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Abstract. The Cayley table representation of a group uses O(n2) words
for a group of order n and answers multiplication queries in time O(1).
It is interesting to ask if there is a o(n2) space representation of groups
that still has O(1) query-time. We show that for any δ, 1

logn
≤ δ ≤ 1,

there is an O(n
1+δ

δ
) space representation for groups of order n with O( 1

δ
)

query-time.

We also show that for Z-groups, simple groups and several group classes
defined in terms of semidirect product, there are linear space represen-
tations with at most logarithmic query-time.

Farzan and Munro (ISSAC’06) defined a model for group representa-
tion and gave a succinct data structure for abelian groups with con-
stant query-time. They asked if their result can be extended to categor-
ically larger group classes. We construct data structures in their model
for Hamiltonian groups and some other classes of groups with constant
query-time.

1 Introduction

Groups are important algebraic structures which can be used to study sym-
metries in objects. Group theory has many important applications in physics,
chemistry, and materials science. Group theory has been used elegantly in prov-
ing various important results in computer science, such as Barrington’s theo-
rem [4], results on the graph isomorphism problem [1,16] etc.

Algorithms for computational group theoretic problems are essential building
blocks for many of the computer algebra systems such as GAP, SageMath, Singu-
lar etc. Some of the fundamental group theoretic algorithms were designed based
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on the ideas of Sims and Schreier (see [19]). Various computational group the-
oretic problems such as the group isomorphism problem, set stabilizer problem
for permutation groups are also interesting from a purely complexity theoretic
point of view for their connection with the graph isomorphism problem [9].

Two of the most commonly used ways of representing groups are via genera-
tors in the permutation group setting and via Cayley tables. Several interesting
problems such as the group isomorphism problem, various property testing prob-
lems, the group factoring problem etc., have been studied for groups represented
by their Cayley tables [6, 11–13,18,21,22].

While a multiplication query for a group of order n can be answered in con-
stant time in the Cayley table representation, the space required to store the
table is O(n2 log n) bits or O(n2) words in word-RAM model, which is pro-
hibitively large. It is interesting to know if there are data structures to store a
group using o(n2) words but still supporting constant query-time for multiplica-
tion. We construct a data structure that has constant query-time but uses just
O(n1.05) words to represent the group. In fact, our result is more general and
offers several other interesting space versus query-time trade-offs.

We note that there are space efficient representations of groups such as the
generator-relator representation (see [17]), polycyclic representation [20] etc.,
that store groups succinctly. However, answering multiplication queries generally
takes too much time. For example with a polycyclic representation of a cyclic
group it takes linear time to answer a multiplication query.

An easy information theoretic lower bound [10] states that to represent a
group of order n, at least n log n bits (or Ω(n) words in word RAM model)
are needed. We do not know if in general it is possible to use only O(n) words
to store a group while supporting fast query-time. We show that for restricted
classes of groups such as Z-groups, simple groups it is possible to construct data
structures that use only O(n) space and answer multiplication query in O(1)
and O(log n) time respectively.

In the past space succinct representation of groups has been studied for
restricted classes of groups [10, 14]. Farzan and Munro [10] defined a model of
computation in which a compression algorithm is applied to the group to get
a succinct canonical form for the group. The query processing unit in their
model assumes that the group elements to be multiplied are in given by their
labels. They also assume that the query processing architecture supports an extra
operation called bit-reversal. In their model they show that for abelian groups,
the query processing unit needs to store only constant number of words in order
to answer multiplication queries in constant time. Farzan and Munro ask if their
results can be extended to categorically larger classes of groups. We show that
we can design space efficient data structures with same space bounds and query-
time for Hamiltonian groups and Z-groups. Hamiltonian groups are nonabelian
groups all of whose subgroups are normal. Z-groups are groups all of whose
Sylow subgroups are cyclic. There are many interesting nonabelian groups in
the class of Z-groups. We also show that in their model constant query-time can
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be achieved for larger classes of groups defined in terms of semidirect products
provided the query processing unit is allowed to use linear space.

2 Preliminary

In this section, we describe some of the group-theoretic definitions and back-
ground used in the paper. For more details see [5–8].

For a group G, the number of elements in G or the order of G is denoted
by |G|. Let x ∈ G be an element of group G, then ordG(x) denotes the order of
the element x in G, which is the smallest power i of x such that xi = e, where
e is the identity element of the group G. For a subset S ⊆ G, 〈S〉 denotes the
subgroup generated by the set S.

