
ar
X

iv
:1

90
1.

02
17

3v
3

 [
cs

.F
L

]
 1

0
Se

p
20

22

Equivalence Checking of Quantum Finite-State Machines

Qisheng Wang ∗ Junyi Liu † Mingsheng Ying ‡

Abstract

In this paper, we introduce the model of quantum Mealy machines and study the equivalence
checking and minimisation problems of them. Two efficient algorithms are developed for check-
ing equivalence of two states in the same machine and for checking equivalence of two machines.
As an application, they are used in equivalence checking of quantum circuits. Moreover, the
minimisation problem is proved to be in PSPACE.

Keywords: quantum computing, quantum circuits, Mealy machines, equivalence

checking, minimisation.

∗Qisheng Wang is with the Department of Computer Science and Technology, Tsinghua University, China (e-mail:
QishengWang1994@gmail.com).

†Junyi Liu is with the State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, China, and also with the University of Chinese Academy of Sciences, China (e-mail: liujy@ios.ac.cn).

‡Mingsheng Ying is with Centre for Quantum Software and Information, University of Technology Sydney,
Australia, the State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences,
China, and also with the Department of Computer Science and Technology, Tsinghua University, China (e-mail:
yingms@ios.ac.cn).

1

http://arxiv.org/abs/1901.02173v3
QishengWang1994@gmail.com
liujy@ios.ac.cn
yingms@ios.ac.cn

Contents

1 Introduction 3

2 Basic Definitions 3

3 Main Results 8

3.1 Checking equivalence of states . 8
3.2 Checking equivalence of machines . 10
3.3 Minimization of machines . 11
3.4 Remarks . 11

4 Case Studies 12

5 Proofs of Theorems 12

5.1 Proof of Theorem 3.1 . 12
5.2 Proof of Theorem 3.2 . 15
5.3 Proof of Theorem 3.3 . 16
5.4 Proof of Theorem 3.4 . 17

6 Conclusion 19

References 20

A A simple proof of Part 1 of Theorem 3.1 22

B Correctness of the algorithms 24

B.1 Correctness of Algorithm 1 . 24
B.2 Correctness of Algorithm 2 . 26

C An efficient description of Problem 1 28

2

1 Introduction

A large variety of real-world testing, analysis and verification problems for computer and commu-
nication hardware and software can be reduced to equivalence checking of Mealy machines [13],
[18], [19]. The same problem has emerged in the quantum realm with the rapid progress of quan-
tum information technology in recent years; for example, equivalence checking of quantum circuits
[36], [38] and quantum communication protocols [2], [3], property testing [34], fault detection and
diagnosis [4], [6], [8], [27], reachability analysis [12] and test generation [29] of quantum circuits.
But up to now, they are investigated separately in ad hoc manners without a unified model.

The overall aim of this paper is to introduce a quantum generalisation of Mealy machines with
the hope that our results can provide a formal model and some useful theoretical tools for solving
these problems. As determined by the basic postulates of quantum mechanics, the state space
of a quantum Mealy machine is a (finite-dimensional) Hilbert space, its dynamics is modelled by
unitary operators, and its outputs come as the outcomes of certain quantum measurements.

This paper studies two central problems, namely equivalence checking and minimisation, of
quantum Mealy machines. As in classical Mealy machines, equivalence checking is carried out
by inputting a sequence into the checked machines and then observing their respective outputs.
A major difference between the classical and quantum cases is caused by the fact that quantum
measurements can change the states of the observed systems. Consequently, a notion of scheduler
must be introduced in the quantum case to specify the locations where quantum measurements are
designed to perform.

Main Technical Contributions include:

• We develop two algorithms for equivalence checking of complexity O(mn6), where m is the
number of input and output symbols and n the dimension of the state Hilbert spaces of the
checked machines.

• The minimisation problem is proved to be in PSPACE.

As an application, our algorithms are used for checking equivalence of quantum circuits in 30
benchmarks.

Quantum generalisations of various automata have been extensively studied in the literature;
see for example [16], [26]. The problems of equivalence checking and minimisations for quantum
automata rather that quantum Mealy machines defined in this paper have already been considered
in a series of papers [17], [20], [22], [21], [23], [31], [35], [37]. The techniques developed in this paper
can be used to improve some of their complexity results.

Organisation of the Paper: The notion of quantum Mealy machine is defined and its be-
haviour is described in Sec. 2. Our main results including two algorithms are given in Sec. 3. The
improvements over the complexity results for other quantum automata with our new techniques
are also briefly discussed there. The case studies for equivalence checking of benchmark quantum
circuits are described in Sec. 4. The proofs of our main theorems are presented in Sec. 5. For
readability, the proofs of other results are deferred into the Appendices. A short conclusion is
drawn in Sec. 6.

2 Basic Definitions

Let us first very briefly review several basic notions in quantum mechanics. The state space of
a quantum system is a Hilbert space. For an integer n ≥ 1, an n-dimensional Hilbert space H

3

is essentially the space C
n of n-dimensional vectors of complex numbers with the ordinary inner

product. Using Dirac’s notation, a vector in H is denoted |ψ〉, and the inner product of |ψ〉 and |ϕ〉
is written 〈ψ|ϕ〉. A pure state of the quantum system is then described by a vector |ψ〉 of length

‖ψ‖ =
√

〈ψ|ψ〉 = 1.

For example, a qubit lives in C
2 and it can be in a basis state

|0〉 =
[

1
0

]

or |1〉 =
[

0
1

]

,

or a superposition of them like

|±〉 = 1√
2
(|0〉 ± |1〉) = 1√

2

[

1
±1

]

.

An operator in H is represented by an n× n matrix A = [Aij]. The trace of A is defined as

tr(A) =
∑

i

Aii.

Then a mixed state of the quantum system is expressed by a density operator, i.e. a positive
semidefinite matrix ρ with tr(ρ) = 1. Furthermore, an action on the system causes a certain
evolution:

|ψ〉 → U |ψ〉 (pure state) or ρ→ UρU † (mixed state)

modelled by a unitary operator, i.e. a matrix U with U †U = I, where U † stands for the complex
conjugate transpose of U , and I the unit matrix. For example, Hadamard gate

H =
1√
2

[

1 1
1 −1

]

transforms |0〉 to |+〉 and |1〉 to |−〉. A quantum measurement is used to readout the outcomes in
quantum computing. Mathematically, it is described by a set of operators M = {Mm} with the
normalisation condition

∑

m

M †
mMm = I.

If we perform it on quantum system in pure state |ψ〉, then outcome m is obtained with probability

pm = ‖Mm|ψ〉‖2,

and after that the system is in state
Mm|ψ〉/

√
pm;

and if we perform it on mixed state ρ, then outcome m is obtained with probability

pm = tr(MmρM
†
m)

and the system collapses to
MmρM

†
m/pm.

For example, if we measure qubit |+〉 in the computation basis, i.e. the measurement is

M = {M0 = |0〉〈0|,M1 = |1〉〈1|} ,

4

then outcomes 0 and 1 are observed with equal probability 1
2 , and after that the qubit is in state

|0〉 or |1〉, respectively.
The quantum generalisations of various computational models (e.g. finite-state automata, push-

down automata and Turing machines) have been defined in the literature by incorporating the above
quantum mechanical ideas into these models. Similarly, combining these ideas with the classical
Mealy machine model [25] yields straightforwardly:

Definition 2.1 (Quantum Mealy Machine). A quantum Mealy machine (QMM for short) is a
5-tuple M = (Σ,Γ,H, U,M), where:

- Σ is a finite input alphabet;

- Γ is a finite output alphabet;

- H is a finite-dimensional Hilbert space;

- U = {Uσ : σ ∈ Σ} is a set of unitary operators. For each σ ∈ Σ, Uσ is a unitary operator on
H; and

- M = {Mm : m ∈ Γ} is a quantum measurement in H, that is, Mm is a linear operator on H
for each m ∈ Γ and

∑

mM
†
mMm = I.

Similar to the case of other computational models and their quantum counterparts, there is a
major difference between classical and quantum Mealy machines. As is well-known, in order to
extract information about a quantum system, we have to perform a measurement on it. On the
other hand, a measurement can change the state of the system. So, the dynamic behaviour of the
system depends heavily on the time points where the measurement is performed. This motivates
us to introduce the notion of (measurement) scheduler. For a finite string (word) a ∈ Σ∗ on an
alphabet Σ, let |a| stand for the length of a, a[i] be the i-th symbol of a (1-indexed), and a[l : r]
denote the substring a[l]a[l + 1] . . . a[r] of a. Especially, in the case of l > r, a[l : r] is the empty
string ǫ.

Definition 2.2 (Scheduler). Let a ∈ Σ∗ be an input word. A scheduler for a is a non-decreasing
sequence S = {si} with 0 ≤ s1 ≤ s2 ≤ · · · ≤ s|S| ≤ |a|. The set of schedulers for a is denoted Sa.
Moreover, the set of all schedulers is denoted

S =
⋃

a∈Σ∗

Sa.

Intuitively, each si represents a location where a measurement is scheduled to perform. If
s|S| = |a|, that is, a measurement is performed at the end of a, then S is called closed.

Let us see how a QMMM runs. For any word a ∈ Σ∗, we write

Ua = Ua[|a|] . . . Ua[2]Ua[1]

(the composition of unitary transformations, or equivalently the multiplication of unitary matrices);
in particular, Uǫ = I for the empty word. For a Hilbert space H, let D(H) be the set of density
operators on H. Suppose that the initial state is ρ ∈ D(H), the input word is a ∈ Σ∗ and S = {si} is
a scheduler for a. The scheduler S splits a into (|S|+1) parts: ai = a[si−1+1 : si] for 1 ≤ i ≤ |S|+1,
where s0 = 0 and s|S|+1 = |a|. MachineM performs measurement M exactly |S| times according
to S: starting from ρ, for each 1 ≤ i ≤ |S|,M first applies unitary Uai on the system, then performs

5

measurement M and produces an outcome bi ∈ Γ. Thus, an output word b = b1b2 . . . b|S| ∈ Γ∗ is
produced with probability:

PrMρ (b|a,S) = tr
(

ρMb|a,S

)

,

where
ρMb|a,S = Vb|a,SρV

†
b|a,S and Vb|a,S = Ua|S|+1

Mb|S|
Ua|S|

. . .Mb1Ua1 .

