
Highlights

On the Fast Delivery Problem
with One or Two Packages?

Iago A. Carvalho, Thomas Erlebach, Kleitos Papadopoulos

• In a graph with n vertices and m edges, the fast delivery problem with
one package and k agents can be solved efficiently in O(kn log n+ km)
time.

• The fast delivery problem with two packages is NP-hard for agents with
arbitrary velocities.

• The fast delivery problem with a constant number of packages is polynomial-
time solvable for agents with equal velocity.

On the Fast Delivery Problem

with One or Two Packages

Iago A. Carvalhoa,b,1, Thomas Erlebachc,∗, Kleitos Papadopoulosc

aInstitute of Computing, Universidade Estadual de Campinas, Brazil
bDepartment of Computer Science, Universidade Federal de Minas Gerais, Brazil

cSchool of Informatics, University of Leicester, England, UK

Abstract

We study two problems where k autonomous mobile agents are initially lo-
cated on distinct nodes of a weighted graph with n nodes and m edges. Each
agent has a predefined velocity and can only move along the edges of the
graph. The first problem is to deliver one package from a source node to a
destination node. The second is to simultaneously deliver two packages, each
from its source node to its destination node. These deliveries are achieved by
the collective effort of the agents, which can carry and exchange a package
among them. For one package, we propose an O(kn log n + km) time algo-
rithm for computing a delivery schedule that minimizes the delivery time.
For two packages, we show that the problem of minimizing the maximum or
the sum of the delivery times is NP-hard for arbitrary agent velocities, but
polynomial-time solvable for agents with equal velocity.

Keywords: Mobile agents, Dijkstra’s algorithm, Polynomial-time
algorithm, Time-dependent shortest paths, NP-hardness

?A preliminary version of this work has been presented at the 22nd International Sym-
posium on Fundamentals of Computation Theory (FCT 2019) [1].
∗Corresponding author
Email addresses: iagoac@ic.unicamp.br (Iago A. Carvalho),

te17@leicester.ac.uk (Thomas Erlebach), kleitospa@gmail.com (Kleitos
Papadopoulos)

URL: https://iagoac.github.io/ (Iago A. Carvalho)
1Iago A. Carvalho was financed in part by the Coordenação de Aperfeiçoamento de

Pessoal de Nı́vel Superior - Brasil (CAPES) - Finance Code 001.

Preprint submitted to Journal of Computer and System Sciences July 6, 2020

1. Introduction1

Enterprises, such as DHL, UPS, Swiss Post, and Amazon, are now de-2

livering goods and packages to their clients using autonomous drones [2, 3].3

Those drones depart from a base (which can be static, such as a warehouse [4],4

or mobile, such as a truck or a van [5]) and deliver the package into their5

clients’ houses or in the street. However, packages are not delivered to a6

client that is too far from the drone’s base due to the energy limitations of7

such autonomous aerial vehicles.8

In the literature, we find some proposals for delivering packages over a9

longer distance. One of them, proposed by Hong, Kuby, and Murray [4],10

is to install recharging bases in several spots, which allows a drone to stop,11

recharge, and continue its path. However, this strategy may result in a12

delayed delivery, because drones may stop several times to recharge during13

a single delivery.14

A manner to overcome this limitation is to use a swarm of drones. The15

idea of this technique is to position drones in recharging bases all over the16

delivery area. Therefore, a package can be delivered from one place to another17

through the collective effort of such drones, which can exchange packages18

among them to achieve a faster delivery. One may note that, when not19

carrying a package, a drone is stationed in its recharging base, waiting for the20

next package arrival. The problem of computing a package delivery schedule21

with minimum delivery time for a single package is called the FastDelivery22

problem [6].23

We can model the input to the FastDelivery problem as a graph G =24

(V,E) with |V | = n and |E| = m, with a positive length le associated with25

each edge e ∈ E, and a set of k autonomous mobile agents (e. g., autonomous26

drones) located initially on distinct nodes p1, p2, . . . , pk of G. Each agent i27

has a predefined velocity (or speed) νi > 0. Mobile agent i can traverse an28

edge e of the graph in le/νi time. The package handover between agents can29

be done on the nodes of the graph or in any point of the graph’s edges, as30

exemplified in Fig. 1. The objective of FastDelivery is to deliver a single31

package, initially located in a source node s ∈ V , to a target node y ∈ V32

while minimizing the delivery time T .33

Bärtschi et al. [6] also consider the case where each agent i is additionally34

associated with a weight ωi > 0 and consumes energy ωi · le when traversing35

edge e. For this model, the total energy consumption E of a solution becomes36

relevant as well, and one can consider the objective of minimizing E among37

2

a b a b

(a)

a b a b

(b)

Figure 1: (a) Package exchange on a node; (b) package exchange on an edge.

all solutions that have the minimum delivery time T (or vice versa), or of38

minimizing a convex combination ε · T + (1− ε) · E for a given ε ∈ (0, 1). In39

this paper, we do not consider the energy consumption.40

We also study a variant of FastDelivery with two packages, which is41

denoted by FastDelivery-2. Here, one package needs to be delivered from42

s1 to y1 and the other from s2 to y2, where s1, s2, y1, y2 ∈ V . It is assumed43

that a mobile agent cannot carry more than one package simultaneously. Let44

Ti denote the delivery time of package i, for i ∈ {1, 2}. We consider two45

different objective functions: The first is the min-max objective function,46

which minimizes the maximum between T1 and T2. The second is the min-47

sum objective function, which minimizes T1 +T2. For the case of agents with48

equal speed, we also study the problem variant with an arbitrary number c49

of packages, denoted FastMultiDelivery.50

1.1. Related Work51

The problem of delivering packages through a swarm of autonomous52

drones has been studied in the literature. The work of Bärtschi et al. [7]53

considers the problem of delivering packages while minimizing the total en-54

ergy consumption of the drones. In their work, all drones have the same55

velocity but may have different weights, and the package’s exchanges be-56

tween drones are restricted to take place on the graph’s nodes. They show57

that this problem is NP-hard when an arbitrary number of packages need58

to be simultaneously delivered, but can be solved in polynomial time for a59

single package, with complexity O(k + n3).60

When minimizing only the delivery time T , one can solve the problem of61

delivering a single package with autonomous mobile agents with different ve-62

locities in polynomial-time: Bärtschi et al. [6] gave an O(k2m+kn2 +APSP)63

algorithm for this problem, where APSP stands for the time complexity of64

the All-Pairs Shortest Paths problem in an undirected graph with n nodes65

and m edges. Closer inspection shows that their algorithm only requires the66

3

shortest-path distances between the k initial agent locations and all other67

nodes of the graph, and hence the APSP term in the running time can be re-68

placed by O(k(m+n log n)) for executing Dijkstra’s algorithm (implemented69

with Fibonacci heaps as priority queue [8]) k times, yielding a running time70

of O(k2m+kn2) for their algorithm for the FastDelivery problem. For the71

problem with many packages, Bärtschi [9, Chapter 3.2] showed NP-hardness72

for both the min-sum and the min-max objective, even if the graph is planar73

and there is a single agent (no matter whether the agent can carry only one74

package at a time or is able to carry multiple packages simultaneously). This75

shows that the problem is NP-hard for many packages also if all agents have76

the same speed. To the best of our knowledge, the complexity of the problem77

for a constant number of packages has been open.78

Some work in the literature considered the minimization of both the total79

delivery time and the energy consumption. It was shown that the problem80

of delivering a single package with autonomous agents of different velocities81

and weights is solvable in polynomial-time when lexicographically minimizing82

the tuple (E , T) [10]. On the other hand, it is NP-hard to lexicographically83

minimize the tuple (T , E) or a convex combination of both parameters [6].84

A closely related problem is the BudgetedDeliveryProblem (BDP)85

[11, 12, 13], in which a package needs to be delivered by a set of energy-86

constrained autonomous mobile agents. In BDP, the objective is to compute87

a route to deliver a single package while respecting the energy constraints88

of the autonomous mobile agents. This problem is weakly NP-hard in line89

graphs [11] and strongly NP-hard in general graphs [12]. A variant of this90

problem is the ReturningBudgetedDeliveryProblem (RBDP) [13],91

which imposes the additional constraint that the energy-constrained au-92

tonomous agents must return to their original positions after carrying the93

package. Surprisingly, this new restriction makes RBDP solvable in poly-94

nomial time in trees. However, it is still strongly NP-hard even for planar95

graphs.96

Gasieniec et al. [14] studied a variant of the classical search problem, also97

known as the cow-path problem. In this problem variant, an agent aims to98

reach the location of a target as quickly as possible and the search space99

contains additional expulsion points. Visiting an expulsion point updates100

the speed of the agent to the maximum between its current speed and the101

expulsion speed associated with that expulsion point. They present online102

and offline algorithms for one- and two-dimensional search.103

4

1.2. Our Contributions104

For the FastDelivery problem, we provide an O(kn log n + km) time105

algorithm for computing a delivery schedule with the minimum delivery time.106

This is more efficient than the previously knownO(k2m+kn2) time algorithm107

for this problem [6]. For the FastDelivery-2 problem, we prove that it is108

NP-hard for both the min-sum and the min-max objective functions. While109

NP-hardness was known for the case with a large number of packages [9],110

our result shows that, surprisingly, the problem is NP-hard even for just two111

packages. For the special case where all agents have the same speed, we112

show that the problem can be solved optimally in polynomial time for any113

constant number of packages.114

The remainder of the paper is structured as follows. Preliminaries are pre-115

sented in Section 2. Then, we describe our algorithm to solve FastDelivery116

in Section 3. The algorithm uses as a subroutine, called once for each edge117

of G, an algorithm for a problem that we refer to as FastLineDelivery,118

which is presented in Section 4. In Section 5, we prove that FastDelivery-119

2 is NP-hard for both the min-max and the min-sum objective functions, and120

we show that the problem can be solved in polynomial time for any constant121

number of packages if all the agents have the same speed. Conclusions are122

presented in Section 6.123

2. Preliminaries124

As mentioned in Section 1, in the FastDelivery problem we are given125

an undirected graph G = (V,E) with n = |V | nodes and m = |E| edges.126

Each edge e ∈ E has a positive length le. We denote by d(u, v) the sum of127

the lengths of the edges on a shortest path (with respect to edge lengths)128

from u to v in G. Generalizing the standard terminology of paths in graphs,129

we allow paths that can start on a node or in some point in the interior of an130

edge. Analogously, paths can end on a node or in some point in the interior131

of an edge. The length of a path is equal to the sum of the lengths of its132

edges. If a path starts or ends at a point in the interior of an edge, only the133

portion of its length that is traversed by the path is counted. For example,134

a path that is entirely contained in an edge e = {u, v} of length le = 10 and135

starts at distance 2 from u and ends at distance 5 from u has length 3.136

We are also given a number k ≤ n of mobile agents, which are initially137

located at nodes p1, p2, . . . , pk ∈ V . Each agent i has a positive velocity138