A group homomorphism from (G, ·) to (H,×) is a function ϕ : G −→ H
such that ∀g1, g2 ∈ G,ϕ(g1 · g2) = ϕ(g1) × ϕ(g2). A bijective homomorphism is
called an isomorphism. Let Aut(H) denote automorphism group of H, Aut(H) =
{σ | σ : A −→ A is an isomorphism }. The set of all automorphism from a H
to H under function composition forms a group. Two elements a and b with
the conditions, a4 = 1, a2 = (ab)2 = b2 generates a nonabelian group of order
8 known as quaternian group. A group is said be a simple if every non-trivial
subgroup of it is not a normal subgroup. Let G be a finite group and A,B be
subgroups of G. Then G is a direct product of A and B, denoted G = A×B, if
1) A E G and B E G, 2) |G| = |A||B|, 3) A ∩B = {e}.

Let A and B be two groups and let ϕ : B −→ Aut(A) be a homomorphism.
The semidirect product of A and B with respect to ϕ, denoted A oϕ B, is a
group whose underlying set is A × B and the group multiplication is define as
follows: Let (a1, b1), (a2, b2) ∈ A×B. The multiplication of (a1, b1) and (a2, b2) is
defined as (a1(ϕ(b1)(a2)), b1b2). It is routine to check that the resulting structure
is indeed a group. A group G is called the semidirect product of two of its
subgroups A and B if there exists ϕ : B −→ Aut(A) such that G ∼= Aoϕ B.

A group G is said to be abelian if ab = ba,∀a, b ∈ G. The fundamental
theorem for finitely generated abelian groups implies that a finite abelian group
G can be decomposed as a direct product G = G1×G2× . . .×Gt, where each Gi
is a cyclic group of order pj for some prime p and integer j ≥ 1. If ai generates
the cyclic group Gi for i = 1, 2, 3, . . . , t then the elements a1, a2, . . . , at are called
a basis of G.

A group H is Hamiltonian if every subgroup of H is normal. It is a well
known fact that [5] a group is Hamiltonian if and only if
- G is the quaternion group Q8; or,
- G is the direct product of Q8 and B, of Q8 and A, or of Q8 and B and A,
where A is an abelian group of odd order k and B is an elementary abelian
2-group.1 A group is Dedekind if it is either abelian or Hamiltonian.

Let pk is the highest power of a prime p dividing the order of a finite group
G, a subgroup of G of order pk is called a Sylow p-subgroup of G.

1 An elementary abelian 2-group is an abelian group in which every nontrivial element
has order 2.
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Z-groups are groups all of whose Sylow subgroups are cyclic. A group G is
a Z-group if and only if it can be written as a semidirect product of two cyclic
groups.

Let G be a group with n elements. A sequence (g1, . . . , gk) of k group elements
is said to be cube generating set of G if

G = {gε11 g
ε2
2 · · · g

εk
k | εi ∈ {0, 1}} (1)

Let G = 〈S〉. The Cayley graph of the group G on generating set S is the
directed graph X = (V,E) where V = G and E = {(g, gs) | g ∈ G, s ∈ S}.
Additionally, every edge (g, gs) ∀g ∈ G, ∀s ∈ S is labeled with s. We denote
diameter(G,S) as the graph diameter of the Cayley graph of group G on gener-
ating set S.

We use the % symbol as the modulo operator such that a % b denotes the
remainder of a when divided by b.

2.1 Model of Computation

The model of computation we follow is the word RAM model, where random
access can be done in constant time. Each register and memory unit can store
O(log n) bits where n is the input size (in our case n is the order of the given
group). These memory units are called words. The arithmetic, logic and com-
parison operations on O(log n) bits words take constant time. Unless stated
otherwise we assume that the elements of the group are encoded as 1, 2, . . . , n.

The group G and its Cayley table are already known and we are allowed
to preprocess the input in finite time in order to generate the required data
structures for the multiplication operation. The time and space required in the
preprocessing phase is not counted towards the space complexity and query time
of the data structure.

In many of the existing results the time taken to generate space efficient
data structures could be, for example, exponential. However, for some of our
data structures the preprocessing time is polynomial in the size of input group.

The space complexity is measured in terms of the number of words required
for the storage of the data structure. The multiplication query for a group G
takes two elements x and y, and it has to return z = xy.

