∫

t∈I
1B
i⋆,≥d⋆−2log( 1

ε)
, (11)

Proof. Inequality (10) implies that the first term in the summation above is at least

2/ε
(

ε/2 · PA
d⋆(I)− 2(α2 + 2)T ⋆/2wmin(I)

)

= PA
d⋆(I)−

4(α2 + 2)T ⋆

ε · 2wmin(I)
,

and the second term is at least (recall that at all time during I, B will be processing a job of
rejection density class at least d⋆ − 2log

(

1
ε

)

)

ε3 · length(I) ≥
6(α2 + 2)T ⋆

ε · 2wmin(I)
,

because I contains a job of rejection-weight wmin(I), and so must be as long as one segment
corresponding to this rejection-weight class (according to the description of algorithm B). Therefore,
the expression in (11) is at least

PA
d⋆(I) +

2α2T ⋆

ε · 2wmin(I)
,

which is at least the total processing size of JR(I) (using inequality (9) and summing over all
wf ≥ wmin(I)).

Rest of the argument follows as in the case of Theorem 6.17 – we sum the expression in (11)
over all I ∈ I, and then over all rejection-density classes d⋆ to show that the total rejection weight
of rejected jobs is within ε fraction of the total rejection weight of all jobs. Thus, we have shown

Theorem 7.5. The algorithm B is O(1/ε6)-competitive algorithm and rejects jobs of total rejection
weight at most O(ε)-times the total rejection-weight of all jobs.

8 Some Lower Bounds

In this section, we show results on some lower bounds of the LoadBalancing and the MaxFlowTime
problems. The first result shows that for LoadBalancing, the trade-off that we obtain between
competitive ratio and the fraction of jobs rejected is nearly optimal.

Lemma 8.1. Given a parameter ε, and an (deterministic) online immediate dispatch algorithm
A for the LoadBalancing problem, there is an input I(ε) consisting of unit size jobs such that A
rejects at most ε-fraction of the jobs and the competitive ratio of A on I(ε) is at least Ω

(

log
(

1
ε

))

.
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Proof. The input I(ε) has m machines, and will have at most 2m jobs. So, the algorithm can reject
at most 2εm jobs. The jobs are released in several phases. At the beginning of phase l, we have a
set Ml of machines on which load is at least l. We shall use ml to denote |Ml|.

This is clearly true for l = 0 with M0 being the initial set of machines and m0 = m. Suppose
the invariant is true at the beginning of a phase l. During phase l, we shall assume wlog that the
algorithm first dispatches all the jobs released during this phase, and then rejects some of them.
This will not change the competitive ratio of the algorithm because we will only look at the end
of a particular phase. We partition the machines in Ml into

ml
2 disjoint pairs. For each such pair

i, i′, we release 2 jobs which can only go on these two machines. Without loss of generality, assume
that the algorithm A dispatches at least one of these two jobs to i. Then we add i to a set X.
Thus, X has ml

2 machines. Assuming ml ≥ 8εm, we can reject at most 2εm ≤ |X|
2 jobs dispatched

to the machines in X during this phase. Thus, at least half of the machines in X get at least one
job during this phase – we let Ml+1 be these machines. Observe that ml

4 ≤ ml+1 ≤
ml
2 . Further

the load on a machine in Ml+1 is at least l + 1. Thus, the invariant holds at the end of this phase
as well.

Note that we require ml ≥ 8εm. This will hold if we have only
(

log
(

1
ε

))

phases. It is easy
to check that the optimal load is at most 2 – during phase l, when we send 2 jobs to a pair of
machines i, i′, the offline schedule sends these jobs to the machine which does not get added to X.
Further, the total number of jobs released is at most

∑

l ml ≤ 2m. This completes the proof of the
lemma.

The next result shows that for arbitrary processing times, an immediate dispatch and immediate
reject algorithm for the LoadBalancing problem will incur high competitive ratio.

Theorem 8.2. Any online algorithm A for the LoadBalancing problem which satisfies immediate
dispatch and immediate reject has unbounded competitive ratio, even if it can reject ε-fraction of
the jobs.

Proof. The proof is very similar to that of Lemma 8.1. However, in subsequent phases, jobs sizes
will start decreasing, and so, the number of phases will not be bounded by a function of ε. We
shall maintain the following invariants for all phases l = 0, 1, 2, . . . :

• At the beginning of phase l, there will be a set Ml of ml =
m
4l

machines such that the load

on each of them (in the schedule produced by algorithm A) will be at least l
2 . Here m is the

initial number of machines.