The final state ofM is

ρ′ =
ρM
b|a,S

PrMρ (b|a,S)
.

Now we are ready to define the central notion of this paper: equivalence of two states in a
quantum Mealy machine.

Definition 2.3 (Equivalence of States). Given a QMMM and two states ρs and ρt.

1. ρs and ρt are equivalent, denoted ρs ∼ ρt, if for every input a ∈ Σ∗ and scheduler S and
output b ∈ Γ|S|,

PrMρs (b|a,S) = PrMρt (b|a,S). (1)

2. ρs and ρt are equivalent up to k measurements, denoted ρs ∼k ρt, if Eq. (1) holds for all
schedulers S with |S| ≤ k.

3. ρs and ρt are m-equivalent, denoted ρs ∼m ρt, if Eq. (1) holds for all inputs a ∈ Σ∗ and
schedulers S with |a|+ |S| ≤ m.

4. ρs and ρt are m-equivalent up to k measurements, denoted ρs ∼m
k ρt, if Eq. (1) holds for all

inputs a ∈ Σ∗ and schedulers S with |S| ≤ k and |a|+ |S| ≤ m.

An input word a together with a scheduler S for it is called an experiment, and |a|+ |S| is called
the size of the experiment. The notion of equivalence in the above definition was introduced only
for two states in the same quantum Mealy machines. But it can be simply generalised to compare
two states in different machines.

Definition 2.4 (Equivalence of Machines). Given two QMMs M1 and M2 with the same input
alphabet Σ and output alphabet Γ, and their initial states ρ1, ρ2.

1. (M1, ρ1) and (M2, ρ2) are equivalent, denoted (M1, ρ1) ∼ (M2, ρ2), if for every a ∈ Σ∗ and
scheduler S and output b ∈ Γ|S|,

PrM1
ρ1

(b|a,S) = PrM2
ρ2

(b|a,S). (2)

2. (M1, ρ1) and (M2, ρ2) are equivalent up to k measurements, denoted (M1, ρ1) ∼k (M2, ρ2),
if Eq. (2) holds for all schedulers S with |S| ≤ k.

3. (M1, ρ1) and (M2, ρ2) are m-equivalent, denoted (M1, ρ1) ∼m (M2, ρ2), if Eq. (2) holds for
all inputs a ∈ Σ∗ and schedulers S with |a|+ |S| ≤ m.

4. (M1, ρ1) and (M2, ρ2) are m-equivalent up to k measurements, denoted (M1, ρ1) ∼m
k (M2, ρ2),

if Eq. (2) holds for all inputs a ∈ Σ∗ and schedulers S with |S| ≤ k and |a|+ |S| ≤ m.

We present two examples to illustrate how the notions defined above can be used to model
quantum circuits and their equivalence.

6

x1 H • H ✌
✌
✌

x2 H

Figure 1: A quantum circuit that distinguishes |00〉 and |01〉 using gates H[x1], H[x2], CNOT [x1, x2]
and measurement M [x1].

Example 1 (Quantum Circuits under Resource Constraints). In real world, there are usually
certain restrictions on the gates in a quantum circuit. Let us consider a quantum circuit with two
qubits x1 and x2. Suppose only two kinds of quantum gates are available, which are the Hadamard
gate on the first qubit, denoted UH1 = H[x1], and the CNOT gate with x1 as its control qubit, denoted
UC = CNOT [x1, x2]. Also suppose we can only measure the first qubit in the computational basis.
The measurement can be described as M = {M0,M1} with

M0 = |00〉 〈00|+ |01〉 〈01| , M1 = |10〉 〈10| + |11〉 〈11| .

This kind of quantum circuits can be modelled by a QMM

M = (Σ,Γ,H⊗2
2 , U,M),

where Σ = {C,H1}, Γ = {0, 1} and U = {UC , UH1}. Consider two states |00〉 and |01〉, and our
question is: can we distinguish them using such a quantum circuit? The answer is “no” because
|00〉 ∼ |01〉 inM.

Now we loosen the restriction and allow the Hadamard gate to act on the second qubit, denoted
UH2 = H[x2]. This kind of quantum circuits can be described by a QMM

M′ = (Σ′,Γ,H⊗2
2 , U ′,M),

where Σ′ = {C,H1,H2} and U ′ = {UC , UH1 , UH2}. It can be verified directly that |00〉 ∼3 |01〉 in
M′. However, |00〉 6∼ |01〉 inM′ because

PrM
′

|00〉〈00|(0|H1H2CH1, {4}) = 1, PrM
′

|01〉〈01|(0|H1H2CH1, {4}) = 0.

This means that states |00〉 and |01〉 can be distinguished inM′ by experiments of size 5 but not by
those of size only 3. A quantum circuit distinguishing |00〉 and |01〉 is given in Fig. 1.

It is well-known [28] that two states in an n-dimensional probabilistic Mealy machine are equiv-
alent, if and only if they are (n− 1)-equivalent. The above example shows an interesting difference
between quantum and probabilistic Mealy machines: in the 4-dimensional QMMM′, |00〉 ∼3 |01〉
but |00〉 6∼ |01〉; more precisely, |00〉 6∼1 |01〉.

Example 2 (Quantum Circuits with Multi-Measurements). Let’s consider again a quantum circuit
with two qubits x1 and x2. But we suppose the two available quantum gates are Hadamard gate on
the first qubit UH = H[x1] and the swap gate on x1 and x2:

US =









1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1









,

7

x1 H ✌
✌
✌ × H ✌

✌
✌

x2 ×

Figure 2: A quantum circuit that distinguishes |β00〉 and |β10〉 with gates H[x1], S[x1, x2] and
measurement M [x1].

i.e. US |i, j〉 = |j, i〉 for i, j ∈ {0, 1}. Moreover, we can only measure the first qubit in the compu-
tational basis. This kind of circuits can be described by a QMM

M = (Σ,Γ,H⊗2
2 , U,M),

where Σ = {H,S}, U = {UH , US} and others are the same as in Example 1. Now we consider two
(entangled) Bell states |β00〉 and |β10〉, where

βxy =
1√
2
(|0y〉+ (−1)x |1ȳ〉)

and ȳ is the negation of y. It is easy to verify that |β00〉 ∼1 |β10〉, which means that we cannot
distinguish |β00〉 and |β10〉 using only one measurement. However, |β00〉 6∼2 |β10〉. Indeed, they are
distinguished by input word a = HSH and scheduler S = {1, 3}; the corresponding quantum circuit
is given in Fig. 2.

3 Main Results

In this section, we present the main results of this paper; for readability, some of their proofs are
postponed to Sec. 5, and some are further deferred into the Appendices.

3.1 Checking equivalence of states

First, we consider equivalence checking of two states in the same QMM. The following theorem
establishes an upper bound for the size of experiments required for equivalence checking in terms
of the dimension of the state Hilbert space.

Theorem 3.1. Given a QMM M with state Hilbert space H and two states ρs and ρt. Let n =
dimH. Then:

1. ρs ∼ ρt ⇐⇒ ρs ∼n2−1 ρt ⇐⇒ ρs ∼n2−1 ρt.

2. For every k ∈ N, ρs ∼k ρt ⇐⇒ ρs ∼n2−1
k ρt.

If M is real ; that is, all of its unitary matrices Uσ and measurement matrices Mm consist of
real entries, then the experiment size n2 − 1 can be improved to 1

2n(n+ 1)− 1.
An algorithm for checking equivalence of states in a QMM can be directly derived from Theorem

3.1 by enumerating all possible inputs a and schedulers S with |a|+ |S| ≤ n2−1, but its complexity
is (|Σ|+ |Γ|)O(n2), exponential in n, the dimension of the state Hilbert space. We are able to develop
a much more efficient algorithm with a time complexity polynomial in n. Let Σ = {σ1, σ2, . . . , σ|Σ|}
and Γ = {γ1, γ2, . . . , γ|Γ|}. The algorithms for the cases without and with a bound on the number
of measurements are described in Algorithm 1 and Algorithm 2, respectively. Their complexities
are given in the next theorem.

8

Algorithm 1 A polynomial algorithm for checking whether ρs ∼ ρt inM.

Input: QMMM = {Σ,Γ,H, U,M} and two density operators ρs and ρt.
Output: Whether ρs ∼ ρt or not.
1: ρ← ρs − ρt.
2: B← ∅.
3: Let Q be an empty queue and push (ǫ, ∅, ǫ) into Q.
4: while Q is not empty do

5: Pop the front element (a,S, b) of Q.
6: if ρb|(a,S) /∈ spanB then

7: Add ρb|(a,S) into B.
8: Push (aσi,S, b) into Q for 1 ≤ i ≤ |Σ| in turn.
9: Push (a,S + {|a|}, bγi) into Q for 1 ≤ i ≤ |Γ| in turn.

10: end if

11: end while

12: if tr(̺) = 0 for every ̺ ∈ B then

13: return true.
14: else

15: Find an arbitrary ρb|(a,S) ∈ B such that tr
(

ρb|(a,S)
)

6= 0.
16: return false with witness (a,S, b).
17: end if

Algorithm 2 A polynomial algorithm for checking whether ρs ∼k ρt inM.

