
ar
X

iv
:1

60
4.

06
61

7v
1

 [
cs

.C
C

]
 2

2
A

pr
 2

01
6

Descriptive Complexity of #AC0 Functions⋆

Arnaud Durand1, Anselm Haak2, Juha Kontinen3, and Heribert Vollmer2

1 Université Paris Diderot, IMJ-PRG, CNRS UMR 7586, Case 7012, 75205 Paris
cedex 13, France

durand@logique.jussieu.fr
2 Theoretische Informatik, Leibniz Universität Hannover, Appelstraße, D-30167,

Germany
(haak|vollmer)@thi.uni-hannover.de

3 Department of Mathematics and Statistics, University of Helsinki, Finland
juha.kontinen@helsinki.fi

Abstract. We introduce a new framework for a descriptive complexity
approach to arithmetic computations. We define a hierarchy of classes
based on the idea of counting assignments to free function variables in
first-order formulae. We completely determine the inclusion structure
and show that #P and #AC0 appear as classes of this hierarchy. In this
way, we unconditionally place #AC0 properly in a strict hierarchy of
arithmetic classes within #P. We compare our classes with a hierarchy
within #P defined in a model-theoretic way by Saluja et al. We argue
that our approach is better suited to study arithmetic circuit classes
such as #AC0 which can be descriptively characterized as a class in our
framework.

1 Introduction

The complexity of arithmetic computations is a current focal topic in complexity
theory. Most prominent is Valiant’s class #P of all functions that count accepting
paths of nondeterministic polynomial-time Turing machines. This class has inter-
esting complete problems like counting the number of satisfying assignments of
propositional formulae or counting the number of perfect matchings of bipartite
graphs (the so called permanent [13]).

The class #P has been characterized in a model-theoretic way by Saluja,
Subrahmanyam and Thakur in [11]. Their characterization is a natural gener-
alization of Fagin’s Theorem: Given a first-order formula with a free relational
variable, instead of asking if there exists an assignment to this variable that
makes the formula true (NP = ESO), we now ask to count how many assign-
ments there are. In this way, the class #P is characterized: #P = #FOrel. We
use the superscript rel to denote that we are counting assignments to relational
variables.

⋆ Partially supported by DFG VO 630/8-1, grant 292767 of the Academy of Finland
and grant ANR-14-CE25-0017-02 AGREG of the ANR

http://arxiv.org/abs/1604.06617v1

From another point of view, the class #P can be seen as the class of those
functions that can be computed by arithmetic circuits of polynomial size, i.e.,
circuits with plus and times gates instead of the usual Boolean gates (cf., e.g.,
[14]). This is why here we speak of arithmetic computations.

It is very natural to restrict the resource bounds of such arithmetic circuits.
An important class defined in this way is the class #AC0 of all functions com-
puted by polynomial-size bounded-depth arithmetic circuits. It is interesting to
note that #AC0 and all analogous classes defined by arithmetic circuits, i.e.,
plus-times circuits, can also be defined making use of a suitable counting pro-
cess: A witness that a Boolean circuit accepts its input is a so called proof tree
of the circuit, i.e., a minimal subtree of the circuit unwound into a tree, in which
all gates evaluate to 1. Then the arithmetic class #AC0 can be characterized as
the counting class of all functions that count proof trees of AC0 circuits.

There was no model-theoretic characterization of #AC0, until it was recently
shown in [8] that #AC0 = #Πsk

1 , where #Πsk
1 means counting of possible Skolem

functions for FO-formulae.
The aim of this paper is to compare the above two model-theoretic char-

acterizations in order to get a unified view for both arithmetic circuit classes,
#AC0 and #P. This is done by noticing that the number of Skolem functions
of an FO-formula can be counted as satisfying assignments to free function vari-
ables in a Π1-formula. This gives rise to the idea to restate the result by Saluja
et al counting functions instead of relations. We call our class where we count
assignments to function variables #FO, in contrast to Saluja et al.’s #FOrel. In
this setting, we get #P = #FO = #Π1, which places both classes within #Π1.

Furthermore, we show that #AC0 actually corresponds to a syntactic frag-
ment #Πprefix

1 of #Π1 and, considering further syntactic subclasses of #FO
defined by quantifier alternations, we get the inclusions

#Σ0
(

#AC0 = #Πprefix
1 (

(#Σ1 (
#Π1 = #FO = #P (1)

Thus we establish (unconditionally, i.e., under no complexity theoretic assump-
tions) the complete structure of the alternation hierarchy within #FO and show
where #AC0 is located in this hierarchy.

Once we know that only universal quantifiers suffice to obtain the full class,
i.e., #Π1 = #P, it is a natural question to ask how many universal quantifiers are
needed to express certain functions. We obtain the result that the hierarchy based
on the number of universal variables is infinite; however, a possible connection
to the depth hierarchy within #AC0 remains open.

We see that counting assignments to free function variables instead of relation
variables in first-order formulae leads us to a hierarchy of arithmetic classes suit-
able for a study of the power and complexity of the class #AC0. The hierarchy
introduced by Saluja et al. [11] does not seem suitable for such a goal.

This paper is organized as follows: In the next section, we introduce rele-
vant concepts from finite model theory. Here, we also introduce the Saluja et
al. hierarchy, and we explain the model-theoretic characterization of #AC0. In

2

Sect. 3 we introduce our new framework and the class #FO and its subclasses.
In Sect. 4 we determine the full structure of the alternation hierarchy within
#FO and place #AC0 in this hierarchy, while in Sect. 5 we study the hierarchy
defined by the number of universal variables in the #Π1-fragment. In Sect. 6 we
turn to the hierarchy defined by Saluaj et al. and show that the arithmetic class
#AC0 is incomparable to all except the level-0 class and the full class of this
hierarchy. Finally, we conclude in Sect. 7 with some open questions.

