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Abstract. Let a text T [1..n] be the only string generated by a context-free grammar with g (terminal
and nonterminal) symbols, and of size G (measured as the sum of the lengths of the right-hand sides of
the rules). Such a grammar, called a grammar-compressed representation of T , can be encoded using
essentially G lg g bits. We introduce the first grammar-compressed index that uses O(G lgn) bits and can
find the occ occurrences of patterns P [1..m] in time O((m2 + occ) lgG). We implement the index and
demonstrate its practicality in comparison with the state of the art, on highly repetitive text collections.

1 Introduction and Related Work

Grammar-based compression is an active area of research since at least the seventies
[CRA76,Sto77,ZL78,SS82]. A given sequence T [1..n] over alphabet [1..σ] is replaced by a hope-
fully small (context-free) grammar G that generates just the string T . Let g be the number of
grammar symbols, counting terminals and nonterminals. Let G = |G| be the size of the grammar,
measured as the sum of the lengths of the right-hand sides of the rules. Then a basic grammar-
compressed representation of T requires essentially G lg g bits, instead of the n lg σ bits required by
a plain representation. It always holds G ≥ lg n, and indeed G can be as small as O(lg n) in extreme
cases; consider T = an.

Grammar-based methods can achieve universal compression [KY00]. Unlike statistical methods,
which exploit frequencies to achieve compression, grammar-based methods exploit repetitions in the
text, and thus they are especially suitable for compressing highly repetitive sequence collections.
These collections, containing long identical substrings that are possibly far away from each other, arise
when managing software repositories, versioned documents, transaction logs, periodic publications,
and computational biology sequence databases, among others. Statistical compression is helpless to
exploit this sort of long-range repetitiveness [KN13,Nav12].

Finding the smallest grammar G∗ that represents a given text T is NP-complete
[Sto77,SS82,Ryt03,CLL+05]. Moreover, the size G∗ of the smallest grammar is never smaller than
the number z of phrases in a Lempel-Ziv parse [LZ76] of T . A simple method to achieve an O(lg n)-
approximation to the smallest grammar size is to parse T using Lempel-Ziv and then convert it into
a grammar [Ryt03]. More sophisticated approximations [Ryt03,CLL+05,Jez15,Jez16] achieve ratio
O(lg(n/G∗)) (indeed, they obtain size G = O(z lg(n/z))). Recently, it has been shown that this is
not far from the lower bound, as there are sequence families where G∗ = Ω(z lg n/ lg lgn) [HLR16].

The known approximation ratios of popular grammar compressors such as LZ78 [ZL78], Re-Pair
[LM00] and Sequitur [NMWM94], instead, are much larger than the optimal [CLL+05,HLR16]. Still,
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some of those methods (in particular Re-Pair) perform very well in practice, both in classical and
repetitive settings.1

On the other hand, unlike Lempel-Ziv, grammar compression allows one to decompress arbitrary
substrings of T in logarithmic time [GKPS05,BLR+15,BPT15]. The most recent results extract any
T [p..p+ `− 1] in time O(`+ lg n) [BLR+15] and even O(`/ lgσ n+ lg n) [BPT15], which is close to
optimal [VY13]. Unfortunately, those representations require O(G lg n) bits, possibly proportional
but in practice many times the size of the output of a grammar compressor.

More ambitious than just extracting substrings from T is to ask for indexed searches, that is,
finding the occ occurrences in T of a given pattern P [1..m]. Self-indexes are compressed text repre-
sentations that support both operations, extract T [p..p+`−1] and locate the occurrences of a pattern
P [1..m], in time sublinear (and usually polylogarithmic) in n. They have appeared in the last decade
[NM07], and have focused mostly on statistical compression. As a result, they work well on classical
texts, but not on repetitive collections [MNSV10]. Some of those self-indexes have been adapted
to such repetitive collections [MNSV10,NPL+13,NPC+13,DJSS14,BGG+14,BCG+15,GNP18], but
they do not reach the compression ratio of the best grammar-based methods.

Searching for patterns on grammar-compressed text has been faced mostly in sequential form
[AB92], that is, scanning the whole grammar. The best result [KMS+03] achieves timeO(G+m2+occ).
This may be o(n), but is still linear in the size of the compressed text. There exist a few self-indexes
based on LZ78-like compression [FM05,RO08,ANS12], but LZ78 is among the weakest grammar-
based compressors. In particular, LZ78 has been shown not to be competitive on highly repetitive
collections [MNSV10].

The only self-index supporting general grammar compressors [CN10] operates on “straight-line
programs” (SLPs), where the right hands of the rules are of length 1 or 2. Given such a grammar
they achieve, among other tradeoffs, 3g lg g + g lg n bits of space and O(m(m+ h) lg2 g) search time,
where h ≤ g is the height of the parse tree of the grammar. A general grammar of g symbols and
size G can be converted into an SLP by adding at most G− 2g symbols and/or rules.

More recently, a self-index based on Lempel-Ziv compression was developed [KN13]. It uses
z lg z + 2z lg n+O(z lg σ) bits of space and searches in time O(m2h̄+ (m+ occ) lg z), where h̄ ≤ z
is the nesting of the parsing. Extraction requires O(` h̄) time. Experiments on repetitive collections
[CFMPN10,CFMPN16] showed that the grammar-based compressor [CN10] can outperform the
(by then) best classical self-index adapted to repetitive collections [MNSV10] but, at least that
particular implementation, was not competitive with the Lempel-Ziv-based self-index [KN13].

The search times in both self-indexes depend on h or h̄. This is undesirable as both are only
bounded by g or z, respectively. As mentioned, this kind of dependence has been removed for
extracting text substrings [BLR+15], at the cost of using O(G lg n) further bits.

There have also been combinations of grammar-based and Lempel-Ziv-based methods
[GGK+12,GGK+14,BEGV18,CE18], yet (1) none of those is implemented, (2) the constant factors
multiplying their space complexities are usually large, (3) they cannot be built on a given arbitrary
grammar. They use at least O(z log(n/z) log n) bits (which is an upper bound to our space com-
plexity) and can search as fast as in O(m+ logε z + occ(logε z + log log n)) time for any constant
ε > 0 [CE18], decreasing to O(m+ occ log logn) time with O(z log(g/z) log log z log n) bits of space
[BEGV18]. Gagie et al. [GGK+12] can depart from any given grammar, but add some extra space so
that, within O(G log n+ z log log z log n) bits, they can search in time O(m2 + (m+ occ) log log n).