We note that in this model the inverses of each element can be trivially
stored in O(n) space. Thus, we primarily focus on the problem of answering
multiplication queries using data structures that uses less space.

3 Our Results

In Section 4 and 5 we present space efficient data structures for various group
classes in standard word RAM model. Our results for various group classes are
summarized below. We start with a representation for general groups and then
move towards more restricted group classes such as Z-groups, simple groups etc..
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Theorem 1. Let G be a group of order n. Then for any δ such that 1
logn ≤

δ ≤ 1, there is a representation of G that uses O(n
1+δ

δ ) space and answers
multiplication queries in time O( 1

δ ).

Theorem 2. There is a representation of Z-groups such that multiplication op-
eration can be performed using O(n) space in O(1) time.

Theorem 3. There is a representation of simple groups using O(n) space such
that multiplication query can be answered in O(log n) time.

In Section 6 we study space efficient representation of groups in the model
defined by Farzan and Munro [10]. Our results in this model are listed below.

Theorem 4. There is a representation of Hamiltonian groups such that multi-
plication operation can be performed using O(1) space in O(1) time.

Theorem 5. There is a representation of Z-groups such that multiplication op-
eration can be performed using O(1) space in O(1) time.

Theorem 6. There is a representation of groups G = AoCm such that multi-
plication operation can be performed in using O(|A|) space in O(1) time.

4 Space Efficient Representations of Finite Groups

In this section we construct a space efficient representation of a given finite group
that can quickly answer multiplication queries. More precisely,

Theorem 1. Let G be a group of order n. Then for any δ such that 1
logn ≤

δ ≤ 1, there is a representation of G that uses O(n
1+δ

δ ) space and answers
multiplication queries in time O( 1

δ ).

One of the main ingredients in the proof of the theorem is the existence of
short cube generating sequence. Erdös and Renyi [8] showed that for any group
of G of order n, there are cube generating sets of length O(log n). The next
theorem states this fact more formally.

Theorem 8 ( [8]). Let G be a finite group of order n. Then there is a sequence
(g1, . . . , gk) of elements of G such that

1. k = O(log n)
2. Every element g of G can be written as gε11 g

ε2
2 . . . gεkk where εi ∈ {0, 1},∀i ∈ k

In Subsection 4.1 we give a deterministic polynomial time algorithm to com-
pute a cube generating sequence of logarithmic length. The algorithm is based
on the ideas presented by Babai and Erdös [2]. The algorithm also servers as a
proof of the above theorem.
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Proof. (Proof of Theorem 1) Let {g1g2 . . . gk} be a cube generating set for the
group G. A cube generating set could be found by brute-force. For each g ∈ G
and i ∈ [k] we fix εi(g) such that g =

∏k
i=1 g

εi(g)
i .

Let h ∈ G. To compute the product hg, we first compute x1 = hg
ε1(g)
1 .

Inductively, we compute xi = xi−1g
εi(g)
i . Here xk = hg. Note that g

εi(g)
i is

either gi or identity. In the later case there is actually no multiplication. With
suitable data structures this method has query time O(k). However, to obtain a
general result that gives interesting space versus query-time trade-offs we take
the following route.

First, divide the k-length sequence g
ε1(g)
1 g

ε2(g)
2 · · · gεk(g)k into l sized blocks as

shown below.

g = g
ε1(g)
1 · · · gεl(g)l

←−−−−−−− l−−−−−−−→

g
εl+1(g)
l+1 · · · gε2l(g)2l

←−−−−−−− l−−−−−−−→

· · · gεr(g)r · · · gεk(g)k

←−−−−−−− l−−−−−−−→

There are 2l possible products in each block and each such product will be
an element of the group G. We will store the result of the multiplication of
every element g ∈ G with each possible l-length combination from each block.
Each element g can be seen as a sequence of m words w1(g), . . . , wm(g), where
m =

⌈
k
l

⌉
and

wi(g) =

i∏̀
j=(i−1)`+1

g
εj(g)
j (2)

Let si(g) be the number whose binary representations is ε(i−1)l+1(g) . . . εil(g).
The number si(g) can be viewed as a representation of the word wi(g).

Data structures: In order to perform the multiplication, we will use the following
data structures which are constructed during the preprocessing phase.