Our proofs make use of a number of different results and techniques, some
stemming from computational complexity theory (such as separation of Boolen
circuit classes or the time hierarchy theorem for nondeterministic RAMs), some
from model theory (like closure of certain fragments of first-order logic under
extensions or taking substructures) or descriptive complexity (correspondence
between time-bounded NRAMs and fragments of existential second-order logic).
Most techniques have to be adapted to work in our very low complexity setting
(new counting reductions, use of the right set of built-in relations, etc.). Our
paper sits right in the intersection of finite model theory and computational
complexity theory.

2 Definitions and Preliminaries

In this paper we consider finite σ-structures where σ is a finite vocabulary con-
sisting of relation and constant symbols. For a structure A, dom(A) denotes its
universe. We will always use structures with universe {0,1, . . . ,n− 1} for some
n ∈ N\{0}. Sometimes we will assume that our structures contain certain built-
in relations and constants, e.g., ≤2, SUCC2, BIT2 and min. In the following, we
will always make it clear what built-in relations we allow. The interpretations
of built-in symbols are fixed for any size of the universe as follows: ≤2 is the ≤-
relation on N, min is 0, SUCC(i,j) is true, iff i+1 = j, and BIT(i,j) is true, iff
the i’th bit of the binary represention of j is 1. We will generally write encσ(A)
for the binary encoding of a σ-structure A. For this we assume the standard
encoding (see e.g. [10]): Relations are encoded row by row by listing their truth
values as 0’s and 1’s. Constants are encoded by the binary representation of
their value and thus a string of length ⌈log2(n)⌉. A whole structure is encoded
by the concatenation of the encodings of its relations and constants except for
the built-in numerical predicates and constants: These are not encoded, because
they are fixed for any input length.

Since we want to talk about languages accepted by Boolean circuits, we will
need the vocabulary

τstring = (≤2,S1)

of binary strings. A binary string is represented as a structure over this vocab-
ulary as follows: Let w ∈ {0,1}∗ with |w| = n. Then the structure representing
this string is the structure with universe {0, . . . ,n− 1}, ≤2 interpreted as the
≤-relation on the natural numbers and x ∈ S, iff the x’th bit of w is 1. The
structure corresponding to string w is denoted by Aw.

3

For any k, the fragments Σk and Πk of FO are the classes of all formulae in
prenex normal form with a quantifier prefix with k alternations starting with an
existential or an universal quantifier, respectively.

A concept connected to FO that we will need to define uniformity of circuit
families are FO-interpretations, which are mappings between structures over
different vocabularies.

Definition 1. Let σ,τ be vocabularies, τ = 〈Ra1

1 , . . . ,Rar
r 〉. A first-order inter-

pretation (or FO-interpretation)

I : STRUC[σ] → STRUC[τ]

is given by a tuple of FO-formulae ϕ0,ϕ1, . . . ,ϕr over the vocabulary σ. For
some k, ϕ0 has k free variables and ϕi has k ·ai free variables f. a. i ≥ 1. For
each structure A ∈ STRUC[σ], these formulae define the structure

I(A) = 〈|I(A)|,R
I(A)
1 , . . . ,R

I(A)
r 〉 ∈ STRUC[τ],

where the universe is defined by ϕ0 and the relations by ϕ1, . . . ,ϕr in the following
way:

|I(A)| = {〈b1, . . . , bk〉 | A � ϕ0(b1, . . . , bk)}

R
I(A)
i = {(〈b1

1, . . . , b
k
1〉, . . . ,〈b1

ai
, . . . , bk

ai
〉) ∈ |I(A)|ai | A � ϕi(b

1
1, . . . , b

k
ai

)}

We will now define the class #P and a model-theoretic framework in which
the class can be characterized. Here, we follow [11] only changing the name
slightly to emphasize that we are counting relations in this setting.

Definition 2. A function f : {0,1}∗ →N is in #P, if there is a non-deterministic
Turing-machine M such that for all inputs x ∈ {0,1}∗,

f(x) = number of accepting computation paths of M on input x.

Definition 3. A function f : {0,1}∗ → N is in #FOrel, if there is a vocabulary
σ including built-in linear order ≤, and an FO-formula ϕ(R1, . . . ,Rk,x1, . . . ,xℓ)
over σ with free relation variables R1, . . . ,Rk and free individual variables x1, . . . ,xℓ

such that for all A ∈ STRUC[σ],

f(encσ(A)) = |{(S1, . . . ,Sk, c1, . . . , cℓ) | A � ϕ(S1, . . . ,Sk, c1, . . . , cℓ}|.

In the same fashion we define counting classes using fragments of FO, such
as #Σk

rel and #Πk
rel for arbitrary k. In [11] the following was shown for these

classes (assuming order as the only built-in relation):

Theorem 4. #Σrel
0 = #Πrel

0 ⊂ #Σrel
1 ⊂ #Πrel

1 ⊂ #Σrel
2 ⊂ #Πrel

2 = #FOrel = #P.

Besides this theorem, it was also shown that the functions in #Σrel
0 can be

computed in polynomial time.
To illustrate the just given definition, we repeat an example from Saluja et

al. [11] that will also be important for us later.

4

Example 5. We will show that #3DNF, the problem of counting the number
of satisfying assignments of a propositional formula in disjunctive normal-form
with at most 3 literals per disjunct, is in the class #Σrel

1 . To do so, we use the
vocabulary σ#3DNF = (D0,D1,D2,D3). Given a 3DNF-formula ϕ over variables
V , we construct a corresponding σ-structure Aϕ with universe V such that for
any x1,x2,x3 ∈ V , Di(x1,x2,x3) holds iff ¬x1 ∧·· ·∧¬xi ∧xi+1 ∧·· ·∧x3 appears
as a disjunct. Now consider the following σ-formula with free relational variable
T :

Φ#3DNF(T) = ∃x∃y∃z
(

(

D0(x,y,z) ∧T (x) ∧T (y) ∧T (z)
)

∨
(

D1(x,y,z) ∧ ¬T (x) ∧T (y) ∧T (z)
)

∨
(

D2(x,y,z) ∧ ¬T (x) ∧ ¬T (y) ∧T (z)
)

∨
(

D3(x,y,z) ∧ ¬T (x) ∧ ¬T (y) ∧ ¬T (z)
)

)

Observe that Φ#3DNF is a Σ1-formula. Evaluated on an input structure Aϕ, it
expresses that an assignment to T defines a satisfying assignment of ϕ. Hence,
the number of assignments T such that Aϕ |=Φ#3DNF(T) is equal to the number
of satisfying assignments of ϕ.

