
Unit Interval Vertex Deletion: Fewer Vertices are Relevant∗

Yuping Ke†‡ Yixin Cao‡ Xiating Ouyang‡ Jianxin Wang†

October 8, 2018

Abstract

The unit interval vertex deletion problem asks for a set of at most k vertices whose deletion from an n-vertex
graph makes it a unit interval graph. We develop an O(k4)-vertex kernel for the problem, significantly improving
the O(k53)-vertex kernel of Fomin, Saurabh, and Villanger [ESA’12; SIAM J. Discrete Math 27(2013)]. We
introduce a novel way of organizing cliques of a unit interval graph. Our constructive proof for the correctness
of our algorithm, using interval models, greatly simplifies the destructive proofs, based on forbidden induced
subgraphs, for similar problems in literature.

1 Introduction

A graph is a unit interval graph if its vertices can be assigned to unit-length intervals on the real line such that
there is an edge between two vertices if and only if their corresponding intervals intersect. Given a graph G and
an integer k, the unit interval vertex deletion problem asks whether there is a set of at most k vertices whose
deletion makes G a unit interval graph. According to Lewis and Yannakakis [16], this problem is NP-complete.

This paper approaches this problem by studying its kernelization. Given an instance (G,k) of unit interval
vertex deletion, a kernelization algorithm produces in polynomial time an “equivalent” instance (G ′,k ′) such that
k ′ 6 k and the kernel size (i.e., the number of vertices in G ′) is upper bounded by some function of k ′. Fomin et
al. [11] presented an O(k53)-vertex kernel for the problem, which we improve to the following, where n and m
denote respectively the numbers of vertices and edges of the input graph.

Theorem 1.1. The unit interval vertex deletion problem has an O(k4)-vertex kernel, and it can be produced in
O(nm+ n2) time.

(a) claw (b) tent (c) net

Figure 1: Forbidden induced graphs.

The structures of unit interval graphs have been well studied and well understood. It is known that a graph
is a unit interval graph if and only if it contains no claw, net, tent, (as depicted in Figure 1,) or any hole (i.e.,
an induced cycle on at least four vertices) [19, 20]. One can decide in linear time whether a given graph is a
unit interval graph; if it is not, we can obtain a forbidden induced subgraph in the same time [12]. The unit
interval vertex deletion problem can then be equivalently defined as finding a set of at most k vertices that hits
all forbidden induced subgraphs of the input graph.
∗Supported in part by the Hong Kong Research Grants Council (RGC) under grant PolyU 252026/15E and the National Natural Science

Foundation of China (NSFC) under grants 61572414 and 61420106009.
†School of Information Science and Engineering, Central South University, Changsha, China. jxwang@mail.csu.edu.cn.
‡Department of Computing, Hong Kong Polytechnic University, Hong Kong, China. yixin.cao@polyu.edu.hk.

1

ar
X

iv
:1

60
7.

01
16

2v
1

 [
cs

.D
S]

 5
 J

ul
 2

01
6

jxwang@mail.csu.edu.cn
mailto:yixin.cao@polyu.edu.hk

The vertex deletion problem has been defined on many other graph classes and has been intensively studied.
It is the easy case when the objective graph class has a finite set of forbidden induced subgraphs: The sunflower
lemma implies a polynomial kernel for the vertex deletion problem to this graph class [10]. However, kernels
produced by the sunflower lemma tend to be very large. Furthermore, most interesting graph classes have an
infinite number of forbidden induced subgraphs, hence the hard case. Another approach that works for both
(and even edge modification problems) is to start from a modulator, i.e., a set of vertices whose deletion leaves a
graph in the objective graph class. With a modulator, we are allowed to use the properties of unit interval graphs
to analyze the rest of the graph. What is important is the interaction between other vertices with the modulator,
and thus through its analysis we can identify irrelevant vertices, thereby producing the kernel [9, 15].

Since holes of any length are forbidden in unit interval graphs, our problem is clearly the hard case. Hence
both Fomin et al. [11] and this paper use the modulator approach. For both of us, the modulator consists of
two parts, first a set of vertices that hits all small forbidden induced subgraphs,—we use different thresholds for
bing small,—and the second an optimal hitting set for long holes in the remaining graph. Recall that long holes
behave very nicely in a graph free of small forbidden induced subgraphs; for example, a minimum hitting set for
them can be found in linear time [3]. Thus, our main concern is the first part. What differentiates these two
algorithms is how they are carried out. Fomin et al. [11] used the sunflower lemma to produce the modulator,
while we use a constant-approximation algorithm.

We only need to proceed when the approximation algorithm produces a solution of O(k) vertices. Thus, our
modulator has a linear size, which is in a sharp contrast with the huge modulator of Fomin et al. [11] produced
by the sunflower lemma. On the other hand, their modulator has an extra property that is not shared by ours. It
guarantees that one only needs to care about small forbidden induced subgraphs inside the modulator, thereby
saving them a lot of trouble in the selection of relevant vertices. Our modulator nevertheless does not have this
property. Therefore, the interaction of the modulator with the rest of the graph is far more complicated in our
case, and the analysis is fundamentally different. In particular, the main technical difficulties present themselves
exactly at the analysis of the small forbidden induced subgraphs.

This is exactly where our main technical ideas appear, which result in an algorithm and analysis significantly
simpler than that of Fomin et al. [11]. Let (G,k) be the input instance and let M be the modulator. Our first idea
is to partition the vertices of the unit interval subgraph G−M into cliques and organize them in a linear way
such that vertices in each clique are adjacent to only vertices in its two neighboring cliques. This is quite different
from the widely used clique path decomposition, because in a clique path decomposition, (1) a vertex can appear
in more than one cliques; and (2) two vertices in cliques that are far away can be adjacent. Our reduction rules
ensure that if (G,k) is reduced, then there cannot be more than O(k2) cliques in the partition of G−M. From
each of these cliques at most O(k3) vertices are relevant. This implies a kernel of O(k5) vertices, and a more
careful analysis leads to the smaller size claimed in Theorem 1.1.