Input: QMMM = {Σ,Γ,H, U,M}, integer k and two density operators ρs and ρt.
Output: Whether ρs ∼k ρt or not.
1: ρ← ρs − ρt.
2: Bi ← ∅ for 0 ≤ i ≤ k.
3: Let Q be an empty queue and push (ǫ, ∅, ǫ) into Q.
4: while Q is not empty do

5: Pop the front element (a,S, b) of Q.
6: if ρb|(a,S) /∈ spanB|S| then

7: Find the largest |S| ≤ j ≤ k such that ρb|(a,S) /∈ spanBj .
8: Add ρb|(a,S) into Bl for |S| ≤ l ≤ j.
9: Push (aσi,S, b) into Q for 1 ≤ i ≤ |Σ| in turn.

10: if |S| < k then

11: Push (a,S + {|a|}, bγi) into Q for 1 ≤ i ≤ |Γ| in turn.
12: end if

13: end if

14: end while

15: if tr(̺) = 0 for every ̺ ∈ Bk then

16: return true.
17: else

18: Find an arbitrary ρb|(a,S) ∈ Bk such that tr
(

ρb|(a,S)
)

6= 0.
19: return false with witness (a,S, b).
20: end if

9

Theorem 3.2. Given a QMMM = (Σ,Γ,H, U,M), two states ρs and ρt and a positive integer k.
Let m = |Σ|+ |Γ| and n = dimH. Then:

1. There is an O(mn6) algorithm that decides whether ρs ∼ ρt; if not, it finds an input a ∈ Σ∗

and a closed scheduler S with |a|+ |S| ≤ n2 − 1 and output b ∈ Γ|S| such that

PrMρs (b|a,S) 6= PrMρt (b|a,S).

2. There is an O(kmn6) algorithm that decides whether ρs ∼k ρt; if not, it finds an input a ∈ Σ∗

and a closed scheduler S with |a|+ |S| ≤ n2 − 1 and |S| ≤ k and output b ∈ Γ|S| such that

PrMρs (b|a,S) 6= PrMρt (b|a,S).

3.2 Checking equivalence of machines

Now we turn to consider equivalence checking of two QMMs. The basic idea is to reduce this
problem to the problem examined in the previous subsection. For two Hilbert spaces H1 and H2,
H1⊕H2 stands for their direct sum. If A1, A2 are two matrices (thought of as operators in H1,H2,
respectively, then we write A1 ⊕A2 for their direct sum as an operator in H1 ⊕H2). Suppose

Mi = (Σ,Γ,H(i), U (i),M (i)) (i = 1, 2)

are two QMMs with the same input and output alphabets. Then the direct sum ofM1 andM2 is
defined as

M1 ⊕M2 = (Σ,Γ,H1 ⊕H2, U,M),

where
U = {U (1)

σ ⊕ U (2)
σ : σ ∈ Σ} and M = {M (1)

m ⊕M (2)
m : m ∈ Γ}.

Obviously,M1 ⊕M2 is also a QMM.

Theorem 3.3. Given two QMMsM1 and M2 with state Hilbert spaces H1 and H2, respectively.
Let n1 = dimH1 and n2 = dimH2.

1. The following statements are equivalent:

(a) (M1, ρ1) ∼ (M2, ρ2).

(b) ρ1 ∼ ρ2 inM1 ⊕M2.

(c) (M1, ρ1) ∼n2
1+n2

2−1 (M2, ρ2).

(d) ρ1 ∼n2
1+n2

2−1 ρ2 inM1 ⊕M2.

2. For every k ∈ N, the following statements are equivalent:

(a) (M1, ρ1) ∼k (M2, ρ2).

(b) ρ1 ∼k ρ2 inM1 ⊕M2.

(c) (M1, ρ1) ∼n2
1+n2

2−1
k (M2, ρ2).

(d) ρ1 ∼n2
1+n2

2−1
k ρ2 inM1 ⊕M2.

If bothM1 andM2 are real, then the experiment size n21+n
2
2−1 can be improved to 1

2n1(n1+
1) + 1

2n2(n2 + 1)− 1.
The above theorem implies that the algorithms in Theorem 3.2 can be used for checking equiv-

alence of two QMMs.

10

3.3 Minimization of machines

Finally, we consider the minimisation problem of QMMs. Formally, it can be formulated as the
following decision problem:

Problem 1. Given a QMMM∗ and its initial state ρ∗, whether there is a QMMM and its initial
state ρ such that dimH < dimH∗ and (M, ρ) ∼ (M∗, ρ∗).

A variant of this problem with a bound on the number of measurements is stated as:

Problem 2. Given a QMM M∗ and its initial state ρ∗ together with an integer k, whether there
is a QMMM and its initial state ρ such that dimH < dimH∗ and (M, ρ) ∼k (M∗, ρ∗).

Our result is then given as the following:

Theorem 3.4. Both Problem 1 and Problem 2 are in PSPACE.

3.4 Remarks

As mentioned in the Introduction, the equivalence checking problem of various quantum finite-
state automata rather than QMMs has been thoroughly studied in the previous literature. The
techniques in this paper are developed for quantum Mealy machines. However, they can also be
used to improve the previous complexity results for quantum finite-states automata (see Table 2).

• For equivalence checking of two real-valued quantum automata (i.e. all entries of its unitary
matrices and measurements are real numbers), our improvements on the length of inputs for
equivalence checking are summarised in Table 1.

• It was proved in [24] that the minimization problem for several models of quantum finite-state
automata (MO-QFA, MM-QFA, MO-gQFA) can be solved in EXPTIME. Our technique in
proving Theorem 3.4 can be used to improve this result to PSPACE.

• It is worth pointing out that the results given in the previous literature (see the second
columns of Tables 1 and 2) were proved only in the case of pure states. However, our results
(see the third columns of Tables 1 and 2) are valid for the general case of mixed states.

Model m-equivalence Our improvements

MO-QFA [26] [9] n21 + n22 − 1 [17] [20] [23] 1
2n1(n1 + 1) + 1

2n2(n2 + 1)− 1

MM-QFA [16] [9] 3n21 + 3n22 − 1 [21] 3
2n1(n1 + 1) + 3

2n2(n2 + 1)− 1

CL-QFA [7] c1n
2
1 + c2n

2
2 − 1 [21] c1

2 n1(n1 + 1) + c2
2 n2(n2 + 1)− 1

QSM [11] [30] n21 + n22 − 1 [22] 1
2n1(n1 + 1) + 1

2n2(n2 + 1)− 1

continuum QMM [37] n21 + n22 − 1 [37] 1
2n1(n1 + 1) + 1

2n2(n2 + 1)− 1

Table 1: Shorter inputs for equivalence checking of two real-valued quantum automata, where n1
and n2 are the dimension of the state Hilbert spaces of the two automata, respectively.

11

4 Case Studies

To test the efficiency of Algorithms 1 and 2 presented in the last section, we prepared a set of
benchmarks for case studies. It consists of 30 test cases (from test001 to test030), and the detailed
descriptions of them can be found in [1]. In this section, we only briefly discuss a couple of examples
in order to give the reader a basic idea about them.

For better testing the efficiency of our algorithms, the state Hilbert spaces in these test cases are
designed to be of various dimensions, e.g. test001 is of dimension 2 (a single qubit), while test017
is of dimension 25 = 32 (5 qubits). The quantum Mealy machines and circuits in Example 1 are
associated with test002 and test005, and Example 2 with test008, test009 and test010.

Algorithms 1 and 2 are implemented in C/C++ compiled by GCC 5.4.0. We test our algorithms
on a Linux workstation: Intel(R) Xeon(R) CPU E7-8850 v2 2.30GHz with 24M Cache. All test cases
utilize the single thread mode. To show the improvements displayed in Table 2, the experimental
result is collected in Table 3 with comparisons between the method of complexity O(n8), which can
be directly derived from the techniques introduced in [35], and our improved method of complexity
O(n6). This table contains those test cases with large dimensions of the state Hilbert spaces.

5 Proofs of Theorems

Now we arrive at the more technical part of this paper. In this section, we give the proofs of the
theorems presented in Sec. 3. For readability, some tedious parts of these proofs are provided in
the Appendices.

5.1 Proof of Theorem 3.1

First, we notice that Part 1 is a corollary of Part 2. If Part 2 holds, i.e.

ρs ∼k ρt ⇐⇒ ρs ∼n2−1
k ρt

for every k ∈ N, then for all k ≥ n2 − 1, we have:

ρs ∼k ρt ⇐⇒ ρs ∼n2−1
k ρt ⇐⇒ ρs ∼n2−1

n2−1
ρt ⇐⇒ ρs ∼n2−1 ρt,

which does not depend on k. This implies that if ρs ∼n2−1 ρt, then ρs ∼k ρt for all k ≥ n2− 1; that
is, ρs ∼ ρt. So, we only need to prove Part 2 (see A for a simple derivation of Part 1 from Part 2).
Before doing it, we need some preparations.

LetM = (Σ,Γ,H, U,M), and let ρ be an Hermitian operator. We define the set:

Dk(ρ,m) = {ρMb|a,S : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|, |a|+ |S| ≤ m, |S| ≤ k},

Model Complexity Our improvements

MO-QFA [26] [9] O(n8) [17] [31] O(n6)

MM-QFA [16] [9] O(n8) [21] O(n6)

CL-QFA [7] O((c1n
2
1 + c2n

2
2)

4) [21] O((c1n
2
1 + c2n

2
2)

3)

QSM [11] [30] O(n12) [20] O(n6)

continuum QMM [37] O(n8) [37] O(n6)

Table 2: Better complexities for checking equivalence of two automata, where n1 and n2 are the
dimension of the state Hilbert spaces of the two automata, respectively, and n = n1 + n2.

