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—— Abstract

In two-player games on graphs, the players move a token through a graph to produce a finite or
infinite path, which determines the qualitative winner or quantitative payoff of the game. We study
bidding games in which the players bid for the right to move the token. Several bidding rules were
studied previously. In Richman bidding, in each round, the players simultaneously submit bids, and
the higher bidder moves the token and pays the other player. Poorman bidding is similar except
that the winner of the bidding pays the “bank” rather than the other player. Taxman bidding
spans the spectrum between Richman and poorman bidding. They are parameterized by a constant
7 € [0,1]: portion 7 of the winning bid is paid to the other player, and portion 1 — 7 to the bank.
While finite-duration (reachability) taxman games have been studied before, we present, for the
first time, results on infinite-duration taxman games. It was previously shown that both Richman
and poorman infinite-duration games with qualitative objectives reduce to reachability games, and
we show a similar result here. Our most interesting results concern quantitative taxman games,
namely mean-payoff games, where poorman and Richman bidding differ significantly. A central
quantity in these games is the ratio between the two players’ initial budgets. While in poorman
mean-payoff games, the optimal payoff of a player depends on the initial ratio, in Richman bidding,
the payoff depends only on the structure of the game. In both games the optimal payoffs can be
found using (different) probabilistic connections with random-turn games in which in each turn,
instead of bidding, a coin is tossed to determine which player moves. While the value with Richman
bidding equals the value of a random-turn game with an un-biased coin, with poorman bidding, the
bias in the coin is the initial ratio of the budgets. We give a complete classification of mean-payoff
taxman games that is based on a probabilistic connection: the value of a taxman bidding game with
parameter 7 and initial ratio r, equals the value of a random-turn game that uses a coin with bias
F(r,r)= W Thus, we show that Richman bidding is the exception; namely, for every 7 < 1,
the value of the game depends on the initial ratio. Our proof technique simplifies and unifies the
previous proof techniques for both Richman and poorman bidding.
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Bidding Mechanisms in Graph Games

1 Introduction

Two-player infinite-duration games on graphs are a central class of games in formal veri-
fication [2], where they are used, for example, to solve synthesis [19], and they have deep
connections to foundations of logic [21]. A graph game proceeds by placing a token on a
vertex in the graph, which the players move throughout the graph to produce an infinite
path (“play”) w. The game is zero-sum and 7 determines the winner or payoff. Graph games
can be classified according to the players’ objectives. For example, the simplest objective is
reachability, where Player 1 wins iff an infinite path visits a designated target vertex. Another
classification of graph games is the mode of moving the token. The most studied mode of
moving is turn based, where the players alternate turns in moving the token.

In bidding games, in each turn, an “auction” is held between the two players in order
to determine which player moves the token. The bidding mode of moving was introduced
in [13, 14] for reachability games, where the following bidding rules where defined. In Richman
bidding (named after David Richman), each player has a budget, and before each turn, the
players submit bids simultaneously, where a bid is legal if it does not exceed the available
budget. The player who bids higher wins the bidding, pays the bid to the other player, and
moves the token. A second bidding rule called poorman bidding in [13], is similar except that
the winner of the bidding pays the “bank” rather than the other player. Thus, the bid is
deducted from his budget and the money is lost. A third bidding rule on which we focus in
this paper, called tazman in [13] spans the spectrum between poorman and Richman bidding.
Taxman bidding is parameterized by 7 € [0,1]: the winner of a bidding pays portion 7 of his
bid to the other player and portion 1 — 7 to the bank. Taxman bidding with 7 = 1 coincides
with Richman bidding and taxman bidding with 7 = 0 coincides with poorman bidding.