Our second idea appears in the proof of the correctness of our algorithm. Our reduction rules are rather
elementary and self-explanatory. The main step is to prove the irrelevance of the other vertices. We may assume
that (G,k) is already reduced, and let G ′ denote the subgraph induced by the relevant vertices and the modulator.
We need to show that if there is a solution V− of size at most k to our kernel G ′, then it is a solution to G. Instead
of showing the nonexistence of forbidden induced subgraph in G − V−, (which would necessarily lead to an
endless list of cases,) we build a unit interval model for G− V− out of a unit interval model for G ′ − V−.

In a companion paper [5], we have also developed a polynomial kernel for the interval vertex deletion
problem, which is arguably more challenging and was only recently shown to be fixed-parameter tractable [6].
It extends the ideas from this paper. It also starts from a modulator produced by the constant-approximation
algorithm [4], but the analysis is far more complicated. In particular, the novel clique partition, which plays a
crucial role in simplifying the analysis, does not apply there in any way we know of. Jansen and Pilipczuk [15]
recently studied the kernelization of the chordal vertex deletion problem and produced the first polynomial kernel.
They also used an approximation solution as the modulator, for which they had to first design a polynomial-time
approximation algorithm. Their kernel has also a huge size, O(k162) vertices.

Let us also mention the related parameterized algorithms (i.e., algorithms running in time O(f(k) · nO(1)) for
some function f independent of n) for the problem, which have undergone a sequence of improvements. Recall
that chordal graphs are those graphs containing no holes, and thus unit interval graphs are a subclass of chordal
graphs. Toward a parameterized algorithm with f(k) = Ω(6k), one can always dispose of all the claws, nets,
and tents from the input graph, and then call the algorithm for the chordal vertex deletion problem [18, 7] to
break all holes in the remaining graph. Direct algorithms for unit interval vertex deletion were later reported

2

in [1, 13, 3], and the current best algorithm runs in time O(6k · (n +m)). All the three direct algorithms use
a two-phase approach. In [3], for example, the first phase breaks all claws, nets, tents, and C4’s, while the
second phase deals with the remaining {claw, net, tent, C4}-free graphs, on which the problem can be solved in
polynomial time. A simple adaptation of this approach leads to an O(nm+ n2)-time 6-approximation algorithm.

Organization. The rest of the paper is organized as follows. Section 2 introduces the clique partition and its
properties. Sections 3 presents three simple reduction rules. Section 4 finishes the kernel by handpicking vertices
from the reduced graph. Section 5 closes this paper by discussing implementation issues.

2 The clique partition

All graphs discussed in this paper are undirected and simple. A graph G is given by its vertex set V(G) and edge
set E(G), whose cardinalities will be denoted by n and m respectively. All input graphs in this paper are assumed
to be connected, hence n = O(m) whenever n > 1. For ` > 4, we use C` to denote a hole on ` vertices. Chordal
graphs are precisely {C` : ` > 4}-free graphs.

In this paper, all intervals are closed. An interval graph is the intersection graph of a set of intervals on the
real line. The set of intervals, called an interval model, can be specified by their 2n endpoints: The interval I(v)
for vertex v is given by [lp(v), rp(v)], where lp(v) and rp(v) are its left and right endpoints respectively. It always
holds lp(v) < rp(v). No distinct intervals are allowed to share an endpoint in the same model; note that this
restriction does not sacrifice any generality. A graph is a unit interval graph if it has a unit interval model, where
every interval has length one. An interval model is proper if no interval in it properly contains another interval. It
is easy to see that every unit interval model is proper; a nontrivial observation of Roberts [19] is that every graph
having a proper interval model also has a unit interval model.

v1 v2

v3

v4

v5

v6

v1

v2
v3

v4

v5

v6

Figure 2: A unit interval graph and its unit interval model. The proper interval ordering decided by this model is
〈v1, v2, v3, v4, v5, v6〉, which partitions the graph into cliques {v1, v2}, {v3, v4}, and {v5, v6}, corresponding to the
three dashed vertical lines respectively.

Note that in a proper interval model, if lp(u) < lp(v), then rp(u) < rp(v) as well. Therefore, it makes sense
to talk about the left-right relationship of the intervals. If we read the vertices by the ordering of their intervals,
we end with a proper interval ordering of the graph [17]. The following property is an easy consequence of the
definition of proper interval models and proper interval ordering.

Proposition 2.1. Let v1, . . . , vn be a proper interval ordering of a unit interval graph G. For every 1 6 i < j 6 n, if
vivj ∈ E(G), then {vi, . . . , vj} is a clique.

Fixing a unit interval model I for a unit interval graph G, we can greedily partition its vertices into a sequence
of cliques. Initially all vertices are unassigned. We repetitively choose the unassigned vertex v with the leftmost
interval, and take all vertices whose intervals containing rp(v); this set is clearly a clique. We proceed until
the graph becomes empty. Let K = {K1, . . . ,Kt} be the set of cliques obtained in the order. See Figure 2 for
an example. One should be noted that the cliques are not maximal in general; in particular the last vertex of
Ki−1 might be adjacent to all vertices in Ki, e.g., both the second the third cliques in Figure 2. The following
proposition and its corollary characterize this partition, and facilitate our analysis of the kernel size.

Proposition 2.2. Let K1, . . . ,Kt be the clique partition of a unit interval model G. For each 1 < i < t, it holds that
N(Ki) ⊂ Ki−1 ∪ Ki+1. Moreover, N(K1) ⊆ K2, N(Kt) ⊂ Kt−1.

