
Finding Connected Secluded Subgraphs∗

Petr A. Golovach† Pinar Heggernes† Paloma Lima† Pedro Montealegre‡

Abstract

Problems related to finding induced subgraphs satisfying given properties form one of the
most studied areas within graph algorithms. Such problems have given rise to breakthrough
results and led to development of new techniques both within the traditional P vs NP
dichotomy and within parameterized complexity. The Π-Subgraph problem asks whether
an input graph contains an induced subgraph on at least k vertices satisfying graph property
Π. For many applications, it is desirable that the found subgraph has as few connections to
the rest of the graph as possible, which gives rise to the Secluded Π-Subgraph problem.
Here, input k is the size of the desired subgraph, and input t is a limit on the number of
neighbors this subgraph has in the rest of the graph. This problem has been studied from a
parameterized perspective, and unfortunately it turns out to be W[1]-hard for many graph
properties Π, even when parameterized by k + t. We show that the situation changes when
we are looking for a connected induced subgraph satisfying Π. In particular, we show that
the Connected Secluded Π-Subgraph problem is FPT when parameterized by just t
for many important graph properties Π.

1 Introduction

Vertex deletion problems are central in parameterized algorithms and complexity, and they have
contributed hugely to the development of new algorithmic methods. The Π-Deletion problem,
with input a graph G and an integer `, asks whether at most ` vertices can be deleted from G so
that the resulting graph satisfies graph property Π. Its dual, the Π-Subgraph problem, with
input G and k, asks whether G contains an induced subgraph on at least k vertices satisfying
Π. The problems were introduced already in 1980 by Yannakakis and Lewis [13], who showed
their NP-completeness for almost all interesting graph properties Π. During the last couple of
decades, these problems have been studied extensively with respect to parameterized complexity
and kernelization, which has resulted in numerous new techniques and methods in these fields
[5, 6].

In many network problems, the size of the boundary between the subgraph that we are
looking for and the rest of the graph makes a difference. A small boundary limits the exposure
of the found subgraph, and notions like isolated cliques have been studied in this respect [9,
10, 12]. Several measures for the boundary have been proposed; in this work we use the open
neighborhood of the returned induced subgraph. For a set of vertices U of a graph G and a
positive integer t, we say that U is t-secluded if |NG(U)| ≤ t. Analogously, an induced subgraph
H of G is t-secluded if the vertex set of H is t-secluded. For a given graph property Π, we get
the following formal definition of the problem Secluded Π-Subgraph.
∗The preliminary version of this paper appeared as an extended abstract in the proceedings of IPEC 2017.

This work is supported by Research Council of Norway via project “CLASSIS”.
†Department of Informatics, University of Bergen, Norway, {petr.golovach, pinar.heggernes,

paloma.lima}@ii.uib.no.
‡Facultad de Ingenieŕıa y Ciencias, Universidad Adolfo Ibáñez, Santiago, Chile, p.montealegre@uai.cl.

1

ar
X

iv
:1

71
0.

10
97

9v
1

 [
cs

.D
S]

 3
0

O
ct

 2
01

7

Input: A graph G and nonnegative integers k and t.
Task: Decide whether G contains a t-secluded induced subgraph H on at least

k vertices, satisfying Π.

Secluded Π-Subgraph

Lewis and Yannakakis [13] showed that Π-Subgraph is NP-complete for every hereditary
nontrivial graph property Π. This immediately implies that Secluded Π-Subgraph is NP-
complete for every such Π. As a consequence, the interest has shifted towards the parameterized
complexity of the problem, which has been studied by van Bevern et al. [1] for several classes
Π. Unfortunately, in most cases Secluded Π-Subgraph proves to be W[1]-hard, even when
parameterized by k + t. In particular, it is W[1]-hard to decide whether a graph G has a t-
secluded independent set of size k when the problem is parameterized by k + t [1]. In this
extended abstract, we show that the situation changes when the secluded subgraph we are
looking for is required to be connected, in which case we are able to obtain positive results
that apply to many properties Π. In fact, connectivity is central in recently studied variants of
secluded subgraphs, like Secluded Path [3, 11] and Secluded Steiner Tree [7]. However,
in these problems the boundary measure is the closed neighborhood of the desired path or the
steiner tree, connecting a given set of vertices. The following formal definition describes the
problem that we study in this extended abstract, Connected Secluded Π-Subgraph. For
generality, we define a weighted problem.

Input: A graph G, a weight function ω : V (G)→ Z>0, a nonnegative integer t
and a positive integer w.

Task: Decide whether G contains a connected t-secluded induced subgraph
H with ω(V (H)) ≥ w, satisfying Π.

Connected Secluded Π-Subgraph

Observe that Connected Secluded Π-Subgraph remains NP-complete for all hereditary
nontrivial graph properties Π, following the results of Yannakakis [18]. It can be also seen that
Connected Secluded Π-Subgraph parameterized by w is W[1]-hard even for unit weights,
if it is W[1]-hard with parameter k to decide whether G has a connected induced subgraph on
at least k vertices, satisfying Π (see, e.g., [6, 15]).

It is thus more interesting to consider parameterization by t, and we show that Connected
Secluded Π-Subgraph is fixed parameter tractable when parameterized by t for many impor-
tant graph properties Π. Our main result is given in Section 3 where we consider Connected
Secluded Π-Subgraph for all graph properties Π that are characterized by finite sets F
of forbidden induced subgraphs and refer to this variant of the problem as Connected Se-
cluded F-Free Subgraph. We show that the problem is fixed parameter tractable when
parameterized by t by proving the following theorem.

Theorem 1. Connected Secluded F-Free Subgraph can be solved in time 22
2O(t log t)

·
nO(1).

In Section 4 we show that similar results could be obtained for some infinite families of
forbidden subgraphs by giving an FPT algorithm for the case when Π is the property of being
acyclic. Furthermore, in Section 5 we show that we can get faster algorithms for Connected
Secluded Π-Subgraph when Π is the property of being a complete graph, a star, a path,
and a d-regular graph. Finally, in Section 6 we briefly discuss kernelization for Connected
Secluded Π-Subgraph.

2

2 Preliminaries

We consider only finite undirected simple graphs. We use n to denote the number of vertices
and m the number of edges of the considered graphs unless it creates confusion. A graph G is
identified by its vertex set V (G) and edge set E(G). For U ⊆ V (G), we write G[U] to denote
the subgraph of G induced by U . We write G − U to denote the graph G[V (G) \ U]; for a
single-element U = {u}, we write G− u. A set of vertices U is connected if G[U] is a connected
graph. For a vertex v, we denote by NG(v) the (open) neighborhood of v in G, i.e., the set of
vertices that are adjacent to v in G. For a set U ⊆ V (G), NG(U) = (∪v∈UNG(v)) \ U . We
denote by NG[v] = NG(v)∪{v} the closed neighborhood of v; respectively, NG[U] = ∪v∈UNG[v].
The degree of a vertex v is dG(v) = |NG(v)|. Two vertices u and v of graph G are true twins if
NG[u] = NG[v], and false twins if NG(u) = NG(v). A set of vertices S ⊂ V (G) of a connected
graph G is a separator if G−S is disconnected. A vertex v is a cut vertex if {v} is a separator.

A graph property is hereditary if it is preserved under vertex deletion, or equivalently, under
taking induced subgraphs. A graph property is trivial if either the set of graphs satisfying it,
or the set of graphs that do not satisfy it, is finite. Let F be a graph. We say that a graph G
is F -free if G has no induced subgraph isomorphic to F . For a set of graphs F , a graph G is
F-free if G is F -free for every F ∈ F . Let Π be the property of being F-free. Then, depending
on whether F is a finite or an infinite set, we say that Π is characterized by a finite / infinite
set of forbidden induced subgraphs.

We use the recursive understanding technique introduced by Chitnis et al. [4] for graph
problems to solve Connected Secluded Π-Subgraph when Π is defined by forbidden induced
subgraphs or Π is the property to be a forest. This powerful technique is based on the following
idea. Suppose that the input graph has a vertex separator of bounded size that separates the
graph into two sufficiently big parts. Then we solve the problem recursively for one of the
parts and replace this part by an equivalent graph such that the replacement keeps all essential
(partial) solutions of the original part. By such a replacement we obtain a graph of smaller size.
Otherwise, if there is no separator of bounded size separating graphs into two big parts, then
either the graph has bounded size or it is highly connected, and we exploit these properties.
We need the following notions and results from Chitnis et al. [4].

Let G be a graph. A pair (A,B), where A,B ⊆ V (G) and A ∪ B = V (G), is a separation
of G of order |A ∩ B| if G has no edge uv with u ∈ A \ B and v ∈ B \ A, i.e., A ∩ B is
an (A,B)-separator. Let q and k be nonnegative integers. A graph G is (q,k)-unbreakable if
for every separation (A,B) of G of order at most k, |A \ B| ≤ q or |B \ A| ≤ q. Combining
Lemmas 19, 20 and 21 of [4], we obtain the following.

Lemma 1 ([4]). Let q and k be nonnegative integers. There is an algorithm with running time
2O(min{q,k} log(q+k)) ·n3 log n that, for a graph G, either finds a separation (A,B) of order at most
k such that |A\B| > q and |B\A| > q, or correctly reports that G is ((2q+1)q·2k, k)-unbreakable.

We conclude this section by noting that the following variant of Connected Secluded
Π-Subgraph is FPT when parameterized by k+t. We will rely on this result in the subsequent
sections, however we believe that it is also of interest on its own.

Input: A graph G, coloring c : V (G) → N, a weight function ω : V (G) → Z≥0
and nonnegative integers k, t and w.

Task: Decide whether G contains a connected t-secluded induced subgraph H
such that (H, c′), where c′(v) = c|V (H)(v), satisfies Π, |V (H)| = k and
ω(V (H)) ≥ w.

Connected Secluded Colored Π-Subgraph of Exact Size

We say that a mapping c : V (G) → N is a coloring of G; note that we do not demand a
coloring to be proper. Analogously, we say that Π is a property of colored graphs if Π is a

3

property on pairs (G, c), where G is a graph and c is a coloring. Notice that if some vertices
of the input graph have labels, then we can assign to each label (or a combination of labels if
a vertex can have several labels) a specific color and assign some color to unlabeled vertices.
Then we can redefine a considered graph property with the conditions imposed by labels as
a property of colored graphs. Observe that we allow zero weights. We give two algorithms
for Connected Secluded Colored Π-Subgraph of Exact Size with different running
times. The first algorithm is based on Lemmas 3.1 and 3.2 of Fomin and Villanger [8], which
we summarize in Lemma 2 below. The second algorithm uses Lemma 3 by Chitnis et al. [4],
and we are going to use it when k � t.

Lemma 2 ([8]). Let G be a graph. For every v ∈ V (G), and k, t ≥ 0, the number of connected
vertex subsets U ⊆ V (G) such that v ∈ U , |U | = k, and |NG(U)| = t, is at most

(
k+t
t

)
.

Moreover, all such subsets can be enumerated in time O(
(
k+t
t

)
· (n+m) · t · (k + t)).

Lemma 3 ([4]). Given a set U of size n and integers 0 ≤ a, b ≤ n, one can construct in time
2O(min{a,b} log(a+b))n log n a family S of at most 2O(min{a,b} log(a+b)) log n subsets of U such that
the following holds: for any sets A,B ⊆ U , A∩B = ∅, |A| ≤ a, |B| ≤ b, there exists a set S ∈ S
with A ⊆ S and B ∩ S = ∅.

Theorem 2. If property Π can be recognized in time f(n), then Connected Secluded Col-
ored Π-Subgraph of Exact Size can be solved both in time 2k+t · f(k) · nO(1), and in time
2O(min{k,t} log(k+t)) · f(k) · nO(1).

Proof. Let (G, c, ω, k, t, w) be an instance of Connected Secluded Colored Π-Subgraph
of Exact Size.

First, we use Lemma 2 and in time 2k+t · nO(1) enumerate all connected U ⊆ V (G) with
|U | = k and |NG(U)| ≤ t. By Lemma 2, we have at most

(
k+t
t

)
tn sets. For every such a set

U , we check in time f(k) + O(k) whether the colored induced subgraph G[U] satisfies Π and
ω(U) ≥ w. It is straightforward to see that (G, c, ω, k, t, w) is a yes-instance if and only if we
find U with these properties.

To construct the second algorithm, assume that (G, c, ω, k, t, w) is a yes-instance. Then
there is U ⊆ V (G) such that U is a connected k-vertex set such that |NG(U)| ≤ t, ω(U) ≥ w
and the colored graph H = G[U] satisfies Π. Using Lemma 3, we can construct in time
2O(min{k,t} log(k+t)) · nO(1) a family S of at most 2O(min{k,t} log(k+t)) log n subsets of V (G) such
that the following holds: for any sets A,B ⊆ V (G), A ∩ B = ∅, |A| ≤ k, |B| ≤ t, there exists
a set S ∈ S with A ⊆ S and B ∩ S = ∅. In particular, we have that there is S ∈ S such that
U ⊆ S and NG(U) ∩ S = ∅. It implies that G[U] is a component of G[S].

Therefore, (G, c, ω, k, t, w) is a yes-instance if and only if there is S ∈ S such that a compo-
nent of G[S] is a solution for the instance. We construct the described set S. Then for every
S ∈ S, we consider the components of G[S], and for every component H, we verify in time
f(k) +O(k), whether H gives us a solution.

Theorem 2 immediately gives the following corollary.

Corollary 1. If Π can be recognized in polynomial time, then Connected Secluded Col-
ored Π-Subgraph of Exact Size can be solved both in time 2k+t · nO(1), and in time
2O(min{k,t} log(k+t)) · nO(1).

3 Connected Secluded Π-Subgraph for properties characterized
by finite sets of forbidden induced subgraphs

In this section we show that Connected Secluded Π-Subgraph is FPT parameterized by
t when Π is characterized by a finite set of forbidden induced subgraphs. We refer to this

4

restriction of our problem as Connected Secluded F-Free Subgraph. Throughout this
section, we assume that we are given a fixed finite set F of graphs.

Recall that to apply the recursive understanding technique introduced by Chitnis et al. [4],
we should be able to recurse when the input graph contains a separator of bounded size that
separates the graph into two sufficiently big parts. To do this, we have to combine partial
solutions in both parts. A danger in our case is that a partial solution in one part might
contain a subgraph of a graph in F . We have to avoid creating subgraphs belonging to F
when we combine partial solutions. To achieve this goal, we need some definitions and auxiliary
combinatorial results.

Let p be a nonnegative integer. A pair (G, x), where G is a graph and x = (x1, . . . , xp)
is a p-tuple of distinct vertices of G, is called a p-boundaried graph or simply a boundaried
graph. Respectively, x = (x1, . . . , xp) is a boundary. Note that a boundary is an ordered set.
Hence, two p-boundaried graphs that differ only by the order of the vertices in theirs boundaries
are distinct. Observe also that a boundary could be empty. We say that (G, x) is a properly
p-boundaried graph if each component of G has at least one vertex of the boundary. Slightly
abusing notation, we may say that G is a (p-) boundaried graph assuming that a boundary is
given.

Two p-boundaried graphs (G1, x
(1)) and (G2, x

(2)), where x(h) = (x
(h)
1 , . . . , x

(h)
p) for h =

1, 2, are isomorphic if there is an isomorphism of G1 to G2 that maps each x
(1)
i to x

(2)
i for

i ∈ {1, . . . , p}. We say that (G1, x
(1)) and (G2, x

(2)) are boundary-compatible if for any distinct

i, j ∈ {1, . . . , p}, x(1)i x
(1)
j ∈ E(G1) if and only if x

(2)
i x

(2)
j ∈ E(G2).