Bidding games are relevant for several communities in Computer Science. In formal
methods, graph games are used to reason about systems. Poorman bidding games naturally
model concurrent systems where processes pay the scheduler for moving. Block-chain
technology like Etherium is an example of such a system, which is a challenging to formally
verify [9, 3]. In Algorithmic Game Theory [17], auction design is a central research topic that
is motivated by the abundance of auctions for online advertisements [16]. Infinite-duration
bidding games can model ongoing auctions and can be used to devise bidding strategies for
objectives like: “In the long run, an advertiser’s ad should show at least half of the time”.
In Artificial Intelligence, bidding games with Richman bidding have been used to reason
about combinatorial negotiations [15]. Finally, discrete-bidding games [11], in which the
granularity of the bids is restricted by assuming that the budgets are given using coins, have
been studied mostly for recreational games, like bidding chess [6].

Both Richman and poorman infinite-duration games have a surprising, elegant, though
different, mathematical structure as we elaborate below. Our study of taxman bidding aims
at a better understanding of this structure and at shedding light on the differences between
the seemingly similar bidding rules.

A central quantity in bidding games is the initial ratio of the players budgets. Formally,
assuming that, for ¢ € {1,2}, Player i’s initial budget is B;, we say that Player 1’s initial
ratio is By /(B + Bz). The central question that was studied in [13] regards the existence of
a necessary and sufficient initial ratio to guarantee winning the game. Formally, the threshold
ratio in a vertex v, denoted Th(v), is such that if Player 1’s initial ratio exceeds Th(v), he can
guarantee winning the game, and if his initial ratio is less than Th(v), Player 2 can guarantee
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winning the game'. Existence of threshold ratios in reachability games for all three bidding
mechanisms was shown in [13].

Reachability Richman-bidding games have an interesting probabilistic connection [14].
To state the connection, we first need to introduce random-turn games. Let p € [0,1]. In
a random-turn game that is parameterized by p, in each turn, rather than bidding, the
player who moves is chosen by throwing a (possibly) biased coin: with probability p, Player 1
chooses how to move the token, and Player 2 chooses with probability 1 — p. Formally,
a random-turn game is a special case of a stochastic game [10]. Consider a reachability
Richman-bidding game G. We construct a “uniform” random-turn game on top of G, denoted
RT®(G), in which we throw an unbiased coin in each turn. The objective of Player 1 remains
reaching his target vertex. It is well known that each vertex in RT%-?(G) has a value, which is,
informally, the probability of reaching the target when both players play optimally, and which
we denote by val(RT%3(G),v). We are ready to state the probabilistic connection: For every
vertex v in the Richman game G, the threshold ratio in v equals 1 — val(RT%5(G),v). We
note that such a connection is not known and is unlikely to exist in reachability games with
neither poorman nor taxman bidding. Random-turn games have been extensively studied in
their own right, mostly with unbiased coin tosses, since the seminal paper [18].

Infinite-duration bidding games have been recently studied with Richman [4] and poorman
[5] bidding. For qualitative objectives, namely games in which one player wins and the other
player loses, both bidding rules have similar properties. By reducing general qualitative
games to reachability games, it is shown that threshold ratios exist for both types of bidding
rules. We show a similar result for qualitative games with taxman bidding.

Things get interesting in mean-payoff games, which are quantitative games: an infinite
play has a payoff, which is Player 1’s reward and Player 2’s cost (see an example of a
mean-payoff game in Figure 1). We thus call the players in a mean-payoff game Max and
Min, respectively. We focus on games that are played on strongly-connected graphs. With
Richman bidding [4], the initial budget of the players does not matter: A mean-payoff
Richman-bidding game G has a value ¢ € IR that depends only on the structure of the game
such that Min can guarantee a cost of at most ¢ with any positive budget, and with any
positive budget, Max can guarantee a payoff of at least ¢ — €, for every ¢ > 0. Moreover,
the value ¢ of G equals the value of a random-turn game RT%®(G) that is constructed on
top of G. Since G is a mean-payoff game, RT*®(G) is a mean-payoff stochastic game, and its
value, which again, is a well-known concept, is the expected payoff when both players play
optimally.