1 See the statistics in http://pizzachili.dcc.uchile.cl/repcorpus.html.
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Recently, Navarro and Prezza [NP19] introduced a self-index of O(γ lg(n/γ) lg n) bits, where
γ ≤ z ≤ G is the size of any attractor of T (which lower-bounds many other repetitiveness measures).
They can search in time O(m log n+ occ logε n). This result is theoretically appealing, but again
suffers from the drawbacks (1)–(3) above, and still its size dominates only an upper bound on G.

In this article we introduce the first (as of the time of conference publication [CN12], and still
the only) grammar-based self-index that can be built from any given grammar of size G, which
uses O(G lg n) bits and whose search time depends only logarithmically on n, independently of the
grammar height. In addition, we give a practical implementation of the index and compare it with
different state-of-the-art indexes on repetitive collections, showing that our index is also practical.
In fact, the ability of our index to build on any grammar has an important practical value, because
it can be built on top of compressors like RePair, which perform extremely well in practice.

The following theorem summarizes its properties; we note that the search time can be simplified
to O((m2 + occ) lgG) because lg lg n ≤ lgG.

Theorem 1. Let a sequence T [1..n] be represented by a context-free grammar with g symbols,
size G and height h. Then, for any 0 < ε ≤ 1, there exists a data structure using at most
G lg n+ 2G lg g+ ε g lg g+ o(G lg g) +O(G) bits that finds the occ occurrences of any pattern P [1..m]
in T in time O((m2/ε) lg lgn+ (m+ occ)(1/ε+ lg g/ lg lg g)). It can extract any substring of length
` from T in time O(`+ h lg(G/h)). The structure can be built in O(n+G lgG) time and O(n lg n)
bits of working space.

Note that the extraction time still depends on the grammar height. To improve it, we can include
the structure of Belazzougui et al. [BPT15], which adds O(G lg n) bits. Within that space we derive
a coarser version of our result.

Corollary 1. Let a sequence T [1..n] over alphabet [1..σ] be represented by a context-free grammar
with g symbols and of size G. Then there exists an index requiring O(G lg n) bits that finds the occ
occurrences of any pattern P [1..m] in T in time O(m2 + (m+ occ) lgε g), for any constant ε > 0,
and extracts any substring of length ` from T in time O(`/ lgσ n+ lg n).

In the rest of the article we describe our structure. First, we preprocess the grammar to enforce
several invariants useful to ensure our time complexities. Then we use a data structure for binary
relations [BCN13] to find the “primary” occurrences of P , that is, those formed when concatenating
symbols in the right hand side of a rule. To get rid of the factor h in this part of the search, we
extend a technique [GKPS05] to extract the first m symbols of the expansion of any nonterminal
in time O(m). To find the “secondary” occurrences (i.e., those that are found as the result of
the nonterminal containing primary occurrences being mentioned elsewhere), we use a pruned
representation of the parse tree of T . This tree is traversed upwards for each secondary occurrence
to report. The grammar invariants introduced ensure that those traversals amortize to a constant
number of steps per occurrence reported. In this way we get rid of the factor h on the secondary
occurrences too.

We also show that our structure is practical. In Section 8 we implement the index of Theorem 1
and show that it outperforms the preceding grammar-based index [CN10], even in its optimized form
[CFMPN16], and it becomes a valid space/time tradeoff to the Lempel-Ziv based self-index [KN13]
(also in optimized form [CFMPN16]). Our expermental results show that, while the technique to
speed up the extraction [GKPS05] does not have an impact in practice, the idea to amortize the
cost of finding the secondary occurrences does speed up the index significantly in practice.
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The main differences with our conference version [CN12] are improved theoretical complexities,
the whole implementation and experimental results, and an expanded and improved writing.

2 Basic Concepts

2.1 Sequence Representations

Our data structures use succinct representations of sequences. Given a sequence S[1..N ], over the
alphabet Σ, we need to support the following operations:

– access(S, i) retrieves the symbol S[i];
– ranka(S, i) counts the number of occurrences of a in S[1..i];
– selecta(S, j) computes the position where the jth a appears in S.

For the case |Σ| = 2 (i.e., bitmaps), all the operations can be supported in N + o(N) bits and
constant time [Cla96]. Raman et al. [RRR07] proposed two compressed representations that are
useful when the number N1 of 1s in S is small. One is the “fully indexable dictionary” (FID). It
takes N1 lg N

N1
+O(N1) + o(N) bits of space and supports all the operations in constant time. A

weaker one is the “indexable dictionary” (ID), which takes N1 lg N
N1

+O(N1 + lg lgN) bits of space
and supports in constant time queries access(S, i), rank(S, i) if S[i] = 1, and select1(S, j).

For general sequences, we will use a representation [BN15] that requires N lg |Σ|+ o(N lg |Σ|)
bits and solves access(S, i) in O(1) time and select(S, j) in any time in ω(1) (as a function of |Σ|),
or vice versa; rank(S, i) takes time O(lg lgw |Σ|), on a RAM machine of w bits.

2.2 Labeled Binary Relations

A labeled binary relation is a binary relation R ⊆ A × B, where A = [1..n1] and B = [1..n2],
augmented with a function L : A×B → L ∪ {⊥}, L = [1..`], that defines labels for each pair in R,
and ⊥ for pairs that are not in R. Let us identify A with the columns and B with the rows in a
table. In our case, each element of A will be associated with exactly one element of B, so |R| = n1.
We augment a representation of unlabeled binary relations [BCN13] with a plain string SL[1..n1] on
alphabet [1..`], where SL[i] is the label of the pair of column i. The total space of this structure
is n1(lg n2 + lg `) + o(n1 lg n2) bits. With this representation we can answer, among others, the
following queries of interest in this article:

1. Find the label of the element b associated with a given a, SL[a], in O(1) time.
2. Given a1, a2, b1, and b2, enumerate the k pairs (a, b) ∈ R such that a1 ≤ a ≤ a2 and b1 ≤ b ≤ b2,

in time O((k + 1)(1 + lg n2/ lg lg(n1 + n2))).