12

Tests n O(n8) RT(s) O(n6) RT(s)

test016 16 2.83 0.20

test017 32 60.29 2.58

test026 16 10.00 0.34

test027 16 33.93 0.65

test028 16 14.44 0.49

test029 16 16.52 0.35

Table 3: Experiment results. Here, n stands for the dimension of the state Hilbert spaces of the
QMM, O(n8) RT(s) for the running time of the method with complexity O(n8), and O(n6) RT(s)
for the running time of the method with complexity O(n6).

where
ρMb|a,S = Vb|a,SρV

†
b|a,S and Vb|a,S = Ua|S|+1

Mb|S|
Ua|S|

. . .Mb1Ua1 .

Intuitively, this set records all of the possible states of the machine starting in state ρ with the
bounds m on the experiment size and k on the number of allowed measurements. Especially,
Dk(ρ, 0) = {ρ} for all k ∈ N. Obviously, the following properties hold: for every m,k ∈ N,

1. Dk(ρ,m) ⊆ Dk(ρ,m+ 1) and thus spanDk(ρ,m) ⊆ spanDk(ρ,m+ 1).

2. Dk(ρ,m) ⊆ Dk+1(ρ,m) and thus spanDk(ρ,m) ⊆ spanDk+1(ρ,m).

3. dim spanDk(ρ,m) ≤ n2.
Furthermore, we have the following:

Lemma 5.1. If spanDl(ρ,m) = spanDl(ρ,m + 1) for every 0 ≤ l ≤ k, then for every 0 ≤ l ≤ k
and δ ∈ N, spanDl(ρ,m) = spanDl(ρ,m+ δ).

Proof. We prove it by induction on δ.
Basis. It is trivial when δ = 1.
Induction. Suppose it is true for some δ ≥ 1 that

spanDl(ρ,m) = spanDl(ρ,m+ δ)

for all 0 ≤ l ≤ k. For every ρM
b|a,S ∈ Dl(ρ,m + δ + 1) for some a ∈ Σ∗, and for all S ∈ Sa and

b ∈ Γ|S| with |a| + |S| ≤ m + δ + 1 and |S| ≤ l for some 0 ≤ l ≤ k, we consider the following two
cases:

Case 1. S is closed, i.e. s|S| = |a|: Then we set S− = {s1, s2, . . . , s|S|−1} and b− = b[1 : |b|− 1].
It holds that

ρMb|a,S =Mb[|b|]ρ
M
b−|a,S−M

†
b[|b|].

By the assumption, we obtain:

ρMb−|a,S− ∈ Dl−1(ρ,m+ δ) ⊆ spanDl−1(ρ,m+ δ) = spanDl−1(ρ,m).

Thus, we have:

ρMb|a,S =Mb[|b|]ρ
M
b−|a,S−M

†
b[|b|] ∈Mb[|b|] (spanDl−1(ρ,m))M †

b[|b|]

= span
(

Mb[|b|]Dl−1(ρ,m)M †
b[|b|]

)

⊆ spanDl(ρ,m+ 1) = spanDl(ρ,m).

13

Case 2. S is not closed: Then put a− = a[1 : |a| − 1]. It follows that

ρMb|a,S = Ua[|a|]ρ
M
b|a−,SU

†
a[|a|].

By the assumption, it holds that

ρMb|a−,S ∈ Dl(ρ,m+ δ) ⊆ spanDl(ρ,m+ δ) = spanDl(ρ,m).

So, we have:

ρMb|a,S = Ua[|a|]ρ
M
b|a−,SU

†
a[|a|] ∈ Ua[|a|] (spanDl(ρ,m))U †

a[|a|]

= span
(

Ua[|a|]Dl(ρ,m)U †
a[|a|]

)

⊆ spanDl(ρ,m+ 1) = spanDl(ρ,m).

The above two cases together yield ρb|a,S ∈ spanDl(ρ,m), and thus

spanDl(ρ,m+ δ + 1) ⊆ spanDl(ρ,m).

On the other hand, it is clear that spanDl(ρ,m) ⊆ spanDl(ρ,m + δ + 1). We conclude that
spanDl(ρ,m+δ+1) = spanDl(ρ,m) for every 0 ≤ l ≤ k, and complete the proof of this lemma.

Lemma 5.2. Dk(ρ, n
2 − 1) ⊇ Dk(ρ,m) for every k ∈ N and m ∈ N.

Proof. Lemma 5.1 implies that for each k ∈ N, there is anm such that spanDl(ρ,m) = spanDl(ρ,m+
δ) for every δ ∈ N and 0 ≤ l ≤ k. Let

mk = min{m ∈ N : spanDl(ρ,m) = spanDl(ρ,m+ δ),∀δ ∈ N, 0 ≤ l ≤ k}.

Then mk ≤ mk+1 for every k ∈ N. Let us first prove that

dim spanDk(ρ,mk) ≥ mk + 1 (3)

for every k ∈ N by induction.
Basis. k = 0: By contradiction, we assume that dim spanD0(ρ,m0) < m0 + 1. Note that

dim spanD0(ρ,m) ≤ dim spanD0(ρ,m + 1) for every m ∈ N and dim spanD0(ρ, 0) = 1. By the
Pigeonhole Principle, there is a 0 ≤ m′ < m0 such that dim spanD0(ρ,m

′) = dim spanD0(ρ,m
′+1),

which conflicts with the minimality of m0. Hence, dim spanD0(ρ,m0) ≥ m0 + 1.
Induction. Suppose inequality (3) is true for k ≥ 0. By contradiction, we assume that

dim spanDk+1(ρ,mk+1) < mk+1 + 1. Since mk ≤ mk+1, we have:

mk+1 + 1 > dim spanDk+1(ρ,mk+1) ≥ dim spanDk+1(ρ,mk)

≥ dim spanDk(ρ,mk) ≥ mk + 1.

By the Pigeonhole Principle, there is a mk ≤ m′ < mk+1 such that

dim spanDk+1(ρ,m
′) = dim spanDk+1(ρ,m

′ + 1),

which conflicts with the minimality of mk+1. Hence, dim spanDk+1(ρ,mk+1) ≥ mk+1 + 1, and we
complete the proof of (3).

Using (3), we see that mk + 1 ≤ dim spanDk(ρ,mk) ≤ n2 for every k ∈ N, and mk ≤ n2 − 1.
Then we proved the lemma.

14

Now we are ready to prove Part 2: ρs ∼k ρt ⇐⇒ ρs ∼n2−1
k ρt. Clearly, we only need to prove

the “if” part. Suppose that ρs ∼n2−1
k ρt. Then

PrMρs (b|a,S) = PrMρt (b|a,S)

for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |a| + |S| ≤ n2 − 1 and |S| ≤ k. We conclude that
tr(ρM

b|a,S) = 0 for every ρM
b|a,S ∈ Dk(ρ, n

2 − 1), where ρ = ρs − ρt.
On the other hand, for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |S| ≤ k, by Lemma 5.2, we have

ρM
b|a,S ∈ spanDk(ρ, n

2 − 1), and then tr(ρM
b|a,S) = 0, i.e.

PrMρs (b|a,S) = PrMρt (b|a,S),

which immediately yields ρs ∼k ρt. Therefore, we complete the proof for the general case.
For the case that M is real, however, the key observation is that tr(ρ) = tr(Re(ρ)) if ρ is

Hermitian. Thus, we only need to consider the real part of the density operators. Define:

D
Re
k (ρ,m) = {Re(ρMb|a,S) : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|, |a|+ |S| ≤ m, |S| ≤ k},

where Re(x) denotes the real part of x, e.g. Re(3 + 4i) = 3. We have a better bound:

dim spanDRe
k (ρ,m) ≤ 1

2
n(n+ 1)

for every m,k ∈ N if ρ is Hermitian. Note that ρ need not be real. Following the idea of the above

proof, we obtain ρs ∼k ρt ⇐⇒ ρs ∼
1
2
n(n+1)−1

k ρt ifM is real.

5.2 Proof of Theorem 3.2

The proof of correctness of Algorithms 1 and 2 is put in B. Here, we analyze their complexities.
We only consider Algorithm 2, and Algorithm 1 can be analyzed similarly.

Since dim spanDl(ρ, n
2 − 1) ≤ n2, we have |Bl| ≤ n2 for 0 ≤ l ≤ k. For each element

ρb|(a,S) ∈ Bl, when ρb|(a,S) is added into Bl in the algorithm, there are m = |Σ| + |Γ| tuples that
are pushed into Q. Thus, there are at most

k
∑

l=0

m |Bl| = O(kmn2)

tuples that are pushed into Q in total. In each iteration of the “while” loop, we have to check
whether an operator is linearly independent to a set of operators (whether ρb|(a,S) ∈ spanBl, see
Line 6 and 7 in Algorithm 2). Note that there are some simple methods, e.g. Gaussian Elimination,
to check whether n vectors in a d-dimensional space are linearly independent in O(dn2) time. The
“while” loop of Algorithm 2 can be summarized as follows:

1. Pop the front element (a,S, b) from Q and calculate ρb|(a,S).

2. Check whether Bl ∪ {ρb|(a,S)} is linearly independent for some 0 ≤ l ≤ k. Each check costs
O(n6) time.

3. Add ρb|(a,S) into Bl for some 0 ≤ l ≤ k in O(1) time (at most O(kn2) times).

4. Push new tuples (aσ,S, b) for σ ∈ Σ and (a,S + {|a|}, bγ) for γ ∈ Γ into Q (at most O(kn2)
times).

15

It is clear that the overall complexity is O(kmn8). In fact, the complexity can be reduced to
O(kmn6) if we adapt the trick used in [14]. We see that the bottleneck is to check whether
an operator is linearly independent to a set of operators which changes not so often. Another
observation is that whence an operator ̺ is checked to be linearly independent to B, the only
operation is to add it into B. We could make the two things mentioned above more “balanced”
in time. To improve the time complexity, we introduce the inner product of operators A and B
defined by:

〈A,B〉 = tr(A†B) =

n
∑

i=1

n
∑

j=1

A∗
ijBij,

where c∗ is the conjugate of a complex number c. It needs O(n2) time to compute. We use a
so-called “lazy” Gram-Schmidt process to maintain the orthogonal set O with respect to B such
that spanB = spanO, as follows:

1. Initially, B = ∅. Set O = ∅.

2. When checking whether an operator ̺ is linearly independent to B, we only need to check
whether ̺ is linearly independent to O. Because O is an orthogonal set, i.e. all elements in
O are pairwise orthogonal, we conclude that ̺ is not linearly independent to O if and only if

〈̺, ̺〉 =
∑

̺′∈O

|〈̺′, ̺〉|2
〈̺′, ̺′〉 , (4)

which needs O(n4) time to check.

