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When are epsilon-nets small?

Andrey Kupavskii∗ Nikita Zhivotovskiy†

Abstract

Given a range space (X ,R), where X is a set equipped with probability measure
P, R ⊂ 2X is a family of measurable subsets, and ǫ > 0, an ǫ-net is a subset of X in
the support of P, which intersects each R ∈ R with P(R) ≥ ǫ. In many interesting
situations the size of ǫ-nets depends on ǫ and on natural complexity measures. The
aim of this paper is to give a systematic treatment of such complexity measures arising
in Discrete and Computational Geometry and Statistical Learning, and to bridge the
gap between the results appearing in these two fields. As a byproduct, we obtain
several new upper bounds on the sizes of ǫ-nets that generalize/improve the best known
general guarantees. Some of our results deal with improvements in logarithmic factors
(which is a subject of several classical problems in Learning Theory and Computational
Geometry), while others consider the regimes where ǫ-nets of size o(1ǫ ) exist. Inspired
by results in Statistical Learning, we also give a short proof of the Haussler’s upper
bound on packing numbers [20].

1 Introduction

In this section, we collect ǫ-nets-related results in different areas. Some of the observations
that we make are scattered in the literature and sometimes not written explicitly, which is
one reason why we collected them in a single section. The new results are presented starting
from Section 2.

1.1 ǫ-nets. Combinatorial and geometric point of view

Consider a set X equipped with probability measure P and a family of measurable subsets
R ⊂ 2X , where 2X is the power set of X . For simplicity and to avoid potential measurability
issues we assume that the set X is finite. The pair (X ,R) is called a range space. For
a fixed ǫ > 0, a subset S ⊂ X ∩ supp(P) is an ǫ-net,1 if R ∩ S 6= ∅ for each R ∈ R
with P(R) ≥ ǫ. ǫ-nets often arise in the context of Computational Geometry problems.
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1Compare with the definition of a weak ǫ-net where S ⊂ X ∩ supp(P) is replaced by S ⊂ X . In what
follows supp denotes the measure theoretic support of P.
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In that context, the set X is often finite and equipped with the uniform measure, and we
may speak about sizes instead of measures. In some cases it is not difficult to generalize
the results that are valid for a uniform measure on a finite set to an arbitrary measure
(see e.g., [26]). However, to avoid some technical difficulties, in this paper we focus on
distribution dependent complexity measures of the range spaces and therefore choose to
present everything for general probability measures.

A line of research, starting from a seminal work of Vapnik and Chervonenkis (we refer to
the textbook [32]), is concerned with proving the existence of small ǫ-nets in certain scenarios.
The first historically and probably the most important one is bounded VC-dimension. The
VC-dimension of (X ,R) is the maximal size of Y ⊆ X such that Y is shattered: R|Y :=
{R∩Y : R ∈ R} = 2Y . This means that any subsets of Y is realized by some R ∈ R. Haussler
and Welzl [18] proved that one can find ǫ-nets of size depending on ǫ and VC-dimension only.
Moreover, the ǫ-net can be constructed using an i.i.d. sample of points taking their values
in X . Later their result was slightly sharpened in [21], and matching lower bounds were
proven. We note that the result of Haussler and Welzl follows immediately from the uniform
ratio-type bounds in [32]. Given the VC-dimension of a range space, one can bound the size
of the smallest ǫ-net as follows.

Theorem A ([32], [18], [21]). Fix ǫ, δ ∈ (0, 1] and let (X ,R) be a range space of VC-

dimension d with probability distribution P. Then a set of size m = O
(d log 1

ǫ

ǫ
+

log 1
δ

ǫ

)

chosen
i.i.d. from X according to P is an ǫ-net for (X ,R) with probability at least 1− δ.

It can be more convenient to formulate this and analogous results for given sample size:
what is the best ǫ that can be obtained with a given budget of n points. Here is such a
reformulation of Theorem A, equivalent to the original.

Theorem B. Fix δ ∈ (0, 1], n ∈ N and let (X ,R) be a range space of VC-dimension d with
probability distribution P. A set of size n chosen i.i.d. from X according to P is an ǫ(n)-net

for (X ,R) with probability at least 1− δ for ǫ(n) = O
(d log n

d

n
+

log 1
δ

n

)

.

In Computational Geometry X is typically a set of points in Rd, and the ranges are
intersections of X with all objects from a certain class: lines, halfspaces, balls, etc. One then
searches for upper bounds on the sizes of ǫ-nets that would hold for all range spaces of such
type. In another common scenario of the so-called dual range spaces, the roles of points and
ranges are switched.

The applications of ǫ-nets cover several topics in Computational Geometry, including
spatial partitioning and LP rounding. We refer to a recent survey [31], which covers many
of the recent developments in ǫ-nets, as well as their applications.

1.2 ǫ-nets. Statistical point of view

Similar ideas and notions were developed in Statistical Learning. Consider the following
statistical model. We are given an instance space X equipped with an unknown probability
distribution P and a (known) family of classifiers ( binary valued functions) F consisting of
functions f : X → {±1}. A learner observes ((x1, y1), . . . , (xm, ym)), an i.i.d. training sample
where xi are sampled according to P and yi = f ∗(xi) for some fixed f ∗ ∈ F . This scenario is

2



referred to as the realizable case classification and the learning model itself is referred to as
Passive learning. Sample-consistent learning algorithm (the particular case of empirical risk
minimization) refers to any learning algorithm with the following property: given a training
sample of size m, it outputs any classifier f̂ ∈ F that is consistent with the sample (that is,
f̂(xi) = f ∗(xi) for all i = 1, . . . , m).

Similarly as above, we say a set {x1, . . . , xk} ∈ X k is shattered by F if there are all 2k

distinct classifications of {x1, . . . , xk} realized by classifiers in F . The VC-dimension of F is
the largest integer d such that there exists a set {x1, . . . , xd} shattered by F .

The analogue of Theorem A in this context is the following classical result2 of Vapnik
and Chervonenkis:

Theorem C (Theorem 12.2 in [32]). Consider any sample-consistent learning algorithm
over the i.i.d. sample of size m, which outputs a classifier f̂ ∈ F . Assume that F has
VC dimension d and we are in the realizable case. Then, for any ǫ, δ ∈ (0, 1] and some

m(ǫ) = O
(d log 1

ǫ

ǫ
+

log 1
δ

ǫ

)

, we have P
(

f̂(x) 6= f ∗(x)
)

≤ ǫ with probability at least 1− δ.

It is actually easy to translate this problem into the combinatorial language: we just
have to think of the instance space X as our ground set, and the collection of sets

{

{x ∈ X :
f(x) 6= f ∗(x)} : f ∈ F

}

playing the role of ranges. Then Theorem C, basically says that an
i.i.d. sample gives an ǫ-net for such range space with high probability.