• During phase l − 1, we shall release 2l ·m jobs each of length 1
8l
.

These invariants hold at l = 0: M0 is the initial set of machines. Suppose these properties hold for
some l. Again, we assume wlog that the algorithm first dispatches all the jobs released in a phase,
and then rejects some of them. During phase l, we pair up the machines in Ml into

ml
2 pairs. For

each such pair of machines i, i′, we release 2 ·8l jobs, each of length 1
8l
, which can only be processed

by these two machines. Assume without loss of generality that the algorithm A dispatches at least
8l of these jobs to i – we add i to a set X. Hence, X will be a set of ml

2 machines.
Note that the total number of jobs released in phase l is ml · 8

l = m · 2l. Therefore, the total
number jobs released so far is at most m·2l+1, and so, A can reject at most ε·m·2l+1 = 2ε·ml8

l jobs
released during this phase – note that A is not allowed to reject jobs released in previous phases
during phase l. This implies that at least half of the machines in X will receive at least 8l

2 jobs
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during this phase – otherwise, the total number of rejected jobs will be at least |X|·8l

4 = 1
8 ·ml · 8

l,
which will be a contradiction (assuming ε < 1/16). Since |X|/2 ≥ ml/4, we pick Ml+1 to be ml/4

such machines. Note that the total load on these machines is at least l
2 +

1
8l
· 8

l

2 = l+1
2 . This proves

the invariant for l + 1.
It is also easy to see that the optimal offline load on any machine is at most 2 (using the

same argument as in the proof of Lemma 8.1. Since the number of phases can be arbitrarily large
(depending on the value of m), we see that the competitive ratio of A is unbounded.

Next we give a strengthening of Lemma 8.1 for the MaxFlowTime problem.

Lemma 8.3. Given a parameter ε, and an (deterministic) online immediate dispatch algorithm A
for the MaxFlowTime problem, there is an input consisting of unit size jobs such that A rejects at
most ε-fraction of the jobs and the competitive ratio of A is Ω

(

1
ε

)

.

Proof. In our input, we shall release jobs at the end of a time interval I. We assume that the
algorithm A dispatches all the jobs released during I, and rejects jobs only at the end of I. This
will be without loss of generality: we will only consider the queue size on a machine at the end of
the interval I. If A was rejecting any job during I, then it could instead dispatch this job arbitrarily
and reject it at the end of I. This will not affect the queue length of machines at the end of I.

We shall use the following gadget while building the input.

Claim 8.4. Suppose at some time t, the algorithm A is given as input, a set M of m+1 machines
with i unit sized jobs in the queue of the ith machine, i = 0, . . . ,m. Then one can release m + 3
unit size jobs during the interval [t, t + 2] such that at time t + 2, the load (queue size) on these
machines (in some other order) are 0, 1, 2, . . . ,m− 1,m+ 1.

Further, there is an offline algorithm which given the machines in M with unit load at time t
and the same input as above during [t, t+ 2] ends up with unit load on all machines at time t+ 2.
The maximum load on any machine during this interval is 3.

Proof. We will release several jobs at the same time in a sequence, i.e., the next job will be released
only after the current one is dispatched by A. We label the machines M0, . . . ,Mm, with Mi having
load i at time t in A. All jobs have unit size. The procedure for releasing jobs is described in
Figure 8. We first observe that at the beginning of Step 3(i), both Mi−1 and Mi have load i.
Hence, at the end of time t, machine Mi has load i+1. Due to Step 4, at the end of time t+1, Mm

continues to have load m+ 1, but now, Mi has load i for all i = 0, . . . ,m− 1. Further, no change
in load happens due to Step 5, because M0 already had 0 load. This step is needed to argue about
the offline algorithm.

Finally, it is easy to check that there is an offline schedule with the desired properties. In
Step 3(ii), the job ji is dispatched to Mi−1. Thus, at the end of time t, M0 has 3 jobs in its queue,
M1, . . . ,Mm−1 get 2 jobs, and Mm has one. Step 4 ensures that at the end of time t+ 1, M0 has 2
jobs in its queue, and the remaining machines have one jobs each in their queue. Finally, in Step 5,
M0 at the end of time t+ 2 also ends up with one job in its queue. This proves the desired result.

In our input, we shall have ∆ machines, where the parameter ∆ will be specified later. The
jobs are released in ∆− 2 stages. In the beginning of stage l, following invariants are satisfied: (i)
In the schedule produced by A, there are l machines with load 1, 2, . . . , l, and rest of the machines
have 0 load, (ii) In the offline schedule, load is 1 on all machines. Further, the maximum load on
any machine till the beginning of stage l was 3.
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IncreaseLoad:

1. At time t, release a job j0 which can only be processed by M0.
3. For i = 1 to m do

(i) Release a job ji at time t which can be processed by {Mi−1,Mi}
(ii) Assume (upto relabeling) that A dispatches ji to Mi.