3. When ̺ is linearly independent to B, as well as O, we have to add it into B and maintain O
to meet spanB = spanO. Let

ˆ̺ = ̺−
∑

̺′∈O

〈̺′, ̺〉
〈̺′, ̺′〉̺

′, (5)

then ˆ̺ is orthogonal to O and add ˆ̺ into O, which needs O(n4) time to compute.

With this observation, the “while” loop of Algorithm 2 can be modified and summarized as follows:

1. Check whether Bl ∪ {ρb|(a,S)} is linearly independent using Eq. (4) in O(n4) time.

2. Add ρb|(a,S) into Bl using Eq. (5) in O(n4) time (at most n2 − 1 = O(n2) times).

It is clear that the overall complexity is now reduced to O(kmn6).

5.3 Proof of Theorem 3.3

This theorem is established based on Theorem 3.1. Let

D
M(ρ,m) = {ρMb|(a,S) : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|, |a|+ |S| ≤ m},

The key observation is that DM1⊕M2(ρ1 ⊕ 0− 0⊕ ρ2,m) is diagonal, and thus

dim spanDM1⊕M2(ρ1 ⊕ 0− 0⊕ ρ2,m) ≤ n21 + n22.

Then we can prove the theorem with the same techniques used in the proof of Theorem 3.1.

16

5.4 Proof of Theorem 3.4

We first note that Theorem 3.1 implies that ρs ∼ ρt ⇐⇒ ρs ∼k ρt for every k ≥ n2 − 1. Thus,
Problem 1 is a special case of Problem 2 for k = n2 − 1. Now we may assume that k ≤ n2 − 1 and
only consider Problem 2.

Let ~ρ be the vectorization of ρ, which is an n2-dimensional vector with entries ~ρ(i−1)n+j = ρij .

For an n× n matrix M , we define an n2 × n2 matrix M̂ with entries:

M̂(i−1)n+j,(x−1)n+y =MixM
∗
jy.

Then it holds that
−−−−→
MρM † = M̂~ρ. Moreover, let η be the vectorization of trace, which is an

n2-dimensional vector η(i−1)n+j = δij , where

δij =

{

1 i = j

0 i 6= j

is the Kronecker delta. It is clear that tr(MρM †) = η†M̂~ρ.
We further have the following proposition as a quantum analog of Proposition 10 in [15]:

Proposition 5.3. Let M1 = (Σ,Γ,H(1), U (1),M (1)) and M2 = (Σ,Γ,H(2), U (2),M (2)) be two
QMMs with initial states ρ1 and ρ2, respectively, let k be a positive integer, and let n1 = dimH1,
n2 = dimH2 and n = n21 + n22. Then (M1, ρ1) ∼k (M2, ρ2) if and only if there are n× n matrices

F (0), F (1), . . . , F (k), A
(0)
σ , A

(1)
σ , . . . , A

(k)
σ for every σ ∈ Σ and A

(0)
γ , A

(1)
γ , . . . , A

(k−1)
γ for every γ ∈ Γ

such that

1. F
(0)
·,1 =

[

~ρ1
~ρ2

]

.

2. η†F (l) = 0 for 0 ≤ l ≤ k, where η =

[

η1
−η2

]

, η1 and η2 are the vectorizations of trace forM1

and M2, respectively.

3. For every σ ∈ Σ,
[

Û
(1)
σ 0

0 Û
(2)
σ

]

F (l) = F (l)A(l)
σ

for 0 ≤ l ≤ k.

4. For every γ ∈ Γ,
[

M̂
(1)
γ 0

0 M̂
(2)
γ

]

F (l) = F (l+1)A(l)
γ

for 0 ≤ l < k.

Proof. “=⇒” If (M1, ρ1) ∼k (M2, ρ2), then

tr((ρ1)
M1

b|a,S) = tr((ρ2)
M2

b|a,S)

for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |S| ≤ k. Let ρ = ρ1 ⊕ ρ2 and

Dl(ρ,m) = {ρb|a,S : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|, |S| ≤ l}.

17

Then
ρM1⊕M2

b|a,S = (ρ1)
M1

b|a,S ⊕ (ρ2)
M2

b|a,S .

By Theorem 3.3, we have:

(M1, ρ1) ∼k (M2, ρ2)⇐⇒ (M1, ρ1) ∼n−1
k (M2, ρ2).

Proof of Theorem 3.1 Part 2 reveals that

D0(ρ, n− 1) ⊆ D1(ρ, n − 1) ⊆ · · · ⊆ Dk(ρ, n − 1).

And note that dim spanDk(ρ, n − 1) ≤ n. For every 0 ≤ l ≤ k, let ρ
(1)
l , . . . , ρ

(n)
l ∈ Dl(ρ, n − 1)

with spanDl(ρ, n − 1) = span{ρ(1)l , . . . , ρ
(n)
l }. In particular, guarantee that ρ

(1)
0 = ρ. Let ρ

(i)
l =

(ρ1)
(i)
l ⊕ (ρ2)

(i)
l for 1 ≤ i ≤ n. Then tr((ρ1)

(i)
l) = tr((ρ2)

(i)
l). We set

f
(l)
i =

[

(~ρ1)
(i)
l

(~ρ2)
(i)
l

]

and F (l) =
[

f
(l)
1 . . . f

(l)
n

]

.

Part 1. It is easy to verify that

F
(0)
·,1 = f

(0)
1 =

[

~ρ1
~ρ2

]

.

Part 2. We have:

η†f
(l)
i = η†1(~ρ1)

(i)
l − η

†
2(~ρ2)

(i)
l = tr((ρ1)

(i)
l)− tr((ρ2)

(i)
l) = 0.

Thus η†F (l) = 0.

Part 3. If ρb|a,S ∈ Dl(ρ, n− 1), then ρb|aσ,S ∈ spanDl(ρ, n− 1) for every σ ∈ Σ. Thus for every
0 ≤ l ≤ k, 1 ≤ i ≤ n and σ ∈ Σ, there are coefficients αij such that

[

Û
(1)
σ 0

0 Û
(2)
σ

]

f
(l)
i =

[

Û
(1)
σ (~ρ1)

(i)
l

Û
(2)
σ (~ρ2)

(i)
l

]

=
∑

j

αij

[

(~ρ1)
(i)
l

(~ρ2)
(i)
l

]

=
∑

j

αijf
(l)
j

=
[

f
(l)
1 . . . f

(l)
n

]





αi1

. . .
αin





= F (l)αi.

Set A
(l)
σ =

[

α1 . . . αn

]

.

Part 4. It holds similarly to Part 3.

18

“⇐=”. It can be proved by induction that for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |S| ≤ k,
[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

F (0) = F (|S|)Ab|a,S ,

where
Ab|a,S = A(0)

a1
A

(0)
b1
A(1)

a2
A

(1)
b2
. . . A(|S|−1)

a|S|
A

(|S|−1)
b|S|

A(|S|)
a|S|+1

.

Then

tr((ρ1)b|a,S)− tr((ρ2)b|a,S) = η†1(~ρ1)b|a,S − η†2(~ρ2)b|a,S

=

[

η1
−η2

]†
[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

[

~ρ1
~ρ2

]

= η†

[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

F (0)e1

= η†F (|S|)Ab|a,Se1

= 0,

where e1 = (1, 0, 0, . . . , 0)T .

We also need the following theorem from [10], [32], [33] and [5]:

Theorem 5.4. Given a set P = {f1, . . . , fm} of m polynomials of degree d in n variables x =
(x1, . . . , xn). Let φ(P, x) is a Boolean function of inequalities of the form fi(x) > 0 or fi(x) ≥ 0,
and let S = {x ∈ R

n : φ(P, x)}. Then:

1. there is an algorithm to decide whether S = ∅ in PSPACE [10], [33]. Moreover, it can be
decided in (md)O(n) time [32], and

2. if S 6= ∅ then a sample x ∈ S can be found in τdO(n) space [5], where τ is the size of the
coefficients of the polynomials.

Now we are ready to prove the Theorem 3.4. The conditions of Proposition 5.3 onM2, including
that it be a QMM, can be phrased in O((|Σ| + |Γ|)k(n1 + n2)

4) polynomials of degree d = 3 in
O((|Σ|+ |Γ|)k(n1 + n2)

4) variables. By Theorem 5.4, Problem 2 is solvable in PSPACE.
It is noted that Problem 1 can be phrased in O((|Σ| + |Γ|)(n1 + n2)

6) polynomials of degree
d = 3 in O((|Σ|+ |Γ|)(n1 + n2)

6) variables with k = O((n1 + n2)
2). In fact, we can make it more

efficient in O((|Σ|+ |Γ|)(n1+n2)4) polynomials of degree d = 3 in O((|Σ|+ |Γ|)(n1+n2)4) variables
(see C for more details).