1.3 Alexander’s capacity and Active Learning

Significant effort was put by many researchers in both Computational Geometry and Statis-
tical Learning Theory to understand whether it is possible to improve on the above bounds.
In this context, several different measures of complexity were introduced. One of them is
the VC-dimension, already mentioned above. Actually, to Prove Theorem A, one only needs
the following property of the VC-dimension, implied by the famous Vapnik-Chervonenkis-
Sauer-Shelah lemma: given a range space (X ,R) of VC-dimension d, for any Y ⊂ X we

have |R|Y | ≤
∑d

i=0

(

|Y |
d

)

≤
(

e|Y |
d

)d

. Let us introduce the projection function πR(Y ):

πR(y) := max{|R|Y | : Y ⊂ X , |Y | = y}. (1)

Thus, the Vapnik-Chervonenkis-Sauer-Shelah lemma [32] implies that

πR(y) ≤
d
∑

i=0

(

y

i

)

≤
(ey

d

)d

, (2)

for any y = d, . . . , |X |, and Theorem A, as well as Theorem C, holds under this condition.
Actually, Vapnik and Chervonenkis used a weaker requirement to obtain Theorem C: They
required the projections to be small on average (see [6, 5] and the results related to the
so-called VC entropy).

2Although this result is not presented explicitly in their book, it follows directly from their learning
bounds for the realizable case classification.
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One of the measures coming from Statistical Learning is Alexander’s capacity [1, 15].
Initially it appeared in the work of Alexander [1] in the analysis of ratio-type empirical
processes. For ǫ0 > 0 fix a set Fǫ0 :=

{

f ∈ F : P
(

f(x) 6= f ∗(x)
)

≤ ǫ0
}

. For ǫ ∈ (0, 1], define
Alexander’s capacity3 τ(ǫ) as follows.

τ(ǫ) := sup
ǫ0≥ǫ

P({x ∈ X : ∃f ∈ Fǫ0 s.t. f(x) 6= f ∗(x)})
ǫ0

.

Remark. Alexander’s capacity is essentially the same as the disagreement coefficient in
the Active Learning literature [23]. The difference is that in the original work of Alexander

[1] the ratio
P({x∈X :∃f∈Fǫ0 s.t. f(x)6=f∗(x)})

ǫ0
is assumed to be non-decreasing with ǫ0. We avoid

this technical assumption by taking the supremum with respect to ǫ0 as in [23].
In what follows, to avoid problems with logarithms, we separate τ(ǫ) from zero by an

absolute constant. Without the loss of generality, we redefine the capacity by max{τ(ǫ), 1}.
We also define Alexander’s capacity for a range space (X ,R) as follows

τ(ǫ) := sup
ǫ0≥ǫ

P
(
⋃

R∈R≤ǫ0
R
)

ǫ0
,

where R≤ǫ0 := {R ∈ R : P(R) ≤ ǫ0}. For the uniform measure on a finite set the last
definition can be informally understood as ratio of the number of points of X that lie in
one of the sets of size at most ǫ0n, over ǫ0n (which is maximized over ǫ0 ≥ ǫ). Before
we proceed let us point some other trivial properties of the Alexander’s capacity, which will
be used below extensively. Observe that τ(ǫ) ≤ 1

ǫ
and ǫ ≤ ǫ′ implies that 1 ≤ τ(ǫ)

τ(ǫ′)
≤ ǫ′

ǫ
.

Denoting τi = τ(2iǫ), we also have τi ≤ 2−i

ǫ
, and 1 ≤ τi

τi+1
≤ 2, as well as

∞
∑

i=1

τi ≤ 1/ǫ.

Theorem D (Gine and Koltchinskii [15], Hanneke [23]). Theorems A and C hold with a

sample of size m = O
(d log τ(ǫ)+log 1

δ

ǫ

)

.

Observe that, since τ(ǫ) ≤ 1
ǫ
, Theorem D is an improvement over Theorem C. We refer

to [3, 15, 23] where many examples with τ(ǫ) = o(1
ǫ
) are provided. The same result may be

directly translated to the range spaces. However, we show that in many cases where τ(ǫ)
is smaller than 1

ǫ
it is possible to construct nets of sizes significantly smaller than what is

guaranteed by Theorem D. The result of Theorem D is very specific to i.i.d. sampling and
does not cover the situation where one is able to choose points in a more clever way.

Active learning is a particular framework within Statistical Learning. As before, there is
an instance space X and a label space Y := {−1, 1} and a set F of classifiers mapping X to
Y . In the the realizable case, there is a target function f ∗ ∈ F and a sample (xi, f

∗(xi))
n
i=1.

In the pool-based active learning, we define an active learning algorithm as an algorithm
taking as input a budget n ∈ N, and proceeding as follows (compare with passive learning
described in the previous section). The algorithm initially uses an unlabeled independent
infinite data sequence x1, x2, . . . distributed according to P. At time i, the algorithm may

3Instead of defining it with respect to the worst f∗ ∈ F we work with the definition that depends on the
target function f∗. This does not affect the results.
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select an index i1 and request to observe the label yi1 := f ∗(xi1). The algorithm observes
the value of yi1, and if n ≥ 2, then based on both the unlabeled sequence and yi1, it may
select another index i2 and request to observe yi2 . This continues for at most n rounds.

In the realizable case the algorithm named CAL (named after Cohn, Atlas, and Ladner
[11]) is by now the most studied. We refer the reader to [23] for the exact definition and the
analysis of this learning procedure (cf. also Appendix 7.1).

Theorem E (Sample complexity bound for CAL [23]). The exists an active learning algo-
rithm (CAL), such that in the realizable case, for any distribution P, ǫ, δ ∈ (0, 1] and a class
of classifiers F of VC dimension d, after requesting

n = O
(

τ(ǫ)
[

d log τ(ǫ) + log log
1

ǫ
+ log

1

δ

]

log
1

ǫ

)

,

labels with probability at least 1−δ, CAL returns a classifier f̂ satisfying P(f̂(x) 6= f ∗(x)) ≤ ǫ.

If τ(ǫ) log τ(ǫ) = o(1/ǫ) the above algorithm allows for up to an exponential improve-
ment over the standard sampling strategy described in Theorem C. In particular, a simple
inspection of the proof of the result for the CAL algorithm implies the following bound for
ǫ-nets. For the sake of completeness an analog of CAL algorithm for range spaces together
with some additional discussions are presented in Appendix 7.1.

Corollary 1. Let (X ,R) be a range space of VC-dimension d and Alexander’s capacity τ(ǫ).
Then there exists an ǫ-net of size

n = O
(

τ(ǫ)
[

d log τ(ǫ) + log log
1

ǫ

]

log
1

ǫ

)

.

1.4 Teaching

Teaching is another important topic in Learning Theory. There are several natural frame-
works of teaching studied in the literature (we refer to [12, 16] and reference therein). Once
again, for simplicity we consider the case of a finite domain X . One basic teaching framework
[16] may be described as follows: a helpful teacher who is aware of the target function f ∗

selects a sample S = ((x1, f
∗(x1)), . . . , (xm, f

∗(xm))) and presents it to the learner who is
aware only of F . The aim of the teacher is to present a small sample S with the following
property: f ∗ is the only function in F that is consistent with S. We return to Teaching in
Section 6 in the contexts of its relations with ǫ-nets.