2.3 Succinct Tree Representations

There are many representations for trees T with N nodes that take 2N + o(N) bits of space. In this
paper we use one called Fully-Functional (FF) [NS14], which in particular answers in constant time
the following operations (node identifiers v are associated with a position in [1..2N ]):

– nodeT (p) is the node with preorder number p;
– preorderT (v) is the preorder number of node v;
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– leafrankT (v) is the number of leaves to the left of v;
– leafselectT (j) is the jth leaf;
– intrankT (v) is the number of internal nodes before v, in preorder;
– intselectT (j) is the jth internal node, in preorder;
– numleavesT (v) is the number of leaves below v;
– parentT (v) is the parent of v;
– childT (v, k) is the kth child of v;
– nextsiblingT (v) is the next sibling of v;
– degreeT (v) is the number of children of v;
– depthT (v) is the depth of v; and
– level -ancestorT (v, k) is the kth ancestor of v.

The FF representation is obtained by traversing the tree in DFS order and appending to a
bitmap a 1 when we arrive at a node, and a 0 when we leave it. The operations leafrank , leafselect ,
intrank , and intselect are not discussed so widely in the literature. In the FF sequence F [1..2N ], each
internal node starts with a bit 1 followed by another 1, and each leaf is represented by a 1 followed
by a 0. The same mechanisms described in Section 2.1 to support rank and select for 0s and 1s on
bitmaps are easily extended to support two-bit operations, within o(N) extra bits. Therefore, we
implement leafrank(i) = rank10(F, i− 1), leafselect(j) = select10(F, j), intrank(i) = rank11(F, i− 1),
and intselect(j) = select11(F, j), all in constant time.

3 Preprocessing the Grammar

We will work on a given context-free grammar G that generates a single string T [1..n] over alphabet
Σ = [1..σ], formed by g (terminal and nonterminal) symbols. The σ ≤ g terminal symbols come
from an alphabet Σ = [1..σ],2 and then G contains g − σ rules of the form Xi → αi, exactly one per
nonterminal. The sequence αi, called the right-hand side of the rule, is the sequence of terminal and
non-terminal symbols generated by Xi (without recursively unrolling rules). We call G =

∑ |αi|
the size of G. Note it holds σ ≤ G, since the terminals must appear in the right-hand sides. We
assume all the nonterminals are used to generate the string; otherwise unused rules can be found
and dropped in O(G) time. The grammar cannot have loops since it generates a finite string T .

Let Xs be always the start symbol (despite of successive symbol renamings). We call F(Xi) the
single string generated by Xi, that is F(a) = a for terminals a and F(Xi) = F(Xi1) · · · F(Xik) for
nonterminals Xi → Xi1 . . . Xik . The grammar G generates the text T = L(G) = F(Xs).

For the purpose of building our index, we preprocess G as follows.

– First, for each terminal symbol a ∈ Σ present in G we create a rule Xa → a, and replace all
other occurrences of a in the grammar by Xa. As a result, the grammar contains exactly g
nonterminal symbols X = {X1, . . . , Xg}, each associated with a rule Xi → αi, where αi ∈ Σ or
αi is a sequence of elements in X .

– Any rule that generates just one single nonterminal Xi → Xj , or the empty string, Xi → ε, is
removed by replacing Xi by Xj or by ε everywhere. This decreases g without increasing G.

– We further preprocess G to enforce the property that any nonterminal Xi, except Xs and those
Xa → a ∈ Σ, must be mentioned in at least two right-hand sides. We traverse the rules of the
grammar, count the occurrences of each symbol, and then rewrite the rules, so that only the

2 Non-contiguous alphabets can be handled with an ID (Section 2.1) that marks the symbols present in T .
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rules of those Xi appearing more than once (or the excepted symbols) are preserved, and as
we rewrite their right-hand sides, we replace any (non-excepted) Xi that appears once by its
right-hand side αi. This transformation takes O(G) time and can only reduce G and g.

– Our last preprocessing step, and the most expensive one, is to renumber the nonterminals so
that i < j ⇔ F(Xi)

rev < F(Xj)
rev, where Srev is string S read backwards (the purpose of this

renumbering will be apparent later). The sorting can be done in time O(n+ g lg g) and O(n lg n)
bits of space, following the same approach as in previous work [CN10]. This process dominates
the construction time.

From now on, g will refer to the number of rules in the transformed grammar G (i.e., the number
of terminal and nonterminal symbols in the original grammar, minus possible reductions). Instead,
G will still be the size of the original grammar (the transformed one has size at most G+ σ).

4 Main Index Structure

We define a structure that will be key in our index.

Definition 1. The grammar tree of G is a general tree TG with nodes labeled in X . Its root is labeled
Xs and its topology is obtained by pruning the parse tree of T with two rules: (1) in a left-to-right
DFS traversal, in each noded except the first time a nonterminal Xi is found, its subtree is pruned
and the node becomes a leaf; (2) whenever Xa → a is found, it is pruned too, leaving Xa as a leaf.
We say that each Xi is defined in the only internal node of TG labeled Xi.

Since each right-hand side αi 6∈ Σ is written once in the tree as the children of Xi, and the root
Xs is written once, the total number of nodes in TG is G+ 1. The number of internal nodes is g− σ,
and the number of leaves is G+ 1− g + σ. Figure 1 shows the reordering and grammar tree for a
grammar generating the string "alabaralalabarda".

The grammar tree partitions T in a way that is useful for finding occurrences, using a concept
that dates back to Kärkkäinen [Kär99].

Definition 2. Let Xl1 , Xl2 , . . . be the nonterminals labeling the consecutive leaves of TG. Let Ti =
F(Xli), then T = T1T2 . . . is a partition of T according to the leaves of TG. We say that an occurrence
of a pattern P is primary relatively to the given partition if it spans more than one Ti. The other
occurrences are called secondary.

Our self-index will represent G using two main components. One represents the grammar tree
TG using an FF representation (Section 2.3) and a sequence of labels (Section 2.1). This will be
used to extract the text and decompress rules. When augmented with a secondary trie TS storing
leftmost/rightmost paths in TG , the representation will expand any prefix/suffix of a rule in optimal
time [GKPS05].