Let (G1, x
(1)) and (G2, x

(2)) be boundary-compatible p-boundaried graphs and let x(h) =

(x
(h)
1 , . . . , x

(h)
p) for h = 1, 2. We define the boundary sum (G1, x

(1)) ⊕b (G2, x
(2)) (or simply

G1 ⊕b G2) as the (non-boundaried) graph obtained by taking disjoint copies of G1 and G2 and

identifying x
(1)
i and x

(2)
i for each i ∈ {1, . . . , p}.

Let G be a graph and let y = (y1, . . . , yp) be a p-tuple of vertices of G. For a s-boundaried
graph (H,x) with the boundary x = (x1, . . . , xs) and pairwise distinct i1, . . . , is ∈ {1, . . . , p},
we say that H is an induced boundaried subgraph of G with respect to (yi1 , . . . , yis) if G contains
an induced subgraph H ′ isomorphic to H such that the corresponding isomorphism of H to H ′

maps xj to yij for j ∈ {1, . . . , s} and V (H ′) ∩ {y1, . . . , yp} = {yi1 , . . . , yis}.
We construct the set of boundaried graphs Fb as follows. For each F ∈ F , each separation

(A,B) of F and each p = |A ∩ B|-tuple x of the vertices of (A ∩ B), we include (F [A], x)
in Fb unless it already contains an isomorphic boundaried graph. We say that two properly

p-boundaried graphs (G1, x
(1)) and (G2, x

(2)), where x(h) = (x
(h)
1 , . . . , x

(h)
p), are equivalent (with

respect to Fb) if

(i) (G1, x
(1)) and (G2, x

(2)) are boundary-compatible,

(ii) for any i, j ∈ {1, . . . , p}, x(1)i and x
(1)
j are in the same component of G1 if and only if x

(2)
i

and x
(2)
j are in the same component of G2,

(iii) for any pairwise distinct i1, . . . , is ∈ {1, . . . , p}, G1 contains an s-boundaried induced

subgraph H ∈ Fb with respect to the s-tuple (x
(1)
i1
, . . . , x

(1)
is

) if and only if H is an induced

subgraph of G2 with respect to the s-tuple (x
(2)
i1
, . . . , x

(2)
is

).

It is straightforward to verify that the introduced relation is indeed an equivalence relation on
the set of properly p-boundaried graphs. The following property of the equivalence with respect
to Fb is crucial for our algorithm.

Lemma 4. Let (G, x), (H1, y
(1)) and (H2, y

(2)) be boundary-compatible p-boundaried graphs,

x = (x1, . . . , xp) and y(h) = (y
(h)
1 , . . . , y

(h)
p) for h = 1, 2. If (H1, y

(1)) and (H2, y
(2)) are equivalent

with respect to Fb, then (G, x)⊕b (H1, y
(1)) is F-free if and only if (G, x)⊕b (H2, y

(2)) is F-free.

5

Proof. By symmetry, it is sufficient to show that if G⊕b H1 is not F-free, then the same hold
for G⊕bH2. Suppose that F is an induced subgraph of G⊕bH1 isomorphic to a graph of F . If
V (F) ⊆ V (G), then the claim is trivial. Suppose that this is not the case and V (F)∩V (H1) 6= ∅.
Recall that G⊕b H1 is obtained by identifying each xi and y

(1)
i . Denote the identified vertices

by y
(1)
1 , . . . , y

(1)
p . Let F1 = F [V (F) ∩ V (H1)] and F ′ = F [V (F) ∩ V (G)]; note that F ′ could be

empty. Let {y(1)i1
, . . . , y

(1)
is
} = V (F)∩{y(1)1 , . . . , y

(1)
p }; note that this set could be empty. Clearly,

(F1, (y
(1)
i1
, . . . , y

(1)
is

)) is an s-boundaried subgraph of H1 with respect to (y
(1)
1 , . . . , y1p). Observe

that Fb contains an s-boundaried graph isomorphic to (F1, (y
(1)
i1
, . . . , y

(1)
is

)). Because H1 and H2

are equivalent with respect to Fb, there is an induced s-boundaried subgraph (F2, (y
(2)
i1
, . . . , y

(2)
is

))

of H2 with respect to (y
(2)
1 , . . . , y

(2)
p) isomorphic to (F1, (y

(1)
i1
, . . . , y

(1)
is

)). Then F ′ ⊕b F2 is iso-
morphic to F , that is, G⊕b H2 contains F as an induced subgraph.

Lemma 5. It can be checked in time (|V (G1)|+ |V (G2)|)O(1) whether two properly p-boundaried
graphs G1 and G2 are equivalent, and the constant hidden in the O-notation depends on F only.

Proof. Let (G1, x
(1)) and (G2, x

(2)), where x(h) = (x
(h)
1 , . . . , x

(h)
p) for h = 1, 2, be two boundaried

graphs. Clearly, the conditions (i) and (ii) of the definition of the equivalence with respect to
F can be checked in polynomial time. To verify (iii), let a = |Fb|, b be the maximum size of
the boundary of graphs in Fb and let c be the maximum number of vertices of a graph in Fb.
Clearly, the values of a, b and c depend on F only. For each s-tuple of indices (i1, . . . , is) where
s ≤ b, we check whether an s-boundaried graph H ∈ Fb is an s-boundaried induced subgraph

of G1 and G2 with respect to (x
(1)
i1
, . . . , x

(1)
is

) and (x
(2)
i1
, . . . , x

(2)
is

) respectively. Since there are at

most bpb s-tuples of indices (i1, . . . , is), at most a graphs in Fb and Gh has at most c|V (Gh)|c
induced subgraphs with at most c vertices for h = 1, 2, we have that (iii) can be checked in
polynomial time.

For each nonegative integer p, we consider a set Gp of properly p-boundaried graphs obtained
by picking a graph with minimum number of vertices in each equivalence class. We show that
the size of Gp and the size of each graph in the set is upper bounded by some functions of p,
and this set can be constructed in time that depends only on p assuming that Fb is fixed. We
need the following observation made by Fomin et al. [7].

Lemma 6 ([7]). Let G be a connected graph and S ⊆ V (G). Let F be an inclusion minimal
connected induced subgraph of G such that S ⊆ V (F) and X = {v ∈ V (F)|dF (v) ≥ 3} ∪ S.
Then |X| ≤ 4|S| − 6.

Lemma 7. For every positive integer p, |Gp| = 2O(p
2), and for every H ∈ Gp, |V (H)| = pO(1),

where the constants hidden in the O-notations depend on F only. Moreover, for every p-
boundaried graph G, the number of p-boundaried graphs in Gp that are compatible with G is
2O(p log p).

Proof. Let a = |Fb|, b be the maximum size of the boundary of graphs in Fb and let c be the
maximum number of vertices of a graph in Fb. Clearly, the values of a, b and c depend on F
only. Assume that the boundary x = (x1, . . . , xp) is fixed.

There are 2(p2) possibilities to select a set of edges with both end-vertices in {x1, . . . , xp}.
The number of possible partitions of the boundary into components is the Bell number Bp and
Bp = 2O(p log p). The number of s-tuples of vertices of {x1, . . . , xp} that could be boundaries of
the copies of s-boundaried induced subgraphs H ∈ Fb is at most bpb. Respectively, the number

of distinct equivalence classes is at most 2(p2)Bpbp
b2a, that is, |Gp| ≤ 2(p2)Bpbp

b2a = 2O(p
2).

Let G be a p-boundaried graph in one of the classes with minimum number of vertices.
Notice that for each s-tuple of vertices of {x1, . . . , xp}, G can contain several copies of the same

6

H as an induced subgraph with respect to this s-tuple. In this case we pick one of them and
obtain that G contains at most bpb2a distinct boundaried induced subgraphs H ∈ Fb. Let S
be the set of vertices of G that belong to these subgraphs or to the boundary x. We have
that |S| ≤ bpb2ac + p. Let X = {v ∈ V (G) | dG(v) ≥ 3} ∪ S. By applying Lemma 6 to each
component of G, we obtain that |X| ≤ 4|S| − 6.

By the minimality of G, every vertex of degree one is in S. Hence, Y = V (G) \X contains
only vertices of degree two and, therefore, G[Y] is a union of disjoint paths. Observe that by the
minimality of G, each vertex of Y is a cut vertex of the component of G containing it. It implies
that G[Y] contains at most |X| − 1 paths. Suppose that G[Y] contains a path P with at least
2c+ 2 vertices. Let G′ be the graph obtained from G by the contraction of one edge of P . We
claim that G and G′ are equivalent with respect to Fb. Since the end-vertices of the contracted
edges are not the vertices of the boundary, the conditions (i) and (ii) of the definition of the
equivalence are fulfilled. Therefore, it is sufficient to verify (iii). Let i1, . . . , is ∈ {1, . . . , p}.
Suppose that G contains an s-boundaried induced subgraph H ∈ Fb with respect to the s-tuple
(xi1 , . . . , xis). Then at least two adjacent vertices of P are not included in the copy of H in G.
It implies that H is an induced subgraph of G′ with respect to (xi1 , . . . , xis). Suppose that G′

contains an s-boundaried induced subgraph H ∈ Fb with respect to the s-tuple (xi1 , . . . , xis).
Then at least one vertex of P is not included in the copy of H in G′. Then H is an induced
subgraph of G′ with respect to (xi1 , . . . , xis). But the equivalence of G and G′ contradicts the
minimality of G. We conclude that each path in G[Y] contains at most 2c + 1 vertices. Then
the total number of vertices of G is at most |X|+ (|X| − 1)(2c+ 1) = pO(1).

To see that for any p-boundaried graph G, the number of graphs in Gp that are compatible
with G is 2O(p log p), notice that if (H, (x1, . . . , xp)) ∈ Gp and is compatible with G, then the
adjacency between the vertices of the boundary is defined by G. Then the number of s-tuples of
vertices of {x1, . . . , xp} that could be boundaries of the copies of s-boundaried induced subgraphs
from Fb is at most bpb and for each s-tuple we can have at most 2a s-boundaried induced
subgraphs from Fb. Taking into account that there 2O(p log p) possibilities for the verties of
the boundary be partitioned according to their inclusions in the components, we obtain the
claim.

Consider now the class C of p-boundaried graphs, such that a p-boundaried graph
(G, (x1, . . . , xp}) ∈ C if and only if it holds that for every component H of G − {x1, . . . , xp},
NG(V (H)) = {x1, . . . , xp}. We consider our equivalence relation with respect to Fb on C and
define G′p as follows. In each equivalence class, we select a graph (G, (x1, . . . , xp}) ∈ C such that
both the number of components of G− {x1, . . . , xp} is minimum and the number of vertices of
G is minimum subject to the first condition, and then include it in G′p.

Lemma 8. For every positive integer p, |G′p| = 2O(p
2), and for each H ∈ G′p, |V (H)| = pO(1),

and the constants hidden in the O-notations depend on F only. Moreover, for any p-boundaried
graph G, the number of p-boundaried graphs in G′p that are compatible with G is pO(1).

Proof. Let a = |Fb|, b be the maximum size of the boundary of graphs in Fb and let c be the
maximum number of vertices of a graph in Fb. Clearly, the values of a, b and c depend on F
only. Assume that the boundary x = (x1, . . . , xp) is fixed.

There are 2(p2) possibilities to select a set of edges with both end-vertices in {x1, . . . , xp}.
The number of s-tuples of vertices of {x1, . . . , xp} that could be boundaries of the copies of
s-boundaried induced subgraphs H ∈ Fb is at most bpb. Respectively, the number of distinct

equivalence classes of C is at most 2(p2)bpb2a, that is, |G′p| ≤ 2(p2)bpb2a = 2O(p
2).

Let (G, x) be a p-boundaried graph in one of the classes such that the number of components
of G−{x1, . . . , xp} is minimum and the number of vertices of G is minimum subject to (i). Let
Q1, . . . , Qr be the components of G− {x1, . . . , xp}. Let Q′i = G[V (Qi) ∪ {x1, . . . , xp}].

7

Let i ∈ {1, . . . , r}. Let also Q′′i be the graph obtained from Qi by the deletion of the edges
with both end-vertices in the boundary. Observe that for each s-tuple of vertices of {x1, . . . , xp},
Q′i can contain several copies of the same H as an induced subgraph with respect to this s-tuple.
In this case we pick one of them and obtain that Q′i contains at most bpb2a distinct boundaried
induced subgraphs H ∈ Fb. Let S be the set of vertices of Q′i that belong to these subgraphs or
to the boundary x. We have that |S| ≤ bpb2ac+ p. Let X = {v ∈ V (G) | dQ′′i (v) ≥ 3} ∪ S. By
applying Lemma 7 to Q′′i , we obtain that |X| ≤ 4|S|−6. Then by the same arguments as in the
proof of Lemma 7, we obtain thatQ′′i and, therefore, Q′i has at most |X|+(|X|−1)(2c+1) = pO(1)

vertices. Since V (Qi) ⊆ V (Q′i), we have that Qi has pO(1) vertices.
Suppose that there are c+1 pairwise distinct but equivalent (Q′j0 , x), . . . , (Q′jc , x) for j0, . . . , jc ∈

{1, . . . , r}. Assume that G contains an s-boundaried induced subgraph H ∈ Fb with respect to
an s-tuple (xi1 , . . . , xis) for some i1, . . . , is ∈ {1, . . . , p}. Since |V (H)| ≤ c, there is h ∈ {0, . . . , c}
such that V (H) ∩ V (Qjh) = ∅. Because (Q′j0 , x), . . . , (Q′jc , x) are equivalent, we obtain that H
is an s-bounderied induced subgraph of G−V (Qj0) contradicting the condition (i) of the choice
of G. Therefore, there are at most c pairwise equivalent boundaried graphs in {Q′1, . . . , Q′r}.

We claim that the number of pairwise nonequivalent graphs in {Q′1, . . . , Q′r} is pO(1). Notice
that the adjacency between the boundary vertices is defined by G. Then the number of s-
tuples of vertices of {x1, . . . , xp} that could be boundaries of the copies of s-boundaried induced
subgraphs from Fb is at most bpb and for each s-tuple we can have at most 2a s-boundaried
induced subgraphs from Fb. Then the claim follows.

We conclude that r = cpO(1). Since |V (Qi)| = pO(1) for each i ∈ {1, . . . , r}, |V (G)| = pO(1).
To see that for any p-boundaried graph G, the number of graphs in G′p that are compatible

withG is pO(1), notice that if (H, (x1, . . . , xp)) ∈ Gp and is compatible withG, then the adjacency
between the vertices of the boundary is defined by G. Then the number of s-tuples of vertices
of {x1, . . . , xp} that could be boundaries of the copies of s-boundaried induced subgraphs from
Fb is at most bpb and for each s-tuple we can have at most 2a s-boundaried induced subgraphs
from Fb.

Lemmas 5, 7 and 8 immediately imply that Gp and G′p can be constructed by brute force.

Lemma 9. The sets Gp and G′p can be constructed in time 2p
O(1)

.

To apply the recursive understanding technique, we also have to solve a special variant of
Connected Secluded Π-Subgraph tailored for recursion. First, we define the following
auxiliary problem for a positive integer w.

Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a
weight function ω : V (G)→ Z≥0 and a nonnegative integer t.

Task: Find a t-secluded F-free induced connected subgraph H of G of maxi-
mum weight or weight at least w such that I ⊆ V (H), O ⊆ V (G)\V (H)
and NG(V (H)) ⊆ B and output ∅ if such a subgraph does not exist.

Maximum or w-Weighted Connected Secluded F-Free Subgraph

Notice that Maximum or w-Weighted Connected Secluded F-Free Subgraph is
an optimization problem and a solution is either an induced subgraph H of maximum weight
or of weight at least w, or ∅. Observe also that we allow zero weights for technical reasons.