4. At time t+ 1, release one job j′m which can only go on machine Mm.
5. At time t+ 2, release one job j′′i for i = 1, . . . ,m, such that

j′′i can be processed by Mi only.

Figure 8: Dispatching jobs for Claim 8.4

Clearly, this is true at the beginning of stage 0. Suppose this holds true for l – let tl denote
the time at the beginning of stage l. We iteratively call the procedure IncreaseLoad defined
in Claim 8.4. The procedure is described in Figure 9. Assume that machine Mi has load i for
i = 1, . . . , l. The load on other machines remains 0. The procedure uses two other machines, which
we call M0 and M ′

0 (note that we have at least l + 2 machines). During the procedure, we may
keep a machine busy during a time period. This essentially means that we release one (unit size)
at every unit time step during this time period – hence, the load on this machine does not change
at all.

ReleaseJobs(Stage l):

1. Initialize time t← tl
2. For i = l downto 1 do

(i) Machines M0, . . . ,Mi have load 0, . . . , i (upto reordering) and
machines Mi+1, . . . ,Ml have load i+ 2, . . . , l + 1 (upto reordering)

(ii) Call IncreaseLoad at time t with machines M0, . . . ,Mi – these machines
get load 0, 1, 2, . . . , i− 1, i+ 1 (upto reordering) at time t+ 2

(iii) For j = i+ 1 to l
Keep machine Mj busy during [t, t+ 2].

(iv) t← t+ 2.
3. Upto reordering M1, . . . ,Ml have load 2, . . . , l + 1, and M0 has load 0.

(i) At time t release a job which can be processed by M0 and M ′
0 only,

assume A dispatches this job to M0 (upto reordering).
(ii) Keep M0, . . . ,Ml busy during [t, t+ 1].

Figure 9: Jobs released in a stage

It is easy to check that at the end of this procedure, we have l+1 machines with load 1, 2 . . . , l+1
respectively. Suppose there is an offline algorithm in which all machines have load 1 at time ti.
Then Claim 8.4 implies that during Step 2, the maximum load on any machine stays 3, and we end
up with 1 load on all machines. In Step 3(i), the job released is sent to M ′

0 by the offline schedule,
and then during Step 3(ii), M ′

0 processes this job to end up with 1 load. This proves that the
invariants hold for the next stage as well. Note that the total number of jobs released during this
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stage (using Claim 8.4) are at most:

1 +

l
∑

i=1

[(i+ 3) + 2(l − i)] + 1 + (l + 1) ≤
3

2
l2.

Thus, the total number of jobs released till ∆− 2 stages are at most ∆3

4 . At the end of final stage,
we have at ∆− 1 machines with load 0, 1, . . . ,∆− 1. Now, the online algorithm can delete at most
ε · ∆

3

4 ≤
∆2

8 jobs (assuming ∆ = 1
2ε). Thus, we will still have at least one machine with total load

at least ∆
2 = 1

4ε – indeed, otherwise the total number of deleted jobs will be at least

1 + 2 + · · ·+
∆− 1

2
≥

∆2

8
.

This proves the lemma. Observe that here, the input size is constrained by a function of ε – but we
can make it independent of ε by taking multiple copies of the above construction in parallel.

9 Conclusion and Open Problems

In this paper, we proposed a new model for avoiding the pessimistic bounds arising from com-
petitive analysis of online algorithms for scheduling problems. We could give constant-competitive
algorithms for load balancing and minimizing maximum weighted flow-time problems in this model,
even though such results cannot be obtained in the speed augmentation model. It is not difficult
to show that if there is a single machine, then a policy which rejects every (1ε )

th job (for each
weight-class and job size class) and follows HDF rule has competitive ratio within a constant of
that when we allow the machine (1 + ε)-speed augmentation. Hence, the results which give im-
mediate dispatch algorithms with competitive ratio of p

εO(1) for minimizing ℓp norm of flow-time
in the unrelated machines model with speed augmentation ( [5, 28]) can be proved here as well
(with an extra 1/ε factor loss in competitive ratio). It is an interesting problem to give algorithms
for minimizing ℓp norm of flow-time in the rejection model with competitive ratio independent of
p. More generally, we feel that more interesting results can be given for other online scheduling
problems in this model.
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