Proof. Let v ∈ Ki. By the definition of clique partition, v is nonadjacent to the first vertex of Ki−1. By
Proposition 2.1, no neighbor of v comes before the first vertex of Ki−1. Thus, if a neighbor of v is before Ki, it

3

has to be in Ki−1. On the other hand, any neighbor of v after Ki is either the first vertex of Ki+1 or adjacent to it,
hence in Ki+1. The two border cases follow similarly.

Corollary 2.3. Let K1, . . . ,Kt be the clique partition of a unit interval model G. For each pair of vertices u ∈ Ki and
v ∈ Kj with 1 6 i 6 j 6 t, the distance between u and v is at least j− i.

The following fact will be used in the correctness proof of our main reduction rule. Here by contracting a
clique Ki (1 < i < t), we mean the operations of deleting all vertices in Ki, and adding all possible edges to
connect its neighbors in Ki−1 and in Ki+1.

Ki−1 Ki Ki+1

α β

(a) The original unit interval model for G.

N(Ki)∩Ki−1

N(Ki)∩Ki+1

α βρ

(b) The new proper interval model for the graph obtained by contracting Ki.
Only intervals for vertices inN(Ki)∩Ki−1 andN(Ki)∩Ki+1, which are thick, are extended.

Figure 3: Illustration for Proposition 2.4.

Proposition 2.4. Let K1, . . . ,Kt be the clique partition of a unit interval graph G. For each 1 < i < t, the graph
obtained by contracting Ki is still a unit interval graph.

Proof. Let G ′ be the graph obtained by contracting Ki; then V(G ′) = V(G) \ Ki and E(G ′) = E(G − Ki) ∪(
(N(Ki)∩Ki−1)× (N(Ki)∩Ki+1)

)
. We build a proper interval model for G ′ as follows. Let α be the left endpoint

of the first vertex in Ki, and let β be the right endpoint of the last vertex in Ki; note that
⋃
v∈Ki

I(v) = [α,β]. We
choose an arbitrary point ρ between α and β. For vertices in N(Ki) ∩ Ki−1, we change their right endpoints to
between ρ and β while keeping their orders. Likewise, for vertices inN(Ki)∩Ki+1, we change their left endpoints
to between α and ρ while keeping their orders. See Figure 3. Note that only intervals for N(Ki) ∩ Ki−1 and
N(Ki) ∩ Ki+1 are extended, and all the extensions are made in [α,β], where is disjoint from all other intervals. It
is then easy to verify that the new interval model is proper and represents G ′.

In passing we should point out that neither the ordering nor the clique partition is unique in general.1

3 The reduction rules

Let (G,k) be an instance of the unit interval vertex deletion problem. We start by calling the 6-approximation
algorithm [3] to find an approximation solution M to G. If |M| > 6k, then we return a trivial no-instance. We
may assume henceforth |M| 6 6k, and fix a unit interval model for G−M. Let σ = 〈v1, v2, . . . , vn−|M|〉 be the
proper interval ordering and K = {K1, . . . ,Kt} the clique partition derived from this model.

1Even so, one can say that it is almost unique, in the sense that there can be at most two partitions: true twins (vertices with the same
closed neighborhood) always reside in the same clique, while on a true-twin-free graph, there is only one ordering up to full reversal [8, 14].

4

As an easy consequence of Proposition 2.2, any vertex in M that is adjacent to five or more cliques in K

is the center of some claw. This observation inspires the following two reduction rules, whose correctness is
straightforward: If you do not delete the vertex v itself, then you have to delete at least k+ 1 vertices to break all
claws involving v.

Rule 1. If there exists a vertex v ∈M that is adjacent to at least k+ 5 cliques in K, then delete v and decrease k by 1.

Rule 2. If there exist a vertex v ∈M and at least five cliques in K such that each of these cliques contains at least
k+ 1 neighbors of v, then delete v and decrease k by 1.

Note that the diameter of a claw, net, or tent is at most three. The following is immediate from Corollary 2.3
and the fact that any claw, net, or tent of G needs to intersect M.

Corollary 3.1. If there is 3 6 ` 6 t− 2 such that M is nonadjacent to Ki for `− 2 6 i 6 `+ 2, then no vertex in K`
is contained in a claw, net, or tent.

Therefore, if there exists a long sequence of cliques that are nonadjacent to M, then most vertices in the
middle can only participate in holes. Such a hole, if it exists, necessarily visits all these cliques, and in particular,
it must enter from one end clique and leave at the other end. Moreover, it visits every clique in between, and
contains one or two vertices from each of them. If we delete vertices from these cliques (for the purpose of
breaking these holes), then we would choose a minimum separator. This observation motivates the next reduction
rule. It has been observed in a more general form in [7, Reduction 2, Section 6]; with the clique partition, we
can simplify it to the following form. Recall that any minimal separator of a unit interval graph is a clique, which
cannot intersect more than two cliques in K.

Rule 3. Let Ki−3, . . . ,Ki+3 be 7 consecutive cliques in K that are nonadjacent to M. Let u be the last vertex in Ki−2

and let v be the first vertex in Ki+2. We take a minimum u-v separator S in G−M, and let ` ∈ {i− 1, i, i+ 1} be
that K` is disjoint from S. Contract K`.

Lemma 3.2. Rule 3 is safe: (G,k) is a yes-instance if and only if (G ′,k) is a yes-instance, where G ′ is the resulting
graph.