We recurse if we can separate graphs by a separator of bounded size into two big parts and
we use the vertices of the separator to combine partial solutions in both parts. This leads us
to the following problem. Let (G, I,O,B, ω, t) be an instance of Maximum or w-Weighted
Connected Secluded F-Free Subgraph and let T ⊆ V (G) be a set of border terminals.
We say that an instance (G′, I ′, O′, B′, ω′, t′) is obtained by a border complementation if there
is a partition (X,Y, Z) of T (some sets could be empty), where X = {x1, . . . , xp}, such that

8

Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B, and there is a p-boundaried graph
(H, y) ∈ Gp such that (H, y) and (G, (x1, . . . , xp)) are boundary-compatible, and the following
holds:

(i) G′ is obtained from (G, (x1, . . . , xp))⊕b (H, y) (we keep the notation X = {x1, . . . , xp} for
the set of vertices obtained by the identification in the boundary sum) by adding edges
joining every vertex of V (H) with every vertex of Y ,

(ii) I ′ = I ∪ V (H),

(iii) O′ = O ∪ Y ∪ Z,

(iv) B′ = B \X,

(v) ω′(v) = ω(v) for v ∈ V (G) and ω′(v) = 0 for v ∈ V (H) \X,

(vi) t′ ≤ t.

We also say that (G′, I ′, O′, B′, w′, t′) is a border complementation of (G, I,O,B,w, t) with re-
spect to (X = {x1, . . . , xp}, Y, Z,H). We say that (X = {x1, . . . , xp}, Y, Z,H) is feasible if it
holds that Y = ∅ if X = ∅, I ∩T ⊆ X, O ∩T ⊆ Y ∪Z and Y ⊆ B, and the p-boundaried graph
H ∈ Gp and (G, (x1, . . . , xp)) are boundary-compatible.

Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩ O = ∅ and I ∩ B = ∅,
a weight function ω : V (G) → Z≥0, a nonnegative integer t, and a set
T ⊆ V (G) of border terminals of size at most 2t.

Task: Output a solution for each instance (G′, I ′, O′, B′, w′, t′) of Maximum
or w-Weighted Connected Secluded F-Free Subgraph that
can be obtained from (G, I,O,B,w, t) by a border complementation
distinct from the border complementation with respect to (∅, ∅, T, ∅),
and for the border complementation with respect to (∅, ∅, T, ∅) output
a nonempty solution if it has weight at least w and output ∅ otherwise.

Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph

Two instances (G1, I1, O1, B1, ω1, t, T) and (G2, I2, O2, B2, ω2, t, T) of Bordered Maximum
or w-Weghted Connected Secluded F-Free Subgraph (note that t and T are the same)
are said to be equivalent if

(i) T ∩ I1 = T ∩ I2, T ∩O1 = T ∩O2 and T ∩B1 = T ∩B2,

(ii) for the border complementations (G′1, I
′
1, O

′
1, B

′
1, ω
′
1, t
′) and (G′2, I

′
2, O

′
2, B

′
2, ω
′
2, t
′) of the

instances (G1, I1, O1, B1, ω1, t
′) and (G2, I2, O2, B2, ω2, t

′) respectively of Maximum or
w-Weighted Connected Secluded F-Free Subgraph with respect to every feasible
(X = {x1, . . . , xp}, Y, Z,H) and t′ ≤ t, it holds that

a) if (G′1, I
′
1, O

′
1, B

′
1, ω
′
1, t
′) has a nonempty solution R1, then (G′2, I

′
2, O

′
2, B

′
2, ω
′
2, t
′) has

a nonempty solution R2 with w′2(V (R2)) ≥ min{ω′1(V (R1)), w} and, vice versa,

b) if (G′2, I
′
2, O

′
2, B

′
2, ω
′
2, t
′) has a nonempty solution R2, then (G′1, I

′
1, O

′
1, B

′
1, ω
′
1, t
′) has

a nonempty solution R1 with ω′1(V (R1)) ≥ min{ω′2(V (R2)), w}.

Strictly speaking, if (G1, I1, O1, B1, ω1, t, T) and (G2, I2, O2, B2, ω2, t, T) are equivalent, then a
solution of the first problem is not necessarily a solution of the second. Nevertheless, Bor-
dered Maximum or w-Weghted Connected Secluded F-Free Subgraph is an auxil-
iary problem and in the end we use it to solve an instance (G,ω, t, w) of Connected Secluded

9

F-Free Subgraph by calling the algorithm for Bordered Maximum or w-Weghted Con-
nected Secluded F-Free Subgraph for (G, ∅, ∅, V (G), ω, t, ∅). Clearly, (G,ω, t, w) is a yes-
instance if and only if a solution for the corresponding instance of Bordered Maximum or
w-Weghted Connected Secluded F-Free Subgraph contains a connected subgraph R
with ω(V (R)) ≥ w. It allows us to not distinguish equivalent instances of Bordered Maximum
or w-Weghted Connected Secluded F-Free Subgraph and their solutions.

3.1 High connectivity phase

In this section we solve Bordered Maximum or w-Weghted Connected Secluded F-
Free Subgraph for (q, t)-unbreakable graphs. For this purpose, we use important separators
defined by Marx in [14]. Essentially, we follow the terminology given in [5]. Recall that for
X,Y ⊆ V (G), a set S ⊆ V (G) is an (X,Y)-separator if G − S has no path joining a vertex of
X \ S with a vertex of Y \ S. An (X,Y)-separator S is minimal if no proper subset of S is an
(X,Y)-separator. For X ⊆ V (G) and v ∈ V (G), it is said that v is reachable from X if there is
an (x, v)-path in G with x ∈ X. A minimal (X,Y)-separator S can be characterized by the set
of vertices reachable from X \ S in G− S.

Lemma 10 ([5]). If S is a minimal (X,Y)-separator in G, then S = NG(R) where R is the set
of vertices reachable from X \ S in G− S.

Let X,Y ⊆ V (G) for a graph G. Let S ⊆ V (G) be an (X,Y)-separator and let R be the set
of vertices reachable from X \ S in G − S. It is said that S is an important (X,Y)-separator
if S is minimal and there is no (X,Y)-separator S′ ⊆ V (G) with |S′| ≤ |S| such that R ⊂ R′

where R′ is the set of vertices reachable from X \ S′ in G− S′.

Lemma 11 ([5]). Let X,Y ⊆ V (G) for a graph G, let t be a nonnegative integer and let St
be the set of all important (X,Y)-separators of size at most t. Then |St| ≤ 4t and St can be
constructed in time O(|St| · t2 · (n+m)).

The following lemma shows that we can separately lists all graphs R in a solution of
Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph with
|V (R) ∩ V (G)| ≤ q and all graphs R with |V (G) \ V (R)| ≤ q + t.

Lemma 12. Let (G, I,O,B, ω, t, T) be an instance of Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph where G is a (q, t)-unbreakable graph for a positive
integer q. Then for each nonempty graph R in a solution of Bordered Maximum or w-
Weghted Connected Secluded F-Free Subgraph, either |V (R)∩ V (G)| ≤ q or |V (G) \
V (R)| ≤ q + t.

Proof. Let R be a nonempty graph listed in a solution of Bordered Maximum or w-
Weghted Connected Secluded F-Free Subgraph for an instance (G′, I ′, O′, B′, ω′, t′)
Maximum or w-Weighted Connected Secluded F-Free Subgraph. Assume that G′

is obtained from (G, (x1, . . . , xp)) ⊕b (H, y) for H ∈ Gp. Let U = NG′ [V (R) ∩ V (G)] and
W = V (G) \ V (R). Clearly (U,W) is a separation of G of order at most t. Since G is (q, t)-
unbreakable, either |U \W | ≤ q or |W \U | ≤ q. If |U \W | ≤ q, then |V (R)∩V (G)| ≤ |U \W | ≤ q.
If |W \ U | ≤ q, then |V (G) \ V (R)| ≤ q + t.

Now we can prove the following crucial lemma.

Lemma 13. Bordered Maximum or w-Weghted Connected Secluded F-Free Sub-
graph for (q, t)-unbreakable graphs can be solved in time 2(q+t log(q+t))) · nO(1) if the sets Gp for
p ≤ 2t are given.

10

Proof. Assume that the sets Gp for p ≤ 2t are given. We consider all possible instances
(G′, I ′, O′, B′, ω′, t′) of Maximum or w-Weighted Connected Secluded F-Free Sub-
graph obtained from the input instance (G, I,O,B,w, t) as it is explained in the definition
of Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph. To
construct each instance, we consider all at most 32t partitions (X,Y, Z) of T , where X =
{x1, . . . , xp}, such that Y = ∅ if X = ∅, I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B. Then
we consider all p-boundaried graph (H, y) ∈ Gp such that (H, y) and (G, (x1, . . . , xp)) are
boundary-compatible. By Lemma 7, there are 2O(t log t) such sets. Consider now a constructed
instance (G′, I ′, O′, B′, ω′, t′) and assume that G′ is obtained from (G, (x1, . . . , xp))⊕b (H, y) for
(H, y) ∈ Gp. We find a t-secluded F-free induced connected subgraph R of G′ of maximum
weight such that I ′ ⊆ V (R), O′ ⊆ V (G′) \V (R) and NG′(V (R)) ⊆ B′ if such a subgraph exists.
By Lemma 12, either |V (R) ∩ V (G)| ≤ q or |V (G) \ V (R)| ≤ q + t.

First, we find a t-secluded F-free induced connected subgraphR ofG′ with |V (R)∩V (G)| ≤ q
of maximum weight such that I ′ ⊆ V (R), O′ ⊆ V (G′) \ V (R) and NG′(V (R)) ⊆ B′. If
|V (R)∩V (G)| ≤ q, then |V (R)| ≤ |V (H)|+ |V (R)∩V (G)|. By Lemma 7, |V (H)| = tc for some
constant c. It implies that |V (R)| ≤ tc + q. To find R, we consider all k ≤ tc + q and find a
t-secluded F-free induced connected subgraph R of G′ of maximum weight such that I ′ ⊆ V (R),
O′ ⊆ V (G′) \ V (R), NG′(V (R)) ⊆ B′ and |V (R)| = k. By Corollary 1, it can be done in time
2O(min{tc+q,t} log(tc+q+t)) · nO(1).

Now we find a t-secluded F-free induced connected subgraph R of G′ with |V (G) \V (R)| ≤
q + t of maximum weight such that I ′ ⊆ V (R), O′ ⊆ V (G′) \ V (R) and NG′(V (R)) ⊆ B′.

Because |V (R) ∩ V (G)| ≤ q + t, there is a set O′ ⊆ S ⊆ V (G) \ V (R) such that |S| ≤ q + t
and G′ − S is F-free. We list all such sets S using the standard branching algorithm for this
problem (see, e.g., [5]). The main idea of the algorithm is that if G′ has an induced subgraph F
isomorphic to a graph of F , then at least one vertex of F should be in S. Initially we set S = O
and set a branching parameter h = q+ t− |O|. If h < 0, we stop. We check whether G′−S has
an induced subgraph F isomorphic to a graph of F . If we have no such graph, we return S. If
V (F) ⊆ I ′, then we stop. Otherwise, we branch on the vertices of F . For each v ∈ V (F) \ I ′,
we set S = S ∪{v} and set h = h− 1 and recurse. It is straightforward to verify the correctness
of the algorithm and see that it runs in in time 2O(q+t) ·n(1), because F is fixed and each graph
from this set has a constant size. If the algorithm fails to output any set S, then we conclude
that (G′, I ′, O′, B′, ω′, t′) has no solution R with |V (R) \ V (G)| ≤ q. From now on we assume
that this is not the case.

For each S, we setO′ = O′∪S and find a solution for the modified instance (G′, I ′, O′, B′, ω′, t′).
Then we choose a solution of maximum size (if exist).

If I ′ = ∅, we guess a vertex u ∈ V (G′)\O′ that is included in a solution. We set I ′ = {u} and
B′ = B′ \ {u} and solve the modified instance (G′, I ′, O′, B′, w′, t′). Then we choose a solution
of maximum size for all guesses of u. From now on we have I ′ 6= ∅.

We apply a series of reduction rules for (G′, I ′, O′, B′, ω′, t′). Let h = q + t.

Reduction Rule 3.1. If G′ is disconnected and has vertices of I ′ in distinct components, then
return the answer no and stop. Otherwise, let Q be a component of G′ containing I ′ and set
G′ = Q, B′ = B′ ∩ V (Q), O′ = O′ ∩ V (Q) and h = h− |V (G) \ V (Q)|. If h < 0, then return no
and stop.

It is straightforward to see that the rule is safe, because a solution is a connected graph.
Notice that from now on we can assume that G′ is connected. If O′ = ∅, G′ is a solution and
we get the next rule.

Reduction Rule 3.2. If O′ = ∅, then return G′.

From now on we assume that O′ 6= ∅. Let Q be a component of G′ − B′. Notice that for
any solution R, either V (Q) ⊆ V (R) or V (Q)∩V (R) = ∅, because NG′(V (R)) ⊆ B′. Moreover,

11

if V (Q) ∩ V (R) = ∅, then NG′ [V (Q)] ∩ V (R) = ∅. This leads to the following rule.

Reduction Rule 3.3. For a component Q of G′ −B′ do the following in the given order:

• if V (Q) ∩ I ′ 6= ∅ and V (Q) ∩O′ 6= ∅, then return no and stop,

• if V (Q) ∩ I ′ 6= ∅, then set I ′ = I ′ ∪ V (Q),

• if V (Q) ∩O′ 6= ∅, then set O′ = O′ ∪NG′ [V (Q)].

The rule is applied for each component Q exactly once. Now our aim is find all inclusion
maximal induced subgraphs R of G′ such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅, NG′(V (R)) ⊆ B′,
|NG′(V (R))| ≤ t′ and all the vertices of R are reachable from I ′. Then, by maximality, a
solution is such a subgraph R that is connected and, subject to connectivity, has a maximum
weight. We doing it using important (NG′ [I

′], O′)-separators. The obstacle is the condition that
NG′(V (R)) ⊆ B′. Let Q be a component of G′ − O′. By Reduction Rule 3.3, we have that
exactly one of the following holds: either (i) V (Q) ⊆ I ′ or (ii) V (Q) ⊆ O′ or (iii) V (Q) ∩ I ′ =
V (Q) ∩O′ = ∅. To ensure that NG′(V (R)) ⊆ B′, we have to insure that if (iii) is fulfilled, then
it holds that either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅. To do it, we construct the auxiliary
graph G′′ as follows. For each v ∈ V (G′) \ (I ′ ∪O′ ∪B′), we replace v by t+ 1 true twin vertices
v0, . . . , vt that are adjacent to the same vertices as v in G or to the corresponding true twins
obtained from the neighbors of v. For an induced subgraph R of G′, we say that the induced
subgraph R′ of G′′ is an image of R if R′ is obtained by the same replacement of the vertices
v ∈ V (R) \ (I ′ ∪O′ ∪B′) by t+ 1 twins. Respectively, we say that R is a preimage of R′.

We claim that if R′ is an induced subgraph of G′′ such that I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅,
|NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable from I ′, then R′ has a preimage R
and NG′(V (R)) = NG′′(V (R′)) ⊆ B′.