The second component in our self-index corresponds to a labeled binary relation (Section 2.2),
where B = X and A is the set of proper suffixes starting at positions j+1 of rules αi: (αi[j], αi[j+1..])
will be related for all Xi → αi and 1 ≤ j < |αi|. The labels are numbers in the range [1..G+ 1]; we
specify their meaning later. This binary relation will be used to find the primary occurrences of the
search pattern. Secondary occurrences will be tracked in the grammar tree.
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X1 → a

X2 → X9X1X6X9X5X1

X3 → b
X4 → X1X6X1X3

X5 → d

X6 → l

X7 → r
X8 → X1X7

X9 → X4X8

⇒

X̄1 → a

X̄2 → b

X̄3 → d
X̄4 → l

X̄5 → r

X̄6 → X̄1X̄5

X̄7 → X̄1X̄4X̄1X̄2

X̄8 → X̄7X̄6

X̄9 → X̄8X̄1X̄4X̄8X̄3X̄1

X2

a

alabaralalabarda
b

alab

d

l
r

ar

alabar

X9 X1 X6 X9 X5 X1

X4 X8

X1 X7

X1 X6 X1 X3

X4 X8

X1 X7

X1 X6 X1 X3

X1 X6 X1 X3 X1 X7 X1 X6 X9 X5 X1

L = 1 1 1 1 1 1 1 1 100000 1 1

Fig. 1. At the top left, a grammar G generating string "alabaralalabarda". At the top right, our
reordering of the grammar and strings F(Xi). On the bottom, the grammar tree TG in black; the
whole parse tree includes also the grayed part. Below the tree we show our bitmap L (Section 5.2).

5 Extracting Text

We first describe a simple structure that extracts the prefix of length ` of any rule in O(` + h)
time. We then augment this structure to support extracting any substring of length ` in time
O(`+ h lg(G/h)), and finally augment it further to retrieve the prefix or suffix of length ` of any
rule in optimal O(`) time. This last result is fundamental for supporting searches, and is obtained
by extending the structure proposed by Gasieniec et al. [GKPS05] for SLPs to general context-free
grammars. The improvement does not work for extracting arbitrary substrings, as in that case one
has to find first the nonterminals that must be expanded. This subproblem is not easy to solve,
especially within little space [BLR+15].

As said, we represent the topology of the grammar tree TG using FF (Section 2.3), using O(G)
bits. The sequence of labels associated with the tree nodes is stored in preorder in a sequence
X[1..G+ 1] using G log g + o(G log g) bits with the representation described in Section 2.1, where
we choose constant time for access(X, i) = X[i] and O(lg lgwG) time for selecta(X, j).

We also store a bitmap Y [1..g] that marks the rules of the form Xi → a ∈ Σ with 1s. Since the
rules have been renumbered in (reverse) lexicographic order, every time we find a rule Xi such that
Y [i] = 1, we can determine the terminal symbol it represents as a = rank1(Y, i) in constant time. In
our example of Figure 1 this bitmap is Y = 101011100.
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5.1 Expanding Prefixes of Rules

Expanding a rule Xi that does not correspond to a terminal is done as follows. By the definition of
TG , the first left-to-right occurrence of Xi in sequence X corresponds to the definition of Xi; all the
others are leaves in TG . Therefore, v = nodeTG (selectXi(X, 1)) is the node in TG where Xi is defined.
We then traverse the subtree rooted at v in DFS order. Every time we reach a leaf u, we compute
its label Xj = X[preorderTG (u)], and either output a terminal if Y [j] = 1 or recursively expand
Xj . This is in fact a traversal of the parse tree starting at node v, using the grammar tree instead.
The traversal to extract the first ` terminals takes O(`+ hv) steps, where hv ≤ h is the height of
the parsing subtree rooted at v. In particular, if we extract the whole sequence F(Xi), we perform
O(`) = O(F(Xi)) steps, since we have removed unary paths in the preprocessing of G and thus v
has F(Xi) > hv leaves in the parse tree. The only obstacle to having constant-time steps are the
queries selectXi(X, 1). As these are only for the position 1, they correspond to finding the internal
node of TG that defines Xi. We then store a permutation π[1..g − σ] so that Xi is defined at the
node intselectTG (π[rank0(Y, i)]), which is computed in constant time using g lg g bits for π.

The total space required for TG , considering the FF representation, sequence X, bitmap Y ,
and permutation π, is G lg g + g lg g + o(G lg g) + O(G) bits.3 We reduce the space to G lg g +
ε g lg g + o(G lg g) +O(G), for any 0 < ε ≤ 1, by removing some redundancy: We form a reduced
sequence X ′[1..G − g + σ + 1] where the labels of the internal nodes are removed. We can still
access any X[i] = X ′[leafrankTG (v) + 1], with v = nodeTG (i), if v is a leaf. If v is an internal

node, we have X[i] = select0(Y, π
−1[intrankTG (v) + 1]). We can also support general select on X:

selectXi(X, j) = preorderTG (leafselectTG (selectXi(X
′, j − 1))) for j > 1.

Thus, we can use X ′ instead of X, at the cost of having to compute π−1. To do this, we use
the representation of Munro et al. [MRRR12] that takes (1 + ε)g lg g bits and computes any π[i] in
constant time and any π−1[j] in time O(1/ε). This yields the promised space. The time to access
X[i] is now O(1/ε). Although this will have an impact later, we note that for extraction we only
access X at leaf nodes, where it takes constant time.

5.2 Extracting Arbitrary Substrings

In order to extract any given substring of T , we add a bitmap L[1..n] that marks with a 1 the first
position of each Ti in T (see Figure 1). We can then compute the starting position of any node
v ∈ TG as p(v) = select1(L, leafrankTG (v) + 1).

To extract T [p..p+ `− 1], we binary search the children of the root of TG , to find the child u
covering position p. If u is a leaf representing a nonterminal, we go to its definition v ∈ TG , translate
position p to the area below the new node v (i.e., p becomes p−p(u)+p(v)), and continue recursively
from v. At some point we reach the terminal node Xi → a covering position p, and from there on
we extract the symbols rightwards. Just as before, the total number of steps is O(`+ h). Yet, the h
steps require binary searches. As there are at most h binary searches among the children of different
tree nodes, and there are G+ 1 nodes, at worst the binary searches cost O(h lg(G/h)). The total
cost is O(`+ h lg(G/h)).