6 Conclusion

To offer effective tools for verification of quantum circuits, we define the model of quantum Mealy
machines. Two efficient algorithms for checking equivalence of two states in the same quantum
Mealy machines and for checking equivalence of two quantum Mealy machines are developed. We
also prove that the minimisation problem for quantum Mealy machines can be solved in PSPACE.

Further future research, we plan to extend the ideas introduced and the results obtained in this
paper along the following two lines:

19

• Study the equivalence checking problem for quantum programs, which are much harder to
deal with, in particular in the case where loops and recursion are present [39].

• Incorporate the techniques developed in this paper with those in the previous work on model-
checking of quantum systems [40], [41] so that they can be applied to larger quantum circuits
or more complicated properties than equivalence.

References

[1] https://github.com/wangqs13/qmm-benchmark

[2] E. Ardeshir-Larijani, S. J. Gay and R. Nagarajan. Equivalence checking of quantum protocols.
In: Proceedings of TACAS 2013, pp. 478–492, 2013.

[3] E. Ardeshir-Larijani, S. J. Gay and R. Nagarajan. Verification of concurrent quantum protocols
by equivalence checking. In: Proceedings of TACAS 2014, pp. 500–514, 2014.

[4] A. Banerjee and A. Pathak. Probabilistic model of fault detection in quantum circuits. Quan-
tum Quenching, Annealing and Computation. Springer Lecture Notes in Physics, 802: 297–304
(2010)

[5] S. Basu, R. Pollack and M. Roy. Algorithms in Real Algebraic Geometry, 2nd Edition, Springer,
2006.

[6] D. Bera. Detection and diagnosis of single faults in quantum circuits. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 37(3): 587–600 (2018)

[7] A. Bertoni, C. Mereghetti and B. Palano. Quantum computing: 1-way quantum automata. In:
Proceedings of the 9th International Conference on Developments in Language Theory (DLT).
Lecture Notes in Computer Science, 2710: 1–20 (2003)

[8] J. D. Biamonte, J. S. Allen and M. A. Perkowski. Fault models for quantum mechanical
switching networks. Journal of Electronic Testing, 26(5): 499–511 (2010)

[9] A. Brodsky and N. Pippenger. Characterizations of 1-way quantum finite automata. SIAM
Journal on Computing, 31(5): 1456–1478 (2002)

[10] J. Canny. Some algebraic and geometric computations in PSPACE. In: Proceedings of the 20th
annual ACM Symposium on Theory of Computing, ACM, pp. 460–469, 1988.

[11] S. Gudder. Quantum computers. International Journal of Theoretical Physics, 39(9): 2151–
2177 (2000)

[12] W. N. Hung, X. Song, G. Yang, J. Yang and M. Perkowski. Quantum logic synthesis by sym-
bolic reachability analysis. In: Proceedings of the 41st annual Design Automation Conference
(DAC), pp. 838–841, 2004.

[13] Z. Kohavi, N. K. Jha. Switching and Finite Automata Theory, 3rd Edition, Cambridge Uni-
versity Press, 2010.

20

[14] S. Kiefer, A. S. Murawski, J. Ouaknine, B. Wachter and J. Worrell. Language equivalence for
probabilistic automata. In: Gopalakrishnan G., Qadeer S. (eds) Computer Aided Verification.
CAV 2011. Lecture Notes in Computer Science, vol 6806, pp. 526–540. Springer, Heidelberg
(2011)

[15] S. Kiefer and B. Wachter. Stability and complexity of minimising probabilistic automata. In:
International Colloquium on Automata, Languages, and Programming, pp. 268–279, 2014.

[16] A. Kondacs and J. Watrous. On the power of quantum finite state automata. In: Proceedings
of the 38th Annual Symposium on Foundations of Computer Science, IEEE, pp. 66–75, 1997.

[17] T. Koshiba. Polynomial-time algorithms for the equivalence for one-way quantum finite au-
tomata. In: Proceedings of the 12th International Symposium on Algorithms and Computation
(ISAAC). Lecture Notes in Computer Science, 2223: 268–278 (2001)

[18] D. Lee and M. Yannakakis. Testing finite-state machines: state identification and verification.
IEEE Transactions on Computers, 43(3): 306–320 (1994)

[19] D. Lee and M. Yannakakis. Principles and methods of testing finite state machines - a survey.
In: Proceedings of the IEEE, 84(8): 1090–1123 (1996)

[20] L. Li and D. Qiu. A polynomial-time algorithm for the equivalence between quantum sequential
machines. ArXiv :quant-ph/0604085 (2006)

[21] L. Li and D. Qiu. Determining the equivalence for 1-way quantum finite automata. Theoretical
Computer Science, 403(1): 42–51 (2008)

[22] L. Li and D. Qiu. Determination of equivalence between quantum sequential machines. In:
Theoretical Computer Science, 358(1): 65–74 (2006)

[23] L. Li, D. Qiu, X. Zou, L. Li, L. Wu and P. Mateus. Characterizations of one-way general
quantum finite automata. Theoretical Computer Science, 419: 73–91 (2012)

[24] P. Mateus, D. Qiu and L. Li: On the complexity of minimizing probabilistic and quantum
automata. Information and Computation, 218(9): 36–53 (2012)

[25] G. H. Mealy. A method for synthesizing sequential circuits. Bell System Technical Journal, 34:
1045–1079 (1955)

[26] C. Moore and J. P. Crutchfield. Quantum automata and quantum grammars. Theoretical
Computer Science, 237(1): 275–306 (2000)

[27] A. Paler, I. Polian and J. P. Hayes. Detection and diagnosis of faulty quantum circuits. In:
Proceedings of the 17th Asia South Pac. Design Automation Conference, pp. 181–186, 2012.

[28] A. Paz. Introduction to Probabilistic Automata, Academic Press, 1971.

[29] M. Perkowski, J. Biamonte and M. Lukac. Test generation and fault localization for quantum
circuits. In: Proceedings of the 35th IEEE International Symposium on Multiple-Valued Logic
(ISMVL), pp. 62–68, 2005.

[30] D. Qiu. Characterization of sequential quantum machines. International Journal of Theoretical
Physics, 41(5): 811–822 (2002)

21

http://arxiv.org/abs/quant-ph/0604085

[31] D. Qiu, L. Li, X. Zou, P. Mateus and J. Gruska. Multi-letter quantum finite automata: De-
cidability of the equivalence and minimization of states. Acta Informatica, 48(5-6): 271–290
(2011)

[32] J. Renegar. A faster PSPACE algorithm for deciding the existential theory of the reals. In:
Proceedings of the 29th Annual Symposium on Foundations of Computer Science, IEEE, pp.
291–295, 1988.

[33] J. Renegar. On the computational complexity and geometry of the first-order theory of the
reals, Part I-III. Journal of Symbolic Computation, 13(3): 255–352 (1992)

[34] J. Seiter, M. Soeken, R. Wille and R. Drechsler. Property checking of quantum circuits us-
ing quantum multiple-valued decision diagrams. In: International Workshop on Reversible
Computation (RC), pp. 183–196, 2012.

[35] W. Tzeng. A polynomial-time algorithm for the equivalence of probabilistic automata. SIAM
Journal on Computing, 21(2): 216–227 (1992)

[36] G. F. Viamontes, I. L. Markov and J. P. Hayes. Checking equivalence of quantum circuits and
states. In: Proceedings of the 2007 IEEE/ACM International conference on Computer-Aided
Design (ICCAD), pp. 69–74, 2007.

[37] Q. S. Wang, R. L. Li and M. S. Ying. Equivalence checking of sequential quantum circuits.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 41(9):
3143–3156, 2022.

[38] S. Yamashita and I. L. Markov. Fast equivalence-checking for quantum circuits. In: Proceedings
of the 2010 IEEE/ACM International Symposium on Nanoscale Architectures, pp. 23-28, 2010.

[39] M. S. Ying. Foundations of Quantum Programming, Morgan-Kaufmann, 2016.

[40] M. S. Ying, Y. J. Li, N. K. Yu and Y. Feng. Model-checking linear-time properties of quantum
systems. ACM Transactions on Computational Logic, 15(3): 1–31 (2014)

[41] S. G. Ying, Y. Feng, N. K. Yu and M. S. Ying. Reachability probabilities of quantum Markov
chains. In: Proceedings of CONCUR 2013, pp. 334–348, 2013.

A A simple proof of Part 1 of Theorem 3.1

Part 1 of Theorem 3.1 is a corollary of Part 2 of the same theorem. Here, we provide a simple and
direct proof of it. LetM = (Σ,Γ,H, U,M), and let ρ be an Hermitian operator. Define

D(ρ,m) = {ρMb|a,S : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S| with |a|+ |S| ≤ m},

where
ρMb|a,S = Vb|a,SρV

†
b|a,S and Vb|a,S = Ua|S|+1

Mb|S|
Ua|S|

. . .Mb1Ua1 .

Especially, D(ρ, 0) = {ρ}. Then it is easy to see that for every m ∈ N,

1. D(ρ,m) ⊆ D(ρ,m+ 1) and thus spanD(ρ,m) ⊆ spanD(ρ,m+ 1).

2. dim spanD(ρ,m) ≤ n2.

22

Furthermore, we have:

Proposition A.1. If spanD(ρ,m) = spanD(ρ,m + 1) for some m ∈ N, then spanD(ρ,m) =
spanD(ρ,m+ k) for every k ∈ N.

Proof. We prove it by induction on k.

Basis. It is trivial when k = 1.

Induction. Suppose it is true for some k ≥ 1 that

spanD(ρ,m) = spanD(ρ,m+ k).

For every ρM
b|a,S ∈ D(ρ,m+ k+1) for some a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |a|+ |S| ≤ m+ k+1,

we consider the following two cases:

Case 1. S is closed, i.e. s|S| = |a|: Let S− = {s1, s2, . . . , s|S|−1} and b− = b[1 : |b| − 1]. Then

ρMb|a,S =Mb[|b|]ρ
M
b−|a,S−M

†
b[|b|].