To prove the claim, consider an inclusion maximal induced subgraph R′ of G′′ such that
I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable from I ′.
Let v′ ∈ NG′′(R

′′) and assume that v′ /∈ B′. Clearly, v′ /∈ I ′. Notice that v′ /∈ O′, because by
Reduction Rule 3.3, we have that for any w ∈ O′ \B′, NG′ [w] ⊆ O′. Since v′ /∈ B′∪ I ′∪O′, v′ ∈
{v0, . . . , vt} for t+1 true twins constructed for some vertex v ∈ V (G′). Because |NG′′(V (R′))| ≤
t′, there is i ∈ {0, . . . , t}, such that vi /∈ NG′′(R

′′). As vi and v′ are twins, vi ∈ V (R′′). Let
R′′ = G′′[V (R′) ∪ {v0, . . . , vt}]. We obtain that I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′

and all the vertices of R′ are reachable from I ′, but V (R′) ⊂ V (R′′) contradicting maximality.
Hence, NG′′(V (R′)) ⊆ B′. Then R′ has a preimage R and NG′(V (R)) = NG′′(V (R′)) ⊆ B′.

Using the claim, we conclude that to find all inclusion maximal induced subgraphs R of G′

such that I ′ ⊆ V (R), O′ ∩ V (R) = ∅, NG′(V (R)) ⊆ B′, |NG′(V (R))| ≤ t′ and all the vertices of
R are reachable from I ′, we should list inclusion maximal induced subgraphs R′ of G′′ such that
I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅, |NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable from I ′,
and then take preimages of the graphs R′.

To find the maximal induced subgraphs R′ of G′′ such that I ′ ⊆ V (R′), O′ ∩ V (R′) = ∅,
|NG′′(V (R′))| ≤ t′ and all the vertices of R′ are reachable from I ′, we use Lemma 11. In time
4t · nO(1) we construct the set St′ of all important (NG′′ [I

′], O′)-separators of size at most t′ in
G′′. Then for each S ∈ St′ , we find R′ that is the union of the components of G′′−S containing
the vertices of I ′.

Since Reduction Rules 3.1–3.3 can be applied in polynomial time and G′′ can be constructed
in polynomial time, we have that the total running time is 2O(t+q) · nO(1).

Now we compare the two subgraphs R that we found for the cases |V (R) ∩ V (G)| ≤ q and
|V (G) \ V (R)| ≤ q + t and output the subgraph of maximum weight or the empty set if we
failed to find these subgraph. Taking into account the time used to construct the instances
(G′, I ′, O′, B′, ω′, t′), we obtain that the total running time is 2O(q+t log(q+t))) · nO(1)

12

3.2 The FPT algorithm for Connected Secluded F-Free Subgraph

In this section we construct an FPT algorithm for Connected Secluded F-Free Subgraph
parameterized by t. We do this by solving Bordered Maximum or w-Weghted Connected
Secluded F-Free Subgraph in FPT-time for general case.

Lemma 14. Bordered Maximum or w-Weghted Connected Secluded F-Free Sub-

graph can be solved in time 22
2O(t log t)

· nO(1).

Proof. Given F , we construct the set Fb. Then we use Lemma 9 to construct the sets Gp for

p ∈ {0, . . . , t} in time 2t
O(1)

.
By Lemma 7, there is a constant c that depends only on F such that for every nonnegative

p and for any p-boundaried graph G, there are at most 2cp log p p-boundaried graphs in Gp that
are compatible with G and there are at most pc p-boundaried graphs in G′p that are compatible
with G. We define

q = 2((t+1)t32t2c2t log(2t)+2t) · 2((t+ 1)t32t2c2t log(2t) + 2t)ctc + (t+ 1)t32t2c2t log(2t) + 2t. (1)

The choice of q will become clear later in the proof. Notice that q = 22
O(t log t)

.
Consider an instance (G, I,O,B, ω, t, T) of Bordered Maximum or w-Weghted Con-

nected Secluded F-Free Subgraph.
We use the algorithm from Lemma 1 for G. This algorithm in time 22

O(t log t) · nO(1) either
finds a separation (U,W) of G of order at most t such that |U \W | > q and |W \ U | > q or
correctly reports that G is ((2q+1)q ·2t, t)-unbreakable. In the latter case we solve the problem

using Lemma 13 in time 22
2O(t log t)

· nO(1). Assume from now that there is a separation (U,W)
of order at most t such that |U \W | > q and |W \ U | > q.

Recall that |T | ≤ 2t. Then |T ∩ (U \W)| ≤ t or |T ∩ (W \ U)| ≤ t. Assume without loss of
generality that |T ∩ (W \ U)| ≤ t. Let G̃ = G[W], Ĩ = I ∩W , Õ = O ∩W , ω̃ is the restriction
of ω to W , and define T̃ = (T ∩W) ∪ (U ∩W). Since |U ∩W | ≤ t, |T̃ | ≤ 2t.

If |W | ≤ (2q + 1)q · 2t, then we solve Bordered Maximum or w-Weghted Connected
Secluded F-Free Subgraph for the instance (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) by brute force in time

22
2O(t log t)

trying all possible subset of W at most t + 1 values of 0 ≤ t′ ≤ t. Otherwise,
we solve (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) recursively. Let R be the set of nonempty induced subgraphs R
that are included in the obtained solution for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃).

For R ∈ R, define SR to be the set of vertices of W \ V (R) that are adjacent to the
vertices of R in the graph obtained by the border complementation for which R is a solution of
the corresponding instance of Maximum or w-Weighted Connected Secluded F-Free
Subgraph. Note that |SR| ≤ t. If R 6= ∅, then let S = T̃ ∪R∈R SR, and S = T̃ if R = ∅.
Since Maximum or w-Weighted Connected Secluded F-Free Subgraph is solved for
at most t+1 of values of t′ ≤ t, at most 32t three-partitions (X,Y, Z) of T̃ and at most 2c2t log(2t)

choices of a p-boundaried graph H ∈ Fb for p = |X|, we have that |R| ≤ (t + 1)32t2c2t log(2t).
Taking into account that |T ′| ≤ 2t,

|S| ≤ (t+ 1)t32t2c2t log(2t) + 2t. (2)

Let B̂ = (B∩U)∪(B∩S). We claim that the instances (G, I,O,B, ω, t, T) and (G, I,O, B̂, ω, t, T)
of Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph are
equivalent.

Recall that we have to show that

(i) T ∩B = T ∩ B̂,

(ii) for the border complementations (G′, I ′, O′, B′, ω′, t′) and (G′, I ′, O′, B̂′, ω′, t′) of the in-
stances (G, I,O,B, ω, t′) and (G, I,O, B̂, ω, t′) respectively of Maximum or w-Weighted

13

Connected Secluded F-Free Subgraph with respect to every feasible (X = {x1, . . . , xp},
Y, Z,H) and t′ ≤ t, it holds that if (G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1, then
(G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with ω′(V (R2)) ≥ min{ω′(V (R1)), w}
and, vice versa, if (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solutionR2, then (G′, I ′, O′, B′, ω′, t′)
has a nonempty solution R1 with ω′(V (R1)) ≥ min{ω′(V (R2)), w}.

The condition (i) holds by the definition of B̂. Because B̂ ⊆ B, we immediately ob-
tain that if (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2, then (G′, I ′, O′, B′, ω′, t′) has a
nonempty solution R1 with ω′(V (R1)) ≥ min{ω′(V (R2)), w}. It remains to prove that for a
border complementation (G′, I ′, O′, B′, ω′, t′) and (G′, I ′, O′, B̂′, ω′, t′) of (G, I,O,B, ω, t′) and
(G, I,O, B̂, ω, t′) respectively of Maximum or w-Weighted Connected Secluded F-Free
Subgraph with respect to a feasible (X = {x1, . . . , xp}, Y, Z,H) and t′ ≤ t, it holds that if
(G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1, then (G′, I ′, O′, B̂′, ω′, t′) has a nonempty so-
lution R2 with ω′(V (R2)) ≥ min{ω′(V (R1)), w}.

If V (R1) ∩ V (G) ⊆ U \ W , then NG′(V (R1)) ⊆ B̂′. Therefore, for a solution R2 of
(G′, I ′, O′, B̂′, ω′, t′), ω′(V (R2)) ≥ min{ω′(V (R1)), w}. Assume that V (R1) ∩ W 6= ∅. Let
X̃ = T̃ ∩ (V (R1) ∩W) = {y1, . . . , yr}, let Ỹ be the set of vertices of T̃ \ V (R1) that are ad-
jacent to vertices of R1 outside W \ U and Z̃ = T̃ \ (X̃ ∪ Ỹ). Let (R′1, (y1, . . . , yr)) be the
r-bounderied graph obtained from R1 by the deletion of the vertices of W \ U (note that the
graph could be empty). We have that Gr contains an r-boundaried graph H̃ that is equiv-
alent to (R′1, (y1, . . . , yr)). Recall that we have a solution of Bordered Maximum or w-
Weghted Connected Secluded F-Free Subgraph for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃). In particular,
we have a solution R̃ ∈ R for the instance (G̃, Ĩ, Õ, B̃, ω̃, t̃) of Maximum or w-Weighted
Connected Secluded F-Free Subgraph obtained by the border complementation with
respect to (X̃ = (y1, . . . , yr), Ỹ , Z̃, H̃), where t̃ is the number of neighbors of R1 in W . Re-
call also that the neighbors of the vertices of R̃ are in S. Denote by (R̃′, (y1, . . . , yr)) the
r-bounderied subgraph obtained from R̃ by the deletion of the vertices that are outside of
W . By Lemma 4, R2 = (R′1, (y1, . . . , yr)) ⊕b (R̃, (y1, . . . , yr)) is F-free. Observe also that
ω′(R2) ≥ min{ω′(R1), w}. It implies that (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with
ω′(V (R2)) ≥ min{ω′(V (R1)), w}.

Since, (G, I,O,B, ω, t, T) and (G, I,O, B̂, ω, t, T) of Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph are equivalent, we can consider (G, I,O, B̂, ω, t, T).
Now we apply some reduction rules that produce equivalent instances of Bordered Maximum
or w-Weghted Connected Secluded F-Free Subgraph or report that we have no solu-
tion. The ultimate aim of these rules is to reduce the size of G.

Let Q be a component of G[W] − S. Notice that for any nonempty graph R in a solution
of (G, I,O, B̂, w, t, T), either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅, because NG[W](V (R)) ⊆
S. Moreover, if V (Q) ∩ V (R) = ∅, then NG[W][V (Q)] ∩ V (R) = ∅. Notice also that if v ∈
NG[W](V (Q)) is a vertex of R, then V (Q) ⊆ V (R). These observation are crucial for the
following reduction rules.

Reduction Rule 3.4. For a component Q of G[W]− S do the following in the given order:

• if NG[W][V (Q)] ∩ I 6= ∅ and V (Q) ∩O 6= ∅, then return ∅ and stop,

• if NG[W][V (Q)] ∩ I 6= ∅, then set I = I ∪ V (Q),

• if V (Q) ∩O 6= ∅, then set O = O ∪NG[W][V (Q)].

The rule is applied to each component Q exactly once. Notice that after application of the
rule, for every component Q of G[W] − S, we have that either V (Q) ⊆ I or V (Q) ⊆ O or
V (Q) ∩ (I ∪O ∪ B̂) = ∅.

Suppose thatQ1 andQ2 are components ofG[W]−S such thatNG[W](V (Q1)) = NG[W](V (Q2))
and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t. Then if V (Q1) ⊆ V (R) for a nonempty graph R in

14

a solution of (G, I,O, B̂, ω, t, T), then at least one vertex of NG[W](V (Q1)) is in R as R have at
most t neighbors outside R. This gives the next rule.

Reduction Rule 3.5. For components Q1 and Q2 of G[W] − S such that NG[W](V (Q1)) =
NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t do the following in the given order:

• if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅ and (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then return ∅ and stop,

• if (V (Q1) ∪ V (Q2)) ∩ I 6= ∅, then set I = I ∪ (V (Q1) ∪ V (Q2)),

• if (V (Q1) ∪ V (Q2)) ∩O 6= ∅, then set O = O ∪NG[W][V (Q1) ∪ V (Q2)].

We apply the rule for all pairs of componentsQ1 andQ2 withNG[W](V (Q1)) = NG[W](V (Q2))
and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t, and for each pair the rule is applied once.

If V (Q) ⊆ O for a component Q of G[W] − S, then NG[W](V (Q)) ⊆ O. It immediately
implies that the vertices of Q are irrelevant and can be removed.

Reduction Rule 3.6. If there is a component Q of G[W] − S such that NG[W](V (Q)) ⊆ O,
then set G = G− V (Q), W = W \ V (Q) and O = O \ V (Q).

Notice that for each component Q, we have now that either V (Q) ⊆ I or V (Q) ⊆W \ (I ∪
O ∪ B̂).

To define the remaining rules, we construct the sets G′p for p ∈ {0, . . . , |S|} in time 22
O(t log t)

using Lemma 9.
Let Q be a component of G[W] − S and let NG[W](V (Q)) = {x1, . . . , xp}. Let G′ be the

graph obtained from G by the deletion of the vertices of V (Q) and let x = (x1, . . . , xp). Let
(H, y) be a connected p-boundaried graph of the same weight as G[NG[W][V (Q)]]. Then by
Lemma 4, we have that the instance of Bordered Maximum or w-Weghted Connected
Secluded F-Free Subgraph obtained from (G, I,O, B̂, ω, t, T) by the replacement of G by
(G′, x)⊕b (H, y) is equivalent to (G, I,O, B̂, ω, t, T). We use it in the remaining reduction rules.

Suppose again that Q1 and Q2 are components of G[W] − S such that NG[W](V (Q1)) =
NG[W](V (Q2)) and |NG[W](V (Q1))| = |NG[W](V (Q2))| > t. Then, as we already noticed, if

V (Q1) ∪ V (Q2) ⊆ V (R) for a nonempty graph R in a solution of (G, I,O, B̂, ω, t, T), then at
least one vertex of NG[W](V (Q1)) is in R. It means that if we are constructing a solution R,
then the restriction of the size of the neighborhood of R ensures the connectivity between Q1

and Q2 if we decide to include these components in R. Together with Lemma 4 this shows that
the following rule is safe.

Reduction Rule 3.7. Let L = {x1, . . . , xp} ⊆ S, p > t, and let x = (x1, . . . , xp). Let also
Q1, . . . , Qr,r ≥ 1, be the components of G[W]−S with NG[W](V (Qi)) = L for all i ∈ {1, . . . , r}.
LetQ = G[∪ri=1NG[W][V (Qi)]] and w′ =

∑r
i=1 ω(V (Qi)). Find a p-boundaried graph (H, y) ∈ G′p

that is equivalent to (Q, x) with respect to Fb and denote by A the set of nonboundary vertices
of H. Then do the following.

• Delete the vertices of V (Q1), . . . , V (Qr) from G and denote the obtained graph G′.

• Set G = (G′, x)⊕b (H, y) and W = (W \ ∪ri=1V (Qi)) ∪A.

• Select arbitrarily u ∈ A and modify ω as follows:

– keep the weight same for every v ∈ V (G′) including the boundary vertices x1, . . . , xp,

– set ω(v) = 0 for v ∈ A \ {u},
– set ω(u) = w′.

• If V (Q1) ⊆ I, then set I = I \ (∪ri=1V (Qi)) ∪A.

15

To see the safeness of the rule, observe additionally that the neighborhood of each component
of H[A] is L, because (H, y) ∈ G′p. The rule is applied exactly once for each inclusion maximal
sets of components {Q1, . . . , Qr} having the same neighborhood of size at least t+ 1.

We cannot apply this trick if we have several components Q1, . . . , Qr of G[W] − S with
the same neighborhood NG[W]V (Qi) if |NG[W]V (Qi)| ≤ t. Now it can happen that there are
i, j ∈ {1, . . . , r} such that V (Qi) ⊆ V (R) and NG[W][V (Qj)] ∩ V (R) = ∅ for R in a solution

of (G, I,O, B̂, ω, t, T). But if NG[W][V (Qj)] ∩ V (R) = ∅ , then by the connectivity of R and
the fact that G[W] − S does not contain border terminals, we have that R = Qi. Notice
that I = ∅ in this case and, in particular, it means that R is a solution for an instance of
Maximum or w-Weighted Connected Secluded F-Free Subgraph obtained by the
border complementation with respect to (∅, ∅, T, ∅). Recall that we output R in this case only
if its weight is at least w.