The number of 1s in L is at most G. Since we only need select1 on L, we can use an ID
representation (Section 2.1), requiring G lg(n/G) +O(G+ lg lg n) = G lg(n/G) +O(G) bits (since
G ≥ lg n in any grammar). The total space then becomes G lg g+G lg(n/G)+ε g lg g+o(G lg g)+O(G)
bits.
3 It could be that g = O(1), so o(G lg g) does not necessarily absorb O(G).
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X1 X3 X5 X6 X7

X4 X8

X9

X2

level-ancestor(v, depth(v)− 1)v

Fig. 2. Example of the trie of leftmost paths for the grammar of Figure 1. The arrow pointing from
X2 to X1 illustrates the procedure to determine the first terminal symbol generated by X2.

Instead, if we implement L with an Elias-Fano structure [Eli74,Fan71], and augment each sub-
universe of size n/G with a sampled predecessor data structure, we use G lg(n/G) + o(G lg n) bits
for L and can solve rank1 queries on L in time O(lg lg(n/G)) (cf. [BN15, Sec. 4.2]). Thus, instead
of doing successive binary searches in the path towards the leaf covering p, we compute the area of
that leaf directly with 1 + rank1(L, p). Therefore the total time becomes O(h lg lg(n/G)), because
there can still be h jumps to other parts of the tree. We omit this results for simplicity.

5.3 Optimal Expansion of Rule Prefixes and Suffixes

Our improved version builds on the proposal by Gasieniec et al. [GKPS05]. We extend their
representation to handle general grammars instead of only SLPs. Using their notation, call S(Xi)
the string of labels of the nodes in the path from any node labeled Xi to its leftmost leaf in the
parse tree (we take as leaves the nonterminals Xa ∈ X with Xa → a, not the terminals a ∈ Σ). We
insert all the strings S(Xi)

rev into a trie TS . Note that each symbol Xi appears only once in TS
[GKPS05], thus TS has g nodes. Again, we represent the topology of TS using FF. Its sequence of
labels XS [1..g] turns out to be a permutation of [1..g]. We represent it once again with the structure
[MRRR12] that takes (1 + ε)g lg g bits and computes any XS [i] in constant time and any X−1S [j] in
time O(1/ε).

We can determine the first terminal in the expansion of Xi, which labels node v ∈ TS , as
follows. Since the last symbol in S(Xi) is a nonterminal Xa with Xa → a for some a ∈ Σ,
it follows that Xi descends in TS from Xa, which is a child of the root. This node is va =
level -ancestorTS (v, depthTS (v)− 1). Then a = rank1(Y,XS [preorderTS (va)]).

Figure 2 shows an example of this query in the trie for the grammar presented in Figure 1.

A prefix of Xi is then extracted as follows. First, we obtain the corresponding node v ∈ TS
as v = nodeTS (X−1S [Xi]). Then we obtain the leftmost symbol of v as explained. The re-
maining symbols descend from the second and following children, in the parse tree, of the
nodes in the upward path from a node labeled Xi to its leftmost leaf, or which is the same,
of the nodes in the downward path from the root of TS to v. Therefore, for each node u
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in the list level -ancestorTS (v, depthTS (v) − 2), . . . , parentTS (v), v, we map u to x ∈ TG , x =
nodeTG (selectXj (X, 1)) where Xj = XS [preorderTS (u)]. Once x is found, we recursively expand
its children, from the second onwards, by mapping them back to TS . Charging the cost to the new
symbol to be expanded, and since there are no unary paths, it follows that we carry out O(`) steps
to extract the first ` symbols, and the extraction is real-time [GKPS05]. All costs per step are O(1)
except for the O(1/ε) to access X−1S .

For extracting suffixes of rules in G, we need another version of TS that stores the rightmost
paths. This yields the following result.

Lemma 1. Let a sequence T [1..n] be represented by a context-free grammar with g symbols, size
G, and height h. Then, for any 0 < ε ≤ 1, there exists a data structure using at most G lg g +
G lg(n/G) + (2 + ε)g lg g+ o(G lg g) +O(G) bits of space that extracts any substring of length ` from
T in time O(`+ h lg(G/h)), and a prefix or a suffix of length ` of the expansion of any nonterminal
in time O(`/ε).

6 Locating Patterns

A secondary occurrence of the pattern P inside a leaf of TG labeled by a symbol Xi occurs as well in
the internal node of TG where Xi is defined. If that occurrence is also secondary, then it occurs inside
a child Xj of Xi, and we can repeat the argument with Xj until finding a primary occurrence inside
some Xk. Thus, to find all the secondary occurrences, we can first spot the primary occurrences,
and then find all the copies of the nonterminals Xk that contain the primary occurrences, as well as
all the copies of the nonterminals that contain Xk, recursively.

As before, we base our approach on the strategy proposed by Kärkkäinen [Kär99] to find the
primary occurrences of P = p1p2 . . . pm. Kärkkäinen considers the m − 1 partitions P = P1 · P2,
P1 = p1 . . . pi and P2 = pi+1 . . . pm, for 1 ≤ i < m. In our case, for each partition we will find all the
nonterminals Xk → Xk1Xk2 . . . Xkr such that P1 is a suffix of some F(Xki) and P2 is a prefix of
F(Xki+1

) . . .F(Xkr). This finds each primary occurrence exactly once. The secondary occurrences
are then tracked in the grammar tree TG . We handle the case m = 1 by finding all occurrences of
Xj , where Xj → p1, in TG using selectXj over the sequence of labels, and treating them as primary
occurrences.

6.1 Finding Primary Occurrences

As anticipated at the end of Section 3, we store a binary relation R ⊆ A×B to find the primary
occurrences. It has g rows labeled Xi, for all Xi ∈ X = B, and G − g columns. Each column
corresponds to a distinct proper suffix αi[j + 1..] of a right-hand side αi. The labels belong to
[1..G+ 1]. The relation contains one pair per column: (αi[j], αi[j + 1..]) ∈ R for all 1 ≤ i ≤ g and
1 ≤ j < |αi|. Its label is the preorder of the (j + 1)th child of the node that defines Xi in TG . The
space for the binary relation is (G− g)(lg g + lgG) + o(G lg g) bits.