(or speed) νi, 1 ≤ i ≤ k. A single package is located initially (at time 0)139

5

on a given source node s ∈ V and needs to be delivered to a given target140

node y ∈ V . An agent can pick up the package in one location and drop it141

off (or hand it to another agent) in another one. An agent with velocity νi142

takes time d/νi to carry a package over a path of length d. The objective143

of FastDelivery is to determine a schedule for the agents to deliver the144

package to node y as quickly as possible, i.e., to minimize the time T when145

the package reaches y.146

For an instance of FastDelivery, we assume that there is at most one147

agent on each node. This assumption can be justified by the fact that, if148

there were several agents on the same node, we would use only the fastest149

one among them. Therefore, as already observed in [6], after a preprocessing150

step running in time O(k + |V |), we may assume that k ≤ n.151

The following lemma from [6] establishes some useful properties of an152

optimal delivery schedule for the mobile agents.153

Lemma 1 (Bärtschi et al., 2018). For every instance of FastDelivery,154

there is an optimum solution in which (i) the velocities of the involved agents155

are strictly increasing, and (ii) no involved agent arrives at its pick-up loca-156

tion earlier than the package (carried by the preceding agent).157

Lemma 1 implies that an agent carries a package at most once during the158

delivery, as the velocity of the carrying agent is monotonically increasing.159

This implication will be useful in the proof of Theorem 2.160

In the FastDelivery-2 problem, the input is the same as for the Fast-161

Delivery problem, except that there are two packages, each specifying a162

source and a destination node. At any time, each agent can carry at most163

one of the two packages. Let T1 and T2 denote the time when the agents164

deliver the first and second package, respectively, to their destinations. With165

the min-max objective, the goal it to determine a schedule that minimizes166

max{T1, T2}. With the min-sum objective, the goal it to determine a schedule167

that minimizes T1 + T2.168

3. Algorithm for the Fast Delivery Problem169

Bärtschi et al. [6] present a dynamic programming algorithm that com-170

putes an optimum solution for FastDelivery in time O(k2m + kn2) ⊆171

O(k2n2) ⊆ O(n4) (where we omit the APSP term of the running time stated172

in [6], as discussed in Section 1.1). We design an improved algorithm, shown173

6

as Algorithm 1, with running time O(km + nk log n) ⊆ O(n3) by showing174

that the problem can be solved by adapting the approach of Dijkstra’s al-175

gorithm for edges with time-dependent transit times [15, 16]. We will prove176

the following theorem.177

Theorem 2. Algorithm 1 computes an optimal solution to the FastDeliv-178

ery problem in O(nk log n+mk) time.179

For any edge {u, v}, we denote by at(u, v) the earliest time for the package180

to arrive at v if the package is at node u at time t and needs to be carried181

over the edge {u, v}. We refer to the subproblem of computing at(u, v), for182

a given value of t that represents the earliest time when the package can183

reach u, as FastLineDelivery. Solving this problem efficiently is a crucial184

part of our algorithm. In Section 4, we will show that FastLineDelivery185

can be solved in O(k) time after a preprocessing step that spends O(k log k)186

time per node. Our preprocessing calls PreprocessReceiver(v) once for187

each node v ∈ V \ {s} at the start of the algorithm. Then, it calls Pre-188

processSender(u, t) once for each node u ∈ V , where t is the earliest time189

when the package can reach u. Both preprocessing steps run in O(k log k)190

time per node. Once both preprocessing steps have been carried out, a call191

to FastLineDelivery(u, v, t) computes at(u, v) in O(k) time.192

Algorithm 1 shows the pseudo-code for our solution for FastDelivery.193

Initially, we run Dijkstra’s algorithm to solve the single-source shortest paths194

problem for each node where an agent is located initially (line 2). This takes195

time O(k(n log n+m)) if we use the implementation of Dijkstra’s algorithm196

with Fibonacci heaps as priority queue [8] and yields the distance d(pi, v)197

(with respect to edge lengths le) between any node pi where an agent is198

located and any node v ∈ V . From this we compute, for every node v, the199

earliest time when each mobile agent can arrive at that node: The earliest200

possible arrival time of agent i at node v is ai(v) = d(pi, v)/νi. Then, we201

create a list of the arrival times of the k agents on each node (line 3). For each202

node, we sort the list of the k agents by ascending arrival time in O(k log k)203

time, or O(nk log k) in total for all nodes. We then discard from the list of204

each node all agents that arrive at the same time or after an agent that is205

strictly faster. If several agents with the same velocity arrive at the same206

time, we keep one of them arbitrarily. Let A(v) denote the resulting list for207

node v. Those lists will be used in the solution of the FastLineDelivery208

problem described in Section 4.209

7

Algorithm 1: Algorithm for FastDelivery

Data: graph G = (V,E) with positive edge lengths le and source
node s ∈ V , target node y ∈ V ; k agents with velocity νi and
initial location pi for 1 ≤ i ≤ k

Result: earliest arrival time dist(y) for package at destination
1 begin
2 compute d(pi, v) for 1 ≤ i ≤ k and all v ∈ V ;
3 construct list A(v) of agents in order of increasing arrival times

and velocities for each v ∈ V ;
4 PreprocessReceiver(v) for all v ∈ V \ {s};
5 dist(s)← ts; /* time when first agent reaches s */

6 dist(v)←∞ for all v ∈ V \ {s};
7 final(v)← false for all v ∈ V ;
8 insert s into priority queue Q with priority dist(s);
9 while Q not empty do

10 u← node with minimum dist value in Q;
11 delete u from Q;
12 final(u)← true;
13 if u = y then
14 break;
15 end
16 t← dist(u); /* time when package reaches u */

17 PreprocessSender(u, t);
18 forall neighbors v of u with final(v) = false do
19 at(u, v)← FastLineDelivery(u, v, t);
20 if at(u, v) < dist(v) then
21 dist(v)← at(u, v);
22 if v ∈ Q then
23 decrease priority of v to dist(v);
24 else
25 insert v into Q with priority dist(v);
26 end

27 end

28 end

29 end
30 return dist(y);

31 end

8

For each node v, we maintain a value dist(v) that represents the current210

upper bound on the earliest time when the package can reach v (lines 5211

and 6). The algorithm maintains a priority queue Q containing nodes that212

have a finite dist value, with the dist value as the priority (line 8). In each213

step, a node u with minimum dist value is removed from the priority queue214

(lines 10 and 11), and the node becomes final (line 12). Nodes that are not215

final are called non-final. The dist value of a final node will not change any216

more and represents the earliest time when the package can reach the node217

(line 16). After u has been removed from the priority queue, we compute218

for each non-final neighbor v of u the time at(u, v), where t = dist(u), by219

solving the FastLineDelivery problem (line 19). If v is already in Q, we220

compare at(u, v) with dist(v) and, if at(u, v) < dist(v), update dist(v) to221

dist(v) = at(u, v) and adjust the priority of v in Q accordingly (line 23). On222

the other hand, if v is not yet in Q, we set dist(v) = at(u, v) and insert v223

into Q (line 25).224

Let ts be the earliest time when an agent reaches s (or 0, if an agent225

is located at s initially). Let i′ be that agent. As the package must stay226

at s from time 0 to time ts, we can assume that i′ brings the package to227

s at time ts. Therefore, we initially set dist(s) = ts and insert s into the228

priority queue Q with priority ts. The algorithm terminates when y becomes229

final (line 14) and returns the value dist(y), i.e., the earliest time when the230

package can reach y. The schedule that delivers the package to y by time231

dist(y) can be constructed in the standard way, by storing for each node v the232

predecessor node u such that dist(v) = adist(u)(u, v) and the schedule of the233

solution to FastLineDelivery(u, v, dist(u)). We are now ready to prove234

Theorem 2.235

Proof (of Theorem 2). First, we note that it is easy to see that at(u, v) ≤236

at′(u, v) holds for t′ ≥ t in our setting: If the package arrives at u at time t237

and if we had at′(u, v) < at(u, v) for some t′ > t, the package could simply238

wait at u until time t′ and then get transported to v in the same way as239

if it had reached u at time t′. The package would reach v at time at′(u, v),240

contradicting the assumption that at′(u, v) < at(u, v). Thus, the network has241

the FIFO property (or non-overtaking property), and it is known that the242

modified Dijkstra algorithm is correct for such networks [16].243

Furthermore, we can observe that concatenating the solutions of Fast-244

LineDelivery (which are computed by Algorithm 4 in Section 4 and which245

are correct by Theorem 3 in Section 4) over the edges of the shortest path246

9

from s to y determined by Algorithm 1 indeed gives a feasible solution to247

FastDelivery: Assume that the package reaches u at time t while being248

carried by agent i and is then transported from u to v over edge {u, v}, reach-249

ing v at time at(u, v). The only agents involved in transporting the package250

from u to v in the solution returned by FastLineDelivery(u, v, t) will have251

velocity at least νi because agent i arrives at u before time t, i.e., ai(u) ≤ t,252