We will next recall the definition of Boolean circuits and counting classes de-
fined using them. A circuit is a directed acyclic graph (dag), whose nodes (also
called gates) are marked with either a Boolean function (in our case ∧ or ∨),
a constant (0 or 1), or a (possibly negated) bit of the input. Also, one gate is
marked as the output gate. On any input, a circuit computes a Boolean function
by evaluating all gates according to what they are marked with. The value of
the output gate then is the function value for that input.
When we want circuits to work on different input lengths, we have to consider
families of circuits: A family contains a circuit for any input length n ∈ N. Fam-
ilies of circuits allow us to talk about languages beeing accepted by circuits: A
circuit family C = (Cn)n∈N is said to accept (or decide) the language L, if it
computes its characteristic function cL:

C|x|(x) = cL(x) for all x.

The complexity classes in circuit complexity are classes of languages that can be
decided by circuit families with certain restrictions to their depth and size. The
depth here is the length of a longest path from any input gate to the output gate
of a circuit and the size is the number of non-input gates in a circuit. Depth and
size of a circuit family are defined as functions accordingly.
Above, we have not restricted the computability of the circuit C|x| from x in
any way. This is called non-uniformity, which allows such circuit families to even
compute non-recursive functions. Since we want to stay within #P, we need
some notion of uniformity. For this, we first define the vocabulary for Boolean
circuits as FO-structures:

τcirc = (E2,G1
∧,G

1
∨,B

1,r1),

where the relations are interpreted as follows:

5

– E(x,y): y is a child of x
– G∧(x): gate x is an and-gate
– G∨(x): gate x is an or-gate
– B(x): gate x is a true leaf of the circuit
– r(x): x is the root of the circuit

We will now define FO-uniformity of Boolean circuits in general and the class
FO-uniform AC0.

Definition 6. A circuit family C = (Cn)n∈N is said to be first-order uniform
(FO-uniform) if there is an FO-interpretation

I : STRUC[τstring ∪ (BIT2)] → STRUC[τcirc]

mapping any structure Aw over τstring to the circuit C|w| given as a structure
over the vocabulary τcirc.

Definition 7. A language L ⊆ {0,1}∗ is in FO-uniform AC0, if there is an
FO-uniform circuit family with constant depth and polynomial size accepting L.

It is known that the just given class coincides with the class FO of all lan-
guages definable in first-order logic [4,10], i.e., informally: FO-uniform AC0 =
FO. For this identity, it is central that our logical language includes the built-in
relations of linear order and BIT.

We will next define counting classes corresponding to Boolean circuit families.
For a nondeterministic Turing machine, the witnesses we want to count are the
accepting paths of the machine on a given input. Considering polynomial time
computations, this concept gives rise to the class #P. A witness that a Boolean
circuit accepts its input is a so called proof tree, a minimal subtree of the circuit
showing that it evaluates to true for a given input. For this, we first unfold the
given circuit into tree shape, and we further require that it is in negation normal
form (meaning that negations only occur directly in front of literals). A proof
tree then is a subtree we get by choosing for any ∨-gate exactly one child and
for any ∧-gate all children, such that every leaf which we reach in this way is a
true literal. This allows us to define the class #AC0 as follows:

Definition 8. A function f : {0,1}∗ → N is in FO-uniform #AC0, if there is
an FO-uniform circuit family C = (Cn)n∈N such that for all w ∈ {0,1}∗,

f(w) = number of proof trees of C|w|(w).

As was shown in [8], there is a model-theoretic characterization of FO-uniform
#AC0. For this, let us define the Skolemization of an FO-formula ϕ in prenex
normal form by removing all existential quantifiers and replacing each existen-
tially quantified variable in the matrix of ϕ by a term consisting of a function
application to those variables quantified universally to the left of the original
existential quantifier. In other words, every existential variable is replaced by its
so called Skolem function. Now, #AC0 contains exactly those functions that can
be given as the number of Skolem functions for a given FO-formula.

6

Definition 9. A function f : {0,1}∗ →N is in the class #Πsk
1 if there is a vocab-

ulary σ including built-in linear order, BIT and min and a first-order sentence
ϕ over σ in prenex normal form

ϕ, ∃y1∀z1∃y2∀z2 . . .∃yk−1∀zk−1∃yk ψ(y,z)

such that for all A ∈ STRUC[σ], f(encσ(A)) is equal to the number of tuples
(f1, . . . ,fk) of functions such that

A � ∀z1 . . .∀zk−1 ψ(f1,f2(z1), . . . ,fk(z1, . . . ,zk−1),z1, . . . ,zk−1)

This means that #Πsk
1 contains those functions that, for a fixed FO-formula

over some vocabulary σ, map an input w to the number of Skolem functions on
A = enc−1

σ (w).

Theorem 10. FO-uniform #AC0 = #Πsk
1

The above mentioned result FO = AC0 [4,10] requires built-in order and BIT;
hence it is no surprise that also for the just given theorem these relations are
needed, and this is the reason why they also appear in Def. 9.

3 Connecting the Characterizations of #AC0 and #P

We will now establish a unified view on the model-theoretic characterizations
of both #AC0 and #P. This will be done by viewing #AC0 as a syntactic
subclass of #FO. In Theorem 10 we characterized #AC0 by a process of counting
assignments to function variables in FO-formulae, but only in a very restricted
setting. It is natural to define the process of counting functions in a more general
way, similar to the framework of [11], repeated here in Def. 3, where Saluja et
al. count assignments to free relation variables in FO-formulae to obtain their
characterization of #P.