Recall that, in our preprocessing, we have sorted X according to the lexicographic order of
F(Xi)

rev. We also sort the suffixes αi[j + 1..] lexicographically with respect to their expansion,
that is F(αi[j + 1])F(αi[j + 2]) . . .F(αi[|αi|]). This can be done in O(n + G lgG) time in a way
similar to how X was sorted: Each suffix αi[j + 1..], labeled p, can be associated with the substring
T [select1(L, leafrankTG (nodeTG (p)) + 1)..select1(L, leafrankTG (v) + numleavesTG (v) + 1)− 1], where
v is the parent of nodeTG (p). Then we can proceed as in previous constructions for SLPs [CN10].
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Figure 3 illustrates how R is used for the grammar presented in Figure 1.

Given P1 and P2, we first find the range of rows whose expansions finish with P1, by binary
searching for P rev1 in the expansions F(Xi)

rev. Each comparison in the binary search needs to extract
|P1| terminals from the suffix of F(Xi). According to Lemma 1, this takes O(|P1|/ε) time. Similarly,
we binary search for the range of columns whose expansions start with P2. Each comparison needs
to extract ` = |P2| terminals from the prefix of F(αi[j + 1])F(αi[j + 2]) . . .. Let r be the column we
wish to compare to P2. We extract the label p associated with the column in constant time. Then
we extract the first ` symbols from the expansion of nodeTG (p). If nodeTG (p) does not have enough
symbols, we continue with nextsiblingTG (p), and so on, until we extract ` symbols or we exhaust
the suffix of the rule. According to Lemma 1, this requires time O(|P2|/ε). Thus our two binary
searches require time O((m/ε) lgG).

This time can be further improved by building a trie of sampled expansions. We sample expanded
strings at regular intervals and store them in a Patricia tree [Mor68]. We first search for the pattern
in the Patricia tree, and then complete the process with a binary search between two sampled strings
(we first verify the correctness of the Patricia search by checking that our pattern is actually within
the range found). By sampling one out of lg n strings, the search time becomes O((m/ε) lg lgn) and
we only require O(G) bits of extra space, since the Patricia tree needs O(lg n) bits per node.4

Once we identify a range of rows [a1, a2] and of columns [b1, b2], we retrieve all the k points
in the rectangle and their labels in time O((k + 1)(1 + lg g/ lg lgG)). The parents of all the nodes
nodeTG (p), for each point p in the range, correspond to the primary occurrences. In Section 6.2
we show how to report primary and secondary occurrences starting directly from those positions
nodeTG (p).

We have to carry out this search for m− 1 partitions of P , whereas each primary occurrence is
found exactly once. Calling occ the number of primary occurrences, the total cost of this part of the
search is O((m2/ε) lg lg n+ (m+ occ)(1 + lg g/ lg lgG)).

6.2 Tracking Secondary Occurrences through the Grammar Tree

The remaining problem is how to track all the secondary occurrences triggered by a primary
occurrence, and how to report the positions where these occur in T . Given a primary occurrence for
partition P = P1 ·P2 located at v = nodeTG (p), we obtain the starting position of P in T by moving
towards the root while keeping count of the offset between the beginning of the current node and
the occurrence of P . Initially, for node v itself, this is l = −|P1|. Now, while v is not the root, we set
l← l+ select1(L, leafrankTG (v) + 1)− select1(L, leafrankTG (parentTG (v)) + 1), and v ← parentTG (v).
When we reach the root, the occurrence of P starts at l.

It seems that we are doing this h times in the worst case, since we need to track the occurrence
up to the root. In fact we might do so for some symbols, but the total cost is amortized. Every time
we move from v to u = parentTG (v), we know that X[u] appears at least once more in the tree. This
is because our preprocessing (Section 3) forces rules to appear at least twice or be removed. Thus u
defines X[u], but there are one or more leaves labeled X[u], and we have to report the occurrences
of P inside them all. For this sake we carry out selectX[u](X, i) for i = 2, 3 . . . until spotting all
those occurrences (where P occurs with the current offset l). We recursively track them to the root
of TG to find their absolute position in T , and recursively find the other occurrences of all their

4 We could push it a bit further, for example sampling one out of lgn lg lg g/ lg g strings to obtain o(G lg g) +O(G)

bits of extra space and a search time of O
(

(m/ε) lg
(

lgn lg lg g
lg g

))
, but we opt for a simpler formula.
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Fig. 3. Relation R for the grammar presented in Figure 1. The highlighted ranges correspond to
the result of searching for b · ar, where the single primary occurrence corresponds to X9.

ancestor nodes. The overall cost amortizes to O(1) steps per occurrence reported, as we can charge
the cost of moving from v to u to the other occurrence of u. If we report occ secondary occurrences
we carry out O(occ) steps, each costing O(lg lg g) time.

7 The Resulting Index

By adding up the space of Lemma 1 with that of the labeled binary relation, and adding up the
costs, we have our central result, Theorem 1, where for simplicity we have replaced the cost per
occurrence of 1/ε+ log log g + log g/ log logG by just 1/ε+ log g/ log log g.

By using ε = Θ(1) and ε = 1/ lg lg n, we obtain two simpler results.

Corollary 2. Let a sequence T [1..n] be represented by a context-free grammar with g symbols and
size G. Then, for any constant 0 < ε ≤ 1, there exists a data structure using at most G lg n +
2G lg g + ε g lg g + o(G lg g) +O(G) bits that finds the occ occurrences of any pattern P [1..m] in T
in time O(m2 lg lg n+ (m+ occ) lg g/ lg lg g).

Corollary 3. Let a sequence T [1..n] be represented by a context-free grammar with g symbols and
size G. Then, there exists a data structure using at most G lg n+ 2G lg g+ o(G lg g) +O(G) bits that
finds the occ occurrences of any pattern P [1..m] in T in time O((m lg lgn)2 + (m+ occ) lg g/ lg lg g).

Finally, by using a larger geometric structure [CLP11] for the binary relation, and letting other
structures use O(G lg n) bits, we obtain a somewhat faster structure, Corollary 1.
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8 Implementation and Experiments

8.1 Implementation

We implemented our grammar-based self-index on top of the library SDSL (Succinct Data Structures
Library)5, which is implemented in C++11 and contains efficient implementations of several succinct
data structures.