1. Word Arrays: For each g ∈ G an array Wg of length m. The ith element
Wg[i] in the array is set to si(g).

2. Multiplication Arrays: For each g ∈ G and i ∈ [m] an array A(i)
g of length 2l.

The jth element of A(i)
g is computed as follows. First we compute the binary

representation ε1ε2 . . . εl of j − 1 (possibly padding 0’s in the left to make it

an l-bit binary number). We set A(i)
g [j] = g gε1(i−1)l+1g

ε2
(i−1)l+2 . . . g

εl
il .

Query Time: Given h and g, we want to compute hg. First we obtain the
sequence s1(g), . . . , sm(g) from the word array Wg. By design, this sequence
corresponds to w1(g), . . . , wm(g) and g = w1(g) . . . wm(g). Now access array

A(1)
h [s1(g)] to get the multiplication of the element h with word w1(g) to obtain

x1. Next access A(2)
x1 [s2(g)] to obtain x2 = x1w2(g). Now repeat this process

until we get the final result. The runtime is O(m) as we need to access the word
arrays and the multiplication arrays O(m) times.
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Space Complexity: The space use by the word arrays W is O(nm). The space

used by the multiplication arrays A(i)
g , i ∈ [m], g ∈ G is O(2lmn) as each array

has length 2l. The overall space is O(nm+ 2lmn) which is O(2lmn).

Recall, that m = dkl e. From the above theorem we can assume that m =
c log n for some constant c. If we set l = δ log n, then space used by our repre-

sentation will be O(n
1+δ

δ ) words and the query time will be O( 1
δ ). Notice that

as l ≥ 1, we need δ ≥ 1/log n.

Corollary 1. There is a representation of groups such that multiplication query

can be answered in O( logn
log logn ) time using O(n(logn)

2

log logn ) space .

Proof. Set δ = O( log logn
logn ) in Theorem 1.

Corollary 2. There is a representation of groups such that multiplication query
can be answered in O(log n) time using O(n log n) space.

Proof. Set δ = O( 1
logn ) in Theorem 1.

Corollary 3. There is a representation of groups such that multiplication query
can be answered in O(1) time using O(n1.05) space.

Proof. Set δ = 1
20 in Theorem 1.

4.1 Deterministic Polynomial Time Preprocessing

In this subsection we show that constructing the data structures (i.e., the word
arrays and the multiplication arrays) takes polynomial time. It is easy to see
that once we have a cube generating sequence for the input group all the steps
in constructing the data structures are polynomial time. The next theorem states
that computing a cube generating sequence is also polynomial time.

Theorem 9 ( [2]). There is an algorithm that takes the Cayley table of a group
G as input and computes a cube generating sequence (g1, . . . , gk) of length k =
O(log n) in time O(n2 log n) where n = |G|.

Proof. The algorithm picks the elements g1, g2, . . . , gk in stages. It starts by
picking any arbitrary element g1. Let A1 = {g1}. Suppose at the end of stage
i−1 the elements g1, g2, . . . , gi−1 have been picked. Let Ai−1 = {gε11 g

ε2
2 . . . g

εi−1

i−1 |
ε1, . . . , εi−1 ∈ {0, 1}}. Next we describe how the algorithm picks gi.

Let X be a directed edge labeled graph with vertex set G. We put an edge
from vertex a to b with label g if ag = b. We consider the labels of the edges
in the cut E(Ai−1, G \ Ai−1) = {(a, b) ∈ E(X) | a ∈ Ai−1 and b ∈ G \ Ai−1}.
Let Eg(Ai−1, G \Ai−1) = {(a, b) ∈ E(X) | a ∈ Ai−1, b ∈ G \Ai−1, and ag = b}.
The algorithm picks an element g such that |Eg(Ai−1, G \Ai−1)| is maximized.
Notice that we can compute |Eg(Ai−1, G \ Ai−1)| in time O(n). Thus, g could
be found in O(n2) time. The algorithm sets gi = g and Ai = {gε11 g

ε2
2 . . . gεii |

ε1, . . . , εi ∈ {0, 1}}.
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Claim : Let ai = |Ai| for all i. Then (n− ai) ≤ (n− ai−1)2/n where n = |G|.

Assuming this claim, we observe that the fraction pi = (n−ai)/n of elements

outside Ai satisfies the inequality pi ≤ p2i−1. This gives us pi ≤ p2
i−1

1 = (1 −
1/n)2

i−1

. The algorithm stops when pk < 1/n. In fact, when pk < 1/n there will
be no element outside Ak and pk will actually be 0. In other words the algorithm
stops for the largest value of k such that pk−1 ≥ 1/n. Now we know that e−x ≥
1−x for all real number x. Setting x = 1/n we obtain e−1/n ≥ (1− 1/n). Hence

e−2
k−2/n ≥ (1 − 1/n)2

k−2 ≥ pk−1 ≥ 1/n. Hence, the largest value of k with
2k−2/n ≤ lnn gives the number of stages of the algorithm. It is now easy to
check that k = O(log n). Therefore, the runtime of the algorithm is O(n2 log n).