1.5 Structure of the paper and our contributions

1. In Section 2 we provide a simple ǫ-net version of Theorem E with better guarantees.

2. In Section 3 we recall the definition of the doubling constant and give some of the results
concerning it along with their improvements. Later, we prove a general theorem (which
is one of our main contributions) giving bounds on ǫ-nets in terms of both Alexander’s
capacity and the doubling constant, which improves upon many of the previously
known results, and show that it is tight in all regimes. In Section 5 we return to the
doubling constant and provide sharp bounds on it.
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3. In Section 4 below we give a transparent proof of Haussler’s packing Lemma [20].
Matous̆ek [26] remarked that the original proof of Haussler (as well as its version by
Chazelle [10]) uses a “probabilistic argument which looks like a magician’s trick”. It
is surprising that our proof uses only the techniques available in the literature at the
time of original publication of Haussler. It is useful to note that recent Computational
Geometry papers (see e.g., [14, 29]) still use the argument of the original proof of
Haussler. Apart from a simplified proof, our result may also be used to provide sharper
constant factors and will be used in Section 5.

4. Section 6 is devoted to several concluding remarks.

2 New bound for ǫ-nets in terms of Alexander’s capac-

ity

The following theorem can be quickly deduced via an application of Theorem A.

Theorem 2. Let (X ,R) be a range space of VC-dimension d. Fix ǫ > 0. Let τi := τ(2iǫ)
and put z := 1+⌈log2 1

ǫ
⌉. Then there exists an ǫ-net for (X ,R) of size

O
(

d
z
∑

i=1

τi log τi

)

. (3)

Proof. We set ǫ−1 := 0, ǫi := 2iǫ and Ri = {S ∈ R : ǫi−1 ≤ P(S) < ǫi} for i = 0, 1, . . ..
Define X (i) :=

⋃

R∈Ri
R to be the support of Ri.

It is sufficient to find an ǫ-net for each (X (i),Ri) of size O(dτi log τi). Note that, by defini-

tion, P(X (i)) ≤ τiǫi, while for each R ∈ Ri we have P(R) ≥ ǫi−1. Therefore, P(R) ≥ P(X (i))
2τi

,

and since for each R ∈ Ri we have P(R∩X (i)) = P(R) and thus P(R|X (i)) = P(R)/P(X (i)) ≥
1
2τi

it is sufficient for us to find a 1
2τi

-net for (X (i),Ri) with respect to the conditional distribu-

tion P( |X (i)). But this could simply be done using the Vapnik-Chervonenkis-Haussler-Welzl
Theorem A. This gives a net of size O(dτi log τi) for each (X (i),Ri).

We immediately get the following Corollary.

Corollary 3. In the notation of Theorem 2, there exists an ǫ-net for (X ,R) of size

O
(

dτ(ǫ) log τ(ǫ) log
1

ǫ

)

. (4)

Proof. There are 1 + ⌈log2 1
ǫ
⌉ summands in (3), each being O

(

dτ(ǫ) log τ(ǫ)
)

.

Remark. Theorem 2 improves on both Theorems A and D in many cases. Indeed,
one should use τi ≤ 2−i/(ǫ). Corollary 3 is an improvement of Corollary 1. In particular,
Corollary 3 implies that if τ(ǫ) = O(1) we have ǫ-nets of size O(log 1

ǫ
) which is significantly

smaller than what is guaranteed by Theorem A. Some particular examples will be given in
what follows.
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The ǫ-net from Theorem 2 is based on a simple sampling strategy, although the probability
of including different elements differs. The probabilities can be decided on before choosing a
random sample quite easily. One should just find the sets X (i), which could be done efficiently
in some cases. However, Theorem A, as well as CAL algorithm used for Corollary 1, gives a
more natural sampling strategy to construct ǫ-nets.

3 The doubling constant

Another quantity of interest with a wide range of applications in Statistical Learning is the
doubling constant or the local covering number. For a collection of classifiers F , let us define
the distance ρ by ρ(f, g) = P(f(x) 6= g(x)). We denote byM(F , ǫ) the packing number of
F with respect to ρ:

M(F , ǫ) := max
Q⊂F

{

|Q| : ρ(f, g) ≥ ǫ for any distinct f, g ∈ Q
}

.

Given any f ∗ ∈ F , define the set B(F , f ∗, ǫ) :=
{

f ∈ F : ρ(f, f ∗) ≤ ǫ
}

of all classifiers from
F at distance at most ǫ from f ∗. Finally, define the doubling constant

Dǫ(P,F , f ∗) := sup
ǫ0≥ǫ
M(B(F , f ∗, 2ǫ0), ǫ0). (5)

We write Dǫ instead of Dǫ(P,F , f ∗) whenever the class of functions and f ∗ are clear from
the context. The logarithm of the doubling constant is referred to as the doubling dimension.
It plays an important role in risk guaranties for some learning algorithms [8, 28, 35, 36].

Let us reformulate (5) in Computational Geometry terms of range spaces. Given a range
space (X ,R), we denote byMH(R, ǫ) the maximal packing with respect to the distance ρ
defined by ρ(R1, R2) = P(R1∆R2). Then the doubling constant is

Dǫ(P,R) = sup
ǫ0≥ǫ
M(R≤2ǫ0, ǫ0).

Section 5 is devoted to various new bounds on the doubling constant. In particular,
Lemma 13 will give some sharp upper bounds for several interesting geometric range spaces.

3.1 A new bound for ǫ-nets

The first part of the following Theorem is an improvement of a recent theorem from [30]
(see also the related discussions there), and the technique of the proof is similar. We should
note, however, that the technique of the proof is also closely related to the peeling technique
originating from the empirical processes theory and which is widely used in the Learning
Theory [7, 8, 35, 36]. The second part of the Theorem complements the first one and has no
known analogues.

Theorem 4. Let (X ,R) be a range space of VC-dimension d. Fix ǫ > 0 and let Dǫ be an
upper bound on the doubling constant of (X ,R). Put τi := τ(2iǫ) and z := 1 + ⌈log2 1

ǫ
⌉.

7



(i) If Dǫ ≥ 2τ1, then there exists an ǫ-net for (X ,R) of size

O
(

z
∑

i=1

(

log
Dǫ

τi
+ d
)

τi

)

. (6)

(ii) If Dǫ ≤ 1
2ǫ
, there is an ǫ-net for (X ,R) of size O

(

dDǫ log
1

ǫDǫ

)

. Moreover, for

any n, d, ǫ > d/n and Dǫ < 1
2ǫ

there is a range space on n points with uniform measure
and V C dimension at most d, doubling constant at most Dǫ and the smallest ǫ-net of size
Ω
(

dDǫ log
1

ǫDǫ

)

.

Remark. We note that the additive form of the bound (6) as well as of (3) is typical in
Active Learning literature (see e.g., [34]). In what follows we provide several straightforward
relaxations of (6) that have a non-additive form.

Remark. Since τ1 ≤ 1
2ǫ
, the two upper bounds from the theorem cover all possible

range of values of Dǫ except for τ1 ≤ Dǫ ≤ 2τ1. If Dǫ falls in that range then we may
substitute 2τ1 into the first bound instead of Dǫ and get a valid bound.

The upper bound in Theorem 4 (i) is sharp for constant d, since it is a strengthening
of an upper bound from [30] (see Section 5), which was recently shown to be tight in some
specific cases in [22]. The upper bound in Theorem 4 (ii) may be stated in terms of τi, but
the formulation gets rather complicated, so we decided to omit it.