By the assumption, ρM
b−|a,S− ∈ D(ρ,m+ k) ⊆ spanD(ρ,m+ k) = spanD(ρ,m). We have

ρMb|a,S =Mb[|b|]ρ
M
b−|a,S−M

†
b[|b|]

∈Mb[|b|] (spanD(ρ,m))M †
b[|b|]

= span
(

Mb[|b|]D(ρ,m)M †
b[|b|]

)

⊆ spanD(ρ,m+ 1) = spanD(ρ,m).

Case 2. S is not closed: Let a− = a[1 : |a| − 1]. Then

ρMb|a,S = Ua[|a|]ρ
M
b|a−,SU

†
a[|a|].

By the assumption, ρM
b|a−,S ∈ D(ρ,m+ k) ⊆ spanD(ρ,m+ k) = spanD(ρ,m). We have

ρMb|a,S = Ua[|a|]ρ
M
b|a−,SU

†
a[|a|]

∈ Ua[|a|] (spanD(ρ,m))U †
a[|a|]

= span
(

Ua[|a|]D(ρ,m)U †
a[|a|]

)

⊆ spanD(ρ,m+ 1) = spanD(ρ,m).

Both cases together yield ρb|a,S ∈ spanD(ρ,m), and thus spanD(ρ,m+ k+1) ⊆ spanD(ρ,m).
Because spanD(ρ,m) ⊆ spanD(ρ,m+k+1), we conclude that spanD(ρ,m+k+1) = spanD(ρ,m).

Conclusion. spanD(ρ,m) = spanD(ρ,m+ k) for all k ∈ N.

Proposition A.1 claims that dim spanD(ρ,m) either strictly increases (at least 1) or reaches the
maximum value. Note that dim spanD(ρ, 0) = 1, we have:

Proposition A.2. spanD(ρ, n2 − 1) ⊇ spanD(ρ,m) for every m ∈ N.

Now it is sufficient to prove the following:

Proposition A.3. ρs ∼ ρt ⇐⇒ ρs ∼n2−1 ρt.

23

Proof. “=⇒” Obvious.
“⇐=” Suppose that ρs ∼n2−1 ρt, then

PrMρs (b|a,S) = PrMρt (b|a,S)

for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S| with |a|+ |S| ≤ n2 − 1. That is,

tr(ρMb|a,S) = 0

where ρ = ρs − ρt.
On the other hand, for every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S|, by Proposition A.2, we have

ρM
b|a,S ∈ spanD(ρ, n2 − 1), and then

ρMb|a,S =
∑

a′,S′,b′:ρM
b′|a′,S′∈D(ρ,n2−1)

αb′|a′,S′ρMb′|a′,S′

for some coefficients αb′|a′,S′ . Then

tr(ρMb|a,S) =
∑

a′,S′,b′:ρM
b′|a′,S′∈D(ρ,n2−1)

αb′|a′,S′ tr(ρMb′|a′,S′) = 0,

i.e. PrMρs (b|a,S) = PrMρt (b|a,S), which immediately yields ρs ∼ ρt.

It is trivial that ρs ∼ ρt =⇒ ρs ∼n2−1 ρt =⇒ ρs ∼n2−1 ρt. So, we complete the proof.

B Correctness of the algorithms

In Sec. 5, we only analyse the complexities of Algorithms 1 and 2. Here, we prove their correctness.

B.1 Correctness of Algorithm 1

The correctness of the algorithm is proved in the following steps:

Step 1. The algorithm always terminates.
Note that H is a finite-dimensional Hilbert space. Let n = dimH < ∞. The algorithm

guarantees that B consists of linearly independent elements, whose dimension is bounded by n2.
Thus the number of times of modifications of B is always bounded by n2, or there must be two
elements in B that are linearly dependent. Only when B is added a new element, the queue Q will
be pushed into some other (finite) elements. On the other hand, the algorithm pops one element
from Q in every iteration of the “while” loop. Thus, Q will become empty at some time and the
algorithm terminates.

Step 2. The queue Q is monotonic.
We define ord : dom(ord)→ N to be the order of every valid tuple (a,S, b), where

dom(ord) = {(a,S, b) : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|} ⊆ Σ∗ ×S× Γ∗

is the defining domain of ord. For convenience, let S = {s1, s2, . . . , s|S|} with 0 ≤ s1 ≤ s2 ≤ · · · ≤
s|S| ≤ |a|. Define the total order “<” on Σ ∪ Γ by

1. σi < σj if 1 ≤ i < j ≤ |Σ|.

24

2. γi < γj if 1 ≤ i < j ≤ |Γ|.

3. σi < γj for every 1 ≤ i ≤ |Σ| and 1 ≤ j ≤ |Γ|.

Also define:

(a,S, b)− =

{

(a,S−, b−) s|S| = |a| ,
(a−,S, b) otherwise,

where a− = a[1 : |a| − 1], b− = b[1 : |b| − 1] and S− = {s1, s2, . . . , s|S|−1}, and

end(a,S, b) =
{

b[|S|] s|S| = |a| ,
a[|a|] otherwise,

We further define ord(a,S, b) recursively as follows:

1. ord(·, ·, ·) is a bijection. That is, every tuple (a,S, b) corresponds to a unique number, and
vice versa.

2. ord(ǫ, ∅, ǫ) = 0.

3. For every two tuples (a1,S1, b1) and (a2,S2, b2), ord(a1,S1, b1) < ord(a2,S2, b2) if and only if
one of the following conditions holds:

(a) |a1|+ |S1| < |a2|+ |S2|.
(b) |a1|+ |S1| = |a2|+ |S2| and ord(a1,S1, b1)− < ord(a2,S2, b2)−.
(c) |a1|+|S1| = |a2|+|S2|, ord(a1,S1, b1)− = ord(a2,S2, b2)− and end(a1,S1, b1) < end(a2,S2, b2).

Clearly, the queue Q in the algorithm is monotonic in the increasing order of ord(a,S, b).
Step 3. spanB = spanD(ρ, n2 − 1).
It is sufficient to verify the following:

Proposition B.1. ρb|(a,S) ∈ spanB for every (a,S, b) ∈ dom(ord), where B is the set B in
Algorithm 1 after it terminates.

Proof. Strengthen the proposition: ρb|(a,S) ∈ spanB(ord(a,S,b)) for every (a,S, b) ∈ dom(ord), where

B
(k) = {(a,S, b) ∈ B : ord(a,S, b) ≤ k}.

We prove it by induction on ord(a,S, b).
Basis. ord(a,S, b) = 0, i.e. (a,S, b) = (ǫ, ∅, ǫ). Then ρǫ|(ǫ,∅) is put into B because B is set to

be ∅ initially. Thus ρǫ|(ǫ,∅) ∈ B
(0) ⊆ spanB(0).

Induction. For every (a,S, b) ∈ dom(ord) with ord(a,S, b) ≥ 1, assume that

ρb′|(a′,S′) ∈ spanB(ord(a′,S′,b′))

for every (a′,S ′, b′) ∈ dom(ord) with ord(a′,S ′, b′) < ord(a,S, b).
Case 1. (a,S, b) once appears inQ: Then the algorithm guarantees that ρb|(a,S) ∈ spanB(ord(a,S,b)),

because the algorithm checks whether ρb|(a,S) ∈ spanB at that time, and if not, push ρb|(a,S) into
B.

Case 2. (a,S, b) never appears in Q. Consider the following:

25

Subcase 2.1. S is measure-closed, i.e. s|S| = |a|: Note that ord(a,S−, b−) < ord(a,S, b), by
the induction hypothesis, we have ρb−|(a,S−) ∈ spanB(ord(a,S−,b−)), then

ρb|(a,S) =Mb[|S|]ρb−|(a,S−)M
†
b[|S|]

∈Mb[|S|]

(

spanB(ord(a,S−,b−))
)

M †
b[|S|]

= span
(

Mb[|S|]B
(ord(a,S−,b−))M †

b[|S|]

)

⊆ spanB(ord(a,S−+{|a|},b−b[|S|])) = spanB(ord(a,S,b)).

Subcase 2.2. S is not measure-closed: Note that ord(a−,S, b) < ord(a,S, b), by the induction
hypothesis, we have ρb|(a−,S) ∈ spanB(ord(a−,S,b)), then

ρb|(a−,S) =
∑

ρb′|(a′,S′)∈B
(ord(a−,S,b))

αb′|(a′,S′)ρb′|(a′,S′)

for some coefficients αb′|(a′,S′). Thus,

ρb|(a,S) = Ua[|a|]ρb|(a−,S)U
†
a[|a|]

∈ Ua[|a|]

(

spanB(ord(a−,S,b))
)

U †
a[|a|]

= span
(

Ua[|a|]B
(ord(a−,S,b))U †

a[|a|]

)

⊆ spanB(ord(a−a[|a|],S,b)) = spanB(ord(a,S,b)).

Conclusion. ρb|(a,S) ∈ spanB(ord(a,S,b)) for every (a,S, b) ∈ dom(ord).

Step 4. ρs ∼ ρt if and only if tr(̺) = 0 for every ̺ ∈ B, which is immediately obtained from
Theorem 3.1 Part 1.

B.2 Correctness of Algorithm 2

The correctness of the algorithm is proved in the following steps:

Step 1. The algorithm always terminates.
Since H is a finite-dimensional Hilbert space, let n = dimH < ∞. The algorithm guarantees

that Bi(0 ≤ i ≤ k) consists of linearly independent elements, whose dimension is bounded by n2.
Thus for each 0 ≤ i ≤ k, the number of times of modifications of Bi is always bounded by n2,
or there must be two elements in Bi that are linearly dependent. Only when Bi is added a new
element for some 0 ≤ i ≤ k, will the queue Q be pushed into some other (finite) elements. On the
other hand, the algorithm pops one element from Q in every iteration of the “while” loop. Thus Q
will become empty at some time and the algorithm terminates.