Still, we can modify Reduction Rule 3.7 for the case when there are components Q of G[W]−
S such that V (Q) ⊆ I. Notice that if there are componentsQ0, . . . , Qr ofG[W]−S with the same
neighborhood and V (Q0) ⊆ I, then for any nonempty R in a solution of (G, I,O, B̂, ω, t, T),
either R = Q0 or ∪ri=0V (Qi) ⊆ V (R). Applying Lemma 4 , we obtain that the following rule is
safe.

Reduction Rule 3.8. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let also
Q0, . . . , Qr,r ≥ 0, be the components of G[W]−S with NG[W](V (Qi)) = L for all i ∈ {0, . . . , r}
such that V (Q0) ⊆ I. Let Q = G[∪ri=1NG[W][V (Qi)]] and w′ =

∑r
i=1 ω(V (Qi)). Find a p-

boundaried graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb and denote by
A0 the set of nonboundary vertices of H0, and find a p-boundaried graph (H, y) ∈ G′p that is
equivalent to (Q, x) with respect to Fb and denote by A the set of nonboundary vertices of H.
Then do the following.

• Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.

• Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪ri=0V (Qi)) ∪A0 ∪A.

• Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

– keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,

– set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
– set ω(u) = ω(V (Q0)) and ω(v) = w′.

• If V (Qi) ⊆ I for some i ∈ {1, . . . , r}, then set I = I \ (∪ri=1V (Qi)) ∪A.

To see the safeness, notice additionally that H0[A0] is connected, because (H0, y) ∈ G′p and
Q0 is connected. The rule is applied exactly once for each inclusion maximal set of components
{Q1, . . ., Qr} having the same neighborhood of size at most t such that V (Qi) ⊆ I for some
i ∈ {1, . . . , r}.

Assume now that we have an inclusion maximal set of components {Q1, . . . ,Qr} of G[W]−S
with the same neighborhoods NG[W] = {x1, . . . , xp} such that (G[NG[W][V (Qi)]], (x1, . . . , xp))
and (G[NG[W][V (Qj)]], (x1, . . . , xp)) are equivalent with respect to Fb for each i, j ∈ {1, . . . , p}.
Suppose also that V (Qi) ∩ I = ∅ for i ∈ {1, . . . , r}. Let ω(V (Q1)) ≥ ω(V (Qi)) for every
i ∈ {1, . . . , r}. Recall that if R is a nonempty graph in a solution, then either R = Qi for
some i ∈ {1, . . . , r} or ∪ri=1V (Qi) ⊆ V (R). Recall also that R is a solution for the instance
of Maximum or w-Weighted Connected Secluded F-Free Subgraph obtained by a
border complementation with respect to (∅, ∅, T, ∅) and we output it only if ω(V (R)) ≥ w. Since
all (G[NG[W][V (Qi)]], (x1, . . . , xp)) are equivalent, we can assume that if R = Qi, then i = 1,
because Q1 has maximum weight. Then by Lemma 4, our final reduction rule is safe.

16

Reduction Rule 3.9. Let L = {x1, . . . , xp} ⊆ S, p ≤ t, and let x = (x1, . . . , xp). Let
also Q0, . . . , Qr,r ≥ 0, be the components of G[W] − S with NG[W](V (Qi)) = L for all i ∈
{0, . . . , r} such that ω(V (Q0)) ≥ ω(V (Qi)) for every i ∈ {1, . . . , r} and the p-boundaried graphs
(G[NG[W][V (Qi)]], (x1, . . . , xp)) are pairwise equivalent with respect to Fb for i ∈ {0, . . . , r}.
Let Q = G[∪ri=1NG[W][V (Qi)]] and w′ = min{w − 1,

∑r
i=1 ω(V (Qi))}. Find a p-boundaried

graph (H0, y) ∈ G′p that is equivalent to (Q0, x) with respect to Fb and denote by A0 the set
of nonboundary vertices of H0, and find a p-boundaried graph (H, y) ∈ G′p that is equivalent to
(Q, x) with respect to Fb and denote by A the set of nonboundary vertices of H. Then do the
following.

• Delete the vertices of V (Q0), . . . , V (Qr) from G and denote the obtained graph G′.

• Set G = (((G′, x)⊕b (H0, y)), y)⊕b (H, y) and W = (W \ ∪ri=0V (Qi)) ∪A0 ∪A.

• Select arbitrarily u ∈ A0 and v ∈ A and modify ω as follows:

– keep the weight same for every z ∈ V (G′) including the boundary vertices x1, . . . , xp,

– set ω(z) = 0 for z ∈ (A0 \ {u}) ∪ (A \ {v}),
– set ω(u) = ω(V (Q0)) and ω(v) = w′.

Notice that we upper bound the weight of A by w − 1 to prevent selecting R = G[A] as a
graph in a solution. To see that it is safe, observe that if ω(V (Q0)) > 0, then the total weight
of A0 and A is at least w and recall that by the definition of Maximum or w-Weighted
Connected Secluded F-Free Subgraph, we output nonempty graphs of maximum weight
or weight at least w. Therefore, if we output R that includes A0 ∪ A, then we output a graph
of weight at least w. If ω(Q0) = 0, then w′ =

∑r
i=1 ω(V (Qi)) = 0.

The Reduction Rule 3.9 is applied for each inclusion maximal sets of components {Q1, . . .,
Qr} satisfying the conditions of the rule such that Reduction Rule 3.8 was not applied to these
components before.

Denote by (G∗, I∗, O∗, B∗, ω∗, t, T) the instance of Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph obtained from (G, I,O, B̂, ω, t, T) by Reduction
Rules 3.4-3.9. Notice that all modifications were made for G[W]. Denote by W ∗ the set of
vertices of the graph obtained from the initial G[W] by the rules. Observe that there are at
most 2|S| subsets L of S such that there is a component Q of G[W]−S with NG[W](V (Q)) = L.
If |L| > t, then all Q with NG[W](V (Q)) = L are replaced by one graph by Reduction Rule 3.7
and the number of vertices of this graph is at most |L|c by Lemma 7 and the definition of c. If
|L| ≤ t, then we either apply Reduction Rule 3.8 for all Q with NG[W](V (Q)) = L and replace
these components by two graph with at most |L|c vertices or we apply Reduction Rule 3.9.
For the latter case, observe that there are at most tc partitions of the components Q with
NG[W](V (Q)) = L into equivalence classes with respect to Fb by Lemma 7. Then we replace
each class by two graphs with at most |L|c vertices. Taking into account the vertices of S, we
obtain the following upper bound for the size of W ∗:

|W ∗| ≤ 2|S|2|S|ctc + |S|. (3)

By (1) and (2), |W ∗| ≤ q. Recall that |W \U | > q. Therefore, |V (G∗)| < |V (G)|. We use it and
solve Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph for
(G∗, I∗, O∗, B∗, ω∗, t, T) recursively.

To evaluate the running time, denote by τ(G, I,O,B, ω, t, T) the time needed to solve
Bordered Maximum or w-Weghted Connected Secluded F-Free Subgraph for
(G, I,O,B, ω, t, T). Lemmas 5 and 7 imply that the reduction rules are polynomial. The

algorithm from Lemma 1 runs in time 22
O(t log t) · nO(1). Notice that the sets Gp and G′p can be

17

constructed separately from the algorithm for Bordered Maximum or w-Weghted Con-
nected Secluded F-Free Subgraph. Then we obtain the following recurrence for the
running time:

τ(G, I,O,B, ω, t, T) ≤ τ(G∗, I∗, O∗, B∗, ω∗, t, T) + τ(G̃, Ĩ, Õ, B̃, ω̃, t, T̃) + 22
O(t log t) · nO(1). (4)

Because |W ∗| ≤ q,
|V (G∗)| ≤ |V (G)| − |V (G̃)|+ q. (5)

Recall that if the algorithm of Lemma 1 reports that G is ((2q + 1)q · 2t, t)-unbreakable or we
have that |V (G)| ≤ ((2q + 1)q · 2t, we do not recurse but solve the problem directly in time

22
2O(t log t)

·nO(1). Following the general scheme from [4], we obtain that these condition together

with (4) and (5) imply that the total running time is 22
2O(t log t)

· nO(1).

Now have now all the details in place to be able to prove Theorem 1, stating that Con-
nected Secluded F-Free Subgraph is FPT when parameterized by t.

Theorem 1.Connected Secluded F-Free Subgraph can be solved in time 22
2O(t log t)

·
nO(1).

Proof. Let (G,ω, t, w) be an instance of Connected Secluded F-Free Subgraph. We de-
fine I = ∅, O = ∅, B = V (G) and T = ∅. Then we solve Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph for (G, I,O,B,w, t, T) using Lemma 14 in time

22
2O(t log t)

· nO(1). It remains to notice that (G,ω, t, w) is a yes-instance of Connected Se-
cluded F-Free Subgraph if and only if (G, I,O,B, ω, t, T) has a nonempty graph in a
solution.

4 Large Secluded Trees

In this section we show that Connected Secluded Π-Subgraph is FPT when parameterized
by t when Π is defined by a infinite set of forbidden induced subgraphs, namely, by the set of
cycles. In other words, a graph G has the property Π considered in this section if G is a forest.
We refer to this problem as Large Secluded Tree. We again apply the recursive understand-
ing technique introduced by Chitnis et al. [4] and follow the scheme of the previous section. In
particular, we solve a special variant of Large Secluded Tree tailored for recursion.

We define the following auxiliary problem for a positive integer w.

Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩O = ∅ and I ∩B = ∅, a
weight function ω : V (G)→ Z≥0 and a nonnegative integer t.

Task: Find a t-secluded induced connected subtreeH ofG of maximum weight
or weight at least w such that I ⊆ V (H), O ⊆ V (G) \ V (H) and
NG(V (H)) ⊆ B and output ∅ if such a subgraph does not exist.

Maximum or w-Weighted Secluded Tree

Let (G, I,O,B, ω, t) be an instance of Maximum or w-Weighted Secluded Tree and
let T ⊆ V (G) be a set of border terminals. We say that a 4-tuple (X,Y, Z,P), where (X,Y, Z)
is a partition of T (some sets could be empty) and P = (P1, . . . , Ps) is a partition of X into
nonempty sets if X 6= ∅ and P = ∅ otherwise, is feasible if G[X] is a forest, Y = ∅ if X = ∅,
I ∩ T ⊆ X, O ∩ T ⊆ Y ∪ Z and Y ⊆ B, and if X 6= ∅, then the vertices of each component
of G[X] are in the same set of the partition P. We say that an instance (G′, I ′, O′, B′, ω′, t′)
is obtained by the border complementation (with respect to feasible 4-tuple (X,Y, Z,P)) for
X 6= ∅ and P = (P1, . . . , Ps) if

18

(i) G′ is obtained from G by adding vertices u1, . . . , us and making ui adjacent to an arbitrary
vertex of each component of G[X] in G[Pi] and to the vertices of Y for i ∈ {1, . . . , s},

(ii) I ′ = I ∪ {u},

(iii) O′ = O ∪ Y ∪ Z,

(iv) B′ = B \X,

(v) ω′(v) = ω(v) for v ∈ V (G) and ω′(u) = 0,

(vi) t′ ≤ t.

If X = ∅, then (G′, I ′, O′, B′, w′, t′) is obtained by the border complementation (with respect to
(X,Y, Z,P)) if G′ = G, I ′ = I, O′ = O ∪ T , B′ = B, ω′(v) = ω(v) for v ∈ V (G) and t′ ≤ t.

Input: A graph G, sets I,O,B ⊆ V (G) such that I ∩ O = ∅ and I ∩ B = ∅,
a weight function ω : V (G) → Z≥0, a nonnegative integer t, and a set
T ⊆ V (G) of border terminals of size at most 2(t+ 1).

Task: Output a solution for each instance (G′, I ′, O′, B′, ω′, t′) of Maxi-
mum or w-Weighted Secluded Tree that can be obtained from
(G, I,O,B,w, t) by a border complementation distinct from the border
complementation with respect to (∅, ∅, T, ∅), and for the border com-
plementation with respect to (∅, ∅, T, ∅) output a nonempty solution if
it has weight at least w and output ∅ otherwise.

Bordered Maximum or w-Weghted Secluded Tree

Two instances (G1, I1, O1, B1, ω1, t, T) and (G2, I2, O2, B2, ω2, t, T) of Bordered Maximum
or w-Weghted Secluded Tree (note that t and T are the same) are said to be equivalent
if

(i) T ∩ I1 = T ∩ I2, T ∩O1 = T ∩O2 and T ∩B1 = T ∩B2,

(ii) for the border complementations (G′1, I
′
1, O

′
1, B

′
1, ω
′
1, t
′) and (G′2, I

′
2, O

′
2, B

′
2, ω
′
2, t
′) of the

instances (G1, I1, O1, B1, ω1, t
′) and (G2, I2, O2, B2, ω2, t

′) respectively of Maximum or
w-Weighted Connected Secluded F-Free Subgraph with respect to every fea-
sible (X,Y, Z,P) and t′ ≤ t, it holds that if (G′1, I

′
1, O

′
1, B

′
1, ω
′
1, t
′) has a nonempty so-

lution R1, then (G′2, I
′
2, O

′
2, B

′
2, ω
′
2, t
′) has a nonempty solution R2 with ω′2(V (R2)) ≥

min{ω′1(V (R1)), w} and, vice versa, if (G′2, I
′
2, O

′
2, B

′
2, ω
′
2, t
′) has a nonempty solution R2,

then (G′1, I
′
1, O

′
1, B

′
1, ω
′
1, t
′) has a nonempty solution R1 with ω′1(V (R1)) ≥ min{ω′2(V (R2)),

w}.

As in the previous section we not distinguish equivalent instances of Bordered Maximum or
w-Weghted Secluded Tree and their solutions.

4.1 High connectivity phase

In this section we solve Bordered Maximum or w-Weghted Secluded Tree for (q, t+1)-
unbreakable graphs. We need the following folklore lemma.

Lemma 15. Every tree T has a separation (A,B) of order 1 such that |A \B| ≤ 2
3 |V (T)| and

|B \A| ≤ 2
3 |V (T)|.

Lemma 16. Bordered Maximum or w-Weghted Secluded Tree for (q, t+1)-unbreakable
graphs can be solved in time 2O((t+min{q,t}) log(q+t)) · nO(1).

19

Proof. Consider an instance (G′, I ′, O′, B′, ω′, t′) of Maximum or w-Weighted Secluded
Tree be obtained from (G, I,O,B, ω, t) by the border complementation with respect to some
feasible (X,Y, Z,P). Assume that H is a nonempty solution of (G′, I ′, O′, B′, ω′, t′). We claim
that |V (H)| ≤ 3q + 8.

To obtain a contradiction, assume that |V (H)| ≥ 3q+9. By Lemma 15, there is a separation
(U,W) of H of order 1 such that |U \W | ≤ 2

3 |V (H)| and |W \U | ≤ 2
3 |V (H)|, that is, |U \W | ≥

1
3 |V (H)|−1 ≥ q+2 and |W \U | ≥ 1

3 |V (H)|−1 ≥ q+2. Let U ′ = U∩V (G) and W ′ = W ∩V (G).
We have that |U ′ \W ′| ≥ q + 1 and |W ′ \ U ′| ≥ q + 1. Let U ′′ = U ′ ∪ NG′(V (H)) ⊆ V (G)
and W ′′ = V (G) \ (U ′ \ W ′) ⊆ V (G). We have that (U ′′,W ′′) is a separation of G. Since
U ′′ ∩W ′′ = NG′(V (H))∪ (U ′ ∩W ′), we obtain that the order of the separation is at most t+ 1.
Observe that U ′′ \W ′′ = U ′ \W ′′ and W ′ \U ′ ⊆W ′′ \U ′′ and, therefore, |U ′′ \W ′′| ≥ q+ 1 and
|W ′′ \ U ′′| ≥ q + 1 contradicting the (q, t+ 1)-unbreakability of G.