Proof. By Proposition 2.4, G ′ −M is still a unit interval graph. Thus, every forbidden induced subgraph in G ′

needs to intersect M. Since we have only added edges between K`−1 and K`+1, for every vertex in them, its
distance to M is at least three. There cannot be any claw, net, or tent in G ′ involving vertices from both K`−1

and K`+1. Therefore, we only need to take care of holes in the proof.
Suppose to the contrary of the only if direction that (G,k) is a yes-instance but (G ′,k) is not. Let V− be a

solution to (G,k). Then there is necessarily a hole of G ′ that visits at least one edge added by the reduction; let
it be xy with x ∈ K`−1 and y ∈ K`+1. Since x,y are nonadjacent to M, their other neighbors on the hole must
both belong to V(G) \M as well; denote them by x ′ and y ′ respectively. The ordering of these four vertices has
to be x ′ <σ x <σ y <σ y ′. There must be an x-y path in G−M using only vertices in K`−1,K`,K`+1. Its inner
vertices are not adjacent to any vertex in this hole, except x,y themselves. Thus, we end with a hole of G−V−, a
contradiction.

On the other hand, if V− is a solution to G ′ but there is hole in G− V−, then there must be a hole visiting a
vertex deleted by the reduction. This hole necessarily visit N(K`) ∩ K`−1 and N(K`) ∩ K`+1. But then after the
reduction, its remaining vertices form a hole of G ′ −V−: Note that the original hole has to visit M and hence has
length larger than 4.

Lemma 3.3. Each of the three reduction rules can be applied in O(m) time.

Proof. We can mark first the vertices in M, and then go through the adjacency list of each vertex in G−M in
the proper interval order. During this process we can record (1) for each vertex v ∈M, how many cliques in K

are adjacent to v, and how many of them contain k+ 1 or more neighbors of v; and (2) for each clique K ∈ K,
whether it is adjacent to M. The process checks the adjacency list of each vertex once, and thus it takes O(m)
time in total. With this information, we can decide which of the three reduction rules is applicable, and if yes,
apply it in the same time.

After the application of the reduction rules, it is possible that the rest of M is no longer a 6-approximation of
the reduced graph. Therefore, we need to re-calculate the modulator. This would nevertheless take O(n2m)
time. We defer the detailed for an efficient implementation to Section 5.

5

4 The kernel

Let (G,k) be a reduced instance with respect to modulator M, i.e., none of Rules 1–3 can be applied to G. Recall
that σ is the fixed proper interval ordering of G−M, and K = K1, . . . ,Kt is the clique partition of G−M. We
now pick up vertices from G to make the kernel. The idea is to pick as few as possible vertices that are relevant,
i.e., from each type of vertices (to be defined later) we choose k+ 1, which ensures that if any vertex from this
type is not picked, then at least one picked vertex is not deleted by a solution of size at most k. Note that it is
possible that there are less than k+ 1 vertices in some type, and then we pick all of them. See Figure 4 for an
example.

K1 K2

v1

v5

v10

v15

v20

v25

x1

x2M

Figure 4: Illustration for picking vertices. The modulator M consists of x1 and x2, and other 25 vertices are
in V(G) \M. Edges in G −M are not drawn: The intervals, whose left endpoints coincide the vertices they
represent, make a unit interval model for G−M. The vertices in V(G) \M are thus partitioned into two cliques,
namely, K1 = {v1, . . . , v9} and K2 = {v10, . . . , v25}. For k = 2, we have

K1
2(x1, x2) = {v10, v12, v13} ∪ {v18, v21, v24}; K1

2(x1, x2) = ∅; K1
2(x1, x2) = {v14, v23}; K1

2(x1, x2) = {v11, v15, v16} ∪
{v20, v22, v25}.

K2
2(x2, v6) = {v12, v13, v14}; K2

2(x2, v8) = {v14, v18, v21}; K2
2(x2, v9) = {v18, v21, v23}; K2

1(x2, v11) = {v3, v7};
K2

1(x2, v15) = K
2
1(x2, v16) = {v7}.

K3
2(x1, v4) = {v13, v18, v21}; K3

2(x1, v6) = {v18, v21, v24}; K3
2(x1, v7) = {v21, v24}; K3

1(x1, v24) = {v6, v7, v8};
K3

1(x1, v21) = {v4, v6, v7}; K3
1(x1, v18) = {v4, v6}.

K4
2(x1, v6) = {v15, v16, v17}; K4

2(x1, v7) = {v17, v19, v20}; K4
2(x1, v8) = {v19, v20, v22}.

First, for each pair of vertices x1, x2 inM and each i = 1, . . . , t, we consider the (non)neighbors of x1, x2 in Ki.
We pick the first and last k+ 1 vertices from Ki for each of the four patterns—adjacent to both; adjacent to only
x1; adjacent to only x2; and adjacent to neither. Let them be denoted by K1

i(x1, x2), K1
i(x1, x2), K1

i(x1, x2), and
K1
i(x1, x2) respectively. Also, let K1

i(x) denote the first k+ 1 and the last k+ 1 of
⋃
y∈M\{x}

(
K1
i(x,y) ∪ K1

i(x,y)
)
.

Second, For each x ∈M, each i = 2, . . . , t, and each of the last k+ 1 non-neighbors y of x in Ki−1, we pick
the last k + 1 common neighbors of x and y in Ki; for each x ∈M, each i = 1, . . . , t − 1, and each of the first
k + 1 non-neighbors y of x in Ki+1, we pick the first k + 1 common neighbors of x and y in Ki. Let them be
denoted by K2

i(x,y).
Third, for each x ∈M, each i = 2, . . . , t, and each of the first k+ 1 neighbors y of x in Ki−1, we pick the first

k+ 1 vertices in Ki that are neighbors of x but not y; for each x ∈M, each i = 1, . . . , t− 1, and each of the last
k+ 1 neighbors y of x in Ki+1, we pick the last k+ 1 vertices in Ki that are neighbors of x but not y. Let them be
denoted by K3

i(x,y).
Fourth, for each x ∈M, each i = 2, . . . , t, and each of the last k+ 1 neighbors y of x in Ki−1, we pick the last

k+ 1 vertices in Ki that are neighbors of y but not x; for each x ∈M, each i = 1, . . . , t− 1, and each of the first

6

k+ 1 neighbors y of x in Ki+1, we pick the first k+ 1 vertices in Ki that are neighbors of y but not x. Let them
be denoted by K4

i(x,y).
Finally, for each three pairwise nonadjacent vertices in M, we arbitrarily pick k + 1 common neighbors of

them in V(G) \M; and for each triple of vertices in M that induces a P3, we arbitrarily pick k + 1 vertices in
V(G) \M that are adjacent to only the center vertex among them. Let them be denoted by V0.