Definition 11. #FO is the class of all functions f : {0,1}∗ → N for which
there is a vocabulary σ, including built-in ≤,BIT and min, and an FO-formula
ϕ(F1, . . . ,Fk,x1, . . . ,xℓ) over σ with free function variables F1, . . . ,Fk and free
individual variables x1, . . . ,xℓ such that for all A ∈ STRUC[σ],

f(encσ(A)) =
∣

∣

{

(f1, . . . ,fk, c1, . . . , cℓ)
∣

∣ A � ϕ(f1, . . . ,fk, c1, . . . , cℓ

}
∣

∣.

In the same fashion we define counting classes using fragments of FO, such
as #Σk and #Πk for arbitrary k. Note, that the free individual variables could
also be seen as free function variables of arity 0.

We stress that our signatures in the above definition include symbols ≤, BIT,
and min with their standard interpretations; as argued already several times,
these built-ins are necessary in order to obtain a close correspondence between
Boolean circuits and first-order logic. In contrast to our definition, Saluja et al.
(see Def. 3) only use built-in order. Still, we will now see that both concepts,
counting relations and counting function, are in fact equivalent as long as we use
all of FO, even with different sets of built-in relations.

7

Theorem 12. #FOrel = #FO = #P.

Proof. The inclusion #FOrel ⊆ #FO is shown as follows: Let f ∈ #FOrel via
the formula ϕ containing free relation variables R1, . . . ,Rk. We can replace Ri

by a function variable Fi of the same arity for all i. We then add a conjunct to
the formula ensuring that for these functions only min and the element x >min
with ∀y(y < x→ y = min) are allowed as function values. Then each occurrence
of Ri(z) can be replaced by Fi(z) = min.

The inclusion #FO ⊆ #P is trivial. The inclusion #P ⊆ #FOrel was shown
in [11].

Note that #AC0 = #Πsk
1 does not directly arise from this definition by choos-

ing an appropriate fragment of FO because of the restricted usage of the second-
order variables in Def. 9. Still we will characterize #AC0 as a syntactic subclass
of #FO as follows.

Definition 13. Let #Πprefix
1 be the class of all functions g that can be charac-

terized as

g(w) =
∣

∣

{

(f,c)
∣

∣ ϕ(f,c))
}∣

∣,

where ϕ(F ,x) = ∀y1 . . .∀ykψ(F ,x,y1, . . . ,yk) is a Π1 formula and all arity-a func-
tions (for any a) occur in ψ only in the form F (y1, . . . ,ya).

Lemma 14. FO-uniform #AC0 = #Πprefix
1

Proof. By Theorem 10 it suffices to show #Πsk
1 =#Πprefix

1 . We consider first the

inclusion #Πsk
1 ⊆ #Πprefix

1 . Let g ∈ #Πsk
1 via a formula ϕ as in Definition 9. Then

we can simply replace the occurrences of variables yi in ψ by the corresponding
function terms. The resulting formula is prefix-restricted as needed and directly
shows g ∈ #Πprefix

1 .

For #Πprefix
1 ⊆ #Πsk

1 , let g ∈ #Πprefix
1 via a formula ϕ. Since all function

symbols occurring in ϕ are only applied to a unique prefix of the universally
quantified variables, they can be seen as Skolem functions of suitable existen-
tially quantified variables. Thus, we can replace the occurrences of the function
symbols by new variables that are existentially quantified at adequate positions
between the universally quantified variables. If for example, the input for a func-
tion was x1, . . . ,xℓ, then the new variable is quantified after the part ∀x1 . . .∀xℓ

of the quantifier prefix. This yields a formula ϕ′ that shows g ∈ #Πsk
1 .

4 An Alternation Hierarchy in #FO

In this section we study a hierarchy within #FO based on quantifier alternations.
Interestingly, our approach allows us to locate #AC0 in this hierarchy. First we
note that the whole hierarchy collapses to a quite low class.

Theorem 15. #FO = #Π1

8

Proof. Let f ∈ #FO via a FO-formula ϕ(f,x) in prenex normal form. We show
how to transform ϕ to a Π1-formula also defining f . As a first step, we change
ϕ in such a way that for each existential variable instead of “there is an x”
we say “there is a smallest x”. Formally, this can be done with the following
transformation:

∃yθ(y) ∃y(θ(y) ∧ ∀z(¬θ(z) ∨y < z∨y = z))

applied recursively to all existential quantifiers in ϕ. Note that now for every
satisfied ∃-quantifier there is exactly one witness.

For the sake of argument, suppose that after the above transformation and
re-conversion to prenex normal form the formula ϕ(f,x) corresponds to ϕ′(f,x),
where

ϕ′(f,x) = ∃z1∀y1 . . .∀yℓ−1∃zℓψ(f,x,z1, . . . ,zℓ,y1, . . . ,yℓ−1).

Looking at the Skolemization of ϕ′, our transformation ensures that every exis-
tentially quantified variable has a unique Skolem function. Thus,

ϕ′′(f,g1, . . . ,gℓ) = ∀y1 . . .∀yℓ−1ψ(f,g1,g2(y1), . . . ,gℓ(y1, . . . ,yℓ−1),y1, . . . ,yℓ−1)

shows f ∈ #Π1.

Next we look at the lowest class in our hierarchy and separate it from #AC0.

Theorem 16. #Σ0 (FO-uniform #AC0

Proof. We start by showing the inclusion. Certain observations in that proof
will then almost directly yield the strictness. Let f ∈ #Σ0 via the quantifier-free
FO-formula ϕ(x1, . . . ,xk,F1, . . . ,Fℓ) over some vocabulary σ, where x1, . . . ,xk are
free individual variables and F1, . . . ,Fℓ are free function variables, that is,

f(encσ(A)) = |{(c1, . . . , ck,f1, . . . ,fℓ) | A � ϕ(c1, . . . , ck,f1, . . . ,fℓ)}|.

Without loss of generality we can assume that in ϕ no nesting of functions occurs.
If there is an occurrence of a function G as an argument for function H , then
we can replace the occurrence of G by a new free variable and force this variable
to be equal to the function value. This ensures that there is only one unique
assignment to this new free variable.