To generate the grammar we use the RePair algorithm [LM00], in particular Navarro’s imple-
mentation6. RePair produces a binary grammar (i.e., all the rules have 2 symbols in their right-hand
side) plus a long initial rule. We then postprocess the resulting grammar as required for our index,
see Section 3.

In repetitive collections it holds that g ≤ G� n; we also expect that σ � g for large texts. It
follows that bitmaps Y (of length g and with σ 1s) and L (of length n and with less than G 1s) are
sparse. We then represent them using the class sd vector from SDSL.

In the compressed grammar representation we use a permutation π to find the node that defines
a rule. We use the class inv permutation support<t> of SDSL, which gives access to the inverse
permutation in at most t steps, and fix t to 32. We also use this structure for representing the labels
of the tries TS in the optimal prefix/suffix extraction.

To support operations on the sequence of non-primary nodes, X ′ is represented using the
structure of Golynski et al. [GMR06] (wt gmr in SDSL), because its alphabet is large and the
sequence is almost incompressible.

Our grid representation is the same structure used in the implementation of Claude and Navarro
[CN10] for labeled binary relations.

The topology of the grammar tree and of the sampled Patricia tries is represented with a variant
of balanced FF (Section 2.3) called DFUDS [BDM+05], which is faster in practice for moving towards
children. The trees TS , instead, are represented using FF [NS14], which is more efficient for level
ancestor queries. Both are implemented over the parentheses support of SDSL (bp support sada).

We test four versions of our index, called g-index in the experiments. The variants whose name
continue with binary search use plain binary search on the rules prefixes/suffixes in order to find the
row and column intervals on the grid. The variants whose name instead continue with patricia tree
speed up this process using a sampled Patricia tree, which takes one string every 4, 8, 16, 32, and 64
positions. On the other hand, the variants suffixed trie use the structure of Gasieniec et al. [GKPS05]
(Section 5.3) to extract rule prefixes/suffixes in optimal time, whereas the variants suffixed notrie
omit this structure and extract the text from the rules in recursive form. Finally, the term gram
indicates that we add a short q-gram (q = 2, 4, 6, 8, 10, 12) with the prefix and suffix of the expansion
of each nonterminal [CFMPN16], to speed up extraction during binary searches. The strings are
stored in a dictionary compressed with Huffman and Front Coding. Since the q-grams are limited,
the binary search must be completed, either using plain decompression of nonterminals (suffix dfs),
the real-time prefix extraction (suffix trie), or plain decompression speeded up by the same q-grams
of the nonterminals we find in the way (suffix smp).

Our implementation is available at https://github.com/apachecom/grammar improved index/.

5 https://github.com/simongog/sdsl-lite
6 http://www.dcc.uchile.cl/gnavarro/software/repair.tgz
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Collection n σ z r G – repair G – proc

para 429,265,758 5 2,332,908 15,636,740 7,338,520 5,344,480
cere 461,286,644 5 1,700,859 11,574,641 5,780,080 4,069,450
influenza 154,808,555 15 770,253 3,022,822 2,174,650 1,957,370
einstein.en 467,626,544 139 91,036 290,239 263,962 212,903
kernel 257,961,616 162 794,290 2,791,368 2,185,860 1,374,650
coreutils 205,281,778 235 1,446,891 4,684,465 3,798,100 2,409,460

Table 1. Main characteristics of the collections: n (size in bytes), σ (alphabet size), z (number of
Lempel-Ziv phrases), r (number of runs in the BWT), and G – repair and G – proc (size of the
RePair grammar before and after applying the transformations of Section 3, respectively).

8.2 Experimental Setup

The experimental evaluation was carried out using the environment provided in Pizza&Chili
(http://pizzachili.dcc.uchile.cl). We compared our implementation with the available indexes
in the state of the art that are most faithful with respect to different compressibility measures:

slp-index 7 is the only previous implementation of a grammar-based index [CN10], using O(G log n)
bits like ours. It does not guarantee, however, logarithmic locating time per occurrence. It uses the
same RePair algorithm we use to build the index (a construction over the heuristically balanced
version of RePair is called slp-index-bal). In its optimized version [CFMPN16], it speeds up the
binary searches by storing the q-gram prefixes of the strings expanded by each nonterminal, as
we use in the gram variant of q-index, yet here the best values are q = 4, 8, 16.

lz-index 8 is the only implementation of a Lempel-Ziv based index [KN13] that guarantees O(z log n)
bits of space on a Lempel-Ziv parse of z phrases. We also use its optimized implementation
[CFMPN16], which was shown to outperform slp-index both in space and time.

r-index 9 is the only implementation of a classical self-index (i.e., suffix-array based) using O(r log n)
bits, where r is the number of runs in the Burrows-Wheeler Transform of the text [GNP18].

We use six real repetitive collections from a repetitive corpus10. Three of these collections
contain DNA sequences extracted from differents sources: para and cere are extracted from the
Saccharomyces Genome Resequencing Project11, whereas influenza is formed by DNA sequences of
H. Influenzae taken from the National Center for Biotechnology Information (NCBI)12. Collection
einstein.en is formed by all version of the articles in English of Albert Einstein taken from Wikipedia.
Collections kernel and coreutils are formed by all versions 5.x of the Coreutils package13 and all
1.0.x and 1.1.x versions of the Linux Kernel14, respectively. Table 1 lists their main characteristics.

Our times per occurrence are the average over 1000 patterns of length 10 extracted at random
from each collection. Our extraction times average over 1000 queries at random text positions.

7 https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/SLP
8 https://github.com/migumar2/uiHRDC/tree/master/uiHRDC/self-indexes/LZ
9 https://github.com/nicolaprezza/r-index

10 http://pizzachili.dcc.uchile.cl/repcorpus/real
11 http://www.sanger.ac.uk/Teams/Team71/durbin/sgrp
12 http://www.ncbi.nlm.nih.gov
13 https://ftp.gnu.org/gnu/coreutils
14 https://mirrors.edge.kernel.org/pub/linux/kernel
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8.3 Locate Time

Figure 4 shows the space-time tradeoffs obtained for locating patterns of length 10 over all the
indexes and parameter values on all the collections. We first discuss the results on our index and
then compare it with the others.