Let K be a clique in K. If |K| 6 2k+ 2, then all its vertices have been picked. We consider then the nontrivial
case, i.e., when |K| > 2k + 2. The first and last k + 1 vertices of K are always picked; hence at least 2k + 2
vertices are picked from K. Likewise, the first and the last k + 1 vertices in K that are nonadjacent to M are
always picked; so are the first and the last k+ 1 neighbors in K for each x ∈M. Moreover, if a vertex v satisfies
the conditions of any particular set but is not picked, then we have picked from the set 2(k+ 1) vertices, of which
k+ 1 are to the left of v, and k+ 1 are to the right of v.

Let G ′ be induced by the picked vertices together with M. We now calculate the cardinality of V(G ′). There
are O

(
|M|

2

)
∗ O(k) + O(|M|) ∗ O(k) ∗ O(k) = O(k3) vertices picked from each clique. On the other hand, the

number t of cliques in K is O(k2), as otherwise one of Rules 1 and 3 must be applicable. Together with at most(
|M|

3

)
∗ (k+ 1) ∗ 2 = O(k4) vertices in V0, and O(k) vertices in M, a rough estimation of |V(G ′)| would be O(k5).

A refined analysis would bring it to O(k4).

Lemma 4.1. The new graph G ′ has at most O(k4) vertices.

Proof. Since Rule 1 is not applicable, for each v ∈M there are at most k+ 5 cliques intersecting N(v). There are
at most |M|× (k+ 5) = O(k2) cliques adjacent to M. On the other hand, since Rule 3 is not applicable, at most 6
consecutive cliques can be nonadjacent to M. Therefore, the number t of cliques in K is at most O(k2).

We consider first the vertices that are not in N[M]. In the first category, we choose from each clique at most
2k+ 2 vertices that are nonadjacent to M. In the third and fourth categories, we choose from each clique at most
|M|× (k+1)∗4 = O(k2) vertices that are nonadjacent toM. Therefore, |V(G ′)\N[M]| = O(k2)∗O(k2) = O(k4).

Consider then vertices in N(M). Since Rule 2 is not applicable, for each v ∈ M there can be at most four
cliques containing k+ 1 or more vertices from N(v). There are thus at most |M|× 4 6 24k such cliques. From
each of them we picked O

(
|M|

2

)
∗O(k) +O(|M|) ∗O(k) ∗O(k) = O(k3) vertices, and hence the total number of

vertices picked from these cliques is O(k4). Each of the other cliques contains at most k neighbor of each vertex
v ∈M, and no more than |M|× k = O(k2) vertices from N(M). Therefore from these cliques we picked at most
O(k2)×O(k2) = O(k4) vertices that are neighbors of M.

In summary,

|V(G ′)| = |V(G ′) \N[M]|+ |V(G ′) ∩N(M)|+ |M| = O(k4) +O(k4) +O(k) = O(k4).

The proof is now complete.

To conclude Theorem 1.1, it remains to verify the equivalence between the new instance (G ′,k) and the
original instance. Similar as the proof of Proposition 2.4, the proof of our main lemma would be manipulating
intervals. We also take liberty to produce a proper interval model instead of a unit interval model: One can
always turn it into a unit interval model by, say, calling the algorithm of Bogart and West [2]. Another trick we
want to play is the following. Since the set of endpoints is finite, for any point ρ in an interval model, we can
find a small positive value ε such that there is no endpoint in [ρ− ε, ρ) ∪ (ρ, ρ+ ε],—in other words, there is an
endpoint in [ρ− ε, ρ+ ε] if and only if ρ itself is an endpoint. Note that the value of ε should be understood as a
function, depending on the interval model as well as the point ρ, instead of a constant.

Lemma 4.2. If there is V− with |V−| 6 k such that G ′ − V− is a unit interval graph, then G − V− is also a unit
interval graph.

Proof. We build a proper interval model for G− V− by inserting intervals for V(G) \ V(G ′) into a unit interval
model for G ′ − V− as follows. Note that G ′ contains M, and hence all vertices in V(G) \ V(G ′) appear in σ,
which is a proper interval ordering for G−M. Let G0 = G ′, and let Gi, for 1 6 i 6 |V(G) \ V(G ′)|, denote the
subgraph induced by V(G ′) and the first i vertices of V(G) \ V(G ′) in σ.2 Since G0 is a unit interval graph, by
inductive reasoning, it suffices to show how to build a proper interval model for Gi − V− out of Gi−1 − V−.

2Our construction in the proof does not rely on any particular ordering, and it can be arbitrary.

7

x

u`

ur y

α β

v

(a) No vertex is adjacent to both u` and ur but not v.

x
u1

u2

u`

ur y

α β

v

(b) Some non-neighbor of v is adjacent to both u` and ur from the right.

Figure 5: Illustration for Lemma 4.2.

Let v be the ith vertex of V(G) \ V(G ′), and let I be a unit interval model for Gi−1 − V−. Let Kb be the clique
in the clique partition of G−M that contains v. Since v itself is not in G ′, we have picked from Kb the first k+ 1
and the last k+ 1 vertices; from each of them at least one vertex is not in V−. There are thus vertices u`,ur in
Gi−1 − (V− ∪M) such that u` <σ v <σ ur. Assume without loss of generality I(u`) is to the left of I(ur).