Before proving the theorem, let us first obtain a handy corollary from (6).

Corollary 5. In the notation of Theorem 4, assume that Dǫ is an upper bound on the
doubling constant of (X ,R) and τ is its Alexander’s capacity. If Dǫ ≥ e/ǫ, then there exists
an ǫ-net for (X ,R) of size

O
(1

ǫ

(

d+ log(ǫDǫ)
)

)

. (7)

Similarly, if instead Dǫ ≥ 2τ(ǫ) there exists an ǫ-net for (X ,R) of size

O
(

τ(ǫ)

(

d+ log
Dǫ

τ(ǫ)

)

log
1

ǫ

)

. (8)

Example. We argue that Corollary 5 in this form is the most useful in various applica-
tions. In this example we focus on the range spaces with Dǫ = O(1

ǫ
). According to (7) for

these range spaces there exist ǫ-nets of size O(d
ǫ
), which is an improvement over Theorem A

and is known to be optimal. It will be shown (Lemma 13 in Section 6) that the range spaces
having Dǫ = O(1

ǫ
) include the set systems

• of VC dimension d = 1,

• induced by half-spaces in R2 and R3,

• induced by balls in R2,

• induced by intervals in R.

8



Although these geometric set systems are known to admit ǫ-nets of size O(d
ǫ
) 4 (we refer

to the survey [31] for an extensive list of known upper bounds in geometric scenarious),
Corollary 5 highlights an explanation of this phenomenon: in order to show the existence of
an ǫ-net of size O(d

ǫ
) it is sufficient to show that Dǫ = O(1

ǫ
).

More importantly, our results will imply that for the geometric range spaces listed above,
it holds that Dǫ = O(τ(ǫ)). According to (8) combined with (7) implies the existence of
ǫ-nets of size

O

(

min

{

dτ(ǫ) log
1

ǫ
,
d

ǫ

})

, (9)

which is again an improvement over both Corollary 1 and Corollary 3.

Proof. (of Corollary 5) The function a log 1
a
is increasing for a ∈ (0, 1/e). Then, recalling

that τi ≤ 1
2iǫ

and τi
Dǫ
≤ 1

Dǫ2iǫ
≤ 1

e
, we may apply it in the form τi

Dǫ
log Dǫ

τi
≤ 1

2iǫDǫ
log(2iǫDǫ).

We get that

z
∑

i=1

τi log
Dǫ

τi
≤ 1

ǫ

z
∑

i=1

2−i log(2iǫDǫ)

≤ 1

ǫ

[

log(ǫDǫ) +
z
∑

i=1

i2−i
]

= O
(1

ǫ
log(ǫDǫ)

)

.

Moreover, we have
∑z

i=1 τi ≤ 1
ǫ
. We are left to substitute it into (6). The proof of the second

bound is trivial given (6) and the fact that τ(ǫ) is nonincreasing. We also remark that (6)
can be bounded by

O

(

min

{

d

ǫ
, dτ(ǫ) log

1

ǫ

}

+

z
∑

i=1

τi log
Dǫ

τi

)

.

Observe that the bound (8) is always not worse than the best known bound of Corollary
3 given in terms of Alexander’s capacity alone. This fact follows directly from the bound
(12) below. We also note that Corollary 5 improves the best known upper bound for ǫ-nets in
terms of the doubling constant. Indeed, Theorem 8 in Bshouty et al. [8] says that Theorem
A holds with

m(ǫ) = O





(d+ logDǫ)
√

log 1
ǫ

ǫ
+

log 1
δ

ǫ



 ,

which implies the existence of an ǫ-net of size O

(

(d+logDǫ)
√

log 1
ǫ

ǫ

)

.

The following weaker bound, which is nevertheless stronger than Theorem A and The-
orem D, follows from Theorem 4. We sacrificed a factor in the logarithm in order to get a
bound valid for any Dǫ.

Corollary 6. In the notation of Theorem 4, there exists an ǫ-net for (X ,R) of size

O
(1

ǫ

(

d+ log(Dǫ)
)

)

.

4In all mentioned cases it holds that d ≤ 4. Therefore, the bound O(d
ǫ
) is essentially O(1

ǫ
) in our case.
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3.2 Proof of Theorem 4.

3.2.1 (i). Upper bound

We use the notation of the proof of Theorem 2. For each i ≥ 1, by the definition of Dǫ,
there is a maximal ǫi−1-packing Qi of size at most Dǫ in Ri. Note that, for each R ∈ Ri,
there is Q ∈ Qi, such that P(R∆Q) ≤ ǫi−1, which, together with P(R), P (Q) ≥ ǫi−1 implies
P(R ∩ Q) ≥ ǫi/4 ≥ P(Q)/4. For each Q ∈ Qi, denote Ri(Q) := {R ∈ Ri : P (R ∩ Q) ≥
P(Q)/4}. Since the sets of measure less than ǫ can be ignored, we are only interested in R
such that R ⊆ ∪iRi ⊆ ∪i ∪Q∈Qi

Ri(Q). Therefore, a set, which would be a 1/4-net (with
respect to the conditional measure P( |Q)) for each of the families of ranges Ri(Q), would
be an ǫ-net for R.

Recall that τi := τ(ǫi). Thus, we have P(X (i)) ≤ τiǫi. Fix an absolute constant c (defined
later) and put ti = log Dǫ

τi
. Note that 1 ≤ τi/τi+1 ≤ 2 and Dǫ ≥ 2τi for any i ≥ 1, therefore,

ti ≥ log 2.
Consider a random sample Si of size c(ti + d)τi−1, sampled from X according to the

conditional distribution P( |X (i)). Observe that we may think of Si ∩ Q as a sample with
elements distributed according to a conditional distribution P( |Q). We also have that for any
Q ∈ Qi it holds that P(Q|X (i)) ≥ ǫi−1

τiǫi
= 1

2τi
. Using the Chernoff bound for an appropriately

chosen c and a fixed Q, the event that at least c(ti + d)/8 of the elements of Si belong to Q
has probability at least 1− exp(−ti− log 2). By Theorem A and for an appropriate value of
c, the set Si ∩Q is a 1/4-net (with respect to a conditional measure P( |Q)) for Ri(Q) with
probability at least 1 − exp(−ti − log 2) given that at least c(ti + d)/8 of the elements of
Si belong to Q. Using a union bound, we conclude that, for a fixed Q, the set Si ∩ Q is a
1/4-net for Ri(Q) (with respect to P( |Q)) with probability at least 1− exp(−ti).

Put S := ∪zi=1Si. Therefore, the expectation of the number Mi of Q ∈ Qi, for which S is
not a 1/4-net, is

EMi ≤ Dǫ exp(−ti) = τi.

On the other hand, the size N of S is

N ≤
z
∑

i=1

c(ti + d)τi−1.