and hence no slower agent would be used to transport the package from u253

to v. These agents have not been involved in transporting the package from254

s to u by property (i) of Lemma 1, except for agent i who is indeed available255

at node u from time t.256

The running time of the algorithm consists of the following components:257

Computing standard shortest paths with respect to the edge lengths le from258

the locations of the agents to all other nodes takes O(k(n log n + m)) time.259

The time complexity of the Dijkstra algorithm with time-dependent transit260

times for a graph with n nodes and m edges is O(n log n+m). The only extra261

work performed by our algorithm consists of O(k log k) pre-processing time262

for each node and O(k) time per edge for solving the FastLineDelivery263

problem, a total of O(nk log k +mk) ⊆ O(nk log n+mk) time. �264

4. An Algorithm for Fast Line Delivery265

In this section we present the solution to FastLineDelivery that was266

used as a subroutine in the previous section. We consider the setting of a267

single edge e = {u, v} with end nodes u and v. The objective is to deliver268

the package from node u to node v over edge e as quickly as possible. In our269

illustrations, we use the convention that v is drawn on the left and u is drawn270

on the right. We assume that the package reaches u at time t (where t is the271

earliest possible time when the package can reach u) while being carried by272

an agent ā. We will prove the following theorem.273

Theorem 3. Algorithm 4 solves FastLineDelivery(u, v, t) in O(k) time,274

assuming that PreprocessReceiver(v) and PreprocessSender(u, t),275

which take time O(k log k) each, have already been executed.276

The fastest delivery of the package over the edge from u to v where the277

package makes the maximum possible progress towards v at any time could in278

general have the following form: First, agent ā will start to carry the package279

towards v. Then, repeatedly one of the following two types of handover events280

10

will happen: Either a faster agent coming from u will catch up with the agent281

currently carrying the package, take over the package, and start to carry it282

further towards v; or a faster agent coming from v will reach the package-283

carrying agent, take over the package, turn around, and start to move back284

towards v with the package. Solving an instance of FastLineDelivery285

in O(k2) time would be fairly straightforward, because it is not difficult to286

determine the next such handover event in O(k) time. Our contribution is287

to show that FastLineDelivery can be solved in O(k) time provided that288

a preprocessing step that takes O(k log k) time has been carried out for u289

and v beforehand. The key idea is to use a geometric representation of the290

agent movements and employ techniques from computational geometry to291

determine the handover events efficiently. In particular, the movements of292

the agents potentially coming from u and helping to transport the package293

can be represented as the lower envelope L of the corresponding line segments,294

and the agents potentially coming from v to help with the package delivery295

can be represented as a planar arrangement. It then suffices to trace L and,296

at each intersection point with the planar arrangement that corresponds to297

a meeting point with a faster agent, update L by adding a line segment298

corresponding to that faster agent.299

As discussed in the previous section, let A(v) = (a1, a2, . . . , a`) be the300

list of agents possibly arriving at node v in order of increasing velocities and301

increasing arrival times. For 1 ≤ i ≤ `, denote by ti the time when ai reaches302

v, and by νi the velocity of agent ai. We have ti < ti+1 and νi < νi+1 for303

1 ≤ i < `.304

Let B(u) = (b1, b2, . . . , br) be the list of agents with increasing velocities305

and increasing arrival times possibly arriving at node u, starting with the306

agent ā whose arrival time is set to t. The list B(u) can be computed from307

A(u) in O(k) time by discarding all agents slower than ā and setting the308

arrival time of ā to t. Note that B(u) cannot contain any agent that is faster309

than ā and arrives at u before t because such an agent would have travelled310

towards the package and picked it up from ā before time t. For 1 ≤ i ≤ r,311

let t′i denote the time when bi reaches u, and let ν ′i denote the velocity of bi.312

We have t′i < t′i+1 and ν ′i < ν ′i+1 for 1 ≤ i < r.313

As k is the total number of agents, we have ` ≤ k and r ≤ k. In the314

following, we first introduce a geometric representation of the agents and their315

potential movements in transporting the package from u to v (Section 4.1)316

and then present the algorithm for FastLineDelivery (Section 4.2).317

11

v towards u

time

v towards u

time

Figure 2: Geometric representation of agents moving from v towards u (left), and their
relevant arrangement with removed half-lines shown dashed (right).

4.1. Geometric Representation and Preprocessing318

Figure 2 shows a geometric representation of how agents a1, . . . , a` move319

towards u if they start to move from v to u immediately after they arrive320

at v. The vertical axis represents time, and the horizontal axis represents the321

distance from v (in the direction towards u or, more generally, any neighbor322

of v). The movement of each agent ai can be represented by a line with the323

line equation y = ti+x/νi (i.e., the y value is the time when agent ai reaches324

the point at distance x from v). After an agent is overtaken by a faster agent,325

the slower agent is no longer useful for picking up the package and returning326

it to v, so we can discard the part of the line of the slower agent that lies to327

the right of such an intersection point with the line of a faster agent. After328

doing this for all agents (only the fastest agent a` does not get overtaken329

and will not have part of its line discarded), we obtain a representation that330

we call the relevant arrangement Ψ of the agents a1, . . . , a`. In the relevant331

arrangement, each agent ai is represented by a line segment that starts at332

(0, ti), lies on the line y = ti + x/νi, and ends at the first intersection point333

between the line for ai and the line of a faster agent aj, j > i. For the334

fastest agent a`, there is no faster agent, and so the agent is represented by335

a half-line. One can view the relevant arrangement as representing the set of336

all points where an agent from A(v) travelling towards u could receive the337

package from a slower agent travelling towards v.338

The relevant arrangement has size O(k) because each intersection point339

can be charged to the slower of the two agents that create the intersection. It340

can be computed in O(k log k) time using a sweep-line algorithm very similar341

to the algorithm by Bentley and Ottmann [17] for line segment intersection.342

12

The relevant arrangement is created by a call to PreprocessReceiver(v)343

(see Algorithm 2).344

Algorithm 2: Algorithm PreprocessReceiver(v)

Data: Node v (and list A(v) of agents arriving at v)
Result: Relevant arrangement Ψ

1 Create a line y = ti + x/νi for each agent ai in A(v);
2 Use a sweep-line algorithm (starting at x = 0, moving towards larger

x values) to construct the relevant arrangement Ψ;

Algorithm 3: Algorithm PreprocessSender(u, t)

Data: Node u (and list A(u) of agents arriving at u), time t when
package arrives at u (carried by agent ā)

Result: Lower envelope L of agents carrying package away from u
1 B(u)← A(u) with agents slower than ā removed and arrival time

of ā set to t;
2 Create a line y = t′i − x/ν ′i for each agent bi in B(u);
3 Use a sweep-line algorithm (starting at x = 0, moving towards

smaller x values) to construct the lower envelope L;

For the agents in the list B(u) = (b1, . . . , br) that move from u towards345

v, we use a similar representation. However, in this case we only need to346

determine the lower envelope of the lines representing the agents. See Fig. 3347

for an example. The lower envelope L has size O(k) and can be computed348

in O(k log k) time2 (e.g., using a sweep-line algorithm, or via computing the349

convex hull of the points that are dual to the lines [18, Sect. 11.4]). The call350

PreprocessSender(u, t) (see Algorithm 3) determines the list B(u) from351

A(u) and t in O(k) time and then computes the lower envelope of the agents352

in B(u) in time O(k log k). When we consider a particular edge e = {u, v},353

we place the lower envelope L in such a way that the position on the x-axis354

that represents u is at x = le. We say in this case that the lower envelope355

2Actually it would be possible to compute the lower envelope L in O(k) time since
the lines are given to us ordered by y-intercept and slope, but since we already spend
O(k log k) time at each node to produce the sorted list of agent arrivals (see Step 2 of
Algorithm 1 in Section 3), we do not explore such opportunities for improvement.

13

time

towards v

t

u

Figure 3: Geometric representation of agents moving from u towards v (lower envelope
highlighted).

is anchored at x = le. Algorithm 3 creates the lower envelope anchored at356

x = 0, and the lower envelope anchored at x = le can be obtained by shifting357

it right by le.358

4.2. Main Algorithm for Fast Line Delivery359

Assume we have computed the relevant arrangement Ψ of the agents in360

the list A(v) = (a1, . . . , a`) and the lower envelope L of the lines representing361

the agents in the list B(u) = (b1, b2, . . . , br).362

The lower envelope L of the agents in B(u) represents the fastest way for363

the package to be transported from u to v if only agents in B(u) contribute to364

the transport and these agents move from u towards v as quickly as possible.365

At each time point during the transport, the package is at the closest point366

to v that it can reach if only agents in B(u) travelling from u to v contribute367

to its transport. We say that such a schedule where the package is as close368

to v as possible at all times is fastest and foremost (with respect to a given369

set of agents).370

The agents in A(v) can potentially speed up the delivery of the package371

to v by travelling towards u, picking up the package from a slower agent that372

is currently carrying it, and then turning around and moving back towards373

v as quickly as possible. By considering intersections between L and the374

relevant arrangement Ψ of A(v), we can find all such potential handover375

points. More precisely, we trace L from u (i.e., x = d(u, v)) towards v376

14

(i.e., x = 0). Assume that q is the first point where a handover is possible.377

We distinguish two cases: (1) If a faster agent j from A(v) can receive the378

package from a slower agent i at point q of L, we update L by computing the379

lower envelope of L and the half-line `j representing the agent j travelling380

from point q towards v. This update can be implemented by tracing the381

lower envelope L and the half-line `j until they intersect again at a point q′,382

and then replacing the part of L between q and q′ by `j; or, if `j does not383

intersect L again, the part of L from q onward is replaced by `j. The time384

complexity for this update is O(g), where g is the number of line segments385

removed from L. (2) If the intersection point q is with an agent j from A(v)386

that is not faster than the agent i that is currently carrying the package, we387