Proof of the Claim : We note that |E(Ai−1, G \Ai−1)| = ai−1(n− ai−1). This is
because for each pair (a, b) with a ∈ Ai−1 and b ∈ G \Ai−1 there is exactly one
edge from a to b and this edge is labeled with the element a−1b. Thus,

|E(Ai−1, G \Ai−1)| =
∑
g∈G
|Eg(Ai−1, G \Ai−1)| = ai−1(n− ai−1).

Hence, there is an element g ∈ G such that |Eg(Ai−1, G \Ai−1)| ≥ ai−1(n−
ai−1)/n. We further note that the edges in Eg(Ai−1, G\Ai−1) are vertex disjoint.
Thus, |Ai| ≥ |Ai−1| + ai−1(n − ai−1)/n. Hence, ai ≥ ai−1 + ai−1(n − ai−1)/n.
The claim follows from this.

5 Space Efficient Representations for Special Group
Classes

In many of the results in this paper, group elements are treated as tuples. For
example, if {g1, . . . , gk} is a cube generating set for a group G, (ε1, . . . , εk) is a
representation of the group element gε11 · · · g

εk
k . For many of the data structures

we design, we want a way of encoding these tuples which can be stored efficiently.
We also want to retrieve the group element from its encoding efficiently.

Forward and Backward Map: Let G be a group, c1, . . . , ck be k integers
each greater than 1 with

∏
i ci = O(n) and F : G −→ [c1] × · · · × [ck] be an

injective map. Suppose F (g) = (α1, . . . , αk). Let bi be the dlog cie-bit binary
encoding of αi (possibly some 0’s padded on the left to make it a dlog cie-bit
string). The concatenation b = b1 . . . bk of the bi’s encodes (α1, . . . , αk). The
encoding b can be stored in constant number of words as

∑
idlog cie = O(log n).

Thus, F can be stored in an array F , indexed by the group elements using O(n)
words by setting F [g] = b. We call this the forward map. We also store an array
B, called the backward map, of dimension c1×· · ·×ck such that B[α1] · · · [αk] = g
if F (g) = (α1, · · · , αk).2 Finally we also store each ci in separate words, which

2 If (α1, · · · , αk) /∈ Image(F ), then the value could be arbitrary.
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could be used to extract (α1, · · · , αk) from F [g] in O(log n) time. Notice, that
while the access to F is constant time, the access time for B is O(k) which is
O(log n).

Lemma 1. There is a representation of cyclic groups such that multiplication
operation can be performed using O(n) space in O(1) time.

Proof. Let G = 〈g〉. Every element g′ in G can be written as a g′ = gi for some
0 ≤ i < |G|. We use a forward-map array F indexed by the elements of G such
F [g′] = i whenever g′ = gi with i ∈ {0, . . . , n − 1}. Let B be a backward-map
array indexed by numbers from 0 to n − 1, B[i] = gi. Let g1 and g2 be the
two elements to be multiplied. Let g1 = gi and g2 = gj such that 0 ≤ i, j < n
which can be obtained by accessing the forward-map array F at index g1 and
g2 respectively. The result of the multiplication of g1 and g2 is g1g2 which is
gigj = g(i+j)%n. The computation (i + j)%n can be performed easily by first
integer addition operation followed by a modulo operation. Let k = (i + j)%n.
Finally accessing the backward-map array B at index k gives the final result. The
data structure used here are the forward-map array F and the backward-map
array B. Both the arrays take O(n) space and thus the overall space required is
O(n). In query phase, we need one access the forward-map array twice followed
by addition operation modulo operation and at the end one access the backward-
map array once.

Many groups arise naturally as a semidirect product of its subgroups. In the
following part we proved that if group G is a semidirect product of its subgroups
and if these subgroups admit space efficient representation then G also admits
a space efficient representation.

Let A and B be two group classes. Let GA,B = {G | G = AoϕB,A ∈ A, B ∈
B, and ϕ is a homomorphism from B to Aut(A)}.