Using the Markov inequality, with positive probability, it holds that
∑z

i=1Mi ≤ 3
∑z

i=1 τi.
We fix such a set S. Next, we manually find a 1/4-net (with respect to conditional measure
P( |Q)) for each of the Ri(Q) that contribute to Mi. Using Theorem A for ǫ = 1

4
, we conclude

that we need to add a set A of additional O(d
∑z

i=1 τi) points to the ǫ-net in order to cover
the remaining sets that might be still uncovered. Therefore, in total we get an ǫ-net of size

O
(

z
∑

i=1

(ti + d)τi

)

.
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3.2.2 (ii). Upper bound

We work in the notation of Theorem 2 and (i). Put ⌈log2 e
Dǫǫ
⌉ =: i0. Then all ranges in

R′ := R \ ∪i0i=1Ri have measure at least e
Dǫ
≥ 2eǫ. We know that the doubling constant

of the range space (X ,R′) is bounded by Dǫ, and, applying (7) of Corollary 5 (which is
possible, since the proof of Corollary 5 uses only item (i) of Theorem 4) with ǫ equal to e

Dǫ
,

we conclude that there is an ǫ-net for (X ,R′) of size at most O(dDǫ). Therefore, to conclude
the proof of this part of the theorem, it is sufficient to show that for each i = 1, . . . , i0 the
range space Ri has ǫ-net of size O(dDǫ).

Consider Qi and the corresponding Ri(Q) for Q ∈ Qi. Then for a fixed i we have
|Qi| ≤ Dǫ and for each Ri(Q) there is a 1/4-net (with respect to P( |Q)) of size O(d). Thus,
there is an ǫ-net for Ri of size O(dDǫ). The total size of the ǫ-net is O(di0Dǫ).

3.2.3 (ii). Lower bound

To construct the lower bound, we consider the finite set X of n elements equipped with
a uniform measure. For simplicity, let us assume that ǫn = k is an integer number. For
each i fix X ′(i) of cardinality k2i + d − 1 and consider the following collection of ranges:
R′

i := {R ⊂ X ′(i) : |R| = k2i}. Next, form a range space (X (i),Ri) by taking l disjoint
copies of R′

i on disjoint sets X ′(i). Finally, define (X ,R) to be the union of disjoint copies
of (X (i),Ri) for i = 0, . . . , m− 1. Again, for simplicity we assume that n =

∑m−1
i=0 |X (i)| =

(d− 1)lm+ lk
∑m−1

i=0 2i. Knowing that d is not too large, we get that lk2m < n < lk2m+1.
It is clear that the VC-dimension of (X ,R) is determined by each of the range spaces

(X ′(i),R′
i) and is equal to d. Next, the smallest ǫ-net for (X ,R) has size at least lm times

the smallest ǫ-net for each (X ′(i),R′
i), which gives us lmd. Let us calculate the doubling

constant of (X ,R). For any γ ≥ ǫ, γn ∈ N, choose j := min{i : 2ik > γn}. How large can a
packing of balls of radius γ be in (X ,R≤2γ)? We should include in the packing exactly one
set from each R′

i for i = j and j − 1, which gives 2l balls. All the sets from R′
i for i ≤ j − 2

will be covered by one ball of radius γ with the center in any of those sets, and the sets from
R′

i for i ≥ j+1 are bigger than 2γ and are not present in the family. Therefore, Dǫ ≤ 2l+1
(actually, Dǫ = 2l + 1).

We have that n = O(Dǫk2
m) and ǫ = k

n
= Ω( 1

Dǫ2m
), which means that log 1

Dǫǫ
= O(m).

Therefore, the minimum size of an ǫ-net is lmd = Ω
(

dDǫ log
1

Dǫǫ

)

.
Remark. The family that provides the lower bound above may be used to show that

Theorem 2 is tight at least for constant τi. Putting l = 1 in the construction (X ,R) above,
we get that Dǫ is a constant, τ(ǫ) < 2 + d

ǫn
, and that the minimum size of an ǫ-net is

Ω
(

d log 1
ǫ

)

.
It is likely that we may even show that the bound of Theorem 2 is tight for slowly growing

τi (that is, that the factor log τi is also necessary) by replacing Ri with disjoint copies of
families that provide lower bound in Theorem A.

4 Packing numbers for VC classes

In this section we discuss several packing results for VC classes of functions, which would
be useful in getting upper bounds on the doubling constant. At first we recall the following
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classical result due to Haussler. As before, for a pair of binary functions define ρ(f, g) =
P(f(x) 6= g(x)). Note that any result for a class of binary functions is directly translated to
range spaces.

Theorem F. (Haussler [20]) Consider a class F of binary functions of VC dimension at
most d, such that for any distinct f, g ∈ F we have ρ(f, g) ≥ ǫ. Then

|F| ≤ e(d+ 1)

(

2e

ǫ

)d

. (10)

The next lemma directly follows from the result of Chazelle (this fact was observed in
[30]).

Lemma 7 (Chazelle [10]). Consider a class F of binary functions of VC dimension at most
d with ρ(f, g) ≥ ǫ for any distinct f, g ∈ F . If the measure P is uniform on a finite set, then
we have

|F| ≤ 2E|F|A|,
where A is an i.i.d. sample of size n = 4d

ǫ
from X sampled according to P and F|A denotes

the set of projections of F on the sample A.

This lemma directly implies the version of Haussler’s original lemma for the uniform

distribution. Using the Vapnik-Chervonenkis-Sauer bound (2) we have |F| ≤ 2
d
∑

i=0

(

n
i

)

≤

2
(

en
d

)d ≤ 2
(

4e
ǫ

)d
. However, constants in this deduction are somewhat worse than in (10).

In what follows, we give a more general result with a short proof that directly implies the
Haussler’s bound. As opposed to Lemma 7, our proof will be based on a purely statistical
approach. In fact, the bound on the packing number will be derived as a byproduct of the
minimax analysis of the learning rates of the so-called one-inclusion graph algorithm. The
analysis is inspired by the minimax lower bounds provided in [4].

Lemma 8. Fix any δ ∈ (0, 1). Consider a class F of binary function of VC dimension at
most d such that for any distinct f, g ∈ F it holds that ρ(f, g) ≥ ǫ. Then

|F| ≤ E|F|A|
1− δ

,

where A is an i.i.d. sample of size n = 2d
ǫδ

from X sampled according to P.

This Lemma will be used below in the context of bounds which depend on shallow cell
complexity (see Section 5). To prove this bound, we need the following result from Learning
Theory. Note that the proof of the next Lemma is not based on the bound on packing
numbers. The discussion of the one-inclusion graph algorithm is moved to Appendix.

Lemma 9. In the realizable case of classification there is a deterministic learning algorithm
such that, given an i.i.d sample

(

(xi, f
∗(xi))

)n

i=1
of size n = 2d

ǫδ
, it produces a classifier f̂

with ρ(f̂ , f ∗) < ǫ/2 with probability at least 1− δ over the learning sample.

12



Proof. It follows from the fact that there is a strategy (namely one-inclusion graph algorithm
[19]) with an expected error Eρ(f̂ , f ∗) ≤ d

n+1
< d

n
, where expectation is taken with respect

to the i.i.d random sample
(

(xi, f
∗(xi))

)n

i=1
for an arbitrary target function f ∗ ∈ F . We

define the algorithm and sketch the proof of the risk bound in Appendix 7.3. Using Markov

inequality we have P(ρ(f̂ , f ∗) ≥ ǫ/2) ≤ 2Eρ(f̂ ,f∗)
ǫ

< 2d
nǫ
. We fix n = 2d

ǫδ
and get that with

probability at least 1− δ, it holds that ρ(f̂ , f ∗) < ǫ/2.