Mean-payoff poorman-bidding games have different properties. Unlike with Richman
bidding, the value of the game depends on the initial ratio. That is, with a higher initial
ratio, Max can guarantee a better payoff. While the probabilistic connection for mean-payoff
Richman games is not entirely unexpected given the probabilistic connection for reachability
Richman games, we find it surprising that mean-payoff poorman games exhibit a probabilistic
connection, which is in fact richer than for Richman bidding. The connection for poorman
games is the following: Suppose Max’s initial ratio is 7 € [0,1] in a game G. Then, the value
in G with respect to r is the value of the random-turn game RT"(G) in which in each turn,
we toss a biased coin that chooses Max with probability » and Min with probability 1 — 7.

! When the initial ratio is exactly Th(v), the winner depends on the mechanism with which ties are
broken. Our results do not depend on a specific tie-breaking mechanism.Tie-breaking mechanisms are
particularly important in discrete-bidding games [1].
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Figure 1 On the left, a mean-payoff game G. On the right, the mean-payoff value of G, where
the initial ratio is fixed to 0.75 and the taxman parameter 7 varies. The value of G with Richman
bidding is —0.5, with poorman bidding, it is 1, and, for example, with 7 = 0.2, it is 0.533.

Given this difference between the two bidding rules, one may wonder how do mean-payoff
taxman games behave, since these bidding rules span the spectrum between Richman and
poorman bidding. Our main contribution is a complete solution to this question: we identify
a probabilistic connection for a taxman game G that depends on the parameter 7 of the
bidding and the initial ratio . That is, we show that the value of the game equals the value
of the random-turn game RT("")(G), where F(7,r) = %71;” The construction gives rise
to optimal strategies w.r.t. 7 and the initial ratio. As a sanity check, note that for 7 = 1, we
have F(7,r) = 0.5, which agrees with the result on Richman bidding, and for 7 = 0, we have
F(7,7r) = r, which agrees with the result on poorman bidding. In Figure 1, we depict some
mean-payoff values for a fixed initial ratio and varying taxman parameter. Previous results
only give the two endpoints in the plot, and the mid points in the plot are obtained using
the results in this paper.

The main technical challenge is constructing an optimal strategy for Max, which, intuit-
ively, performs a de-randomization; with a deterministic bidding strategy, Max guarantees
that the ratio of the time that is spent in each vertex is the same as in a random behavior.
The construction of Max strategy involves two components. First, we assign an “importance”
to each vertex v, which we call strength and denote St(v). Intuitively, if St(v) > St(u), then
it is more important for Max to move in v than in u. Second, when the game reaches a
vertex v, Max’s bid is a careful normalization of St(v) so that changes in Max’s ratio are
matched with the accumulated weights in the game. Finding the right normalization is
intricate and it consists of the main technical contribution of this paper. Previous such
normalizations were constructed for Richman and poorman mean-payoff games [4, 5]. The
construction for Richman bidding is much more complicated than the one we present here.
The construction for poorman bidding is ad-hoc and does not generalize. Our construction
for taxman bidding thus unifies these constructions and simplifies them. It uses techniques
that can generalize beyond taxman bidding. Finally, we study, for the first time, complexity
problems for taxman games.

Due to lack of space, some proofs appear in the full version.

2 Preliminaries

A graph game is played on a directed graph G = (V, E), where V is a finite set of vertices
and FE CV x V is a set of edges. The neighbors of a vertex v € V, denoted N (v), is the
set of vertices {u € V : (v,u) € E}. A path in G is a finite or infinite sequence of vertices
v1, 3, ... such that for every i > 1, we have (v;,v;41) € E.
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Bidding games. FEach Player ¢ has a budget B; € IR=°. In each turn a bidding determines
which player moves the token. Both players simultaneously submit bids, where a bid b; for
Player ¢ is legal if b; < B;. The player who bids higher wins the bidding, where we assume
some mechanism to break ties, e.g., always giving Player 1 the advantage, and our results are
not affected by the specific tie-breaking mechanism at use. The winner moves the token and
pays his bid, where we consider three bidding mechanisms that differ in where the winning
bid is paid. Suppose Player 1 wins a bidding with his bid of b.