ignore the intersection point. We then continue to trace L towards v and388

process the next intersection point in the same way. We repeat this step389

until we reach v (i.e., x = 0). The final L represents an optimum solution to390

the FastLineDelivery problem, and the y-value of L at x = 0 represents391

the arrival time of the package at v. See Algorithm 4 for pseudo-code of the392

resulting algorithm.393

An illustration of step 7 of Algorithm 4, which updates L by incorporating394

a faster agent from A(v), is shown in Fig. 4. As mentioned above, the time for395

executing this step is O(g), where g is the number of segments removed from396

L in the operation. As a line segment corresponding to an agent can only be397

removed once, the total time spent in executing step 7 (over all executions398

of step 7 while running Algorithm 4) is O(k).399

Finally, we need to analyze how much time is spent in finding intersec-400

tion points with line segments of the relevant arrangement Ψ while following401

the lower envelope L from u to v. See Fig. 5 for an illustration. We store402

the relevant arrangement using standard data structures for planar arrange-403

ments [19], so that we can follow the edges of each face in clockwise or404

counter-clockwise direction efficiently (i.e., we can go from one edge to the405

next in constant time) and move from an edge of a face to the instance of406

the same edge in the adjacent face in constant time. This representation also407

allows us to to trace the lower envelope of Ψ in time O(k).408

First, we remove from Ψ all line segments corresponding to agents that409

are not faster than ā (recall that ā is the agent that brings the package410

to node u at time t). Then, in order to find the first intersection point q1411

between L and Ψ, we can trace L and the lower envelope of Ψ from u towards412

v in parallel until they meet. One may observe that L cannot be above the413

lower envelope of Ψ at u because otherwise an agent faster than ā reaches414

15

Algorithm 4: Algorithm FastLineDelivery(u, v, t)

Data: Edge e = {u, v}, earliest arrival time t of package at u, lists
A(u) and A(v)

Result: Earliest time when package reaches v over edge {u, v}
/* Assume PreprocessReceiver(v) and PreprocessSender(u, t)

have already been called. */

1 L← lower envelope of agents B(u) anchored at x = le;
2 Ψ← relevant arrangement of A(v);
3 start tracing L from u (i.e., x = le) towards v (i.e., x = 0);
4 while v (i.e., x = 0) is not yet reached do
5 q ← next intersection point of L and Ψ;

/* assume q is intersection of agent i from L and

agent j from Ψ */

6 if νj > νi then
7 replace L by the lower envelope of L and the line for agent j

moving left from point q;

8 else
9 ignore q

10 end

11 end
12 return y-value of L at x = 0

q

q′

i

j

j

i

time

utowards v

t

q

q′

j

i

time

utowards v

t

Figure 4: Agent i meets a faster agent j at intersection point q (left). The part of L from
q to q′ has been replaced by a line segment representing agent j carrying the package
towards v (right).

16

u before time t, and that agent could pick up the package from ā before415

time t and deliver it to u before time t, a contradiction to t being the earliest416

arrival time for the package at u. This takes O(k) time. After computing417

one intersection point qi (and possibly updating L as shown in Fig. 4), we418

find the next intersection point by following the edges on the inside of the419

next face in counter-clockwise direction until we hit L again at qi+1. This420

process is illustrated by the dashed arrow in Fig. 5, showing how q2 is found421

starting from q1. Hence, the total time spent in finding intersection points is422

bounded by the initial size of L and the number of edges of all the faces of423

the relevant arrangement, which is O(k).424

v

q1

q2
q3

q4

f L

time

u
t

Figure 5: Intersection points q1, q2, q3, q4 between the lower envelope L (highlighted in
bold) and the relevant arrangement Ψ. Point q2 is found from q1 by simultaneously tracing
L and the edges of the face f of Ψ in counter-clockwise direction.

Proof (of Theorem 3). The claimed running time follows from the dis-425

cussion above. Correctness follows by observing that the following invariant426

holds: If the algorithm has traced L up to position (x0, y0), then the current427

L (i.e., the result of all update operations that have been applied to L up to428

now) represents the fastest and foremost solution for transporting the pack-429

age from u to v using only agents in B(u) and agents from A(v) that can430

reach the package by time y0. �431

5. Fast Delivery with Multiple Packages432

In this section we first consider the decision version of FastDelivery-2433

with min-max objective: We are given a graph G = (V,E) with positive edge434

17

lengths, the source and destination node for each of the two packages, the435

speeds and initial locations of all agents, and a rational number H. The task436

is to decide if there is a schedule for the agents that delivers both packages437

to their respective destinations by time H. Afterwards, we consider the min-438

sum objective. We will prove that FastDelivery-2 is NP-hard for both439

the min-max and the min-sum objective functions. Finally, we consider the440

special case where all agents have the same speed and show that the problem,441

both for the min-max and the min-sum objective, can be solved optimally442

in polynomial time in that case for any constant number of packages. This443

justifies the use of agents with different velocities in the NP-hardness proof444

for two packages.445

The remainder of this section is structured as follows. In Section 5.1,446

we give an overview of the ideas underlying our NP-hardness proof for the447

decision version of FastDelivery-2. In Section 5.2 we describe and analyze448

a building block that is then used as part of the reduction to show NP-449

hardness that is presented in Section 5.3. The special case of agents with450

equal speed is considered in Section 5.4.451

5.1. Intuitive Overview of NP-Hardness Proof452

We will prove NP-hardness of FastDelivery-2 by a reduction from the453

NP-complete EvenOddPartition problem [20], which is defined as follows:454

Given integer numbers s1, . . . , s2n with
∑2n

i=1 si = 2T , decide whether the455

index set {1, . . . , 2n} can be partitioned into two sets C and D, such that C456

contains either 2i− 1 or 2i for each i, with
∑

j∈C sj =
∑

j∈D sj = T .457

A sketch of the ideas underlying the reduction is as follows. The reader458

may wish to look ahead at Fig. 9 on page 26 for an illustration. The graph459

has two separate paths P and Q of equal length, such that the first package460

needs to be transported along P from p to y and the second package along Q461

from q to z. Apart from two agents that are present at the source nodes of the462

two packages and carry their package the first part of the way, the majority463

of the delivery work is done by agents that are located at equal distance from464

both paths and whose speeds are increasing powers of two. For each speed465

2i, there is a pair of agents with speed 2i, and one of them has to assist the466

first package and the other the second package. One of the two agents has467

distance Di−σ2i−1 from both paths, and the other has distance Di−σ2i from468

both paths, where Di is a suitably defined large value and σ2i−1 and σ2i are469

tiny offsets that are determined by the values of s2i−1 and s2i in the instance470

of EvenOddPartition. For 1 ≤ i ≤ n, an agent with speed 2i picks up471

18

the package from the agent with speed 2i−1 that has carried it previously (or472

from the initial agent), carries it for a while, and then hands it to an agent473

with speed 2i+1.474

A delivery schedule needs to choose which of the two agents with speed475

2i is used for the first package and which for the second package, and this476

corresponds to choosing which of the two numbers s2i−1 and s2i is put in the477

set C and which in the set D of the solution to EvenOddPartition.478

If the agent with distance Di− σ2i−1 carries a package, one can say that,479

compared to a hypothetical agent that has distance Di from the path, this480

provides a “boost” of σ2i−1 to the package (the agent reaches the package481

slightly earlier, and thus makes it advance more quickly). Analogously, a482

boost of σ2i arises if the agent with distance Di − σ2i carries a package. The483

location that a package can reach by time n + 1 then depends on all the484

boosts that it receives from the agents on its way. Unfortunately, the overall485

effect of the boosts cannot be determined by a simple addition, but requires486

rather lengthy and technical calculations. Nevertheless, we are able to show487

that a package can reach a certain point along the way to its destination488

(namely, the point at distance 2n+1 − 1 + ∆ from the source of the package,489

for a suitable value of ∆) by time n + 1 if and only if the values of the si490

corresponding to the boosts σi that the package has received add up to at491

least T . Thus, both packages can reach that point by time n+ 1 if and only492

if the given instance of EvenOddPartition is a yes-instance.493

Finally, an extra agent faster than all previous agents is used for each494

package in such a way that the agent can pick up the package at the point495

that has distance 2n+1− 1 + ∆ from the package source at time n+ 1 (if the496

package has reached that point by that time) and deliver the package to the497

destination at time n+ 3. Hence, if the instance of EvenOddPartition is498

a yes-instance, both packages reach their destinations exactly at time n+ 3.499

Otherwise, at most one package can reach its destination at time n+ 3, and500

the other package will be delivered strictly later.501

In the following sections, we present the full details of the reduction.502

5.2. Building Block for One Package503

Before presenting the NP-hardness proof, we discuss an important build-504

ing block used in the reduction, illustrated in Fig. 6 for n = 3, where n is a505

parameter. One package needs to be delivered from p to y. There is a path506

from p to y, called the horizontal path, that consists of one edge of length 1;507

then two edges of length 2i−1 for 1 ≤ i ≤ n (the first such pair of edges508

19

11 1 2 2 4 4

1 6 20

h1 h2 h3 yh4

A1 A2 A3

A0

ν0 = 1

ν1 = 2 ν2 = 4 ν3 = 8

Mp

Figure 6: Building block with one package.