Proof. (of Lemma 8.) For n = 2d
ǫδ

denote the output of the learning algorithm of Lemma

7.3 based on the sample
(

(xi, f(xi))
)n

i=1
by ĝf . Define the uniform measure π on F . Due

to Lemma 7.3 we have Ef∼πP (ρ(ĝf , f) < ǫ/2) ≥ 1 − δ. Assume that for a pair of distinct
f, h ∈ F it holds that f(xi) = h(xi) for i = 1, . . . , n, i.e., they have the same projection
on the sample. Since our prediction strategy is deterministic we have ĝf = ĝh. However, it
is not possible that simultaneously we have ρ(ĝf , f) < ǫ/2 and ρ(ĝh, h) < ǫ/2 since in this
case by the triangle inequality ρ(f, h) ≤ ρ(ĝf , f) + ρ(ĝh, h) < ǫ, but at the same time from
the statement of the Lemma we have ρ(f, h) ≥ ǫ. Thus taking into account that for each
random sample A there are at most |F|A| different functions ĝf that may serve as an output,
and each corresponds to at most one function from F , we get

1− δ ≤ Ef∼πP (ρ(ĝf , f) ≤ ǫ/2) =
1

|F|E
∑

f∈F

1[ρ(ĝf , f) < ǫ/2] ≤ 1

|F|E|F|A|.

Taking δ = 1
2
the uniform measure as P in Lemma 8, one recovers Lemma 7. To recover

the result of Haussler (10) we use the Vapnik-Chervonenkis-Sauer bound (2) again together
with Lemma 8:

|F| ≤ inf
δ∈(0,1)

E|F|A|
1− δ

≤ inf
δ∈(0,1)

1

1− δ

(

2e

ǫδ

)d

≤ e(d+ 1)

(

2e

ǫ

)d

, (11)

which is obtained by choosing δ = d
d+1

.

Remark. If instead of Lemma 7.3 we use a bound O(
d log( 1

ǫ
)

ǫ
) for consistent learning

algorithms (Theorem C), we obtain the weaker bound

|F| = O

(

(

1

ǫ
log

1

ǫ

)d
)

,

where constants in O depend on d, which coincides with the original bound of Dudley [13].
In fact, using our technique any deterministic learning algorithm with provable guarantees
on probability of misclassification will provide an upper bound on packing numbers. For
example, we may replace the algorithm in Lemma 7.3 by the recent result [25]. In this case
the bounds will be the same as in Theorem F up to absolute constants.
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5 Upper bounds on the doubling constant

To motivate some of the results we prove below, we mention the following bound on Dǫ.

Theorem G ([24], Theorem 17). We have Dǫ ≤ (cτ(ǫ))c1d for some absolute constants
c, c1 > 1.

In this form it is usually sufficient for statistical applications, but in what follows we shall
need a bound, tight in terms of c1. One of the corollaries of the results proved below is that
for a range space (X ,R) of VC dimension d it holds that Dǫ ≤ (cτ(ǫ))d for some c > 0 (cf.
Corollary 12).

Let us start with defining another important measure of complexity, called the shallow-
cell complexity. It was introduced recently [2, 9, 22, 33] for a more refined analysis of the
projections of the range spaces, than the one that we can extract from πR(y) and the VC-
dimension. For the relation of shallow-cell complexity with the so-called union complexity,
see [22]. Here we give a definition that slightly differs from the one given in [30], [22]: we do
not isolate the term |Y | in the projections on Y , but rather include it into the shallow cell
complexity function.

A range space (X ,R) has shallow-cell complexity ϕ : N×N→ N if for every Y ⊆ X , the
number of sets of size at most ℓ in the system R|Y is at most ϕ(|Y |, ℓ). In all known geometric
applications it is sufficient to consider the functions of the form ϕ(|Y |, ℓ) = ϕ′(|Y |)ℓcR for
some constant cR, and, if this is the case for a range space, then we say that the range space
has shallow cell complexity (ϕ′, cR). Thus, the difference with the projection function is that
ϕ bounds the number of sets of different sizes separately. We should note that for many
known geometric scenarios very tight bounds on the shallow cell complexity are known (we
refer to the survey [31] for a complete list).

We provide two upper bounds on the doubling constant in terms of shallow-cell complexity
and Alexander’s capacity. The proof of the forthcoming results are postponed to Appendix
to facilitate the reading.

Lemma 10. Assume that the range space (X ,R) has a shallow-cell complexity (ϕ′, cR) such
that ϕ′(x) ≤ c1x

k for some c1, k > 0 and Alexander’s capacity τ . Then

Dǫ ≤ C(k, cR)τ
k(ǫ) logk+cR τ(ǫ),

where C(k, cR) = O
(

(c(k + cR) log(k + cR))
k+cR

)

for some c > 0.

The next lemma is better than the previous one in many cases, but depends explicitly
on VC dimension. We remark that Lemma 10 involves only the shatter function, but not
VC dimension.

Lemma 11. Assume that the range space (X ,R) has VC-dimension d, shallow cell com-
plexity ϕ and Alexander’s capacity τ . Then

Dǫ ≤ 6ϕ(8dτ(ǫ), 24d).

We immediately have the following result, already mentioned in Section 3.
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Corollary 12. For a range space (X ,R) of VC-dimension d there exists c > 0 such that

Dǫ ≤
(

cτ(ǫ)
)d
. (12)

Proof. The result follows since the shallow-cell complexity can be upper bounded by the
Vapnik-Chervonenkis-Sauer-Shelah inequality.

Finally, we provide Lemma that proves the bound (9) in some geometric scenarios.

Lemma 13. For the range spaces induced by half-spaces in R2 and R3, by balls in R2, by
intervals in R and for range spaces of VC dimension d = 1 it holds that

Dǫ = O(τ(ǫ)). (13)

Proof. The result for d = 1 follows immediately from Corollary 12. In view of this result it
is worth noting the importance of the inequality (12) compared to Theorem (G). The latter
will not allow us to prove (13).

The proof of the remaining part follows from Lemma 11. Indeed, for range spaces induced
by half-spaces in R2 and R3, by balls in R2, by intervals in R the known bound on the shallow-
cell complexity (see Table 47.1.1 in [31]; in all mentioned cases the shallow cell complexity
ϕ(x, ℓ) = O(xℓC), where C is a constant that does not depend on x) together with the fact
that d ≤ 4 imply that ϕ(8dτ(ǫ), 24d) = O(τ(ǫ)). The claim follows.

6 Concluding remarks and discussions

Since our bounds depend on the Alexander’s capacity τ we need to recall the following related
quantity. Define the star number [24] as the largest integer such that there exist distinct
points x1, ..., xs ∈ X and classifiers f0, f1, ..., fs ∈ F with the property that for all i,

{x ∈ X : f0(x) 6= fi(x)} ∩ {x1, . . . , xs} = {xi}.