The claim implies that to solve Maximum or w-Weighted Secluded Tree for
(G′, I ′, O′, B′, ω′, t′), it is sufficient to consider k ≤ 3q+8 and for each k, find t-secluded induced
subtree H in G′ of maximum weight such that I ′ ⊆ V (H ′), O′ ⊆ V (G′)\V (H), NG′(V (H)) ⊆ B′
and |V (H)| = k. By Corollary 1, it can be done in time 2O(min{q,t} log(q+t)) · nO(1).

To solve Bordered Maximum or w-Weghted Connected Secluded F-Free Sub-
graph for (G, I,O,B, ω, t, T), we consider all possible partitions (X,Y, Z) of T and partitions
P of X such that (X,Y, Z,P) is feasible. Since |T | ≤ 2(t+ 1), and the set of P together with X
and Y form a partition of T , we conclude that there are 2O(t log t) feasible (X,Y, Z,P). Hence,
the total running time is 2O((t+min{q,t}) log(q+t)) · nO(1).

4.2 The FPT algorithm for Large Secluded Tree

In this section we construct an FPT algorithm for Large Secluded Tree parameterized by
t. To do it, we solve Bordered Maximum or w-Weghted Connected Secluded F-Free
Subgraph in FPT-time for general case.

Lemma 17. Bordered Maximum or w-Weghted Secluded Tree can be solved in time
22
O(t log t) · nO(1).

Proof. There is a constant c such that the number of partitions of a k-element set into subsets
such that at most two of them could be empty is at most 2ck log k. We define

q = 2 · 2(t+1)t2c2(t+1) log(2(t+1))+2(t+1) + (t+ 1)t2c2(t+1) log(2(t+1)) + 2(t+ 1). (6)

Notice that q = 22
O(t log t)

.
Consider an instance (G, I,O,B, ω, t, T) of Bordered Maximum or w-Weghted Se-

cluded Tree.
We use the algorithm from Lemma 1 for G. This algorithm in time 22

O(t log t) · nO(1) either
finds a separation (U,W) of G of order at most t+ 1 such that |U \W | > q and |W \U | > q or
correctly reports that G is ((2q + 1)q · 2t+1, t + 1)-unbreakable. In the latter case we solve the

problem using Lemma 13 in time 22
O(t log t) · nO(1). Assume from now that there is a separation

(U,W) of order at most t+ 1 such that |U \W | > q and |U \W | > q.
Recall that |T | ≤ 2(t + 1). Then |T ∩ (U \W)| ≤ t + 1 or |T ∩ (W \ U)| ≤ t + 1. Assume

without loss of generality that |T ∩ (W \ U)| ≤ t+ 1. Let G̃ = G[W], Ĩ = I ∩W , Õ = O ∩W ,
ω̃ is the restriction of w to W , and define T̃ = (T ∩W) ∪ (U ∩W). Since |U ∩W | ≤ t + 1,
|T̃ | ≤ 2(t+ 1).

If |W | ≤ (2q + 1)q · 2t+1, then we solve Bordered Maximum or w-Weghted Con-
nected Secluded F-Free Subgraph for the instance (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) by brute force in

time 22
O(t log t)

trying all possible subset of W at most t+ 1 values of 0 ≤ t′ ≤ t. Otherwise, we
solve (G̃, Ĩ, Õ, B̃, ω̃, t, T̃) recursively. Let R be the set of nonempty induced subgraphs R that
are included in the obtained solution for (G̃, Ĩ, Õ, B̃, ω̃, t, T̃).

20

For R ∈ R, define SR to be the set of vertices of W \ V (R) that are adjacent to the vertices
of R in the graph obtained by the border complementation for which R is a solution of the
corresponding instance of Maximum or w-Weighted Secluded Tree. Note that |SR| ≤ t.
If R 6= ∅, then let S = T̃ ∪R∈R SR, and S = T̃ if R = ∅. Since Maximum or w-Weighted
Secluded Tree is solved for at most t + 1 of values of t′ ≤ t, at most 2c(2(t+1)) log(2(t+1))

feasible 4-tuples (X,Y, Z,P), we have that |R| ≤ (t+ 1)2c2(t+1) log(2(t+1)). Taking into account
that |T ′| ≤ 2(t+ 1),

|S| ≤ (t+ 1)t2c2(t+1) log(2(t+1)) + 2(t+ 1). (7)

Let B̂ = (B ∩ U) ∪ (B ∩ C). We claim that the instances (G, I,O,B, ω, t, T) and
(G, I,O, B̂, ω, t, T) of Bordered Maximum or w-Weghted Secluded Tree are equiva-
lent.

Recall that we have to show that

(i) T ∩B = T ∩ B̂,

(ii) for the border complementations (G′, I ′, O′, B′, ω′, t′) and (G′, I ′, O′, B̂′, ω′, t′) of the in-
stances (G, I,O,B, ω, t′) and (G, I,O, B̂, ω, t′) respectively of Maximum or w-Weighted
Connected Secluded F-Free Subgraph with respect to every feasible (X,Y, Z,P)
and t′ ≤ t, it holds that if (G′, I ′, O′, B′, ω′, t′) has a nonempty solution R1, then
(G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with ω′(V (R2)) ≥ min{ω′(V (R1)), w}
and, vice versa, if (G′, I ′, O′, B̂′, w′, t′) has a nonempty solutionR2, then (G′, I ′, O′, B′, w′, t′)
has a nonempty solution R1 with ω′(V (R1)) ≥ min{ω′(V (R2)), w}.

The condition (i) holds by the definition of B̂. Because B̂ ⊆ B, we immediately obtain
if (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2, then (G′, I ′, O′, B′, ω′, t′) has a nonempty
solution R1 with ω′(V (R1)) ≥ min{ω′(V (R2)), w}. It remains to prove that for a border comple-
mentation (G′, I ′, O′, B′, ω′, t′) and (G′, I ′, O′, B̂′, ω′, t′) of (G, I,O,B, ω, t′) and (G, I,O, B̂, ω, t′)
respectively of Maximum or w-Weighted Connected Secluded F-Free Subgraph
with respect to a feasible (X,Y, Z,P) and t′ ≤ t, it holds that if (G′, I ′, O′, B′, ω′, t′) has a
nonempty solution R1, then (G′, I ′, O′, B̂′, ω′, t′) has a nonempty solution R2 with ω′(V (R2)) ≥
min{ω′(V (R1)), w}.

If V (R1) ∩ V (G) ⊆ U \ W , then NG′V (R1) ⊆ B̂′. Therefore, for a solution R2 of
(G′, I ′, O′, B̂′, ω′, t′), ω′(V (R2)) ≥ min{ω′(V (R1), w)}. Assume that V (R1) ∩ W 6= ∅. Let
X̃ = T̃ ∩ (V (R1) ∩ W), let Ỹ be the set of vertices of T̃ \ V (R1) that are adjacent to ver-
tices of R1 laying outside W \ U and Z̃ = T̃ \ (X̃ ∪ Ỹ). Notice that R1 − (W \ U) is a
forest and denote it by F . Then there is a partition P̃ = (P1, . . . , Ps) of X̃ into nonempty
sets such that two vertices of X̃ are in the same set Pi if and only if they are in the same
component of F . Consider the border complementation of (G̃, Ĩ, Õ, B̃, ω̃, t̃) with respect to
(X̃, Ỹ , Z̃, P̃), where t̃ is the number of neighbors of R1 in W . Recall that in the border com-
plementation we have new vertices u1, . . . , us ∈ Ĩ such that each ui is adjacent to one vertex
of Pi and the vertices of Ỹ for i ∈ {1, . . . , s}. Consider the subgraph F ′ of G̃ induced by
(V (R1) ∩ W) ∪ {u1, . . . , us}. It is straightforward to see that F ′ is a tree that has t̃ neigh-
bors in G̃. It implies that there is R̃ ∈ R for the instance (G̃, Ĩ, Õ, B̃, ω̃, t̃) of Maximum
or w-Weighted Secluded Tree obtained by the border complementation with respect to
(X̃, Ỹ , Z̃, P̃ ′) and ω̃(V (R̃)) ≥ min{ω̃(V (R1)∩W)}. Recall also that the neighbors of the vertices
of R̃ are in S. Now let R2 = G′[(V (R1)∩U)∪ (V (R̃)∩W)]. We have that R2 is a tree of weight
at least min{ω′(R1), w} that has at most t′ neighbors in G′.

Since, (G, I,O,B, ω, t, T) and (G, I,O, B̂, ω, t, T) of Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph are equivalent, we can consider (G, I,O, B̂, ω, t, T).
Now we apply some reduction rules that produce equivalent instances of Bordered Maximum
or w-Weghted Connected Secluded F-Free Subgraph or report that we have no solu-
tion. The aim of these rules is to reduce the size of G.

21

Let Q be a component of G[W] − S. Notice that for any nonempty graph R in a solution
of (G, I,O, B̂, ω, t, T), either V (Q) ⊆ V (R) or V (Q) ∩ V (R) = ∅, because NG[W](V (R)) ⊆
S. Moreover, if V (Q) ∩ V (R) = ∅, then NG[W][V (Q)] ∩ V (R) = ∅. Notice also that if v ∈
NG[W](V (Q)) is a vertex of R, then V (Q) ⊆ V (R). These observation are crucial for the
following reduction rules.

Reduction Rule 4.1. For a component Q of G[W]− S do the following in the given order:

• if NG[W][V (Q)] ∩ I 6= ∅ and V (Q) ∩O 6= ∅, then return ∅ and stop,

• if NG[W][V (Q)] ∩ I 6= ∅, then set I = I ∪ V (Q),

• if V (Q) ∩O 6= ∅, then set O = O ∪NG[W][V (Q)].

The rule is applied to each component Q exactly once. Notice that after application of the
rule, for every component Q of G[W] − S, we have that either V (Q) ⊆ I or V (Q) ⊆ O or
V (Q) ∩ (I ∪O ∪ B̂) = ∅.

Observe that if a component Q of G[W] contains a cycle, then Q cannot be a part of any
solution. It leads us to the following rule that is applied to each component.

Reduction Rule 4.2. If for a component Q of G[W]− S, Q contains a cycle, then

• if V (Q) ⊆ I, then return ∅ and stop, otherwise,

• set O = O ∪NG[W][V (Q)].

Suppose that there is a componentQ containing two distinct verices u and v that are adjacent
to the same vertex x ∈ NG[W](V (Q)). If there is a graph R in a solution of (G, I,O, B̂, ω, t, T)
with u, v ∈ V (R), then x /∈ V (R), because R is a tree. If u, v /∈ V (R), then x /∈ V (R), because
otherwise u, v /∈ B̂ would be adjacent to a vertex of R. Hence, the next rule is safe.

Reduction Rule 4.3. If for a component Q of G[W]− S, there is x ∈ NG[W](Q) \O adjacent
to two distinct vertices of Q, then set O = O ∪ {x}.

We apply the rule exhaustively while it is possible.
After applying Reduction Rules 4.1-4.3, we can safely replace each Q by a single vertex.

Reduction Rule 4.4. If for a component Q of G[W]− S, |V (Q)| > 1, then

• modify G by deleting the vertices of V (Q) and constructing a new vertex u adjacent to
NG[W](V (Q)),

• set W = (W \ V (Q)) ∪ {u},

• set ω(u) = ω(V (Q)),

• if V (Q) ⊆ I, then set I = (I \ V (Q)) ∪ {u},

• if V (Q) ⊆ O, then set O = (O \ V (Q)) ∪ {u}.

The rule is applied for each Q with at least two vertices. Notice that now W \ S is an
independent set.

Note that if there is u ∈ W \ S such that u ∈ O, then it is safe to delete u, because
NG[W](u) ⊆ O by Reduction Rule 4.1.

Reduction Rule 4.5. If there is u ∈ W \ S such that u ∈ S, then delete u from G and the
sets W and O.

22

From now we have that (W \ S) ∩O = ∅.
Suppose that L is a set of verices of W \ S that have the same neighborhoods, i.e, they are

false twins of G[W]. If there are distinct u, v ∈ L such that u, v ∈ V (R) for a graph R in a
solution of (G, I,O, B̂, ω, t, T), then L ⊆ V (R), because R should contain exactly one vertex in
the neighborhoods of u and v. Hence, either L∩V (R) = ∅ or exactly one vertex of L is in R or
L ⊆ V (R). In particular, if |L ∩ I| ≥ 2, then L ⊆ V (R). Suppose L ∩ I = ∅ and u ∈ L is the
unique vertex of L in R, then we can safely assume that u is a vertex of maximum weight in
L. Notice also that in this case u is the unique vertex of R. It means that R is obtained for a
border complementation of (G, I,O, B̂, ω, t) with respect to (∅, ∅, T, ∅) and we output R only if
ω(u) ≥ w. These observations give us the two following rules that are applied for all inclusion
maximal sets L ⊆W \ S of size at least 3.

Reduction Rule 4.6. If for an inclusion maximal set of false twin vertices L ⊆ W \ S such
that |L| ≥ 3, L ∩ I 6= ∅, then let u ∈ L ∩ I, v ∈ L \ {u}, and

• delete the verices of L \ {u, v} from G and the sets W, I,

• if (L \ {u}) ∩ I 6= ∅, then set I = I ∪ {v},

• set ω(v) =
∑

x∈L\{u} ω(x).

Reduction Rule 4.7. If for an inclusion maximal set of false twin vertices L ⊆ W \ S such
that |L| ≥ 3, L ∩ I = ∅, then let u be a vertex of maximum weight in L and let v ∈ L \ {u},
and then

• delete the verices of L \ {u, v} from G and the set W ,

• set ω(v) = min{
∑

x∈L\{u} ω(x), w − 1}.

Notice that ω(v) ≤ w − 1. It implies that v cannot be selected as a unique vertex of a
solution. To see that it is safe, observe that if ω(u) > 0, then the total weight of u and v is at
least w and recall that by the definition of Maximum or w-Weighted Secluded Tree, we
output nonempty graphs of maximum weight or weight at least w. Therefore, if we output R′

that includes u and v instead of R containing all the vertices of L, then we output a graph of
weight at least min{ω(R), w}.

Denote by (G∗, I∗, O∗, B∗, ω∗, t, T) the instance of Bordered Maximum or w-Weghted
Connected Secluded F-Free Subgraph obtained from (G, I,O, B̂, ω, t, T) by Reduction
Rules 4.1-4.7. Notice that all modifications were made for G[W]. Denote by W ∗ the set of
vertices of the graph obtained from G[W] by the rules. Observe that there are at most 2|S|

subsets L of S such that there is a components Q of G[W]− S with NG[W](V (Q)) = L. Notice
that for every L all such components Q are replaced by at most 2 vertices by the reduction
rules. Taking into account the vertices of S, we obtain the following upper bound for the size
of W ∗:

|W ∗| ≤ 2 · 2|S| + |S|. (8)

By (6) and (7), |W ∗| ≤ q. Recall that |W \U | > q. Therefore, |V (G∗)| < |V (G)|. We use it and
solve Bordered Maximum or w-Weghted Secluded Tree for (G∗, I∗, O∗, B∗, ω∗, t, T)
recursively.