Consider first that NGi
(u`)\NGi

[v] and NGi
(ur)\NGi

[v] are disjoint, i.e., for every vertex u ∈ V(Gi−1)\V−

that is nonadjacent to v, the interval I(u) intersects at most one of I(u`) and I(ur). Let x be the vertex in
NGi

(u`) \ NGi
[v] with the rightmost interval, and let y be the vertex in NGi

(ur) \ NGi
[v] with the leftmost

interval; denote by α = rp(x) and β = lp(y). See Figure 5(a). Then

lp(u`) < α < lp(ur) < rp(u`) < β < rp(ur),

and every vertex in Gi−1 \ V− with its interval properly contained in [α,β] has the same closed neighborhood as
v in Gi \ V−.

We now argue that no interval can contain [α,β]. Suppose for contradiction [α,β] ⊆ I(u), then {u, x,y, v} is a
claw of Gi. At least one of these four vertices is in M, because G−M is a unit interval graph. Noting that v is
not in M, we consider which of u, x,y are in M. Note that the other vertices in V(Gi) \ (V− ∪M) may or may
not be in G ′.

• Case 1, x,y,u ∈M. In V0 there are at least k + 1 vertices each of which makes a claw with {u, x,y}. At
least one of them is not in V− and hence G ′ − V− contains a claw.

• Case 2, x,y ∈M but u 6∈M. Let u ∈ Ka. We may assume u <σ v; then a = b or b− 1: Since u and v are
adjacent, they are either in the same clique or in two consecutive cliques in the partition K. We take u ′ to
be the last vertex of K1

a(x,y) \ V− (it is nonempty because |K1
a(x,y)| > k when u is not in it), and take v ′

to be the first of K1
b(x,y) \ V−. We claim that {u ′, v ′, x,y} is always a claw in G ′ − V−. By the selection, it

suffices to verify that u ′v ′ ∈ E(G). It is trivial when a = b, and it follows from u 6σ u ′ <σ v ′ <σ v and
Proposition 2.1 when a = b− 1.

• Case 3, u and one of x,y is in M. We consider x and the other is symmetric. Let y ∈ Kc; note that c 6= b
because y and v are nonadjacent. We may assume b < c. We take v ′ to be the first of K1

b(u, x) \ V−, and
take y ′ to be the last of K1

c(u, x) \ V−. They are nonadjacent because v ′ <σ v <σ y 6σ y ′ and vy 6∈ E(G).
Then {u, v ′, x,y ′} is a claw in G ′ − V−.

• Case 4, only u is in M. Let x ∈ Ka and y ∈ Kc; note that a,b, and c are all distinct because v, x, and y
are pairwise nonadjacent. We may assume a < b < c (i.e., x <σ v <σ y). We take x ′ to be the first of
K1
a(u) \ V−, and take y ′ to be the last of K1

c(u) \ V−. They are clearly adjacent to u but nonadjacent to
each other.

8

4.1. If b > a+1, then we take v ′ to be the first of K1
b(u) \V−; it is nonadjacent to x ′. It is also nonadjacent

to y ′ because v ′ <σ v <σ y 6σ y ′ and vy 6∈ E(G).
4.2. Otherwise, we take v ′ to be the first of K3

b(u, x ′) \ V−. Note that x ′ 6σ x <σ v; by Proposition 2.1 x ′

is nonadjacent to v. As a result, K3
b(u, x ′) \ V− is nonempty and v ′ <σ v. Together with v <σ y 6σ y ′

and vy 6∈ E(G), we have v ′y ′ 6∈ E(G). The definition of K3
b(u, x ′) implies x ′v ′ 6∈ E(G).

Therefore, {u, v ′, x ′,y ′} is always a claw in G ′ − V−.

• Case 5, only one of x,y is in M. We consider x and the other is symmetric. Then vuy is a P3 in Gi − V−;
we may assume v <σ u <σ y. Clearly, v and y are nonadjacent and hence in different cliques.

5.1. If none of them is in the same clique as u, then u ∈ Kb+1 and y ∈ Kb+2. We take v ′ to be
the last of K1

b(x) \ V−; take u ′ to be the last of K2
b+1(x, v

′) \ V−; and take y ′ to be the first of
K1
b+2(x) \ V−. The vertex v ′ is clearly adjacent to u ′ but not y ′. To see that v ′ is not adjacent to y ′,

note u 6σ u ′ <σ y ′ 6σ y.

5.2. Otherwise, y ∈ Kb+1 and u is in either Kb or Kb+1. Assume without loss of generality that u ∈ Kb+1.
We take u ′ to be the first of K1

b+1(x) \ V−, take v ′ to be the first of K4
b(x,u

′) \ V−, and take y ′ to be
the last of K1

b+1(x) \ V−.

In either case, {u ′, v ′, x,y ′} is a claw of G ′ − V−.

Therefore, if no interval of I is contained in [α,β], then making I(v) = [α+ε,β−ε] would make a proper interval
model for Gi. Otherwise let [α ′,β ′] be such an interval contained in [α,β]; we can make I(v) = [α ′ + ε,β ′ + ε].

In the rest there exists at least one non-neighbor u of v such that I(u) intersects both I(u`) and I(ur). We
argue that I(u) cannot be contained in [lp(u`), rp(ur)]. Suppose such a vertex u exists, then it is must be from
M: because u` <σ v <σ ur, no vertex in the unit interval graph G−M can be adjacent to both u` and ur but
not v. Since the model is proper, if I(u) ⊆ [lp(u`), rp(ur)], then [lp(ur), rp(u`)] ⊆ I(u). But we had also chosen
from K the first k+ 1 and the last k+ 1 non-neighbors of u. At least one of these vertices remains in Gi and its
interval has to be intersect both I(u`) and I(ur) but not I(u). This is impossible.