Theorem 10. Let A,B be two group classes. Suppose we are given data struc-
tures DA and DB for group classes A and B respectively. Let S(DA,m1), S(DB,m2)
denote the space required by the data structures DA, DB to represent groups
of order m1,m2 from A, B respectively. Let Q(DA,m1), Q(DB,m2) denote the
time required by the data structures DA, DB to answer multiplication queries
for groups of order m1,m2 from A,B respectively. Then there is a represen-
tation of groups in GA,B such that multiplication query can be answered in
O(log n + Q(DA, |A|) + Q(DB, |B|)) time and O(n + S(DA, |A|) + S(DB, |B|))
space.

Proof. First we describe the preprocessing phase. Given group G, finding two
groups A,B and a homomorphism ϕ such that G = AoϕB can be done in finite
time where ϕ : B −→ Aut(A). Without loss of generality, one can assume that
elements of the group A are numbered from 1 to |A|. For each element b ∈ B,
we store its image ϕ(b) ∈ Aut(A) in the array Tb indexed by elements of group
A. Let T = {Tb | b ∈ B} be the set of |B| arrays.

9



Now we move on to the querying phase. Let g1 and g2 be the two elements
to be multiplied. Let g1 = (a1, b1) and g2 = (a2, b2) such that a1, a2 ∈ A and
b1, b2 ∈ B which can be obtained using the forward map array. The result of the
multiplication query g1g2 is (a1(ϕ(b1)(a2)), b1b2). The only non-trivial computa-
tion involved here is computing ϕ(b1)(a2), which can be obtained using array Tb1 .
Let Tb1(a2) = a3, then the result of the multiplication query g1g2 is (a1a3, b1b2)
the components of which can be computed using data structures for A and B
respectively to obtain (a4, b4) where a4 = a1a3 and b4 = b1b2. Finally using the
backward map we can obtain the resultant element.

The data structures we use are – forward-map array, |B| many arrays T
(each of size |A|), data structures for B and A and the backward map. Thus the
overall space required is O(n + |B||A| + S(DA, |A|) + S(DB, |B|) + n) which is
O(n+ S(DA, |A|) + S(DB, |B|)).

The query time constitutes of the time required to get a representation of g1
and g2 as (a1, b1) and (a2, b2) respectively using the forward array, time required
to compute (a1(ϕ(b1)(a2)), b1b2) using Tb1 , time required to compute a1a3 and
b1b2 and time required to access the backward-map array to obtain the resultant
element. Thus the overall time required is O(1 + 1 +Q(DA, |A|) +Q(DB, |B|) +
log n) which is O(log n+Q(DA, |A|) +Q(DB, |B|)).

Recall that Z-groups are groups which can be written as a semidirect product
of two cycles. We now present a theorem which directly follows from the above
theorem and Lemma 1.

Theorem 2. There is a representation of Z-groups such that multiplication op-
eration can be performed using O(n) space in O(1) time.

Simple groups serve as the building blocks for classifying finite groups. We
next present a space efficient representation of simple groups.

Theorem 3. There is a representation of simple groups such that multiplication
operation can be performed using O(n) space in O(log n) time.

Proof. The proof is divided into two cases. First assume that given simple group
G is abelian. It is easy to note that G ∼= Zp, where p is some prime, by using the
fact that any abelian simple group is isomorphic to Zp, where p is some prime.
There is a representation of cyclic groups which answer a multiplication query
in O(1) time using O(n) space (see Lemma 1). We now assume that group G
is nonabelian. Babai, Kantor and Lubotsky [3] proved that there is a constant
c such that every nonabelian finite simple group has a set S of size at most 14
generators such that the diameter of the Cayley graph of G with respect to S is
at most c log n. Such a generating set can be found by iterating over all possible
subsets of size 14. Let G = 〈S〉 = 〈s1, · · · , s14〉. Each g ∈ G can be represented
by the edge labels in one of fixed shortest paths from the identity to g in the
Cayley graph. By the result of Babai, Kantor and Lubotsky [3] the length of the
path is O(log n). The edge labels are from {1, 2, . . . , 14} indicating the generators
associated with the edge. This representation of each element by the sequence
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of edge labels can be stored using a forward map. We also store a multiplication
table M of dimension |G|× [14]. We set M [g][i] = ggi. To multiply two elements
g and h we consult the forward map for the representation of h and then use M
to compute the gh in O(log n) time.