Theorem 10 in [24] shows that

sup
P,f∗∈F

τ(ǫ) = min

{

s,
1

ǫ

}

, (14)

and, in particular, we always have τ(ǫ) ≤ s and our upper bounds can be changed accordingly.
The star number is known to characterize the learning rates in Active Learning [24] and has
important relations to Teaching as discussed below. However, in the world of ǫ-nets the
range spaces induced by classes with the finite star number are trivial: these are the range
spaces that have finite hitting sets. We recall that set H ⊆ X is a hitting set of (X ,R) if it
intersects each set in R.
Observation 14. For any VC class F with the finite star number s it holds that for any
f ∗ ∈ F the range space

{

{x ∈ X : f(x) 6= f ∗(x)} : f ∈ F
}

,

has a finite hitting set of size s. In particular, this means that there is ǫ-net of size s for any
ǫ > 0 and all f ∈ F have finite teaching sets of size s.
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Proof. By Theorem 13 in [24] if s < ∞ then it is enough for the teacher to show at most
s points to allow the learner to reconstruct f ∗ on a finite set supp(P) by any consistent
learning procedure. This implies the remaining claims in a straightforward way.

Therefore, in view of Observation 14 the interesting case for ǫ-nets is where s =∞, but
τ(ǫ) = o

(

1
ǫ

)

. We note that this scenario was considered in the literature in the context
of ǫ-nets. In [3] authors prove and discuss the existence of ǫ-nets of size O(d

ǫ
) (which is an

improvement over the standard O(
d log 1

ǫ

ǫ
) bound) for a set of regions of disagreement between

all possible linear classifiers passing through the origin in Rd and the linear fixed classifier,
when the distribution P is zero-mean, isotropic and log-concave. It is easy to see that in
this case for d ≥ 2 it holds that s = ∞. Their bound is based on the improved version of
Theorem C. However, it is not difficult to see that at least for some particular distributions
(like uniform distribution on the unit sphere) even finite ǫ-nets exist, that are the hitting
sets. More specifically, our bound (4) (given the fact the Alexander’s capacity is bounded
in this case [23]) gives the result that scales as O(log 1

ǫ
), which is significantly better than

O(d
ǫ
) claimed in [3].
We know (14) that boundedness of the star number is a necessary and sufficient condition

for boundedness of τ(ǫ) for all distributions, and it also implies the existence of finite hitting
sets for corresponding range spaces. Our results answer the following natural question. Is
it true that boundedness of τ(ǫ) for a particular distribution implies the existence of ǫ-nets
with their sizes not depending on ǫ ? We show that it is not true and in general, it is not
possible to get rid of the factor log 1

ǫ
in the bound (8) since there are range spaces with

τ(ǫ) = O(1) and with the smallest ǫ-net of size Ω(log 1
ǫ
). See the remark after the proof of

Theorem 4.
In general, the ǫ-net theorems in this paper are arranged from the weaker to the stronger

ones. Below we only discuss the strength of the bounds given, and mostly avoid discussing
the algorithms. We focus only on the implications of certain results on the existence of
ǫ-nets.

Theorems A, B, C are weaker than any other result given in the paper. Theorem D
is stronger than the previous ones, and its bound is implied for relatively small τ(ǫ) by
Corollary 1.

Theorem 2 implies both Theorem D and Corollary 1. Indeed, Theorem D follows easily
from the fact that τi ≤ 1

2iǫ
, and thus

∑

i τi ≤ 1
ǫ
, and Corollary 1 follows from Corollary 3.

We also note that the bounds in Theorem 2 are strictly stronger in many cases.
Speaking of the bounds that make use of the doubling constant, they are stronger than

all the previous. In particular, even Corollary 6 together with a weak bound on the doubling
dimension, given in Theorem G, implies many of the previous bounds (except for Corollary 1
and Theorem 2), giving the bound O

(

d
ǫ
log τ(ǫ)

)

, and Corollary 5 combined with Theorem G,
implies Corollaries 1 and 3.

It is also easy to see that Theorem 4 combined with Theorem G implies Theorem 2. But
its full strength becomes clear when the doubling constant is relatively small. Then the fact
that we divide Dǫ by τ(ǫ) in the logarithm may play a crucial role since it allows us to get
rid of the logarithm in some cases. In this context, sharper bounds on the doubling constant
that make use of the shallow-cell complexity come into play as shown above.
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In the context of our bounds on the doubling constant it is worth mentioning the following
Lemma.

Lemma H (Shallow-Packing Lemma [14, 29]). Let X be an n-element set equipped with
the uniform measure P. Assume that a range space (X ,R) of at most k-element sets
has VC dimension d, shallow-cell complexity ϕ. If, for any distinct R1, R2 ∈ R, we have
P(R1∆R2) ≥ γ then

|R| = O

(

ϕ

(

4d

γ
,
12kd

nγ

))

.

The previous best bound on the ǫ-nets, which used the notion of shallow-cell complexity,
was as follows (see [9] and a simplified proof [30]).

Theorem I ([9, 30]). Let (X ,R), |X | = n be a range space with uniform distribution of VC-
dimension d and shallow-cell complexity ϕ(·, ·), where ϕ(·, ·) is a non-decreasing function
in the first variable. Then there exists an ǫ-net for R of size O

(

1
ǫ
(log

(

ǫϕ(8d
ǫ
, 24d)

)

+ d)
)

.
In particular, if R has shallow-cell complexity (ϕ′, cR) and finite VC-dimension, then there
exists an ǫ-net for R of size O

(

1
ǫ
log(ǫϕ′

(

1
ǫ

)

)
)

.

Our bound (6) of Theorem 4 recovers Theorem I if we upper bound τ(ǫ) by 1/ǫ and Dǫ

by the upper bound of Lemma 11. Overall, we feel that the doubling constant is the right
general parameter to look at for ǫ-nets. From this perspective, the notions like Alexander’s
capacity and the shallow-cell complexity are simply the ways to control the doubling constant.
The doubling constant together with Alexander’s capacity control almost all possible ranges
of sizes of ǫ-nets. Moreover, the extensions for the quantities like the doubling constant to
the non-binary cases are straightforward (see [28] for these extensions related to the Learning
Theory), while the notion of the shallow-cell complexity is very specific to set systems.
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7 Appendix

7.1 CAL algorithm for ǫ-nets

The formal procedure behind the CAL algorithm, adapted to the case of range spaces is
written below. The idea behind the algorithm applied to the range spaces is very simple and
natural. We sample random points according to P and add them to the ǫ-net one by one.
But contrary to the strategy of Theorem A the new point is added iff it is contained in a
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least one of the sets which were not hit (by hitting we mean having a nonempty intersection)
by the points which were added to the ǫ-net on previous steps. In some sense, we never add
a new point if it does not hit any set that was not hit before.

Algorithm 1 CAL for ǫ-nets

1: procedure
2: m← 0, t← 0,R0 ←R
3: while t < n and m < 2n do
4: m← m+ 1
5: if xm ∈ ∪R∈Rm−1R then
6: Add xm to ǫ-net,
7: Rm ← {R ∈ Rm−1|R ∩ xm = ∅},
8: t← t+ 1.
9: else
10: Rm ← Rm−1.

Corollary 1 follows in a straightforward manner. Indeed for δ = 1
2
CAL returns the

desired ǫ-net with probability at least 1
2
. This implies the existence of the ǫ-net of size

O
(

τ(ǫ)
[

d log τ(ǫ) + log log 1
ǫ

]

log 1
ǫ

)

.