In Richman bidding, the winner pays to the loser, thus the new budgets are B; — b and
By + 0.

In poorman bidding, the winner pays to the bank, thus the new budgets are By — b and
BQ.

In taxman bidding with parameter 7 € [0, 1], the winner pays portion 7 to the other
player and (1 — 7) to the bank, thus the new budgets are By — b and By + (1 — 7) - b.

A central quantity in bidding games is the ratio of a player’s budget from the total
budget.

» Definition 1 (Ratio). Suppose the budget of Player i is B;, for i € {1,2}, at some point in
the game. Then, Player i’s ratio is B;/(B1 + Bs). The initial ratio refers to the ratio of the
initial budgets, namely the budgets before the game begins. We restrict attention to games in
which both players start with positive initial budgets, thus the initial ratio is in (0,1).

Strategies and plays. A strategy is a recipe for how to play a game. It is a function that,
given a finite history of the game, prescribes to a player which action to take, where we
define these two notions below. For example, in turn-based games, a strategy takes as
input, the sequence of vertices that were visited so far, and it outputs the next vertex to
move to. In bidding games, histories and strategies are more involved as they maintain the
information about the bids and winners of the bids. Formally, a history in a bidding game
is m=(v1,b1,01), -+, (Vg, by ik ), Vi1 € (V X IR x {1,2})* -V, where for 1 < j <k + 1, the
token is placed on vertex v; at round j, for 1 < j < k, the winning bid is b; and the winner
is Player ;. Consider a finite history 7. For i € {1,2}, let W;(m) C {1,...,k} denote the
indices in which Player 4 is the winner of the bidding in 7. Let B} be the initial budget of

Player i. Player i’s budget following 7, denoted B;(w), depends on the bidding mechanism.

For example, in Richman bidding, B;(7) = Bf — 2 jewn(n) bi 22 jews(x) bjs B2 is defined
dually, and the definition is similar for taxman and poorman bidding. Given a history 7 that
ends in v, a strategy for Player i prescribes an action (b, v), where b < B;(w) is a bid that
does not exceed the available budget and v is a vertex to move to upon winning, where we
require that v is a neighbor of vi41. An initial vertex, initial budgets, and two strategies for
the players determine a unique infinite play 7 for the game. The vertices that 7 visits form
an infinite path path(r).

Objectives. An objective O is a set of infinite paths. Player 1 wins an infinite play = iff

path(n) € O. We call a strategy f winning for Player 1 w.r.t. an objective O if for every

strategy g of Player 2 the play that f and g determine is winning for Player 1. Winning

strategies for Player 2 are defined dually. We consider the following qualitative objectives:

1. In reachability games, Player 1 has a target vertex ¢ and an infinite play is winning iff it
visits t.

11:5
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2. In parity games, each vertex is labeled with an index in {1,...,d}. An infinite path is
winning for Player 1 iff the parity of the maximal index that is visited infinitely often is
odd.

3. Mean-payoff games are played on weighted directed graphs, with weights given by a
function w : V' — Q. Consider an infinite path n = vy,vs,--- € V¥. For n € IN, the

n

prefix of length n of n is #”, and we define its energy to be E(n™) = >"" ; w(v;). The
payoff of n is MP(n) = liminf,, . E(n™)/n. Player 1 wins 7 iff MP(n) > 0.

Mean-payoff games are quantitative games. We think of the payoff as Player 1’s reward
and Player 2’s cost, thus in mean-payoff games, we refer to Player 1 as Max and to Player 2
as Min.

Threshold ratios. The first question that arises in the context of bidding games asks what
is the necessary and suflicient initial ratio to guarantee an objective.

» Definition 2 (Threshold ratios). Consider a bidding game G, a vertex v, an initial ratio
r, and an objective O for Player 1. The threshold ratio in v, denoted Th(v), is a ratio in
[0,1] such that if r > Th(v), then Player 1 has a winning strategy that guarantees that O is
satisfied, and if r < Th(v), then Player 2 has a winning strategy that violates O.