6 Representation in the Model of Farzan and Munro

In this section we use the model of computation defined by Farzan and Munro
[10] for the succinct representation of abelian groups. We describe the model
briefly here. For further details about this model, refer to [10]. Farzan and Munro
use a Random Access Model (RAM) where a word is large enough to hold the
value of the order of the input group n. The model also assumes the availability
of bit-reversal as one of the native operations which can be performed in O(1)
time.

Given a group G, the compression algorithm is defined as the process that
takes G as an input and outputs a compressed form of G.

The labeling of elements of group G (based on the compression) is a repre-
sentation of the elements. Let A be an abelian group and t be the number of
cyclic factors in the structural decomposition of A. We denote by LA : A −→ Nt
the labeling of elements as per Farzan and Munro’s labeling [10].

We denote by outside user, the entity responsible for the preprocessing op-
erations such as compression, labeling etc. We denote by query processing unit,
the entity responsible for performing the actual multiplication. The query pro-
cessing unit is responsible for storing the compressed form of the group G. The
outside user is responsible for supplying to the query processing unit the labels
of the group elements to be multiplied. The query processing unit returns the
label of the result of the multiplication query. The space and time required in
the compression and labeling phase is not counted towards the algorithm’s space
complexity and query time. Thus, in the following sections, we only consider the
space and time consumed by the query processing unit.

Theorem 13 ( [10]). There is a representation of finite abelian group of order
n that uses constant number of words and answers multiplication queries in
constant time.

Answering the question posed by [10], we design data structures similar to the
ones used in Theorem 13, for Hamiltonian groups and Z-groups. We also come up
with a representation for groups which can be expressed as a semidirect product
of an abelian group with a cyclic group.

6.1 Hamiltonian groups

Theorem 4. There is a representation of Hamiltonian groups such that multi-
plication operation can be performed using O(1) space in O(1) time.
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Proof. Let G be a Hamiltonian group. We know that G can be decomposed as
G = Q8×C, where Q8 is a quaternion group and C is abelian (see Section 2). The
compressed form of group G is same as the compressed form of the abelian group
C. Every element g ∈ G has a representation of the form (q, d) where q ∈ Q8

and d ∈ C. The elements q ∈ Q8 are assigned labels from the set {1, . . . , 8}.
Since C is abelian, we use LC(d) as the label for element d ∈ C. Since the order
of Q8 is constant, storing its entire Cayley table in some arbitrary but fixed
representation requires O(1) space.

Given two elements r, s of G such that r = (q1, d1) and s = (q2, d2) where
q1, q2 ∈ Q8 and d1, d2 ∈ C. The result of rs is (q1q2, d1d2). The multiplication
of q1 and q2 can be computed in O(1) time using the stored Cayley table. After
obtaining the labels LC(d1) and LC(d2) of elements d1 and d2 respectively,
we can perform Farzan’s multiplication algorithm to obtain the result of the
multiplication of d1 and d2 in O(1) time. The overall space required is O(1)
words.

6.2 Z-groups

We now consider Z-groups which are semidirect product of two cyclic groups.
This group class contains the groups studied by Le Gall [15]. We exploit the fact
that every automorphism of a cyclic group is a cyclic permutation.

Theorem 5. There is a representation of Z-groups such that multiplication op-
eration can be performed using O(1) space in O(1) time.

Proof. Let G = Cm oϕ Cd be a Z-group where ϕ : Cd −→ Aut(Cm) is a homo-
morphism and Cm = 〈g〉 and Cd = 〈h〉. Without loss of generality, we assume
that the elements of Cm are numbered from the set [m] in the natural cyclic or-
der starting from g. Let σj := ϕ(hj). Let σj(c) denote the image of the element
c ∈ Cm under the automorphism σj . In the compression process we first obtain
a decomposition of G as Cm oϕ Cd. The compressed form of group G comprises
of the two integers m and d and the compressed form of ϕ which is σ1(g).

In the labeling phase, we label each element t ∈ G, such that t = (gi, hj) as
(i, (σj(g), j)) where i ∈ [m] and j ∈ [d]. Note that, with this labeling (computed
by the outside user), representing any element from G takes O(1) words.