Let A := dom(A). For all i, let ai be the arity of Fi and let mi be the number
of syntactically different inputs to occurrences of Fi within ϕ. Furthermore, let
ei1, . . . ,eimi

be those inputs in the order of their occurrence within ϕ and let
ϕ′(x1, . . . ,xk,y11, . . . ,y1m1

, . . . ,yℓ1, . . . ,yℓmℓ
) be ϕ after replacing for all i,j all

occurrences of Fi(eij) by the new free variable yij . Let m :=
∑

imi.
Considering a fixed assignment to the variables x1, . . . ,xk, the idea now is to

use free individual variables in order to count the number of assignments to the
terms fi(eij) for all (i,j). After that, all fi have to be chosen in accordance with

9

those choices to get the correct number of functions that satisfy the formula.
Formally, this is done as follows:

f(encσ(A)) =
∑

c∈Ak

∑

(f1,...,fℓ)∈

AAa1
×···×AAaℓ

[A � ϕ(c1, . . . , ck,f1, . . . ,fℓ)]

=
∑

c∈Ak

∑

d∈Am

∑

(f1,...,fℓ)∈G

[A � ϕ′(c,d)],

where G := {f ∈AAa1
× ·· · ×AAaℓ | ∀(i,j) : A � dij = fi(eij)}.

Since [A � ϕ′(c,d)] does not depend on (f1, . . . ,fℓ), we can multiply by the
cardinality of G instead of summing:

f(encσ(A)) =
∑

c∈Ak,

d∈Am

[A � ϕ′(c,d)] · |G|

Now we are in a position to show f ∈ FO-uniform #AC0.
The sum only has polynomially many summands and thus is obviously pos-

sible in FO-uniform #AC0.
For [A � ϕ′(c,d)], the circuit only has to evaluate a quantifier-free formula

depending on an assignment that is given by the path from the root to the
current gate. This is similar to the corresponding part of the proof of FO =
FO-uniform #AC0 and thus can be done in AC0 ⊆ #AC0.

For |G| we first note that the total number of possible assignments for f is

|AAa1
× ·· · ×AAaℓ

| = |A|
∑

i
|A|ai

.

In G, the choices for the variables dij fix for all i up to mi function values of fi.
This means, that at least |A|ai −mi choices of function values can be arbitrarily
chosen.

If for some (i,j), eij is semantically equal to eij′ for some j′ < j, it has to
hold that dij = dij′ . Additionally, this reduces the amount of function values
that are fixed by the dij by 1. To make this formal we define for any (i,j)

Sij = {j′ | j′ < j and A � eij = eij′}.

From the above considerations we get

|G| = [
∧

(i,j)

∧

j′

(j′ ∈ Sij) → dij = dij′] · |A|
∑

i
|A|ai−

∑

i
mi · |A|

∑

ij
[Sij 6=∅]

.

Since the ai and mi are constants and Sij is FO-definable, |G| can be com-
puted in FO-uniform #AC0. This concludes the proof for #Σ0 ⊆ FO-uniform #AC0.

Now note that the proof above also shows that for any #Σ0-function f ,
either for all inputs w, f(w) is polynomially bounded in |w| or for all inputs

w, f(w) is always divisible by |w|
∑

i
|w|ci− konst for constants ci > 0. Thus,

the function f(w) = |w|⌈|w|/2⌉ ∈ FO-uniform #AC0 is not in #Σ0 which means
#Σ0 6= FO-uniform #AC0.

10

Theorem 17. #Πsk
1 (#Π1.

Proof. From the above we know that the left class is equal to FO-uniform #AC0

and the right class is equal to #P. Strict inclusion now follows immediately from
the following considerations: Let F be a class of functions {0,1}∗ → N. Then the
class C ·F is the class of all of languages A for which there are f,g ∈ F such that
for all x∈ {0,1}∗, x∈A⇔ f(x)>g(x). In [1] it was shown that TC0 = C ·#AC0.
Also, it is well known that PP = C ·#P. Allender’s separation TC0 6= PP [3] now
directly yields FO-uniform #AC0 6= #P.

So far we have identified the following hierarchy:

#Σ0 (#Πsk
1 = #AC0 (#Π1 = #P. (2)

Next we turn to the class #Σ1 and show that it forms a different branch
between #Σ0 and #Π1.

Lemma 18. There exists a function F which is in #Πsk
1 but not in #Σ1.

Proof. Let τ = {E,c,d,≤,BIT,min} where E is a binary relation symbol and c,d
are constant symbols. Let us consider the function F defined by the number of
Skolem functions of variable z in the formula ϕ= ∀x∀y∃z ψ(x,y,z) with

ψ = (E(x,y) → z = c∨ z = d) ∧ (¬E(x,y) → z = c).

For a given τ -structure A with cA 6= dA, it is clear that:

F (encτ (A)) = |{f | A |= ∀x∀y ψ(x,y,f(x,y))}| = 2|EA|,

since each edge gives rise to two possible values for z = f(x,y) and each non edge
to only one value. Thus, F ∈ #Πsk

1 .
Suppose now that F ∈ #Σ1 i.e. that there exists φ(x,g) ∈ Σ1 such that for

all τ -structures G,

F (encτ (G)) = |{(a,g0) | G |= φ(a,g0)}|

and in particular for A as above,

2|EA| = F (encτ (A)) = |{(a,g0) | A |= φ(a,g0)}|.

Now consider the following structure A′ defined simply by extending dom(A) =
{0, ...,n−1} by two new elements, i.e., dom(A′) = {0, ...,n+1}. Note that EA =

EA′

, hence the two structures have the same number of edges. To make the
presentation simpler, suppose g = g and that the arity of g is one. Any given
g0 : dom(A) −→ dom(A), can be extended in several ways on the domain dom(A′)
in particular as g1 and g2 below:

– g1(x) = g0(x) for all x ∈ dom(A) and g1(n) = c, g1(n+ 1) = d.
– g2(x) = g0(x) for all x ∈ dom(A) and g2(n) = d, g2(n+ 1) = c.