To evaluate the running time, denote by τ(G, I,O,B, ω, t, T) the time needed to solve Bor-
dered Maximum or w-Weghted Secluded Tree for (G, I,O,B, ω, t, T). Clearly, all re-

duction rules are polynomial. The algorithm from Lemma 1 runs in time 22
O(t log t) ·nO(1). Then

we obtain the following recurrence for the running time:

τ(G, I,O,B, ω, t, T) ≤ τ(G∗, I∗, O∗, B∗, ω∗, t, T) + τ(G̃, Ĩ, Õ, B̃, ω̃, t, T̃) + 22
O(t log t) · nO(1). (9)

23

Because |W ∗| ≤ q,
|V (G∗)| ≤ |V (G)| − |V (G̃)|+ q. (10)

Recall that if the algorithm of Lemma 1 reports that G is ((2q + 1)q · 2t+1, t + 1)-unbreakable
or we have that |V (G)| ≤ ((2q + 1)q · 2t+1, we do not recurse but solve the problem directly

in time 22
O(t log t) · nO(1). Following the general scheme from [4], we obtain that these condition

together with (9) and (10) imply that the total running time is 22
O(t log t) · nO(1).

We have now all the details that are necessary to prove the main theorem of this section.

Theorem 3. Large Secluded Tree can be solved in time 22
O(t log t) · nO(1).

Proof. Let (G,ω, t, w) be an instance of Large Secluded Tree. We define I = ∅, O = ∅,
B = V (G) and T = ∅. Then we solve Bordered Maximum or w-Weghted Secluded Tree

for (G, I,O,B, ω, t, T) using Lemma lem:bordtree in time 22
O(t log t) · nO(1). It remains to notice

that (G,ω, t, w) is a yes-instance of Large Secluded Tree if and only if (G, I,O,B, ω, t, T)
has a nonempty graph in a solution.

5 Better algorithms for Connected Secluded Π-Subgraph

We applied the recursive understanding technique introduced by Chitnis et al. [4] for Con-
nected Secluded Π-Subgraph when Π is defined by a finite set of forbidden subgraphs and
Π is the property to be a forest in Sections 3 and 4 respectively. We believe that the same
approach can be used in some other cases. In particular, the results of Section 4 could be
generalized if Π is the property defined by a finite list of forbidden minors that include a planar
graph. Recall that a graph F is a minor of a graph G if a graph isomorphic to F can be obtained
from G by a sequence of vertex and edge deletion and edge contractions. Respectively, a graph
G is F -minor free if F is not a minor of G, and for a family of graphs F , G is F-minor free if
G is F -minor free for every F ∈ F . If F is a planar graph, then by the fundamental results of
Robertson and Seymour [16] (see also [17]), an F -minor free graph G has bounded treewidth.
This makes it possible to show that if Π is the property to be F-minor free for a finite family of
graphs F that includes at lease one planar graph, then Connected Secluded Π-Subgraph
is FPT when parameterized by t+ k. Nevertheless, the drawback of the applying the recursive
understanding technique for these problems is that we get double or even triple-exponential
dependence on the parameter in our FPT algorithms. It is natural to ask whether we can do
better for some properties Π. In this section we show that it can be done if Π is the property
to be a complete graph, a star, to be d-regular or to be a path.

5.1 Secluded Clique

We begin with problem Secluded Clique, defined as follows.

Input: A graph G, a weight function ω : V (G)→ Z>0, an nonnegative integer
t and a positive integer w.

Task: Decide whether G contains a t-secluded clique H with ω(V (H)) ≥ w.

Secluded Clique

We prove that this problem can be solved in time 2O(t log t) · nO(1). The result uses the
algorithm of Lemma 3 and the following simple observations.

Lemma 18. Let (G,ω, t, w) be an input of Secluded Clique and let H be a solution such
that V (H) is maximal by inclusion. Let L be an inclusion maximal set of true-twins of G. Then
L ∩ V (H) 6= ∅ implies that L ⊆ V (H).

24

Proof. Let L be an inclusion maximal set of twins, and let u, v ∈ L be such that u ∈ V (H) and
v /∈ V (H). Consider the graph H ′ = G[V (H)∪{v}]. Since H is a t-secluded clique, and u, v are
true twins, we have that H ′ is also a t-secluded clique, and ω(V (H ′)) = ω(V (H)) + ω(v) ≥ w.
Therefore H ′ is also a solution of Secluded Clique, contradicting the maximality of H.

Let L be the family all of maximal sets of true twins in a graph G. Note that a vertex can
not belong to two different maximal sets of true twins, so L induces a partition of G. Consider
G̃ the graph obtained from G contracting each maximal set of true-twins L into a single node
xL, and removing multiple edges. In other words, G̃ contains one node for each element of L.
Two nodes x1 and x2 in G̃ are adjacent if there is an edge in G with one endpoint in L1 and the
other one in L2, where L1 and L2 are elements of L corresponding to x1 and x2, respectively.

We say that a node x ∈ G̃ is a contraction of L ∈ L if x is the node of G̃ corresponding to L.
We say that a set U ⊆ V (G) is the expansion of Ũ ⊆ V (G̃) if the all the nodes of Ũ represent
maximal sets of true-twins contained in U . We also say in that case that Ũ is the contraction
of U .

Lemma 19. Let G be a graph, t be a positive integer and let U be a subset of vertices of G
inducing a inclusion maximal t-secluded clique in G. There exists a set Ũ of vertices of V (G̃)
such that:

1) U is the expansion of Ũ ,

2) Ũ induces a t-secluded clique on G̃, and

3) |Ũ | ≤ 2t.

Proof. Let Ũ be the set of nodes consisting in the contraction of the maximal sets of true-twins
in G intersecting U . We claim that Ũ satisfies the desired properties.

1) From Lemma 18, we know that if a maximal set of true-twins L intersects U , then it L is
contained in U . Therefore Ũ is a contraction of U (so U is an expansion of Ũ).

2) Let x1 and x2 be two nodes in Ũ that are contractions of L1 and L2, respectively. Since U
induces a clique in G, L1 and L2 must contain adjacent vertices, so x1 and x2 are adjacent
in G̃[Ũ]. On the other hand, |NG̃(Ũ)| equals the number of maximal sets of true-twins

intersecting NG(U), so |NG̃(Ũ)| ≤ |NG(U)| ≤ t. We conclude that Ũ induces a t-secluded

clique in G̃.

3) Let x1 and x2 be two different nodes in Ũ that are contractions of L1 and L2, respectively.
From definition of maximal sets of true-twins, NG(L1) 6= NG(L2), so NG̃(x1) 6= NG̃(x2).

Since Ũ is a clique, necessarily NG̃(x1)∩Ũ = NG̃(x2)∩Ũ . Therefore, every vertex on Ũ has

a different neighborhood outside Ũ . Since |NG̃(Ũ)| ≤ t, we obtain that |Ũ | ≤ 2|NG̃(Ũ)| ≤ 2t.

Theorem 4. Secluded Clique can be solved in time 2O(t log t) · nO(1).

Proof. The algorithm for Secluded Clique on input (G,ω, t, w) first computes the family L
of all inclusion maximal set of true-twins of G, and then computes G̃ in time O(n2). Then, the
algorithm uses Lemma 3 to compute in time 2O(t log t)n log n a family S of at most 2O(t log t) log n
subsets of V (G̃) such that: for any sets A,B ⊆ V (G̃), A∩B = ∅, |A| ≤ 2t, |B| ≤ t, there exists
a set S ∈ S with A ⊆ S and B ∩ S = ∅.

Let U be a set of vertices of G inducing an inclusion maximal solution of Secluded Clique
on instance (G,ω, t, w), and let Ũ be the contraction of U . From Lemma 19, we know that
NG̃(Ũ) ≤ t and |Ũ | ≤ 2t. Then, there exists S ∈ S such that Ũ ⊆ S and NG̃(U) ∩ S = ∅. In

other words Ũ is a component of G̃[S]. Therefore, the algorithm checks for every S ∈ S and
every component C of G̃[S] if the expansion of C is a solution of the problem.

25

5.2 Secluded Star

Another example of a particular problem where we have better running times is Secluded
Star, defined as follows.

Input: A graph G, a weight function ω : V (G)→ Z>0, an nonnegative integer
t, and a positive integer w.

Task: Decide whether G contains a t-secluded induced star S with ω(V (S)) ≥
w.

Secluded Star

In this case, a faster FPT algorithm can be deduced via a reduction to the problem Vertex
Cover parameterized by the size of the solution.

For a graph G and x in V (G), we call N2(x) the set of vertices at distance 2 from x, i.e.,
N2(x) is the set of vertices u ∈ V (G) such that u /∈ N [x] and there exists v ∈ N(x) such that
u ∈ N(v). We also call N2[x] the set N2(x) ∪N [x]. Let now Fx = (N2(x) ∪N(x), E′) be the
subgraph of G[N2(x)∪N(x)] such that E′ = E(G[N2(x)∪N(x)])−E(G[N2(x)]), i.e., Fx is the
graph induced by the vertices in N2(x) ∪N(x) after the deletion of all edges between nodes in
N2(x). Note that x is not a vertex of Fx.

A vertex x is the center of a star S if x is the vertex of maximum degree in S. The following
lemma relates the center x of a t-secluded star S of a graph G, with a vertex cover of size at
most t of Fx.

Lemma 20. Let S be a t-secluded star on a graph G and let x be the center of S. Then
NG(V (S)) is a vertex cover of Fx. Moreover, if S is an inclusion maximal t-secluded star with
the center x, then NG(V (S)) is an inclusion minimal vertex cover of Fx.

Proof. Let u, v two adjacent vertices of Fx. Since Fx[N2(x)] is edgeless, we assume w.l.o.g.
that u belongs to NG(x). If u is contained in NG(x) \ V (S), then u is in N(V (S)) (because x
belongs to S, so NG(x) \ V (S) ⊆ NG(V (S))). If u is in S, then either v is in N2

G(x) or v is in
NG(x) \ V (S) (because Fx[V (S)] is edgeless). In both cases v is in NG(V (S)). We conclude
that either u or v is contained in NG(V (S)).

Assume that S is an inclusion maximal t-secluded star with the center x. Suppose that,
contrary to the second claim, NG(V (S)) is not an inclusion minimal vertex cover of Fx, that is,
there is u ∈ NG(V (S)) such that X = NG(V (S)) \ {u} is a vertex cover of Fx. Because X is
a vertex cover of Fx and X ⊆ NG(V (S)), we have that u ∈ NG(x) and NG(u) \ {x} ⊆ X. It
implies that S′ = G[V (S) ∪ {u}] is a t-secluded star contradicting the maximality of S.

A basic result on parameterized complexity states that it could decided if a graph contains
a vertex cover of size at most t in time O(ct(n + m)) for some constant c (see, e.g., [5, 6]) by
branching algorithms. These algorithms could be adapted to output the list of all inclusion
minimal vertex covers of size at most t within the same running time. In fact, it could be
done for c < 2 but this demands some discussion. Hence, we use the following straightforward
observation.

Proposition 1 ([5, 6]). There is an algorithm computing the list of all the inclusion minimal
vertex covers of size at most t of a graph G in time O(2t(n+m)).

Theorem 5. Secluded Star can be solved in time O(2t · nO(1)).

Proof. Let (G,ω, t, w) be an input of Secluded Star. The algorithm starts computing, for
every x ∈ V (G), the list of all inclusion minimal vertex covers of size at most t of Fx using
Proposition 1. Then, for every vertex cover U of size at most t of Fx, the algorithm checks
if NG[x] \ U induces in G a solution of the problem. We know from Lemma 20, that if S is

26

a solution of Secluded Star on input (G,ω, t, w), then NG(V (S)) is an inclusion minimal
vertex cover of size at most t of Fx. Note also that S is an induced star with center x in a graph
G, then V (S) = NG[x] \NG(V (S)).

5.3 Secluded Regular Subgraph

Another example of a problem with single-exponential FPT algorithm is Connected Se-
cluded Regular Subgraph, defined as follows.

Input: A graph G, a weight function ω : V (G)→ Z>0, an nonnegative integer
t, and positive integers w and d.

Task: Decide whether G contains a connected t-secluded d-regular induced
subgraph H with ω(V (H)) ≥ w.

Connected Secluded Regular Subgraph

Let (G,ω, t, w, d) be an input of Connected Secluded Regular Subgraph and let U
be a set of vertices of G such that G[U] is a solution of the problem. Note first that any vertex
of degree greater than t+d can not be contained in U , otherwise G[U] is not t-secluded. Let W
be the set of vertices of high degree, i.e., x ∈W if |N(x)| ≥ t+d+ 1. Suppose that N(U) ⊆W .
This implies that U is a component of G−W . Therefore, our algorithm will first compute the
components of G−W and check if some of them is a solution. In the following we assume that
N(U) \W 6= ∅.

We call L = N(U) \W , U1 = N(L) ∩ U , U2 = N(U1) ∩ U and Ũ = U1 ∪ U2. Note that
|L| ≤ t, |U1| ≤ t · (t+ d) and |U2| ≤ dt · (t+ d). Therefore |Ũ | ≤ t(d+ 1)(t+ d).

A set of vertices C is called good for U if

• C ⊆ U , and

• For all u ∈ C, u ∈ U1 implies N(u) ∩ U ⊆ C.

Note that every node u in a good set C satisfies |N(u) ∩ C| ≤ d. Moreover if u ∈ U1 ∩ C
then |N(u) ∩ C| = d. Note also that if C1 and C2 are good for U then C1 ∪ C2 is good for U .

Lemma 21. Let S be a set of vertices of G satisfying Ũ ⊆ S and S ∩ L = ∅. Let now C be a
component of G[S] such that C ∩ U 6= ∅, then:

1) C is good for U , and

2) if u ∈ C is such that |N(u)∩C| < d, then S′ = S ∪N(u) satisfies Ũ ⊆ S′ and S′ ∩L = ∅.

Proof.

1) Let u ∈ C∩U and v ∈ N(u)∩(C \U). Then v is contained in L, which contradicts the fact
that S ∩ L = ∅. Therefore C ⊆ U . On the other hand, if u ∈ U1 ∩C then N(u) ∩ U ⊆ C,
because U2 is contained in S and C is a connected component of G[S]. We conclude that
C is good for U .

2) Let u ∈ C be such that |N(u) ∩ C| < d. Since C is good for U we know that u is not
contained in U1, so N(u) ∩ L = ∅. Therefore Ũ ⊆ S ⊆ S′ and S′ ∩ L = ∅.

Theorem 6. Connected Secluded Regular Subgraph can be solved in time 2O(t log(td)) ·
nO(1).

27

Proof. The algorithm for Connected Secluded Regular Subgraph on input (G,ω, t, w, d)
first computes the set W of vertices v satisfying |N(v)| > t+d+1. Then computes the connected
components of G−W and checks if some of them is a solution. If a solution is not found this
way, the algorithm computes G̃ = G −W . Then, the algorithm uses Lemma 3 to compute in
time 2O(t log(td))n log n a family S of at most 2O(t log(td)) log n subsets of V (G̃) such that: for any
sets A,B ⊆ V (G̃), A∩B = ∅, |A| ≤ t(d+ 1)(t+d), |B| ≤ t, there exists a set S ∈ S with A ⊆ S
and B ∩ S = ∅.

For each set S ∈ S, the algorithm mark as candidate every component C of G̃[S] that satisfy
that for all u ∈ C, |N(u) ∩C| ≤ d. For each candidate component C, the algorithm looks for a
node u in C such that |N(u) ∩ C| < d. If such node is found, the corresponding component is
enlarged adding to C all nodes in N(u). If N(u) intersects other components of G[S], we merge
them into C. We repeat the process on the enlarged component C until it can not grow any
more, or some node u in C satisfies |N(u) ∩ C| > d. In the first case we check if the obtained
component is a solution of the problem, otherwise the component is unmarked (is not longer
a candidate), and the algorithm continues with another candidate component of G̃[S] or other
set S′ ∈ S.