In the querying phase, given two elements r, s ∈ G such that r = (gi1 , hj1)
and s = (gi2 , hj2) where i1, i2 ∈ [m] and j1, j2 ∈ [d]. The result of rs which is
(gi1ϕ(hj1)(gi2), hj1hj2) = (gi1σj1(gi2), hj1+j2). To compute σj1(gi2), first obtain
σj1(g) from the label of r = (gi1 , hj1). Now to compute σj1(gi2) we need to
perform one integer multiplication operation (σj1(g)× i2)%m. Now the problem
of multiplication reduces component-wise to the cyclic case. The multiplication
query can thus be answered in O(1) time using O(1) space to store the orders
of Cm and Cd.

6.3 Semidirect Product Classes

A natural way to construct nonabelian groups is by the extension of abelian
groups. The groups which can be formed by semidirect product extension of
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abelian groups by cyclic groups has been studied by Le Gall [15]. We denote G
to be the class of groups which can be written as G = A o Cm, where A is an
abelian group and Cm is a cyclic group. It is easy to see that the group class G is
categorically larger than abelian groups as it contains all abelian groups as well
as some nonabelian groups. Without loss of generality, assume that the elements
of the group A are numbered from 1 to |A|.

Fact 1. Any permutation can be decomposed as a composition of disjoint cycles
[7].

Lemma 2. Given an abelian group A, a permutation π on the set {1, . . . , |A|}
and an element g ∈ A, there exists a representation of π such that πd(g) for any
element g ∈ A and d ∈ [m] can be computed in O(1) time using O(|A|) words of
space.

Proof. Let π = π1 ◦ π2 ◦ · · · ◦ πl be the decomposition of π into disjoint cycles
πi, i ∈ [l]. Such a decomposition of the input permutation π can be computed in
polynomial time. Let C1, . . . Cl be arrays corresponding to the cycles π1, . . . , πl
respectively. For any cycle πi store the elements of the cycle in Ci in the same
order as they appear in πi, starting with the least element of πi. Construct an
array B indexed by the elements of group A, storing for each g ∈ A, B[g] = (j, r),
where j ∈ [l] and r ∈ {0, . . . , |Cj | − 1} such that Cj [r] = g. Now, in order to
compute πd(g), first we obtain j and r from B such that the g appears in the cycle
πj at the rth index. Then we compute r′ := (r+d)%|Cj | and finally return Cj [r′].
This requires O(1) time as the involved operations are one word operations. Note
that we require overallO(|A|) space to store the arrays C1, . . . , Cl as

∑
i |Ci| = |A|,

and the space required for B is also O(|A|).

Theorem 6. There is a representation of groups G ∈ G such that multiplication
query can be answered in O(1) time using O(|A|) space.

Proof. Let G ∈ G be such that G = A oϕ Cm where ϕ : Cm −→ Aut(A) is a
homomorphism. In the compression process, we first obtain the decomposition
of group G as A oϕ Cm. The compressed form of group G comprises of the
compressed form of group A, the integer m and the space efficient representation
of the homomorphism ϕ (described below).

Let Cm = 〈g〉 and π := ϕ(g). Note that π is a bijection on the set {1, . . . , |A|}.
Using Lemma 2 we can store π in O(|A|) words, such that πd(a) for a ∈ A can
be computed in O(1) time. This forms the space efficient representation of ϕ.
Since the data structure used above is a part of the compressed form of group
G, the query processing unit is responsible for storing it. We label each element
h ∈ G such that h = (a, gi) as ((LA(a), a), i) where a ∈ A, c ∈ Cm.

This labeling requires O(1) words of space for each element h ∈ G. In the
querying phase, given two elements r = (a1, c1) and s = (a2, c2) of G such that
a1, a2 ∈ A and c1, c2 ∈ Cm, the result of rs is (a1(ϕ(c1)(a2)), c1c2). Let c1 = gk1

and c2 = gk2 . Now ϕ(c1)(a2) which is πk1(a2) can be computed using Lemma 2 in
O(1) time. Let a3 := πk1(a2), then rs = (a1a3, c1c2). Since the query processing
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unit is storing the labels of all the elements of A, it can obtain the label for the
element a3. After obtaining the labels LA(a1) and LA(a3) of elements a1 and
a3 respectively, we can perform Farzan’s multiplication algorithm to obtain the
result of the multiplication of a1 and a3 in O(1) time. Let c3 = gk3 be result of
multiplication of c1 and c2. Then k3 = (k1 + k2) %m can be computed in O(1)
time.

In the query processing unit, we are storing the elements of the group A
along with their labels, which takes O(|A|) words of space. The query processing
unit also needs O(|A|) space to store the data structures from Lemma 2. Thus
the total space required is O(|A|).
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