11

Formulas in Σ1 are stable under extension of models so if a and g0 are such
that A |= φ(a,g0) then A′ |= φ(a,g1) and A′ |= φ(a,g2). Hence,

|{(a,g′) | A′ |= φ(a,g′)}|> |{(a,g0) : (A,a,g0) |= φ(x,g)}|.

On the other hand, F (encτ (A)) = F (encτ (A′)) holds, hence our assumpion that
φ(x,g) ∈ Σ1 defines F has led to a contradiction.

For the opposite direction, we first show the following lemma.

Lemma 19. The function #3DNF is complete for #P under AC0-Turing-reductions.

Proof. It is known that #3DNF is #P-complete under metric reductions. A
metric reduction of the #P-complete problem #3CNF to #3DNF is as follows:
Given a 3CNF-formula ϕ over n variables, we first construct ϕ′ = ¬ϕ. This is a
3DNF-formula. Obviously, the number of satisfying assignments of ϕ is equal to
2n minus the number of satisfying assignments of ϕ′. Since this reduction can
be computed by an AC0-circuit and moreover #3CNF is #P-complete under
AC0-reductions (as follows from the standard proof of the NP-completeness of
SAT), #3DNF is complete for #P under AC0-Turing-reductions.

Lemma 20. There exists a function F which is in #Σ1 but not in #Πsk
1 .

Proof. First note that FTC0 6= #P: Making use of the complexity-theoretic op-
erator C (see proof of Theorem 17), we obtain PP = C · #P ⊆ C · FTC0 = TC0,
but TC0 6= PP [2].

We now show this lemma by modifying the counting problem #3DNF to get
a #P-complete function inside of #Σ1. If the reduction we use can be computed
in FTC0, the modified version of #3DNF can not be in #Πsk

1 ⊆ FTC0, because
this would contradict FTC0 6= #P.

Consider the vocabulary σ3DNF and the formula Φ#3DNF from example 5.
Let σ be the vocabulary extending σ3DNF with built-in ≤, BIT and min. To
get a function in #Σ1, we need to use a free function variable instead of the
free relation variable T . This will surely blow up the function value. The idea is
to make sure that compared to #3DNF, the function value only changes by a
factor depending on the input length, not on the specific satisfying assignments.
To achieve this, we interpret all even function values as false and all odd function
values as true. Thus, the number of 1’s and 0’s in a satisfying assignment do not
influence the blowup.

Following this idea we define for all σ-structures A

#3DNFfunc(encσ(A)) = |{(f) | A � Φ#3DNFfunc(f)}|,

where Φ#3DNFfunc is Φ#3DNF after replacing for all variables x subformulae of

the form T (x) by BIT(min,f(x)). By definition, #3DNFfunc ∈ #Σ1.
We now want to reduce #3DNF to #3DNFfunc. Since the idea with the

blowup only depending on the input size only works, if the universe has even
cardinality, the first step of the reduction is doubling the size of the universe. Let

12

A be a structure and A′ the structure that arises from A by doubling the size of
the universe. Let A = {0, . . . ,n− 1} and A′ = {0, . . . ,2n− 1} be their respective
universes. Each assignment for T with A �Φ#3DNF(T) gives rise to the following
set of assignments for f with A′ � Φ#3DNFfunc(f):

ST = {f : A′ →A′ | for all x ∈A : f(x) ≡ 1 mod 2 ⇔ T (x)}.

These sets are disjunct and by definition of Φ#3DNFfunc(f) their union is equal

to {f | A′ �Φ#3DNFfunc(f)}. For each T , the functions f in ST have n choices for

f(x), if x ∈A and 2n choices, if x /∈A. Thus, |ST | = |A||A| · (2 · |A|)|A|, yielding

#3DNF(encσ3DNF
(A)) =

#3DNFfunc(encσ(A′))

|A|2|A| · 2|A|
.

Doubling the size of the universe can be done in FO-uniform FTC0 by adding
the adequate number of 0-entries in the encodings of all relations.

The term |A|2|A| ·2|A| can be computed in FO-uniform #AC0 ⊆ FO-uniform FTC0

and division can be done in FO-uniform FTC0 due to [9].
Since #3DNF is #P-complete under AC0-Turing-reductions by Lemma 19,

this means that #3DNFfunc is #P-complete under TC0-Turing-reductions.

So Lemmas 18 and 20 show that #Σ1 and #Πsk
1 are incomparable, and

we obtain the inclusion chain #Σ0 (#Σ1 (#Π1 = #P. Together with (2) we
therefore obtain

#Σ0
(

#AC0 = #Πprefix
1 (

(#Σ1 (
#Π1 = #FO = #P (1)

5 Hierarchy Based on the Number of Universal Variables

In this section we study another hierarchy in #FO based on syntactict restric-
tions, this time given by the number of universal variables.

Let #Πk
1 denote the class of Π1 formulae of the form

∀x1 · · ·∀xmψ,

where m≤ k, and ψ is a quantifier-free formula. We will show that

#Πk
1 (#Πk+1

1 , (3)

for all k ≥ 1. These results can be shown by applying a result of Grandjean and
Olive which we will discuss next.

Definition 21. We denote by ESOf (k∀) the class of ESO-sentences in Skolem
normal form

∃f1 . . .∃fn∀x1 . . .∀xrψ,

where r ≤ k, and ψ is a quantifier-free formula.

13

It was shown in [7] that with respect to any finite signature σ

ESOf (k∀) = NTIMERAM(nk),

where NTIMERAM(nk) denotes the family of classes of σ-structures that can be
recognized by a non-deterministic RAM in time O(nk). Note that by [6],

NTIMERAM(nk) (NTIMERAM(nk+1).

These results can be used to show the strictness of the variables hierarchy (see
(3)). For the case k = 1 of Theorem 23 we use the following lemma which holds
for vocabularies equipped with built-in order < and constants min and max.

Lemma 22. Let σ be a vocabulary including built-in <, min and max. Then
there is a formula Succ ∈ Π1

1 with free unary function variables s and p such
that for all A, s, and p, A |= Succ(s,p) iff

1. for all e <maxA: s(e) = e+ 1, and s(maxA) =maxA,
2. for all e >minA: p(e) = e− 1, and p(minA) =minA.