11 1 2 2 4 4

1 6 20

h1 h2 h3 yh4

A1 A2 A3

A0 t = 1 t = 2 t = 3 t = 4

ν0 = 1

ν1 = 2 ν2 = 4 ν3 = 8

Mp

Figure 7: Optimal delivery schedule for building block.

thus also have length 1), referred to as the i-pair; and finally a single edge509

of length M , where the exact value of M is unimportant for the moment,510

it suffices to imagine it to be sufficiently large. The node at the left end511

of an i-pair is denoted by hi, the node at the right end by hi+1. We have512

agents A0, A1, A2, . . . , An with speeds 1, 2, 4, 8, . . . , 2n, respectively. Agent513

A0 is initially located at p, while the other agents are initially located on514

vertices away from the path from p to y: The initial location of agent Ai, for515

1 ≤ i ≤ n, is a vertex that is connected to the middle vertex of the i-pair via516

an edge of length i2i − 2i−1.517

As illustrated in Fig. 7 for n = 3, the optimal solution for this building518

block uses all the agents: Agent A0 carries the package from p to h1, arriving519

at time t = 1. For 1 ≤ i ≤ n, Ai picks up the package at time t = i at node520

hi and hands it to agent Ai+1 at time t = i+ 1 at node hi+1, or delivers it to521

y at time t = n+ 1 +M/2n if i = n. In this schedule, agent An reaches hn+1522

with the package at time n+ 1.523

20

We now consider a slightly modified instance in which the length of the524

edge that connects the initial location of the agent Ai to the middle vertex525

of the i-pair is changed from i2i − 2i−1 to i2i − 2i−1 − εi, for 1 ≤ i ≤ n.526

Here, the εi for 1 ≤ i ≤ n are small, positive values. In particular, the values527

must be small enough to ensure for 1 ≤ i < j ≤ n that agent Aj cannot528

reach the package before agent Ai. This will speed up the delivery of the529

package because each agent Ai will reach the package slightly earlier than in530

the unmodified instance. We are interested in how far to the right of hn+1531

the package can reach by time n+ 1 in this modified instance.532

Let π(x) denote the point on the horizontal path from p to y that has dis-533

tance x from p, for any 0 ≤ x ≤ d(p, y). Note that hi, for i ≥ 1, corresponds534

to the point π(2i − 1).535

For i ≥ 0, let ti+1 be the time when agent Ai+1 receives the package from536

agent Ai, and let xi+1 be such that π(xi+1) is the point where that handover537

happens. A0 picks up the package at time t0 = 0 at location p = π(x0) with538

x0 = 0. For i ≥ 0, let λi(t) be the function that describes the position of539

agent Ai in the time period from ti to ti+1 (or until the agent reaches y if540

i = n; in that case, let tn+1 be the time when the agent reaches y), meaning541

that agent Ai is located at π(λi(t)) for ti ≤ t ≤ ti+1.542

Lemma 4. The following hold for all i ≥ 0:543

λi(t) = 2it+ 2i(1− i)− 1 +
i∑

j=1

4i−jεj
3i−j+1

(1)

ti+1 = i+ 1− 1

3 · 2i

(
εi+1 +

i∑
j=1

4i−jεj
3i−j+1

)
(2)

xi+1 = 2i+1 − 1− εi+1

3
+

2

3

i∑
j=1

4i−jεj
3i−j+1

(3)

Proof. We prove the lemma by induction on i. For the base case, let i = 0.
Recall that t0 = 0 and x0 = 0. As agent A0 has speed 1, we have λ0(t) = t,
which shows that (1) holds for i = 0. Furthermore, the original location of
agent A1 is at distance 3 − ε1 from p and the agent travels towards p with
speed 2, so the time t1 can be calculated via

λ0(t1) = t1 = 3− ε1 − 2t1 ⇔ t1 = 1− ε1
3
,

21

which shows that (2) holds for i = 0. Furthermore, since agent A0 travels at544

speed 1, we have x1 = t1 = 1− ε1
3

, which shows that (3) holds for i = 0.545

For the induction step, consider any i ≥ 1 and assume that (1)–(3) hold546

for i− 1, i.e., we have:547

λi−1(t) = 2i−1t+ 2i−1(1− (i− 1))− 1 +
i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

(4)

ti = i− 1

3 · 2i−1

(
εi +

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

)
(5)

xi = 2i − 1− εi
3

+
2

3

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

(6)

We will show that (1)–(3) also hold for i. As agent Ai picks up the package548

at time ti at location xi and then travels right at speed 2i, we have for549

ti ≤ t ≤ ti+1:550

λi(t) = xi + (t− ti)2i

= 2i − 1− εi
3

+
2

3

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

+

(
t−

(
i− 1

3 · 2i−1

(
εi +

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

)))
2i

= 2i(1− i)− 1− εi
3

+
2

3

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

+
2

3

(
εi +

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

)
+ t2i

= 2i(1− i)− 1− εi
3

+
2εi
3

+
4

3

i−1∑
j=1

4(i−1)−jεj
3(i−1)−j+1

+ t2i

= 2i(1− i)− 1 +
εi
3

+
i−1∑
j=1

4i−jεj
3i−j+1

+ t2i

= 2i(1− i)− 1 +
i∑

j=1

4i−jεj
3i−j+1

+ t2i

This shows that (1) holds for i.551

22

As the initial location of agent Ai+1 is at distance[
2i+1 − 1 + 2i

]
+
[
(i+ 1)2i+1 − 2i − εi+1

]
= (i+ 2)2i+1 − 1− εi+1

from p and the agent travels at speed 2i+1, the time ti+1 when agents Ai+1552

and Ai meet can be calculated via:553

λi(ti+1) = (i+ 2)2i+1 − 1− εi+1 − 2i+1ti+1

⇔ 2iti+1 + 2i(1− i)− 1 +
i∑

j=1

4i−jεj
3i−j+1

= (i+ 2)2i+1 − 1− εi+1 − 2i+1ti+1

⇔ (2i + 2i+1)ti+1 = (3i+ 3)2i − εi+1 −
i∑

j=1

4i−jεj
3i−j+1

⇔ ti+1 =
(3i+ 3)2i − εi+1 −

∑i
j=1

4i−jεj
3i−j+1

3 · 2i

⇔ ti+1 = (i+ 1)− 1

3 · 2i

(
εi+1 +

i∑
j=1

4i−jεj
3i−j+1

)
This shows that (2) holds for i.554

Finally xi+1 can be calculated by substituting t = ti+1 in the expression555

(i + 2)2i+1 − 1 − εi+1 − 2i+1ti+1 that describes the distance of Ai+1 from p556

between time 0 and time ti+1:557

xi+1 = (i+ 2)2i+1 − 1− εi+1 − 2i+1

(
(i+ 1)− 1

3 · 2i

(
εi+1 +

i∑
j=1

4i−jεj
3i−j+1

))

= 2i+1 − 1− εi+1 +
2

3

(
εi+1 +

i∑
j=1

4i−jεj
3i−j+1

)

= 2i+1 − 1− εi+1

3
+

2

3

i∑
j=1

4i−jεj
3i−j+1

This shows that (3) also holds for i, completing the inductive step. �558

Recall that the last agent that carries the package is An. Using i = n559

in (1), we have that the position of agent An at time t = n+ 1 is equal to560

λn(n+ 1) = 2n(n+ 1) + 2n(1− n)− 1 +
n∑
j=1

4n−jεj
3n−j+1

23

11 1 2 2 4 4

a3

11 1 2 2 4 4

y

z

64

64

a4

∆

∆

a′4

a′1 a′2 a′3

1− σ1

1− σ1

1− σ2

1− σ2

6− σ3

6− σ3

6− σ4

6− σ4

20− σ6

20− σ6

20− σ5

20− σ5

h1 h2 h3 h4

h′1 h′2 h′3 h′4

u1 u2 u3

u4

u′1 u′2

u′4

u′3

a2a1

32

32

A0

A′0

ν0 = 1

ν ′0 = 1

ν1 = 2
ν ′1 = 2
ν2 = 4
ν ′2 = 4
ν3 = 8
ν ′3 = 8
ν4 = 16
ν ′4 = 16

p

q

Figure 8: Illustration of reduction from EvenOddPartition for n = 3. Note that ∆� 1.

= 2n+1 − 1 +
n∑
j=1

4n−jεj
3n−j+1

, (7)

This implies that the package can reach the position at distance 2n+1−1+∆561

from p (for any 0 ≤ ∆ ≤M) by time n+ 1 if and only if
∑n

j=1
4n−jεj
3n−j+1 ≥ ∆.562

5.3. The Reduction563

Theorem 5. FastDelivery-2 with min-max objective is NP-hard even in564

planar graphs.565

Proof. We give a reduction from EvenOddPartition (defined in Sec-566

tion 5.1) to FastDelivery-2. The EvenOddPartition problem is known567

to be (weakly) NP-complete [20].568

Let an instance I of EvenOddPartition be given by numbers s1, . . . , s2n569

with
∑

i si = 2T . Without loss of generality, we can assume si ≤ T for all570

1 ≤ i ≤ 2n. We construct an instance I ′ of the fast delivery problem with571

two packages and 2n+ 4 agents in a graph G = (V,E) as follows. See Fig. 8572

for an illustration with n = 3.573

The vertex set V of the graph G consists of 6n+ 10 vertices as follows:

V = {p, q, y, z} ∪ {hi, h′i, ui, u′i, ai, a′i | 1 ≤ i ≤ n+ 1}

24

There are 2n + 4 agents, denoted by {Ai, A′i | 0 ≤ i ≤ n + 1}. The initial574

location of agent A0 is p, the initial location of agent A′0 is q, and for 1 ≤575

i ≤ n+ 1, the initial location of agents Ai and A′i are ai and a′i, respectively.576

One package must be carried from p to y, the other from q to z. The edge577

set E contains the following edges, where the values of the parameters σi, for578