Therefore, I(u) approaches I(u`) and I(ur) either from the left or the right. We may assume without
loss of generality it is to the right of I(ur) (i.e., rp(ur) ∈ I(u)); the other case follows by symmetry. Let us
take the non-neighbor y of v in Gi that has the leftmost interval containing rp(ur); let β = lp(y). Then
β = minu{lp(u) : u ∈ V(Gi) \ N(v), ur ∈ I(u)}, and by assumption, β ∈ I(u`). Since u` <σ v <σ ur, the
vertex y has to be from M. But then we would have also chosen from K the first k + 1 and the last k + 1
non-neighbors of y. At least one from either set is in Gi; let them be u1 and u2 respectively. The intervals I(u1)
and I(u2) have to approach I(u`) from the left. Again, there cannot be vertices from Gi −M adjacent to both
u1,u2 but not v. We argue that for any vertex x 6∈ N(v) adjacent to u1 and/or u2, the interval I(x) is disjoint
from and to the left of I(u`) (i.e., rp(x) < lp(u`)). We have also chosen from K the first k + 1 and the last
k + 1 vertices that are adjacent to neither x nor y. At least one of them is in Gi − V− and its interval has to
be accommodated between (rp(x), lp(y)). It would then be properly contained in I(u`) if rp(x) > lp(u`). Let
α = maxu{rp(u) : u ∈ V(Gi) \N(v), lp(u1) ∈ I(u)}. See Figure 5(b). The rest of the construction is the same as
the first one.

5 Implementation issues and concluding remarks

In principle, each application of Rules 1–3 should be followed by a re-calculation of the modulator: After the
application, the rest of M (it loses one vertex with Rules 1 and 2 but remains intact with Rules 3) may not be a
6-approximation for the remaining graph. This would imply that it takes O(n · nm) time to exhaustively apply
Rules 1–3.

We have been using the approximation algorithm [3] as a black box for furnishing the modulator. To have a
better analysis, we may have to unwrap the black box and see a bit of how it works. It consists of two phases.
The first phase keeps looking for a claw, net, tent, C4, or C5, and deletes all its vertices if one is found. When
none of these small forbidden induced subgraphs can be found, the algorithm enters the second phase, which
then finds an optimal solution in linear time. The ratio is 6 because unit interval graphs are hereditary and
any optimal solution needs to contain at least one vertex from any induced claw, net, tent, C4, or C5. Recall

9

that whether a graph contains a claw, net, tent, C4, or C5 can be decided in linear time, and if yes, one can be
detected in the same time.

Consider first Rules 1 and 2, each of which deletes a vertex from M. If the deleted vertex v had been added to
M in the second phase of the approximation algorithm, then the set M− {v} is still a 6-approximation for G− {v},
and we need to do nothing. Otherwise, we need to (re-)calculate a new approximation solution for G − {v}.
Fortunately, we do not need to start from scratch. Recall that v had been put into M because it is in some induced
claw, net, tent, C4, or C5 found in phase 1; let X be the at most six vertices of this forbidden induced subgraph.
Let M ′ denote the subset of vertices of M \ X that are added in the first phase; they are still good in the sense
that they still form vertex-disjoint claws, nets, tents, C4’s, and C5’s. Therefore, we may start the approximation
algorithm with M ′ as the partial solution. Note that every claw, net, tent, C4, or C5 in G − {v} −M ′ needs to
intersect X \ {v}. Therefore, we can find at most six vertex-disjoint claws, nets, tents, C4’s, and C5’s, which can be
done in O(m) ∗ 6 = O(m) time. We put all the vertices in the found subgraphs, and redo the second phase in
another O(m) time. Consequently, we can produce a 6-approximation for the new graph G− {v} in O(m) time.

The situation for Rule 3 is actually simpler. It does not touch M, and thus all vertices added in the first phase
remain good. We can redo the second phase in O(m) time to produce an approximation solution for the new
graph.3

Therefore, we can apply each reduction rule and presently recover the modulator in O(m) time. On the other
hand, since each application of a reduction rule deletes at least one vertex from the graph, they can be applied
at most n times. The total running time of them is O(nm). The picking of the vertices can be easily done in
O(k3m) time. Note that if n < k4, then we do not need to do anything at all. Therefore, the running time of the
whole kernelization algorithm is O(nm).

The primary concern of a kernelization algorithm is surely the kernel size. Kernelization algorithms may
not completely solve the instance, and then they are followed by other algorithmic approaches. Its applicability
would thus be limited if the running time is too high. In literature, however, very little attention has been paid to
the running time of most kernelization algorithms, and most of the time, a detailed analysis is omitted. (Most of
them are trivially polynomial.) Once we aim for “efficient” kernelization with lower polynomial running time,
we need to reconsider the tools we can use. For example, for all vertex deletion problems to hereditary graph
class, we have a trivially correct reduction rule that deletes all vertices not participating in any forbidden induced
subgraphs. This, however, is usually very time-consuming (it takes normally n|X| where X is the largest forbidden
induced subgraph) and thus should be avoided.

As a final remark, properties of the approximation algorithm [3] may be further exploited to sharpen the
analysis of the kernel size of our kernelization algorithm. But it would very unlikely lead to one with o(k2)
vertices. We leave the existence of a linear-vertex kernel for the unit interval vertex deletion problem as an open
question.

Acknowledgments. The authors want to thank Jinshan Gu, R. B. Sandeep, and Jie You for fruitful discussions
during an early stage of this project.

References
[1] René van Bevern, Christian Komusiewicz, Hannes Moser, and Rolf Niedermeier. Measuring indifference: Unit interval

vertex deletion. In Dimitrios M. Thilikos, editor, Graph-Theoretic Concepts in Computer Science (WG), volume 6410 of
LNCS, pages 232–243. Springer, 2010. doi:10.1007/978-3-642-16926-7_22.