Random-turn games. A stochastic game [10] is a graph game in which the vertices are
partitioned between two players and a nature player. As in turn-based games, whenever the
game reaches a vertex that is controlled by Player 4, for ¢ = 1,2, he choses how the game
proceeds, and whenever the game reaches a vertex v that is controlled by nature, the next
vertex is chosen according to a probability distribution that depends only on v.

Consider a bidding game G that is played on a graph (V, E). The random-turn game
with ratio r € [0, 1] that is associated with G is a stochastic game that intuitively simulates
the following process. In each turn we throw a biased coin that turns heads with probability
r and tails with probability 1 — r. If the coin turns heads, then Player 1 moves the token,
and otherwise Player 2 moves the token. Formally, we define RT"(G) = (V4, Va2, Vi, E, Pr),
where each vertex in V' is split into three vertices, each controlled by a different player, thus
for a € {1,2, N}, we have V,, = {uv, : v € V'}, nature vertices simulate the fact that Player 1
chooses the next move with probability r, thus Prluy,vi] = r =1 — Pr[vy, v2], and reaching
a vertex that is controlled by one of the two players means that he chooses the next move,
thus E = {{v,un) : (v,u) € E and o € {1,2}}. When G is a mean-payoff game, the vertices
are weighted and we define the weights of v, v, and vy to be equal to the weight of v.

The following definitions are standard, and we refer the reader to [20] for more details. A
strategy in a stochastic game is similar to a turn-based game; namely, given the history of
vertices visited so far, the strategy chooses the next vertex. Fixing two such strategies f and
g for both players gives rise to a distribution D(f, g) on infinite paths. Intuitively, Player 1’s
goal is to maximize the probability that his objective is met. An optimal strategy for Player 1
guarantees that the objective is met with probability at least ¢ and, intuitively, he cannot
do better, thus Player 2 has a strategy that guarantees that the objective is violated with
probability at least (1 — ¢). It is well known that optimal positional strategies exist for the
objectives that we consider.

» Definition 3 (Values in stochastic games). Consider a bidding game G, let r € [0,1], and
consider two optimal strategies f and g for the two players in RT"(G). When G is a qualitative
game with objective O, the value of RT"(G), denoted val(RT"(G)), is Pry.p(t,q) Pr[n € O].
When G is a mean-payoff game, the mean-payoff value of RT"(G), denoted MP(RT"(G)), is

Epen(f,9)MP(n).
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3 Qualitative Taxman Games

In [14, 13], reachability bidding games were studied with a slightly different definition, which
we call double-reachability: both players have a target, where we denote by t; the target of
Player i, for i € {1,2}, all vertices have a path to both targets, and the game ends once one
of the targets is reached. They show the following results.

» Theorem 4. [14, 13] Consider a double-reachability bidding game G and a vertex v. The
threshold ratio exists in v with Richman, poorman, and taxman bidding. Moreover, threshold
ratios have the following properties. For the target vertex t; of Player 1, we have Th(t1) = 0,
and for the target to of Player 2, we have Th(v) = 1. Consider some other vertex v and denote
v, v~ € N(v) the vertices with the minimal and mazimal thresholds in the neighborhood of
v, thus for every u € N(v), we have Th(v™) < Th(u) < Th(v™).

In Richman bidding, we have Th(v) = 5 (Th(v") + Th(v™)).

In poorman bidding, we have Th(v) = Th(v")/(1 + Th(vt) — Th(v™)).

In tazman bidding with parameter T, we have Th(v) = (Th(v™)+ Th(vT)—7-Th(v™))/(2—

7 (14 Th(v™) — Th(v*)))
Moreover, only double-reachability Richman-bidding games exhibit the following probabilistic
connection: for every verter v, we have Th(v) = 1 — val(RT’5(G),v). Thus, for games played
on finite graphs, the threshold ratios are all rational numbers. However, threshold ratios with
poorman-bidding need not be rational in finite games.