1 ≤ i ≤ 2n, and ∆ used to specify some of the edge lengths will be provided579

shortly:580

• Edges {p, h1} and {q, h′1} with length 1.581

• For 1 ≤ i ≤ n:582

– Edges {hi, ui}, {ui, hi+1}, {h′i, u′i}, {u′i, h′i+1} with length 2i−1
583

– Edges {ai, ui} and {ai, u′i} with length i2i − 2i−1 − σ2i−1.584

– Edges {a′i, ui} and {a′i, u′i} with length i2i − 2i−1 − σ2i.585

• Edges {hn+1, un+1} and {h′n+1, u
′
n+1} with length ∆.586

• Edges {an+1, un+1} and {a′n+1, u
′
n+1} with length 2n+1(n+ 1).587

• Edges {un+1, y} and {u′n+1, z} with length 2n+2.588

It is easy to see that the graph is planar. We refer to the path

(p, h1, u1, h2, u2, . . . , un, hn+1, un+1, y)

as P and to the path

(q, h′1, u
′
1, h
′
2, u
′
2, . . . , u

′
n, h

′
n+1, u

′
n+1, z)

as Q. We set ∆ = 2−2n and

σi = ∆ · si
T
· 3n+1−di/2e

4n−di/2e

for 1 ≤ i ≤ 2n. Observe that σi ≤ 3∆ for all i, 1 ≤ i ≤ 2n, since we assume589

si ≤ T . Note that all edge lengths are rational numbers whose enumerators590

and denominators can be specified with a number of bits that is polynomial591

in the size of I. Hence, the instance I ′ can be constructed in polynomial592

time.593

We claim that I is a yes-instance if and only if I ′ admits a schedule in594

which both packages reach their destinations by time n+ 3.595

25

11 1 2 2 4 4

a3

11 1 2 2 4 4

y

z

64

64

a4

∆

∆

a′4

a′1 a′2 a′3

1− σ1

1− σ1

1− σ2

1− σ2

6− σ3

6− σ3

6− σ4

6− σ4

20− σ6

20− σ6

20− σ5

20− σ5

h1 h2 h3 h4

h′1 h′2 h′3 h′4

u1 u2 u3

u4

u′1 u′2

u′4

u′3

a2a1

32

32

A0

A′0

ν0 = 1

ν ′0 = 1

ν1 = 2
ν ′1 = 2
ν2 = 4
ν ′2 = 4
ν3 = 8
ν ′3 = 8
ν4 = 16
ν ′4 = 16

p

q

Figure 9: Illustration of delivery schedule corresponding to the solution ({1, 4, 5}, {2, 3, 6})
of an EvenOddPartition instance.

Proof of “⇒”:. Assume that I is a yes-instance. Let (C,D) be the partition596

of the index set {1, 2, . . . , 2n} such that
∑

j∈C sj =
∑

j∈D sj = T and exactly597

one of 2i− 1, 2i is in C for each 1 ≤ i ≤ n. For 1 ≤ i ≤ n, let ci = s2i−1 and598

di = s2i if 2i− 1 ∈ C, and let ci = s2i and di = s2i−1 otherwise. Observe that599 ∑n
i=1 ci =

∑n
i=1 di = T .600

For 1 ≤ i ≤ n, let Yi = Ai and Zi = A′i if 2i − 1 ∈ C, and Yi = A′i and601

Zi = Ai otherwise. Similarly, also for 1 ≤ i ≤ n, let εi = σ2i−1 and ε′i = σ2i if602

2i−1 ∈ C, and εi = σ2i and ε′i = σ2i−1 otherwise. Note that εi = ∆ · ci
T
· 3n+1−i

4n−i603

and ε′i = ∆ · di
T
· 3n+1−i

4n−i .604

We let the agents A0, Y1, Y2, . . . , Yn, An+1 transport the first package from605

p to y along P , and the agents A′0, Z1, Z2, . . . , Zn, A
′
n+1 transport the second606

package from q to z along Q. See Fig. 9 for an example of the resulting deliv-607

ery schedule if the solution to EvenOddPartition is ({1, 4, 5}, {2, 3, 6}).608

Consider the transport of the first package from p to y. Observe that the609

transport of the package from p to un+1 by agents A0, Y1, Y2, . . . , Yn corre-610

sponds to the situation discussed in Section 5.2, and hence the findings from611

that section apply. By (7), at time n+ 1 the package reaches the point on P612

at distance613

2n+1 − 1 +
n∑
j=1

4n−jεj
3n−j+1

= 2n+1 − 1 +
n∑
j=1

4n−j∆ · cj · 3n+1−j

T · 3n−j+14n−j

26

= 2n+1 − 1 +
n∑
j=1

∆cj
T

= 2n+1 − 1 + ∆

from p. Thus, the package reaches the vertex un+1 exactly at time n + 1.614

Agent An+1 has speed 2n+1 and starts at distance 2n+1(n+ 1) from un+1, so615

it also reaches un+1 at time n + 1 and can deliver the package to y over the616

edge {un+1, y} of length 2n+2 by time n+ 3.617

The analysis of the transport of the second package from q to z is analo-618

gous: By (7), the package reaches the point on Q at distance619

2n+1 − 1 +
n∑
j=1

4n−jε′j
3n−j+1

= 2n+1 − 1 +
n∑
j=1

4n−j∆ · dj · 3n+1−j

T · 3n−j+14n−j

= 2n+1 − 1 +
n∑
j=1

∆dj
T

= 2n+1 − 1 + ∆

from q, i.e., the vertex u′n+1, at time n+ 1. Agent A′n+1 reaches u′n+1 at the620

same time and can deliver the package to z by time n+ 3.621

Proof of “⇐”:. Assume there is a solution S ′ to I ′ that delivers the first622

package to y by time n + 3 and the second packages to z by time n + 3.623

Among all such solutions, consider one where it is not possible to decrease624

the delivery time of one package without increasing the delivery time of the625

other package. We first make some observations about the structure of the626

solution:627

• The first package must be delivered to y at time n+3 by An+1, because628

no other agent can even reach y by time n+3. Furthermore, An+1 must629

travel without ever pausing from an+1 to un+1 and from un+1 to y,630

passing un+1 exactly at time n+ 1. Hence, the first package must have631

been transported to un+1 by time n + 1 by other agents. Analogous632

observations hold for the second package and agent A′n+1.633

• The first package travels along P , and the second package travels634

along Q. Consider the first package. If the package were to cross over635

to the other path Q and then back to P , each such pair of crossings636

27

would add a length of at least 2−6∆+6−6∆ = 8−12∆ (a lower bound637

on the length of the path from u1 to u′1 via a1 or a′1 plus the length of638

the path from u′2 to u2 via a2 or a′2; these are the two shortest crossings639

possible) to the path of that package. Furthermore, no agent can reach640

the package earlier on this path compared to using only path P . Hence,641

the detour will add a time of at least 8−12∆
2n+1 ≥ 7

2n+1 (as ∆ ≤ 1/16 for642

n ≥ 2, which we may assume) to the journey time of the package, and643

we could obtain a solution that delivers the package faster by letting it644

travel along P . The arguments for the second package are analogous.645

• For 1 ≤ i ≤ n, exactly one of the agents Ai, A
′
i must be used to carry the646

first package, and the other to carry the second package. Assume for a647

contradiction that neither of the agents Ai and A′i is used to carry the648

first package. As the agents Ai and A′i have the same speed, it is clear649

that at most one of the two agents is used to carry the second package.650

Hence, one of the two agents, say, Ai, is not used at all. Then we can651

improve the delivery time of the first package by using Ai to take over652

the package from the agent Aj or A′j with largest index j < i that is used653

in S ′ to carry the package, and handing it to the agent Aj or A′j with654

smallest index j > i that is used in S ′ to carry the package. To see that655

Ai can indeed reach the package before Aj for any j > i, observe that656

Ai can reach p at time (2i−1+ i2i−σi)/2i < i+1 while Aj can reach p657

only at time (2j−1+j2j−σj)/2j = j+1−(1+σj)/2
j ≥ j+0.5 ≥ i+1.5.658

(The argument for the second package is analogous.)659

These observations imply that the findings of Section 5.2 apply to the trans-660

port of the first package on P and to the transport of the second package661

on Q.662

For 1 ≤ i ≤ n, let εi = σ2i−1 and ε′i = σ2i if Ai carries the first package,663

and let εi = σ2i and ε′i = σ2i−1 if Ai carries the second package. Also, let664

ci = s2i−1 and di = s2i in the former case and ci = s2i and di = s2i−1 in the665

latter case. Note that εi = ∆ · ci
T
· 3n+1−i

4n−i and ε′i = ∆ · di
T
· 3n+1−i

4n−i .666

As the first package must reach un+1 and the second package must reach667

u′n+1 by time n+ 1 as shown above, we have by (7):668

2n+1 − 1 +
n∑
j=1

4n−jεj
3n−j+1

≥ 2n+1 − 1 + ∆

28

and669

2n+1 − 1 +
n∑
j=1

4n−jε′j
3n−j+1

≥ 2n+1 − 1 + ∆.

This means that670

2n+1 − 1 +
n∑
j=1

4n−j∆ · cj
T
· 3n+1−j

4n−j

3n−j+1
≥ 2n+1 − 1 + ∆

and671

2n+1 − 1 +
n∑
j=1

4n−j∆ · dj
T
· 3n+1−j

4n−j

3n−j+1
≥ 2n+1 − 1 + ∆.

Hence,672

n∑
j=1

cj
T
≥ 1

and673

n∑
j=1

dj
T
≥ 1.