Proof. It is straighforward to check that Succ can be defined by universally
quantifying x over the conjunction of the following clauses:

– (x <max∧min < x) →
(

(x < s(x) ∧p(x)< x) ∧ (p(s(x)) = s(p(x)) = x)
)

,
– p(min) =min∧s(max) =max.

Theorem 23. Let k ≥ 1. Then (assuming the auxiliary built-in constant max
for the case k = 1)

#Πk
1 (#Πk+1

1 .

Proof. We consider first the case k = 1. Let us fix σ = {<,BIT,min,max,P},
where P is unary. By the above there exists a sentence ∃f1 · · ·∃fnψ ∈ ESOf (k+ 1∀)[σ]
defining a binary language L which cannot be defined by any sentence χ ∈
ESOf (k∀)[σ]. We claim that the function F associated with the formula ψ(f1, ...,fn) ∈

Πk+1
1 ,

F (encσ(A)) = |{(f1, ...,fn) : A |= ψ(f1, ...,fn)}|,

is not a member of #Πk
1. For a contradiction, assume that F ∈ #Πk

1 . Then there
exists a formula χ(y,g) ∈Πk

1 such that

F (encσ(A)) = |{(y,g) : A |= χ(y,g)}|

By the above, the sentence ∃g∃yχ defines the language L. The variables y =
y1, . . . ,yr can be replaced in χ by fresh unary function symbols gy1

, ...,gyr whose
interpretations are forced to be constant functions in the following way, x1 being
the universal variable in χ.

1. We replace all occurrences of yi in χ by the term gyi
(x1),

14

2. We add to the quantifier-free part of χ a conjunct gyi
(x1) = gyi

(s(x1)), for
1 ≤ i≤ r,

3. We add to the quantifier-free part of χ the conjunt Succ(x1) defined in
Lemma 22 which forces the interpretation of the unary function s to be the
unique successor function associated to <.

Now ∃g∃gy∃s∃pχ ∈ ESOf (k∀), and it defines the language L. But this contra-
dicts the assumption that L cannot be defined any sentence of ESOf (k∀).

Let us then consider the case k ≥ 2. Now σ = {<,BIT,min,P}, and we pro-
ceed analogously to the case k= 1 except that the formulae of items 2. and 3. are
replaced by formulae gyi

(x1) = gyi
(x2), where x1,x2 are two different universal

variables in χ.

It is an interesting open question to study the relationship of #AC0 with the
classes #Πk

1 .

6 #AC0 compared to the classes from Saluja et al.

In this section we study the relationship of #AC0 to the syntactic classes in-
troduced in [11]. As in [11], these classes are defined assuming a built-in order
relation only.

Theorem 24. – #Σrel
0 (#AC0,

– Let C ∈ {#Σrel
1 ,#Πrel

1 ,#Σrel
2 }. Then the following holds: #AC0 6⊆ C and C 6⊆

#AC0.

Proof. The proof of the inclusion #Σrel
0 (#AC0 is analogous to the proof of

Theorem 16 and is thus omitted.
Next, the claim C 6⊆ #AC0 for C ∈ {#Σrel

1 ,#Πrel
1 ,#Σrel

2 } can be proven as
follows: From Example 5 we know that #3DNF ∈ C and from Lemma 19 we
know that #3DNF is #P-complete under AC0-Turing-reductions. Now suppose

#3DNF ∈ #AC0. Then #P ⊆ FAC0#AC0

⊆ FTC0 [8], contradicting FTC0 6=
#P, which was shown in the proof of Lemma 20. Hence #3DNF 6∈ #AC0 and
C 6⊆ #AC0.

It remains to show #AC0 6⊆ C. We show this by an argument similar to the
proof that #HAMILTONIAN is not in #Σrel

2 , showing the separation of #Σrel
2

from #FO, see Theorem 2 in [11]. We will show that a very simple function
f on encodings of τstring-structures is not in C. Define f as follows: f(w) = 1,
if |w| is even, and f(w) = 0 otherwise. Obviously f ∈ #AC0. It now suffices to
show that f 6∈ #Σrel

2 . For contradiction, assume that f ∈ #Σrel
2 via a formula

φ(x,R) ∈Σrel
2 , where

φ(x,R) = ∃u∀vθ(u,v,x,R),

and θ is a quantifier-free formula. Let s and t be the lengths of the tuples u and
x, respectively. Let n≥ s+ t+1 be even and let w ∈ {0,1}n. By the assumption,
there exists u, x, R such that

Aw |= ∀vθ(u,x,R).

15

By the choice of n, we can find i ∈ {0, ..,n− 1} such that i does not appear
in the tuples u and x. Let Aw′ denote the structure arising by removing the
element i from the structure Aw, and let R

∗
denote the relations of Aw′ arising

by removing tuples with the element i from R. By closure under substructures
of universal first-order formulae, it follows that

Aw′ |= ∀vθ(u,x,R
∗
),

implying that f(Aw′) ≥ 1. But |w′| is odd and hence f(Aw′) = 0 contradicting
the assumption that the formula φ(x,R) defined the function f .

Last, we want to give another inclusion result between one of our classes and
a class from the Saluja et al. hierarchy.

Lemma 25. There exists a function F which is in #Σrel
1 but not in #Σ1.