In all cases, the use of Patricia trees with a sufficiently sparse sampling rate can reach essentially
the same space of the plain binary-search versions. Even with the sparsest sampling rate (1 out of
64), the Patricia trees sharply outperform the binary searches on the DNA alphabets, while making
no difference on the others. The rule samplings of the qgram versions also outperform binary searches
on DNA alphabets without increasing the space, reaching the sweet point at value 8. Nevertheless,
the Patricia trees make better use of the space.

On the other hand, the use of the tries TS slightly increases the space while not providing a
noticeable improvement in time (the exception is on the binary-search versions of para, but these
lose anyway to the versions using Patricia trees). As a result, we take g-index-patricia tree-notrie as
the most convenient version of our implementation, and we call it simply g-index henceforth.

The use of denser samplings yields an interesting space-time tradeoff for g-index on DNA, which
dominates a significant part of the Pareto curve. On the other texts, it is better to use it with
the sparsest sampling (or with plain binary search), which dominates all the other alternatives on
kernel and coreutils. With the sparsest sampling, g-index uses almost the same space of the previous
grammar-based index, slp-index, except on influenza, where g-index is 20% larger. In exchange,
g-index is up to 5 times faster than slp-index. There are almost no differences between slp-index and
slp-index-bal, which confirms that the grammar height does not affect extraction time in practice.

Index lz-index outperforms slp-index in both space and time, as in previous work [CFMPN16].
While losing to lz-index in space is expected because z ≤ G always holds, grammars allow for better
methods to access the text. The index slp-index was, however, unable to take advantage of those
methods to outperform lz-index in time. Now our g-index does offer a space-time tradeoff, using
more space than lz-index, but in exchange being faster; sometimes lz-index is dominated in space
and time. With sampling value 8, g-index is 50%–65% larger than lz-index, but 30%–40% faster on
DNA texts. With sampling value 64, g-index is from 10% smaller to 25% larger than lz-index and
20%–40% faster than it.

Finally, r-index is way faster than the others, but also way larger (2–5 times larger than lz-index).
Figure 5 shows how the locate time evolves with the pattern length m on einstein.en. We still

include the different variants of our index in this plot (the numbers in brackets are the sample
values), and consider pattern lengths 5, 10, 20, 30, 40, and 50.

The left plot shows that, while g-index is way faster than slp-index and lz-index on this text for
small m, all the g-index variants slow down as m increases, eventually losing to lz-index for long
enough patterns. The most important lengths, however, where a large number of occurrences are
found, are the short ones. The total query times are much less significant for long patterns, as shown
on the right plot.

8.4 Extraction Time

Figure 6 shows the time per extracted symbol of the different indexes and collections, when extracting
10 consecutive text symbols. The r-index is excluded because it does not support this operation.
Note that the extraction in our g-index is independent of whether or not we use binary search or
Patricia trees. The variant that continues with binary search descends from the root symbol, binary
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Fig. 4. Time-space tradeoffs for locating on different collections and indexes. The time is given in
microseconds per occurrence and the space in bits per symbol (bps).
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Fig. 5. Locating time for increasing pattern lenghts on einstein.en. The time is given in microseconds
per occurrence on the left, and per pattern symbol on the right. Only some representative indexes
are shown on the right plot.

searching the children, to reach the desired substring to extract. Instead, the variant that continues
with rank phrases uses rank on the bitmap L (Section 5.2), so as to find faster the phrases to be
expanded. The suffixes trie and notrie refer again to using or not the structure for extracting prefixes
and suffixes in linear time (for the phrases that are not completely contained in the area to extract).
Finally, if qgram follows g-index, we use the q-grams to speed up extraction, with lengths 2, 4, 6, 8.

As it can be seen, the best g-index variant, both in space and time, is usually g-index-rank phrases-
notrie. It is also apparent that lz-index excells in extraction, being 3–5 times faster than every g-index
variant (except on einstein.en, the most repetitive collection, where the h̄ value of the Lempel-Ziv
parsing is very high). On the other hand, our best g-index variant outperforms slp-index in time by
20%–100% within similar space. The exceptions are influenza and einstein.en, where slp-index is
10%–30% faster.

9 Conclusions

We have presented the first compressed text index based on arbitrary context-free grammars whose
time per retrieved occurrence is logarithmic, independently of the grammar height. Given a text
T [1..n] represented by a grammar of size G, our index uses O(G log n) bits of space and returns
the occ occurrences of a pattern P [1..m] in time O((m2 + occ) logG). We implemented our index
and compared it with various alternatives in the literature, showing that it is practical and offers
relevant space/time tradeoffs.

The most interesting open theoretical question is whether it is possible to obtain O(G log g) bits,
as grammar-based compressors could reach, instead of O(G log n), since in some text families we have
g ≤ G = O(log n). This term owes to storing the lengths of the expansions of the nonterminals in
bitmap L. We tried storing these lengths in the nonterminals, instead, and sampling the nonterminals
that would store lengths. Finding a suitable sampling on the grammar DAG, however, is related to
finding minimum cuts in graphs [AHK04], which is not easy.

With respect to practical results, an interesting research direction would be to obtain prac-
tical implementations of recent proposals that reduce the O(m2) term in the search complexity
[GGK+14,BEGV18,CE18]. Some of those methods, however, have a penalty factor of O(log log z) or

17



Fig. 6. Time-space tradeoffs for extracting on different collections and indexes. The time is given in
microseconds per extracted symbol and the space in bits per symbol (bps).
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O(log(n/z)) in the space, which is far from negligible, and thus they are unlikely to be competitive
in space. The index of Christiansen and Ettienne [CE18], on the other hand, builds on a grammar
and looks more promising. They manage to ensure that P needs be cut into only O(logm) places to
spot all the primary occurrences, which reduces the O(m2) term to O(m logm). For this to hold,
however, the grammar must be of a special type called locally-consistent. In our experience, RePair
outperforms in space, by a wide margin, all the other grammar construction algorithms, including
those that offer guarantees of the form G = O(z log(n/z)). It is therefore unclear which is the price
to pay in space in order to use a specific type of grammar.
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