As
∑n

j=1(cj + dj) = 2T , we must have
∑n

j=1 cj = T and
∑n

j=1 dj = T .
Consequently, setting

C = {2i−1 | Ai carries the first package}∪{2i | A′i carries the first package}

and D = {1, . . . , 2n} \C gives us a partition showing that I is a yes-instance674

of EvenOddPartition. �675

Corollary 6. FastDelivery-2 with min-sum objective is NP-hard even in676

planar graphs.677

Proof. The proof of Theorem 5 also gives NP-hardness for the min-sum678

objective: The instance constructed in the proof has the property that the679

sum of the delivery times is 2(n+ 3) if the instance of EvenOddPartition680

is a yes-instance, while the sum of the delivery times is strictly larger than681

2(n+ 3) if it is a no-instance. �682

29

Corollary 7. FastDelivery-2 is NP-hard, for both the min-sum and the683

min-max objective, even if the agents can have arbitrary capacities (i.e., can684

carry both packages simultaneously).685

Proof. The construction in the proof of Theorem 5 is such that no advan-686

tage can be gained by having an agent carry both packages at the same time.687

�688

Corollary 8. FastDelivery-2 is NP-hard, for both the min-sum and the689

min-max objective, even if both packages have the same source and the same690

destination.691

Proof. We observe that the proof of Theorem 5 also works if nodes p and692

q are merged into one node and nodes y and z are merged into one node:693

As one package must reach un+1 by time n + 1 and the other must reach694

u′n+1 by time n+ 1 in any solution that delivers both packages to their joint695

destination by time n + 3, it is still the case that one package must travel696

along P and the other along Q in any such solution. �697

If we combine the assumptions of Corollaries 7 and 8, i.e., if both packages698

have the same source and the same destination and if the agents can carry699

two packages simultaneously, then the problem is polynomial-time solvable700

as it becomes equivalent to the FastDelivery problem.701

Finally, we remark that the NP-hardness results of this section can also702

be used to show that the problem is NP-hard for c packages, for any constant703

c > 2: We simply add c − 2 extra packages in a separate part of the graph,704

each with an agent of speed 2n+1 at its source node. Each of these extra705

packages must be delivered to a unique leaf node that is connected to the706

source node of the package via an edge of length (n + 3)2n+1. Thus all the707

extra packages can be delivered to their destinations by time n+ 3, and the708

agents involved in their delivery do not interact with the original instance709

constructed in the NP-hardness proof.710

5.4. Agents with Equal Speed711

Let FastMultiDelivery denote the following problem: We are given a712

graph G = (V,E) with positive edge lengths, the source and destination node713

for each of c ≥ 1 packages, and the speed νi and initial location pi of agent i714

for 1 ≤ i ≤ k. The task is to determine a delivery schedule for the agents that715

30

delivers all c packages from their sources to their respective destinations. The716

objective can be either the min-max objective (minimizing the time when the717

last package reaches its destination) or the min-sum objective (minimizing718

the sum of the delivery times of the c packages).719

In this section we study the case where all agents have the same speed720

ν, i.e., νi = ν for all agents i. For this case it is easy to see that it is never721

necessary to pass a package from one agent to another agent. If there are722

more than c agents placed at a node of the graph initially, we can keep c of723

them and discard the others because at most c agents of equal speed will be724

involved in delivering c packages. Therefore, we assume k ≤ cn from now on.725

For agents with equal speed, the FastDelivery problem (with a single726

package) is trivial: The first agent who reaches the source s of the package727

carries it all the way to its destination y. For the case of an arbitrary number728

of packages, FastMultiDelivery is NP-hard (for both the min-max and729

min-sum objectives) even in the equal speed case, since the problem is NP-730

hard for the case of a single agent as shown by Bärtschi [9, Chapter 3.2]. We731

show that the problem can be solved in polynomial time for any constant732

number of packages. In fact, our algorithm is an FPT (fixed parameter733

tractable) algorithm [21] for parameter c, the number of packages, i.e., its734

running time is bounded by a function of the parameter times a polynomial735

in the size of the input.736

Theorem 9. For the case where all agents have the same speed, there is an737

algorithm that computes an optimal solution to FastMultiDelivery with738

min-max objective in a graph with n nodes and m edges in time O(APSP +739

2ccc+2.5 · n2), where APSP is the time for solving the all-pairs shortest path740

problem in a graph with n nodes and m edges.741

Proof. First, we consider the structure of an optimal delivery schedule. As742

a package will never be passed from one agent to another, each agent i that743

participates in the delivery of some number ji ≥ 1 of packages will behave744

as follows: It will travel to the source of the first package along a shortest745

path, deliver it to its destination along a shortest path, travel to the source746

of the second package along a shortest path, deliver it to its destination along747

a shortest path, and so on, until it delivers the ji-th package. This means748

that once we have determined which packages an agent delivers, and in which749

order, then computing the best schedule for that agent is straightforward.750

Denote the given packages by K1, K2, . . . , Kc. We refer to the ordered751

list of packages that one agent delivers as a package list. For example, if an752

31

agent picks up and delivers first K3, then K1, and then K5, the corresponding753

package list is (K3, K1, K5). A solution in which g agents participate in pack-754

age delivery thus induces a partition of the set of all packages into g package755

lists: All the package lists are non-empty, and each package is included in756

precisely one of the package lists.757

Algorithm 5: Algorithm for FastMultiDelivery with equal
speed

Data: graph G = (V,E) with positive edge lengths le; c packages Ki

with source node si ∈ V and target node yi ∈ V for
1 ≤ i ≤ c; k agents with equal velocity ν and initial location
pi for 1 ≤ i ≤ k

Result: delivery schedule minimizing the maximum delivery time
1 begin
2 forall partitions K of {K1, . . . , Kc} into at most min{k, c}

non-empty package lists do
3 assume K = {K1, . . . ,Kg} for some g ≤ min{k, c};
4 forall 1 ≤ i ≤ k, 1 ≤ j ≤ g do
5 Tij ← delivery time of agent i for last package in Kj;
6 end
7 construct complete bipartite graph H = ({1, . . . , k} ∪ K, F)

with edge weight Tij for each edge {i,Kj};
8 compute a bottleneck matching MK in H;
9 TK ← largest edge weight in MK;

10 end
11 return delivery schedule given by MK with minimum TK;

12 end

The idea of Algorithm 5 is now to enumerate all possible partitions K of758

the set of c packages into at most min{k, c} ordered package lists, to compute759

a delivery schedule with minimum delivery time for each such partition via760

a bottleneck matching algorithm, and in the end to output the best schedule761

found.762

Let K = {K1, . . . ,Kg} be a partition of the set of packages into package763

lists, with 1 ≤ g ≤ min{k, c}. Let Tij be the time when agent i delivers764

the last package in Kj if agent i delivers the packages in Kj (and no other765

packages) in the given order. The total travel distance Sij of agent i for766

32

delivering the packages in Kj can be computed by adding up the shortest-767

path distances from pi to the source of the first package in Kj, from there768

to the destination of that package, from there to the source of the second769

package in Kj, and so on, ending with the shortest path from the source of770

the last package in Kj to its destination. The value Tij can then be calculated771

as Sij/ν.772

The algorithm then builds a complete bipartite graph H with vertex773

sets {1, . . . , k} (representing agents) and {K1, . . . ,Kg} (representing package774

lists), where edge {i,Kj} is given weight Tij. It then computes a bottleneck775

matching (i.e., a maximum cardinality matching that minimises the largest776

weight of any of its edges) in H. That matching MK, with largest edge777

weight TK = max{i,Kj}∈MK Tij, then corresponds to a delivery schedule with778

maximum delivery time TK: For every edge {i,Kj} in the matching, agent i779

delivers the packages in Kj by time Tij.780

After doing this for all partitions K, the algorithm outputs the delivery781

schedule corresponding to the matching MK for which TK is minimized.782

It is clear that the algorithm outputs a valid delivery schedule. To see783

that it outputs an optimal schedule, note that in one of the iterations the784

algorithm will consider a partition into package lists that is the same as the785

one used in an optimal schedule, and the solution to the bottleneck match-786

ing problem for the resulting matching instance must then correspond to an787

optimal schedule (because the optimal schedule can also be interpreted as788

a matching between agents and package lists, and its objective value corre-789

sponds to the largest edge weight in that matching).790

It remains to analyze the running time of the algorithm. The number791

of partitions of the set of c packages into package lists can be bounded by792

c! · 2c ≤ (2c)c, because these partitions can be generated (with duplicates)793

by enumerating all c! permutations of the c packages and, for each of the794

c packages, determining whether it is the last package of its list or not (2c795

possibilities).796

The graph H has at most k + c nodes and kc edges. If we solve the797

all-pairs shortest path problem in G once in the beginning in APSP ∈ O(n3)798

time [22], we can determine all the edge weights of H in O(kc) time: For each799

agent i, computing the weight of the edge to vertex Kj requires adding up800

O(|Kj|) shortest-path distances, so all weights of edges incident with agent i801

can be computed in O(
∑g

j=1 |Kj|) = O(c) time.802

The algorithm by Punnen and Nair [23] solves the bottleneck matching803

problem in a bipartite graph with n′ nodes and m′ edges in O(n′
√
n′m′) time,804

33

so it runs in O((k + c)
√

(k + c)kc) = O(n2c2.5) time on the graph H (recall805

that we can assume k ≤ nc).806

Thus the algorithm runs in time O(APSP + (2c)c · n2c2.5) = O(APSP +807

2ccc+2.5 · n2). �808

We remark that Theorem 9 implies a polynomial-time algorithm for Fast-809

MultiDelivery if the agents have equal speed and c is a fixed constant.810

Furthermore, the algorithm of Theorem 9 is an FPT algorithm [21] for the811

fast delivery problem with an arbitrary number of packages and agents of812

equal speed with respect to the number of packages as parameter.813

Theorem 10. For the case where all agents have the same speed, there is an814

algorithm that computes an optimal solution to FastMultiDelivery with815

min-sum objective in a graph with n nodes in time O(2ccc+6 · n3).816

Proof. We again use Algorithm 5, but change steps 5, 8 and 9 as follows: In817

step 5, we set Tij to the sum of the delivery times of the packages in Kj when818

agent i delivers them in the given order. In step 8, we compute a maximum819

cardinality matching of minimum total edge weight, instead of a bottleneck820

matching. In step 9, we set TK to the sum of the weights of all edges in the821

matching computed in step 8.822

It is easy to see that the total weight of a matching equals the sum of the823

delivery times of all packages in the corresponding schedule, so the algorithm824

produces an optimal schedule.825

Using the Hungarian method [24], a maximum cardinality matching of826

minimum total edge weight in the graph H with O(kc) nodes can be com-827

puted inO((kc)3) = O(n3c6) time. The overall running time is thenO(APSP+828

(2c)c · n3c6). Since APSP is bounded by O(n3) [22], the term APSP is dom-829

inated by the other term and can be omitted. �830

6. Conclusion831

We have presented an algorithm with improved running time O(km +832

nk log n) for FastDelivery. The algorithm was obtained by adapting the833

approach of Dijkstra’s algorithm for edges with time-dependent transit times.834

The subproblem corresponding to relaxing an edge was solved by applying835

techniques from computational geometry to a geometric representation of the836

agent movements.837

34

Furthermore, we have shown that when a second package is added, the838

resulting FastDelivery-2 problem is NP-hard for both the min-max and839

the min-sum objective functions, even in planar graphs and even if both840

packages have the same source and the same destination. Previously, NP-841

hardness was only known for the case where the number of packages is part842

of the input [9]. It is worth noting that it is not clear whether the problem843

with multiple packages is contained in NP, since there is no obvious bound844

on the length of the description of the schedule that specifies the agent move-845

ments in the solution (see [9, Chapter 3.1] for further discussion of this issue).846