Step 2. The queue Q is monotonic.
Similar to the analysis of Algorithm 1, we define ord : dom(ord) → N be the order of every

valid tuple (a,S, b), where

dom(ord) = {(a,S, b) : a ∈ Σ∗,S ∈ Sa, b ∈ Γ|S|, |S| ≤ k} ⊆ Σ∗ ×S× Γ∗

is the defining domain of ord. Clearly, the queue Q in the algorithm is monotonic in the increasing
order of ord(a,S, b).

26

Step 3. spanBi ⊆ spanBi+1 for every 0 ≤ i < k.
Obviously, this is guaranteed by the algorithm.

Step 4. spanBi = spanDi(ρ, n
2 − 1) for 0 ≤ i ≤ k.

It is sufficient to prove that following:

Proposition B.2. ρb|(a,S) ∈ spanB|S| for every (a,S, b) ∈ dom(ord), where B|S| is the set B|S| in
Algorithm 2 after it terminates.

Proof. Strengthen the proposition: ρb|(a,S) ∈ spanB
(ord(a,S,b))
|S| for every (a,S, b) ∈ dom(ord), where

B
(k)
i = {(a,S, b) ∈ B : ord(a,S, b) ≤ k, |S| ≤ i}.

We prove it by induction on ord(a,S, b).
Basis. ord(a,S, b) = 0, i.e. (a,S, b) = (ǫ, ∅, ǫ). Then ρǫ|(ǫ,∅) is put into Bi(0 ≤ i ≤ k) because

Bi(0 ≤ i ≤ k) is set to be ∅ initially. Thus ρǫ|(ǫ,∅) ∈ B
(0)
i ⊆ spanB

(0)
i for 0 ≤ i ≤ k.

Induction. For every (a,S, b) ∈ dom(ord) with ord(a,S, b) ≥ 1, assume that

ρb′|(a′,S′) ∈ spanB
(ord(a′,S′,b′))
|S|

for every (a′,S ′, b′) ∈ dom(ord) with ord(a′,S ′, b′) < ord(a,S, b).
Case 1. (a,S, b) once appears inQ: Then the algorithm guarantees that ρb|(a,S) ∈ spanB

(ord(a,S,b))
|S| ,

because the algorithm checks whether ρb|(a,S) ∈ spanB|S| at that time, and if not, push ρb|(a,S) into
B|S|.

Case 2. (a,S, b) never appears in Q. Consider the following subcases:

Subcase 2.1. S is measure-closed, i.e. s|S| = |a|: Note that ord(a,S−, b−) < ord(a,S, b), by
the induction hypothesis, we have ρb−|(a,S−) ∈ spanB

(ord(a,S−,b−))
|S|−1 , then

ρb|(a,S) =Mb[|S|]ρb−|(a,S−)M
†
b[|S|]

∈Mb[|S|]

(

spanB
(ord(a,S−,b−))
|S|−1

)

M †
b[|S|]

= span
(

Mb[|S|]B
(ord(a,S−,b−))
|S|−1 M †

b[|S|]

)

⊆ spanB
(ord(a,S−+{|a|},b−b[|S|]))
|S| = spanB

(ord(a,S,b))
|S| .

Subcase 2.2. S is not measure-closed: Note that ord(a−,S, b) < ord(a,S, b), by the induction

hypothesis, we have ρb|(a−,S) ∈ spanB
(ord(a−,S,b))
|S| , then

ρb|(a,S) = Ua[|a|]ρb|(a−,S)U
†
a[|a|]

∈ Ua[|a|]

(

spanB
(ord(a−,S,b))
|S|

)

U †
a[|a|]

= span
(

Ua[|a|]B
(ord(a−,S,b))
|S| U †

a[|a|]

)

⊆ spanB
(ord(a−a[|a|],S,b))
|S| = spanB

(ord(a,S,b))
|S| .

Conclusion. ρb|(a,S) ∈ spanB
(ord(a,S,b))
|S| for every (a,S, b) ∈ dom(ord).

Step 4. ρs ∼k ρt if and only if tr(̺) = 0 for every ̺ ∈ Bi for 0 ≤ i ≤ k, which is immediately
obtained from Theorem 3.1 Part 2.

27

C An efficient description of Problem 1

A simple form of Problem 1, analog to Proposition 5.3 about Problem 2, is given in the following:

Proposition C.1. Let M1 = (Σ,Γ,H(1), U (1),M (1)) and M2 = (Σ,Γ,H(2), U (2),M (2)) be two
QMMs with initial states ρ1 and ρ2, respectively. Let n1 = dimH1 and n2 = dimH2. Then
(M1, ρ1) ∼ (M2, ρ2) if and only if there is a (n21 + n22)× (n21 + n22) matrix Mc for every c ∈ Σ ∪ Γ
and a (n21 + n22)× (n21 + n22) matrix F such that

1. F·,1 =

[

~ρ1
~ρ2

]

.

2. η†F = 0, where η =

[

η1
−η2

]

, η1 and η2 are the vectorizations of trace for M1 and M2,

respectively.

3. For c ∈ Σ,
[

Û
(1)
c 0

0 Û
(2)
c

]

F = FMc.

4. For c ∈ Γ,
[

M̂
(1)
c 0

0 M̂
(2)
c

]

F = FMc.

The conditions of Proposition C.1 on M2, including that it be a QMM, can be phrased in
O((|Σ| + |Γ|)(n1 + n2)

4) polynomials of degree d = 3 in O((|Σ| + |Γ|)(n1 + n2)
4) variables, better

than O((|Σ|+ |Γ|)(n1+n2)6) polynomials of degree d = 3 in O((|Σ|+ |Γ|)(n1+n2)6) variables given
by Proposition 5.3 when k = O((n1 + n2)

2). By Theorem 5.4, Problem 1 is solvable in PSPACE.

Proof. “=⇒” If (M1, ρ1) ∼ (M2, ρ2), then

tr((ρ1)
M1

b|a,S) = tr((ρ2)
M2

b|a,S)

for every a ∈ Σ∗, S ∈ S and b ∈ Γ|S|. Let ρ = ρ1 ⊕ ρ2, then

ρM1⊕M2

b|a,S = (ρ1)
M1

b|a,S ⊕ (ρ2)
M2

b|a,S .

Let n = n21 + n22, let ρ
(1), ρ(2), . . . , ρ(n) ∈ D(ρ, n− 1) be the basis of spanD(ρ, n− 1) with ρ(1) = ρ,

and let ρ(i) = ρ
(i)
1 ⊕ ρ

(i)
2 and

fi =

[

~ρ
(i)
1

~ρ
(i)
2

]

.

Note that tr(ρ
(i)
1) = tr(ρ

(i)
2). Define F =

[

f1 f2 . . . fn
]

. Note that

η†fi = η1~ρ
(i)
1 − η2~ρ

(i)
2 = tr(ρ

(i)
1)− tr(ρ

(i)
2) = 0.

We conclude that η†F = 0.
For every σ ∈ Σ, for every ρ(j) = ρb|a,S ∈ D(ρ, n−1), by Proposition A.2, ρb|aσ,S ∈ spanD(ρ, n−

1), then

ρb|aσ,S =

n
∑

i=1

αijρ
(i)

28

for some coefficients αij , i.e.

(ρ1)b|aσ,S = U (1)
σ ρ

(j)
1 (U (1)

σ)† =
n
∑

i=1

αijρ
(i)
1 ,

(ρ2)b|aσ,S = U (2)
σ ρ

(j)
2 (U (2)

σ)† =

n
∑

i=1

αijρ
(i)
2 .

Then

Û (1)
σ ~ρ

(j)
1 =

n
∑

i=1

αij~ρ
(i)
1 ,

Û (2)
σ ~ρ

(j)
2 =

n
∑

i=1

αij~ρ
(i)
2 .

That is,

[

Û
(1)
σ 0

0 Û
(2)
σ

]

fj = F











α1j

α2j
...
αnj











,

and we obtain that
[

Û
(1)
σ 0

0 Û
(2)
σ

]

F = FMσ,

where Mσ = [αij].
For every m ∈ Γ, similarly, we have

[

M̂
(1)
m 0

0 M̂
(2)
m

]

F = FMm

for some Mm.

“⇐=”. For every a ∈ Σ∗, S ∈ Sa and b ∈ Γ|S|,
[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

F = FMb|a,S ,

where
Mb|a,S =Ma1Mb1Ma2Mb2 . . .Ma|S|

Mb|S|
Ma|S|+1

.

Then

tr((ρ1)b|a,S)− tr((ρ2)b|a,S) = η†1(~ρ1)b|a,S − η†2(~ρ2)b|a,S

=

[

η1
−η2

]†
[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

[

~ρ1
~ρ2

]

= η†

[

V̂
(1)
b|a,S 0

0 V̂
(2)
b|a,S

]

Fe1

= η†FMb|a,Se1

= 0,

where e1 = (1, 0, 0, . . . , 0)T .

29

	1 Introduction
	2 Basic Definitions
	3 Main Results
	3.1 Checking equivalence of states
	3.2 Checking equivalence of machines
	3.3 Minimization of machines
	3.4 Remarks

	4 Case Studies
	5 Proofs of Theorems
	5.1 Proof of Theorem 3.1
	5.2 Proof of Theorem 3.2
	5.3 Proof of Theorem 3.3
	5.4 Proof of Theorem 3.4

	6 Conclusion
	References
	A A simple proof of Part 1 of Theorem 3.1
	B Correctness of the algorithms
	B.1 Correctness of Algorithm 1
	B.2 Correctness of Algorithm 2

	C An efficient description of Problem 1