The equivalence between double-reachability bidding games and reachability games with
Richman- and poorman-bidding is shown in [4] and [5]. The following proposition is the key
component in showing the equivalence as well as in the reduction from parity taxman games
to reachability taxman games.

» Lemma 5. Consider a reachability taxman game G. Suppose that every vertex in G has a
path to the target of Player 1. Then, for any taxman parameter, Player 1 wins from every
vertex with any positive initial budget. Thus, for every vertex v, we have Th(v) = 0.

Proof. Let G = (V, E,t), where n = |V| — 1. Suppose the game starts from a vertex v, and
let € > 0 be the initial budget of Player 1. Since there is a path from v to Player 1’s target,
there is a path of length at most n. Thus, if Player 1 wins n consecutive biddings, he wins the
game. Intuitively, Player 1 carefully chooses n increasing bids such that if Player 2 wins one
of these bids, Player 1’s ratio increases by a constant over his initial budget. By repeatedly
playing according to such a strategy, Player 1 guarantees that his ratio increases and will
eventually allow him to win n biddings in a row. Formally, if 7 = 0, then G is a Richman
game and the proof of the lemma can be found in [4]. Otherwise, pick a sufficiently large
r € IN such that 7 > 7%1 and r > 3. Fix 0 <m < ;5. Player 1 proceeds as follows: after
winning ¢ times, for 0 < ¢, he bids m - r* and, upon winning the bidding, he moves towards ¢
along any shortest path. Since m +mr + -+ mr" "1 < mr™ < ¢, Player 1 has sufficient
budget to win n consecutive biddings. If Player 2 does not win any of the first n biddings,
Player 1 wins the game. On the other hand, if Player 2 wins the k-th bidding with 1 < k < n,
we show in the full version that his ratio increases by a fixed amount b = % >0. <«

The following corollary shows the equivalence between reachability and double-reachability
taxman games.

» Corollary 6. Consider a reachability taxman game G = (V, E,t). Let S CV be the set of
vertices that have mo path to t. Let T C 'V be a set of vertices such that t € T and every
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w € T has a path to t and no path to a vertex in S. Then, for every v € T, we have Th(v) = 0,
for every v € S, we have Th(v) = 1. Let G' be a double-reachability taxman game that is
obtained from G by merging the vertices in S and T into two targets t1 and to for Players 1
and 2, respectively. Then, for every v € (V \ (SUT)), the threshold of v in G equals the
threshold of v in G'.

The following theorem, whose proof can be found in the full version, uses Lemma 5 to
classify the bottom-strongly-connected components of a parity taxman game as those that
are winning and losing for Player 1, thereby constructing a reachability taxman game.

» Theorem 7. Parity taxman games are linearly reducible to reachability taxman games.
Specifically, threshold ratios exist in parity taxman games.

4 Mean-Payoff Taxman Games

This section consists of our main technical contribution. We start by showing a complete
classification of the value in strongly-connected mean-payoff taxman games depending on
the taxman parameter 7 and the initial ratio. We then extend the solution to general games,
where the solution to strongly-connected games constitutes the main ingredient in the solution
of the general case.

4.1 Strongly-connected mean-payoff taxman games

We start by formally defining the value of a strongly-connected mean-payoff game. Lemma 5
implies that in a strongly-connected game, a player can draw the game from every vertex to
any other vertex with any positive initial budget. Since mean-payoff objectives are prefix
independent, it follows that the vertex from which the game starts does not matter. Indeed,
if the game starts at a vertex v with Max having initial ratio r + ¢, then Max can use €/2 of
his budget to draw the game to a vertex v and continue as if he starts the game with initial
ratio r + €/2.

» Definition 8 (Mean-payoff value). Consider a strongly-connected mean-payoff game G, a
ratio r € (0,1), and a taxman parameter T € [0,1]. The mean-payoff value of G w.r.t. r and
T, 15 a value ¢ € IR such that for every e > 0
if Min’s initial ratio is greater than (1 —r), then he has a strategy that guarantees that
the payoff is at most c+ €, and
if Max’s initial ratio is greater than r, then he has a strategy that guarantees that the
payoff is greater than c — €.