Let U be a set of vertices such that G[U] is a solution of Connected Secluded Regular
Subgraph on input (G,ω, t, w, d) such that N(U) \W 6= ∅. From construction of S, we know
that there exists some S ∈ S such that Ũ ⊆ S and S ∩ L = ∅. From Lemma 21 (1), we know
that any component of G̃[S] intersecting U is good for U , so it will be marked as candidate.
Finally, from Lemma 21 (2) we know that when a component that is good for U grows, the
obtained component is also good for U . Indeed, if C is a good component of G̃[S] containing a
node u such that |N(u)∩C| < d, then the component of G̃[S ∪N(u)] containing C is also good
for U . We conclude that we correctly find U testing the enlarging process on each component
of G̃[S], for each S ∈ S.

5.4 Secluded Long Path

Our last problem is Secluded Long Path, defined as follows.

Input: A graph G, a weight function ω : V (G)→ Z>0, an nonnegative integer
t, and a positive integer w.

Task: Decide whether G contains a t-secluded induced path P with
ω(V (P)) ≥ w.

Secluded Long Path

In this case the reasoning is very similar to the one for problem Connected Secluded
Regular Subgraph when d = 2. Let (G,ω, t, w) be an input of Secluded Long Path and
let P be a set of vertices of G such that G[P] is a solution of the problem. Note first that any
vertex of degree greater than t+ 2 can not be contained in P , otherwise G[P] is not t-secluded.
Let W be the set of vertices of high degree, i.e., x ∈ W if |N(x)| ≥ t + 3. Suppose first that
N(P) ⊆ W . This implies that P is a component of G−W . Therefore, our algorithm will first
compute the components of G−W and check if some of them is a solution. In the following we
assume that N(P) \W 6= ∅.

We call again L = N(P) \W and define P1 = N(L)∩P , P2 = N(P1)∩P and P̃ = P1 ∪P2.
Note that |L| ≤ t, |P1| ≤ t · (t+ 3) and |P2| ≤ 2t · (t+ 3). Therefore |P̃ | ≤ 3t · (t+ 3). For this
case, it will be enough to define good sets as paths. A path P ′ is called good for P if satisfies
the following conditions:

• P ′ ⊆ P , and

• For all u ∈ P ′, u ∈ P1 implies N(u) ∩ P ⊆ P ′.

28

Note that every vertex u in a path P ′ good for P satisfies |N(u) ∩ C| ≤ 2. However, unlike
the d regular case, where the nodes in U1 had d neighbors in a good set, in this case we may
have a node u ∈ P1 ∩ P ′ such that |N(u) ∩ P ′| = 1, when it is an endpoint of P ′.

Lemma 22. Let S be any set of vertices of G satisfying P̃ ⊆ S and S ∩ L = ∅. Let now C be
a component of G[S] such that P ∩ U 6= ∅. Then the following holds

1) C is good for U (so C is a path).

2) Suppose that ω(C) < w. Then there exists an endpoint u of C satisfying N(u) \C = {v},
where v is a vertex of V (G) \ S contained in P such that N(v) \W ⊆ P .

Proof.

1) Let u ∈ C ∩ P and v ∈ N(u) ∩ (C \ P). Then v is contained in L, which contradicts
the fact that S ∩ L = ∅. Therefore C ⊆ P . On the other hand, if u ∈ P1 ∩ C then
N(u) ∩ P = N(u) ∩ P̃ ⊆ C ∩ S. Then N(u) ∩ P ⊆ C. We conclude that C is good for P .

2) Since ω(C) < w and C is good for P , C must be strictly contained in P . Hence one of the
endpoints of C can be extended, i.e., P ∩ (N(u1)\C) 6= ∅ or P ∩ (N(u2)\C) 6= ∅. Suppose
w.l.o.g. that v ∈ P ∩ (N(u1) \C) (so v ∈ P \ S) and that N(u1) is not contained in P . If
u′ is a vertex in N(u1) \ P , then necessarily u′ belongs to L. Therefore u1 is in P1, which
implies that v is in P̃ . This contradicts the fact that P̃ is contained in S. We conclude
that N(u1) ⊆ P , so N(u1) \ C = {v}. Clearly v is not in P1, again because otherwise P̃
would not be contained in S. We conclude that N(v) ∩ L = ∅, so N(v) \W ⊆ P .

Theorem 7. Secluded Long Path can be solved in time 2O(t log t) · nO(1).
Proof. The algorithm for Secluded Long Path on input (G,ω, t, w) first computes the set W
of vertices v of G satisfying |N(v)| > t+2. Then computes the connected components of G−W
and checks if some of them is a solution. If a solution is not found this way, the algorithm
computes G̃ = G −W .Then, the algorithm uses Lemma 3 to compute in time 2O(t log t)n log n
a family S of at most 2O(t log t) log n subsets of V (G̃) such that: for any sets A,B ⊆ V (G̃),
A ∩B = ∅, |A| ≤ 3t(t+ 3), |B| ≤ t, there exists a set S ∈ S with A ⊆ S and B ∩ S = ∅.

For each set S ∈ S, the algorithm mark as candidate every component C of G[S] that
is a path and check if one of them is a solution of the problem. Suppose that none of the
marked components is a solution. The then algorithm runs a growing process on each candidate
component C such that ω(C) < w. For each such component C, and each endpoint u of C, the
algorithm checks if u has only one neighbor v outside C. If it does, the algorithm add v to the
path if v has at most 2 neighbors not intersecting N(C). Then the growing process is repeated
in the new component C ∪ {v}, eventually through the other endpoint of C, and through a
neighbor of v outside C (the algorithm test both options). If N(v) intersect another path C ′,
we merge C and C ′. The process stops when the resulting component C is a path such that
ω(C) ≥ w or it can not grow any more. In the first case the algorithm checks if C is a solution
of the problem, and otherwise continues with another endpoint of the original component C,
with another candidate component of G[S] or other set S′ ∈ S.

Let P be a set of vertices such that G[P] is a solution of Secluded Long Path on input
(G,ω, t, w), such that N(P) \W 6= ∅. From construction of S, we know that there exists some
S ∈ S such that Ũ ⊆ S and L ∩ S = ∅. From Lemma 22 (1), we know that any component of
G̃[S] intersecting P is good for U , so it will be marked as candidate. We know from Lemma 22
(2) that each component C of G̃[S] that is good for P , such that ω(C) < w, can be extended
to a node v ∈ P such that N(v) ∩ L = ∅. Hence S′ = S ∪ {v} satisfies P̃ ⊆ S′ and S′ ∩ L = ∅.
Then, from Lemma 22 (1) the component of G̃[S′] containing C is good for P . We conclude
that we correctly find P testing the growing process on each endpoint of each component of
G̃[S], for each S ∈ S.

29

6 Concluding remarks

Another interesting question concerns kernelization for Connected Secluded Π-Subgraph.
We refer to [5] for the formal introduction to the kernelization algorithms. Recall that a kernel-
ization for a parameterized problem is a polynomial algorithm that maps each instance (x, k)
with the input x and the parameter k to an instance (x′, k′) such that i) (x, k) is a yes-instance
if and only if (x′, k′) is a yes-instance of the problem, and ii) |x′| + k′ is bounded by f(k) for
a computable function f . The output (x′, k′) is called a kernel. The function f is said to be a
size of a kernel. Respectively, a kernel is polynomial if f is polynomial.

For Connected Secluded Π-Subgraph, we hardly can hope to obtain polynomial ker-
nels as it could be easily proved by applying the results of Bodlaender et al. [2] that, un-
less NP ⊆ coNP /poly, Connected Secluded Π-Subgraph has no polynomial kernel when
parameterized by t if Connected Secluded Π-Subgraph is NP-complete. Nevertheless,
Connected Secluded Π-Subgraph can have a polynomial Turing kernel.

Let f : N→ N. A Turing kernelization of size F for a parameterized problem is an algorithm
that decides whether a given instance (x, k) of the problem, where x is an input and k is a
parameter, is a yes-instance in time polynomial in |x| + k, when given the access to an oracle
that decides whether an instance (x′, k′), where |x′| + k′ ≤ f(k), is a yes-instance in a single
step. Respectively, a Turing kernel is polynomial if f is a polynomial.

We show that Connected Secluded Π-Subgraph has a polynomial Turing kernel if Π
is the property to be a star.

Theorem 8. Secluded Star problem admits a polynomial Turing kernelizaiton.

Proof. Let S be a solution of Secluded Star on input (G,ω, t, w). Remember that for each
x ∈ V (G), we called Fx the subgraph of G[NG(x)∪N2

G(x)] obtained by the deletion of all edges
with both endpoints in N2

G(x). From Lemma 20 if S is a t-secluded star of G with center x, then
NG(S) is a vertex cover of size at most t of Fx. Our kernelization algorithm will first compute,
for each x ∈ V (G), the graph Fx. Then, it performs a Buss’s kernelization on each graph Fx.

For a vertex x ∈ V (G), let Wx the set of vertices of degree greater than t in Fx. Note that
every vertex cover of size at most t of Fx must contain Wx. Hence, if |Wx| is greater than t,
then x can not be the center of a t-secluded star.

Suppose now that |Wx| ≤ t and let t′ = t − |Wx|. Note that Fx contains a vertex cover
of size t if and only if Fx −Wx contains a vertex cover of size at most t′. Since Fx −Wx is a
graph of degree at most t, a vertex cover of size t′ can cover at most t · t′ edges. In other words,
if Fx −Wx contains more than 2t · t′ non isolated vertices, then x can not be the center of a
t-secluded star.

Suppose now that Fx−Wx has at most 2t · t′ non isolated vertices. Let F+
x be the subgraph

of G[N2
G[x]], obtained from Fx −Wx removing all the isolated nodes, and then adding x with

all its incident edges. Note that F+
x contains at most 2t2 + 1 vertices. Now let Ix be the set of

isolated vertices of Fx −Wx contained in NG(x). Since NG(Ix) \ {x} is contained in Wx, and
Wx is contained in NG(S) for every t-secluded star S with center x, we deduce that Ix may be
contained in any such star S. In other words, if S is a star with center x, then S is a solution
of Secluded Star on input (G,ω, t, w) if and only if S − Ix is a solution of Secluded Star
on input (F+

x , ω
+, t′, w′), where ω+(v) = ω(v) for all v ∈ V (F+

x) and w′ = w − ω(Ix).
Now let F ′x be the graph obtained from F+

x , attaching to each node u in N2
G(x) ∩ V (F+

x)
a clique Ku of size 2t, where all vertices of Ku are adjacent to u. Note that F+

x is a graph of
size at most 4t3 + 1. Moreover, every t′-secluded star in F ′x has center x. Indeed, if the center
is some vertex in N(x) or N2

G(x), then S intersects or has as neighbors more than t vertices in
some clique Ku. Let ω′ be a function on V (F ′x) such that ω′(v) = ω(v) if v ∈ V (F ′x) ∩ V (G)
and ω′(v) = 1 if v is in one of the cliques adjacent to a node of N2

G(x) ∩ V (F ′x).
We conclude that (F ′x, ω

′, t′, w′) is a yes-instance of Secluded Star for some x ∈ V (G) if
and only if (G,ω, t, w) is a yes-instance of Secluded Star.

30

The kernelization algorithm computes for each x ∈ V (G) the graph Fx and the set Wx.
If Wx ∩ N2

G[x] contains more than t nodes the algorithm rejects x and continue with another
vertex of V (G). If |Wx| ≤ t it computes F+

x deleting all the isolated vertices of Fx−Wx. If F+
x

contains more than 2t · t1 + 1 nodes the algorithm rejects x and continue with another vertex of
V (G). Finally, the algorithm computes F ′x, t′, w′ and calls the oracle on input (F ′x, ω

′, t′, w′). If
the oracle answers that (F ′x, ω

′, t′, w′) is a yes-instance, the algorithm decides that (G,ω, t, w) is
a yes-instance. Otherwise the algorithm continue with another vertex of V (G). The algorithm
ends when some oracle accepts, or all nodes are rejected.

References

[1] R. Bevern, T. Fluschnik, G. B. Mertzios, H. Molter, M. Sorge, and O. Suchý,
Finding secluded places of special interest in graphs, in IPEC 2016, vol. 63 of LIPIcs, 2016,
pp. 5:1–5:16. 2

[2] H. L. Bodlaender, R. G. Downey, M. R. Fellows, and D. Hermelin, On problems
without polynomial kernels, J. Comput. Syst. Sci., 75 (2009), pp. 423–434. 30

[3] S. Chechik, M. P. Johnson, M. Parter, and D. Peleg, Secluded connectivity prob-
lems, in ESA 2013, vol. 8125 of LNCS, Springer, 2013, pp. 301–312. 2

[4] R. Chitnis, M. Cygan, M. T. Hajiaghayi, M. Pilipczuk, and M. Pilipczuk, De-
signing FPT algorithms for cut problems using randomized contractions, SIAM J. Comput.,
45 (2016), pp. 1171–1229. 3, 4, 5, 18, 24

[5] M. Cygan, F. V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk,
M. Pilipczuk, and S. Saurabh, Parameterized Algorithms, Springer, 2015. 1, 10, 11,
26, 30

[6] R. G. Downey and M. R. Fellows, Fundamentals of Parameterized Complexity, Texts
in Computer Science, Springer, 2013. 1, 2, 26

[7] F. V. Fomin, P. A. Golovach, N. Karpov, and A. S. Kulikov, Parameterized
complexity of secluded connectivity problems, Theory Comput. Syst., to appear. 2, 6

[8] F. V. Fomin and Y. Villanger, Treewidth computation and extremal combinatorics,
Combinatorica, 32 (2012), pp. 289–308. 4

[9] F. Hüffner, C. Komusiewicz, H. Moser, and R. Niedermeier, Isolation concepts
for clique enumeration: Comparison and computational experiments, Theor. Comput. Sci.,
410 (2009), pp. 5384–5397. 1

[10] H. Ito and K. Iwama, Enumeration of isolated cliques and pseudo-cliques, ACM Trans.
Algorithms, 5 (2009), pp. 40:1–40:21. 1

[11] M. P. Johnson, O. Liu, and G. Rabanca, Secluded path via shortest path, in SIROCCO
2014, vol. 8576 of LNCS, Springer, 2014, pp. 108–120. 2

[12] C. Komusiewicz, F. Hüffner, H. Moser, and R. Niedermeier, Isolation concepts for
efficiently enumerating dense subgraphs, Theor. Comput. Sci., 410 (2009), pp. 3640–3654.
1

[13] J. M. Lewis and M. Yannakakis, The node-deletion problem for hereditary properties
is NP-complete, J. Comput. Syst. Sci., 20 (1980), pp. 219–230. 1, 2

31

[14] D. Marx, Parameterized graph separation problems, Theor. Comput. Sci., 351 (2006),
pp. 394–406. 10

[15] C. H. Papadimitriou and M. Yannakakis, On limited nondeterminism and the com-
plexity of the V-C dimension, J. Comput. Syst. Sci., 53 (1996), pp. 161–170. 2

[16] N. Robertson and P. D. Seymour, Graph minors. v. excluding a planar graph, J.
Comb. Theory, Ser. B, 41 (1986), pp. 92–114. 24

[17] N. Robertson, P. D. Seymour, and R. Thomas, Quickly excluding a planar graph, J.
Comb. Theory, Ser. B, 62 (1994), pp. 323–348. 24

[18] M. Yannakakis, The effect of a connectivity requirement on the complexity of maximum
subgraph problems, J. ACM, 26 (1979), pp. 618–630. 2

32