7.2 Proofs of Section 5

Proof. (Proof of Lemma 10) We follow the classic strategy of [13] with some necessary
modifications. In what follows we assume Dǫ > 10. Without loss of generality, assume that
the supremum in the definition of Dǫ is achieved at ǫ. Denote the corresponding maximal
packing by Q, where |Q| = Dǫ. We have P(Q1∆Q2) ≥ ǫ for any two Q1, Q2 ∈ Q and
P(Q) ≤ 2ǫ for any Q ∈ Q. By the definition of τ we have

P(X ′) ≤ 2τ(ǫ)ǫ for X ′ := suppQ ⊂ ∪R∈R≤2ǫ
R,

where we used τ(ǫ) ≥ τ(2ǫ). Consider the conditional distribution P( |X ′) and denote it by
P′. Note that P′(Q1∆Q2) >

ǫ
P(X ′)

≥ 1
2τ(ǫ)

for any distinct Q1, Q2 ∈ Q. Note that in what

follows we work with P′ only. In particular, all expectations below are computed w.r.t. P′.
Take a random i.i.d. sample A of size m according to P′, where m := 2 logDǫ P(X ′)

ǫ
. Note

that
m ≤ 4τ(ǫ) logDǫ.

Given any two Q1, Q2 ∈ Q with this property we have that (Q1∆Q2)∩A 6= ∅ with probability
greater than

1−
(

1− ǫ

P(X ′)

)m

> 1− exp
(

− ǫm

P(X ′)

)

> 1− 1

D2
ǫ

.

Using a union bound and summing over all unordered pairs in the packing we conclude
that with probability strictly bigger than 1

2

each set in Q has a unique projection on the random sample A.
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At the same time for any Q ∈ Q it holds E|A ∩ Q| ≤ mP′(Q) ≤ 4 logDǫ, since P′(Q) ≤
2ǫ

P(X ′)
. We note that |A∩Q| is upper bounded by a random variable which counts the number

of elements of A which belong to Q. The latter random variable has a binomial distribution
and using the Chernoff bound together with the union bound we have

P
[

∄Q ∈ Q : |Q ∩A| ≥ 8 log(Dǫ)
]

≥ 1−Dǫ exp
(

− 4 log(Dǫ)

3

)

= 1− 1

D
1/3
ǫ

≥ 1

2
.

Using a union bound, we conclude that both displayed events hold with positive probabil-
ity simultaneously. By the definition of shallow-packing we have for some absolute constant
C

Dǫ = |Q|A| ≤ ϕ′(m)(8 logDǫ)
cR ≤ Cτk(ǫ)(8 logDǫ)

k+cR.

It is straightforward to check that the last inequality implies

Dǫ ≤ C ′τk(ǫ)
(

c(k + cR) log(k + cR) log τ(ǫ)
)k+cR .

for some absolute C ′, c > 0.

Proof. (Proof of Lemma 11) The proof follows the same logic as the previous one (the
simplified technique we are following appeared first in [29]). Without the loss of generality
we assume that the supremum in the definition of doubling constant is achieved at ǫ0 = ǫ.
In particular, it means that the largest packing should contain sets of probability measure
not greater than 2ǫ. We work in the setting of the proof of Lemma 10 w.r.t. Q and P′.

Applying Lemma 8 for P′ and δ = 1
2
(note that we may optimize with respect to δ and

improve constant factors), we conclude that for an i.i.d. sample A of size

n :=
4dP(X ′)

ǫ
≤ 8dτ(ǫ),

from P′ we have |Q| ≤ 2E|Q|A|.
At the same time for any Q ∈ Q it holds that E|A ∩ Q| ≤ nP′(Q) ≤ 8d, since P′(Q) ≤

2ǫ
P(X ′)

. Consider Q1 := {Q ∈ Q : |A∩Q| > 24d}. Using Markov’s inequality we have for any
Q ∈ Q that

P[Q ∈ Q1] = P[|A ∩Q| > 24d] ≤ 8d

24d
=

1

3
.

Finally, we have

|Q| ≤ 2E|Q|A| ≤ 2E|Q1|+ 2E|(Q \ Q1)|A| ≤
2|Q|
3

+ 2E|(Q \ Q1)|A|.

Rearranging, we obtain |Q| ≤ 6E|(Q \ Q1)|A| ≤ 6ϕ(8dτ(ǫ), 24d).
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7.3 Sketch of the proof of one-inclusion graph algorithm error
bound

Given class of binary functions F and a finite sample S ⊂ X we consider the projection F|S.
The one-inclusion graph of F|S is a graph with the set of vertexes F|S. Vertexes f and g
are connected with an edge iff

|{x ∈ S : f(x) 6= g(x)}| = 1,

that is if f and g differ on exactly one point in S. One-inclusion graphs induced by VC
classes satisfy the following remarkable property.

Lemma 15. [19, 20] For any finite S ⊂ X the edges of the one-inclusion graph induced by
a class F of VC dimension d can be oriented in a way such that the out-degree of any vertex
is at most d.

Although we do not present the proof of this fact, we add a short remark about the
simplest known way to show it. Using the shifting method it is possible to prove that the
edge densities of the one-inclusion graph as well as any of its subgraphs are bounded by d.
Finally, a standard application of Hall’s marriage theorem implies Lemma 15. We refer to
[20] for more details and discussions of this proof technique.

We are given an i.i.d. sample T = ((x1, f
∗(x1)), . . . , (xn+1, f

∗(xn+1)). Denote by T (i) the
sample T with the hidden i-th label, that is

T (i) = ((x1, f
∗(x1)), . . . , , (xi, ∗), . . . , (xn+1, f

∗(xn+1))).

Our aim is to predict the unknown label of xi given the sample T (i). Fix S = {x1, . . . , xn+1}
and consider the orientation of the one-inclusion graph induced by F such that the out-
degree of any vertex is at most d. We are ready to define the one-inclusion graph algorithm.
Given T (i) we define its output classifier f̂T (i) by f̂T (i)(xj) = f ∗(xj) for j 6= i. Now, if there
is only one g ∈ F|S such that it is consistent with labelled points of Ti, then we define
f̂T (i)(xi) = g(xi). Observe that in this case g(xi) = f ∗(xi). Finally, if there are two distinct
g, h ∈ F|S such that they are consistent with labelled points of Ti, we define f̂T (i)(xi) = g(xi)
if in the oriented one-inclusion graph the edge is pointing from h to g, and f̂T (i)(xi) = h(xi)
if this edge is pointing from g to h.

Finally, define the leave-one-out error by

LOO =
1

n + 1

n+1
∑

i=1

1[f̂T (i)(xi) 6= f ∗(xi)].

It follows from the definition of the one-inclusion graph algorithm that

1

n+ 1

n+1
∑

i=1

1[f̂T (i)(xi) 6= f ∗(xi)] ≤
out-degree of f ∗|S

n + 1
≤ d

n+ 1
.

At the same time, we have E LOO = ET (1)ρ(f̂T (1) , f ∗) := Eρ(f̂ , f ∗). This implies the desired
risk bound

Eρ(f̂ , f ∗) ≤ d

n+ 1
.
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