[2] Kenneth P. Bogart and Douglas B. West. A short proof that ‘proper = unit’. Discrete Mathematics, 201(1-3):21–23, 1999.
doi:10.1016/S0012-365X(98)00310-0.

[3] Yixin Cao. Unit interval editing is fixed-parameter tractable. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi,
and Bettina Speckmann, editors, Automata, Languages and Programming (ICALP), volume 9134 of LNCS, pages 306–317.
Springer, 2015. Full version available at arXiv:1504.04470. doi:10.1007/978-3-662-47672-7_25.

3This step is not really necessary, because it can be proved thatM remains a 6-approximation of the new graph after the application
of Rule 3. Moreover, the impact of Rule 3 on the interval model and the clique partition of G−M is local, and a new model and a new
partition can be easily recovered. For the simplicity of presentation, the form of Rule 3 given in Section 3 deletes only one clique. One can
show that it can be easily adapted to contracting all but 6 cliques in a sequence of cliques in K that are nonadjacent toM. Moreover, all the
cliques can be handled in one run, in linear time. To prove these facts, however, we need to revisit the approximation algorithm [3] with all
the details, which we omit to not blur the focus of the current paper.

10

http://dx.doi.org/10.1007/978-3-642-16926-7_22
http://dx.doi.org/10.1016/S0012-365X(98)00310-0
http://dx.doi.org/10.1007/978-3-662-47672-7_25

[4] Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor, Proceedings of the 27th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1096–1115. SIAM, 2016. Full version available at
arXiv:1403.1515. doi:10.1137/1.9781611974331.ch77.

[5] Yixin Cao, Yuping Ke, and Xiating Ouyang. A polynomial kernel for interval vertex deletion. Manuscript, 2016.

[6] Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Transactions on Algorithms, 11(3):21:1–
21:35, 2015. A preliminary version appeared in SODA 2014. doi:10.1145/2629595.

[7] Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica, 75(1):118–137, 2016. A
preliminary version appeared in STACS 2014. doi:10.1007/s00453-015-0014-x.

[8] Xiaotie Deng, Pavol Hell, and Jing Huang. Linear-time representation algorithms for proper circular-arc graphs and
proper interval graphs. SIAM Journal on Computing, 25(2):390–403, 1996. doi:10.1137/S0097539792269095.

[9] Pål Grønås Drange and Michal Pilipczuk. A polynomial kernel for trivially perfect editing. In Nikhil Bansal and Irene
Finocchi, editors, Algorithmics (ESA), volume 9294 of LNCS, pages 424–436. Springer, 2015. Full version available at
arXiv:1412.7558. doi:10.1007/978-3-662-48350-3_36.

[10] Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[11] Fedor V. Fomin, Saket Saurabh, and Yngve Villanger. A polynomial kernel for proper interval vertex deletion. SIAM
Journal on Discrete Mathematics, 27(4):1964–1976, 2013. A preliminary version appeared in ESA 2012. doi:

10.1137/12089051X.

[12] Pavol Hell and Jing Huang. Certifying LexBFS recognition algorithms for proper interval graphs and proper interval
bigraphs. SIAM Journal on Discrete Mathematics, 18(3):554–570, 2004. doi:10.1137/S0895480103430259.

[13] Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–867, 2013. doi:

10.1007/s00453-012-9661-3.

[14] Wen-Lian Hsu. O(m ·n) algorithms for the recognition and isomorphism problems on circular-arc graphs. SIAM Journal
on Computing, 24(3):411–439, 1995. doi:10.1137/S0097539793260726.

[15] Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex deletion. arXiv:1605.03001,
2016.

[16] John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties is NP-complete. Journal of
Computer and System Sciences, 20(2):219–230, 1980. Preliminary versions independently presented in STOC 1978.
doi:10.1016/0022-0000(80)90060-4.

[17] Peter J. Looges and Stephan Olariu. Optimal greedy algorithms for indifference graphs. Computers & Mathematics with
Applications, 25(7):15–25, 1993. doi:10.1016/0898-1221(93)90308-I.

[18] Dániel Marx. Chordal deletion is fixed-parameter tractable. Algorithmica, 57(4):747–768, 2010. A preliminary version
appeared in WG 2006. doi:10.1007/s00453-008-9233-8.

[19] Fred S. Roberts. Indifference graphs. In Frank Harary, editor, Proof Techniques in Graph Theory (Proc. Second Ann Arbor
Graph Theory Conf., 1968), pages 139–146. Academic Press, New York, 1969.

[20] Gerd Wegner. Eigenschaften der Nerven homologisch-einfacher Familien im Rn. PhD thesis, Universität Göttingen, 1967.

11

http://dx.doi.org/10.1137/1.9781611974331.ch77
http://dx.doi.org/10.1145/2629595
http://dx.doi.org/10.1007/s00453-015-0014-x
http://dx.doi.org/10.1137/S0097539792269095
http://dx.doi.org/10.1007/978-3-662-48350-3_36
http://dx.doi.org/10.1137/12089051X
http://dx.doi.org/10.1137/12089051X
http://dx.doi.org/10.1137/S0895480103430259
http://dx.doi.org/10.1007/s00453-012-9661-3
http://dx.doi.org/10.1007/s00453-012-9661-3
http://dx.doi.org/10.1137/S0097539793260726
http://dx.doi.org/10.1016/0022-0000(80)90060-4
http://dx.doi.org/10.1016/0898-1221(93)90308-I
http://dx.doi.org/10.1007/s00453-008-9233-8

	1 Introduction
	2 The clique partition
	3 The reduction rules
	4 The kernel
	5 Implementation issues and concluding remarks