Proof. We prove that #3DNF is not in #Σ1 though it belongs to #Σrel
1 . As

in Example 5, we use the vocabulary σ#3DNF = (D0,D1,D2,D3) and consider
the vocabulary σ extending σ#3DNF with built-in linear order ≤, BIT and min.
Suppose #3DNF is definable by a σ-formula Φ(x,g) ∈ Σ1. To a given DNF
formula, ϕ, with n≥ 2 variables, one associates a σ-structure Aϕ such that the
number m of satisfying assignments of ϕ is equal to

m= |{(a,g0) | Aϕ |= Φ(a,g0)}|

Let {0, ...,n− 1} be the domain of Aϕ. Consider the structure B extending Aϕ

with one additional element n, correctly extending the numerical predicates.
Structure B encodes a formula ϕ′ whose number of satisfying assignments is
obviously 2m. Formulas in Σ1 are stable by extension, so for any fixed (a,g0)
such that A |= Φ(a,g0), any extension g′

0 of g0 on the domain {0, ...,n} of B is
such that B |= Φ(a,g′

0). Each g ∈ g0 of arity a≥ 1 defined on {0, ...,n−1} can be

extended on {0, ...,n} in at least (n+ 1)
∑a

i=1
(a

i)na−i

≥ n+ 1 ways. Hence:

|{(a,g′
0) | B |= Φ(a,g′

0)}| ≥ (n+ 1)m> 2m

contradicting the assumption that Φ(x,g) ∈ Σ1 defines #3DNF.

7 Conclusion

In this paper we have started a descriptive complexity approach to arithmetic
computations. We have introduced a new framework to define arithmetic func-
tions by counting assignments to free function variables for first-order formulae.
Compared to a similar definition of Saluja et al. where assignments to free rela-
tional variables are counted, we obtain a hierarchy with a completely different
structure, different properties and different problems. The main interest in our
hierarchy is that it allows the classification of arithmetic circuit classes such as
#AC0, in contrast to the one from Saluja et al.

We have only started the investigation of our framework, and many questions
remain open for future research:

16

1. Sipser proved a depth hierarchy within the Boolean class AC0 [12]. This
hierarchy can be transfered into the context of arithmetic circuits: There is an
infinite depth hierarchy within #AC0. Does this circuit hierarchy lead to a logical
hierarchy within #Πsk

1 ? Maybe it is possible to obtain a hierarchy defined by
limiting the arity of the Skolem functions.

2. The connection between #AC0 and the variable hierarchy studied in
Sect.5 is not clear. We think it would be interesting to study if #AC0 is fully
contained in some finite level of this hierarchy.

3. One of the main goals of Saluja et al. in their paper [11] was to iden-
tify feasible subclasses of #P. They showed that #Σrel

0 -functions can be com-
puted in polynomial time, but even more interestingly, that functions from a
certain higher class #RΣ2 allow a full polynomial-time randomized approxi-
mation scheme. Are there approximation algorithms or even schemes, maybe
randomized, for some of the classes of our hierarchy?

4. The most prominent small arithmetic circuit class besides #AC0 is prob-
lably the class #NC1 [5]. Can it be characterized in our framework or by a
natural extension of it, for example by allowing generalized quantifiers? The
Boolean class NC1 is obtained by first-order formulae with Lindström quanti-
fiers for group word problems; i.e., we have, very informally, that AC0 = FO and
NC1 = FO+ GROUP, see [4,14].

5. In Sect. 6, we clarified the inclusion relation between the class #AC0 and
all classes of the Saluja et al. hierarchy, and we gave a small number of examples
for (non-)inclusion results between other classes from the two different settings.
We consider it interesting to extend this systematically by studying the status
of all further possible inclusions between classes from our hierarchy and classes
of the Saluja et al. hierarchy.

6. We consider it interesting to study systematically the role of built-in rela-
tions. E.g., Saluja et al. define their classes using only linear order, and prove the
hierarchy structure given in Theorem 4. It can be shown that by adding BIT,
SUCC, min and max we obtain #Πrel

1 = #P. How does their hierarchy change
when we generally introduce SUCC or BIT?

References

1. Manindra Agrawal, Eric Allender, and Samir Datta. On TC0, AC0, and arithmetic
circuits. Journal of Computer and System Sciences, 60(2):395–421, 2000.

2. E. Allender. The permanent requires large uniform circuits. Chicago Journal of

Theoretical Computer Science, 1999. To appear. A preliminary version appeared as:
A note on uniform circuit lower bounds for the counting hierarchy, in Proceedings

2nd Computing and Combinatorics Conference, Lecture Notes in Computer Science
1090, pages 127–135, Springer-Verlag, Berlin, 1996.

3. Eric Allender. The permanent requires large uniform threshold circuits. Chicago

J. Theor. Comput. Sci., 1999, 1999.
4. D. A. Mix Barrington, N. Immerman, and H. Straubing. On uniformity within

NC1. Journal of Computer and System Sciences, 41:274–306, 1990.
5. H. Caussinus, P. McKenzie, D. Thérien, and H. Vollmer. Nondeterministic NC1

computation. Journal of Computer and System Sciences, 57:200–212, 1998.

17

6. Stephen A. Cook. A hierarchy for nondeterministic time complexity. In Conference

Record, Fourth Annual ACM Symposium on Theory of Computing, pages 187–192.
ACM, 1972.

7. Etienne Grandjean and Frédéric Olive. Graph properties checkable in linear time
in the number of vertices. J. Comput. Syst. Sci., 68(3):546–597, 2004.

8. Anselm Haak and Heribert Vollmer. A model-theoretic characterization of
constant-depth arithmetic circuits. CoRR, abs/1603.09531, 2016.

9. William Hesse. Division is in uniform TC0. In Automata, Languages and Pro-

gramming, 28th International Colloquium, ICALP 2001, Crete, Greece, July 8-12,

2001, Proceedings, pages 104–114, 2001.
10. Neil Immerman. Descriptive complexity. Graduate texts in computer science.

Springer, 1999.
11. Sanjeev Saluja, K. V. Subrahmanyam, and Madhukar N. Thakur. Descriptive

complexity of #P functions. Journal of Computer and System Sciences, 50(3):493–
505, 1995.

12. M. Sipser. Borel sets and circuit complexity. In Proceedings 15th Symposium on

Theory of Computing, pages 61–69. ACM Press, 1983.
13. L. G. Valiant. The complexity of computing the permanent. Theoretical Computer

Science, 8:189–201, 1979.
14. Heribert Vollmer. Introduction to Circuit Complexity - A Uniform Approach. Texts

in Theoretical Computer Science. An EATCS Series. Springer, 1999.

18

	Descriptive Complexity of #AC0 Functions