For the special case of agents with equal speed, we showed that the Fast-847

MultiDelivery problem can be solved optimally in polynomial time for848

any constant number of packages, for both the min-max and the min-sum849

objective.850

An interesting direction for future work could be studying the Euclidean851

version of FastDelivery, where the source and destination of the package,852

as well as the initial locations of the agents, are points in the Euclidean plane,853

and the agents can move along arbitrary curves (it is clear that polylines854

suffice) in the plane. Future work may also study the question whether855

the FastMultiDelivery problem is still polynomial-time solvable for a856

constant number of packages and agents with equal speed when the agents857

can have capacities larger than 1.858

References859

[1] I. A. Carvalho, T. Erlebach, K. Papadopoulos, An efficient algorithm for860

the fast delivery problem, in: L. A. Gasieniec, J. Jansson, C. Levcopou-861

los (Eds.), 22nd International Symposium on Fundamentals of Compu-862

tation Theory (FCT 2019), Vol. 11651 of Lecture Notes in Computer Sci-863

ence, Springer, 2019, pp. 171–184. doi:10.1007/978-3-030-25027-0_864

12.865

[2] D. Bamburry, Drones: Designed for product delivery, Design Manage-866

ment Review 26 (1) (2015) 40–48. doi:10.1111/drev.10313.867

[3] A. Regev, Drone deliveries are no longer pie in the sky (Apr 2018).868

URL https://www.forbes.com/sites/startupnationcentral/869

2018/04/10/drone-deliveries-are-no-longer-pie-in-the-sky/870

35

https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1007/978-3-030-25027-0_12
https://doi.org/10.1111/drev.10313
https://www.forbes.com/sites/startupnationcentral/2018/04/10/drone-deliveries-are-no-longer-pie-in-the-sky/
https://www.forbes.com/sites/startupnationcentral/2018/04/10/drone-deliveries-are-no-longer-pie-in-the-sky/
https://www.forbes.com/sites/startupnationcentral/2018/04/10/drone-deliveries-are-no-longer-pie-in-the-sky/
https://www.forbes.com/sites/startupnationcentral/2018/04/10/drone-deliveries-are-no-longer-pie-in-the-sky/

[4] I. Hong, M. Kuby, A. Murray, A deviation flow refueling location model871

for continuous space: A commercial drone delivery system for urban872

areas, in: Advances in Geocomputation, Springer, 2017, pp. 125–132.873

doi:10.1007/978-3-319-22786-3_12.874

[5] C. C. Murray, A. G. Chu, The flying sidekick traveling salesman875

problem: Optimization of drone-assisted parcel delivery, Transporta-876

tion Research Part C: Emerging Technologies 54 (2015) 86–109. doi:877

10.1016/j.trc.2015.03.005.878

[6] A. Bärtschi, D. Graf, M. Mihalák, Collective fast delivery by energy-879

efficient agents, in: I. Potapov, P. Spirakis, J. Worrell (Eds.), 43rd Inter-880

national Symposium on Mathematical Foundations of Computer Science881

(MFCS 2018), Vol. 117 of LIPIcs, Schloss Dagstuhl–Leibniz-Zentrum für882

Informatik, 2018, pp. 56:1–56:16. doi:10.4230/LIPIcs.MFCS.2018.56.883

[7] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, D. Graf, J. Hackfeld,884

P. Penna, Energy-efficient delivery by heterogeneous mobile agents, in:885

34th Symposium on Theoretical Aspects of Computer Science (STACS886

2017), Vol. 66 of LIPIcs, Schloss Dagstuhl, Leibniz-Zentrum für Infor-887

matik, 2017, p. 10. doi:10.4230/LIPIcs.STACS.2017.10.888

[8] M. L. Fredman, R. E. Tarjan, Fibonacci heaps and their uses in improved889

network optimization algorithms, J. ACM 34 (3) (1987) 596–615. doi:890

10.1145/28869.28874.891

[9] A. Bärtschi, Efficient delivery with mobile agents, Ph.D. thesis, ETH892

Zürich (2017).893

[10] A. Bärtschi, T. Tschager, Energy-efficient fast delivery by mobile agents,894

in: International Symposium on Fundamentals of Computation Theory895

(FCT 2017), Vol. 10472 of Lecture Notes in Computer Science, Springer,896

2017, pp. 82–95. doi:10.1007/978-3-662-55751-8_8.897

[11] J. Chalopin, R. Jacob, M. Mihalák, P. Widmayer, Data delivery by898

energy-constrained mobile agents on a line, in: 41st International Col-899

loquium on Automata, Languages, and Programming (ICALP 2014),900

Vol. 8573 of Lecture Notes in Computer Science, Springer, 2014, pp.901

423–434. doi:10.1007/978-3-662-43951-7_36.902

36

https://doi.org/10.1007/978-3-319-22786-3_12
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.1016/j.trc.2015.03.005
https://doi.org/10.4230/LIPIcs.MFCS.2018.56
https://doi.org/10.4230/LIPIcs.STACS.2017.10
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1145/28869.28874
https://doi.org/10.1007/978-3-662-55751-8_8
https://doi.org/10.1007/978-3-662-43951-7_36

[12] J. Chalopin, S. Das, M. Mihalák, P. Penna, P. Widmayer, Data de-903

livery by energy-constrained mobile agents, in: International Sympo-904

sium on Algorithms and Experiments for Sensor Systems, Wireless Net-905

works and Distributed Robotics (ALGOSENSORS 2013), Vol. 8243906

of Lecture Notes in Computer Science, Springer, 2013, pp. 111–122.907

doi:10.1007/978-3-642-45346-5_9.908

[13] A. Bärtschi, J. Chalopin, S. Das, Y. Disser, B. Geissmann,909

D. Graf, A. Labourel, M. Mihalák, Collaborative delivery with energy-910

constrained mobile robots, Theoretical Computer Science 810 (2017)911

2–14. doi:10.1016/j.tcs.2017.04.018.912

[14] L. Gasieniec, S. Kijima, J. Min, Searching with increasing speeds,913

in: Proceedings of the 20th International Symposium on Stabilization,914

Safety, and Security of Distributed Systems (SSS 2018), Vol. 11201915

of Lecture Notes in Computer Science, Springer, 2018, pp. 126–138.916

doi:10.1007/978-3-030-03232-6_9.917

[15] K. Cooke, E. Halsey, The shortest route through a network with time-918

dependent internodal transit times, Journal of Mathematical Analysis919

and Applications 14 (3) (1966) 493–498. doi:10.1016/0022-247X(66)920

90009-6.921

[16] D. Delling, D. Wagner, Time-dependent route planning, in: R. K. Ahuja,922

R. H. Möhring, C. D. Zaroliagis (Eds.), Robust and Online Large-Scale923

Optimization: Models and Techniques for Transportation Systems, Vol.924

5868 of Lecture Notes in Computer Science, Springer, 2009, pp. 207–230.925

doi:10.1007/978-3-642-05465-5_8.926

[17] J. L. Bentley, T. Ottmann, Algorithms for reporting and counting ge-927

ometric intersections, IEEE Trans. Computers 28 (9) (1979) 643–647.928

doi:10.1109/TC.1979.1675432.929

[18] M. de Berg, O. Cheong, M. J. van Kreveld, M. H. Overmars, Compu-930

tational geometry: Algorithms and applications, 3rd Edition, Springer,931

2008.932

[19] M. Goodrich, K. Ramaiyer, Geometric data structures, in: J.-R. Sack,933

J. Urrutia (Eds.), Handbook of Computational Geometry, Elsevier Sci-934

ence, 2000, pp. 463–489.935

37

https://doi.org/10.1007/978-3-642-45346-5_9
https://doi.org/10.1016/j.tcs.2017.04.018
https://doi.org/10.1007/978-3-030-03232-6_9
https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1016/0022-247X(66)90009-6
https://doi.org/10.1007/978-3-642-05465-5_8
https://doi.org/10.1109/TC.1979.1675432

[20] M. R. Garey, D. S. Johnson, Computers and Intractability. A Guide to936

the Theory of NP-Completeness, W. H. Freeman and Company, New937

York-San Francisco, 1979.938

[21] R. G. Downey, M. R. Fellows, Parameterized Complexity, Mono-939

graphs in Computer Science, Springer, 1999. doi:10.1007/940

978-1-4612-0515-9.941

[22] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to942

Algorithms, 3rd Edition, MIT Press, 2009.943

URL http://mitpress.mit.edu/books/introduction-algorithms944

[23] A. P. Punnen, K. Nair, Improved complexity bound for the maximum945

cardinality bottleneck bipartite matching problem, Discret. Appl. Math.946

55 (1) (1994) 91–93. doi:10.1016/0166-218X(94)90039-6.947

[24] J. Edmonds, R. M. Karp, Theoretical improvements in algorithmic ef-948

ficiency for network flow problems, J. ACM 19 (2) (1972) 248–264.949

doi:10.1145/321694.321699.950

38

https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4612-0515-9
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1016/0166-218X(94)90039-6
https://doi.org/10.1145/321694.321699

	Introduction
	Related Work
	Our Contributions

	Preliminaries
	Algorithm for the Fast Delivery Problem
	An Algorithm for Fast Line Delivery
	Geometric Representation and Preprocessing
	Main Algorithm for Fast Line Delivery

	Fast Delivery with Multiple Packages
	Intuitive Overview of NP-Hardness Proof
	Building Block for One Package
	The Reduction
	Agents with Equal Speed

	Conclusion