The following theorem, which we prove in the next two sections, summarizes the properties
of mean-payoff taxman games.

» Theorem 9. Consider a strongly-connected mean-payoff taxman game G with tazman
parameter T € [0,1] and an initial ratio r € (0,1). The value of G w.r.t. T and r equals the
value of the random-turn game RTF(T”")(Q) in which Mazx is chosen to move with probability

F(r,r) and Min with probability 1 — F(r,r), where F(r,r) = W

We show that in order to prove Theorem 9, it suffices to prove the following intermediate
lemma, whose proof can be found in the full version, and follows from the advantage of Min
in the definition of payoff.
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» Lemma 10. Consider a strongly-connected mean-payoff taxman game G, a tazman para-
meter T, and an initial ratio r € (0,1) such that MP(RTF (")) = 0 for F(r,r) = Hﬁril;”
Then, for every e > 0 Max has a strategy that guarantees that no matter how Min plays, the

payoff is greater than —e.

4.2 The importance of moving

The first part of the construction of an optimal strategy for Max as in Lemma 10 is to
assign, to each vertex v € V, a strength, denoted St(v), where St(v) € Q>¢. Intuitively, if
St(v) > St(u), for u,v € V, it is more important for Max to move in v than it is in u. We
follow the construction in [5], which uses the concept of potentials, which is a well-known
concept in stochastic games (see [20]) and was originally defined in the context of the strategy
iteration algorithm [12]. For completeness, we present the definitions below.

Consider a strongly-connected mean-payoff game G, and let p € [0,1]. Let f and g be two
optimal positional strategies in RT?(G), for Min and Max, respectively. For a vertex v € V,
let v=,v" € V be such that Max proceeds from v to v according to g and Min proceeds
from v to v~ according to f. It is not hard to see that the mean-payoff value in all vertices in
RTP(G) is the same and we denote it by MP(RTP(G)). We denote the potential of v by Pot?(v)
and the strength of v by St?(v), and we define them as follows.

Pot?(v) = p - Pot?(v") + (1 — p) - Pot?(v™) + w(v) — MP(RT?(G)) and
StP(v) =p- (1 —p) - (Pot?(v") — Pot?(v™))

There are optimal strategies for which Pot?(v™) < Pot?(v') < Pot?(v*), for every v' € N(v),
which can be found, for example, using the strategy iteration algorithm. Note that St(v) > 0,
for every v € V.

Consider a finite path @ = vq,...,v, in G. We intuitively think of 7 as a play, where for
every 1 <i < n, the bid of Max in v; is St(v;) and he moves to v;” upon winning. Thus, if
Vip1 = v;r, we say that Max won in v;, and if v;41 # viﬂ we say that Max lost in v;. Let
W (r) and L(7) respectively be the indices in which Max wins and loses in . We call Max
wins investments and Max loses gains, where intuitively he invests in increasing the energy
and gains a higher ratio of the budget whenever the energy decreases. Let G(m) and I(m)
be the sum of gains and investments in m, respectively, thus G(m) = 3, () St(v;) and
I(m) = 3 iew(x) St(vi). Recall that the energy of mis E(m) =3, .;,, w(v;). The following
lemma, whose proof can be found in the full version, which generalizes a similar lemma in
[5], connects the strength with the change in energy.

» Lemma 11. Consider a strongly-connected mean-payoff game G and p € [0,1]. For
every finite path ™ = vy,...,v, in G, we have Pot* (v1) — Pot* (v,) + (n — 1) - MP(RTP(G)) <
E(m) 4+ G(m)/(1 —p) — I(w)/p. In particular, when p =v/(p+ v) for v,u > 0, there is a
constant P = min, Pot’ (v)—max, Pot’(v) such that ;%‘Q(E(w)—P—(n—l)-MP(RT/? (G))) =
w-I(r)—v-G(n).

4.3 Normalizing the bids

Whenever the game reaches a vertex v, Max’s bid is obtained by carefully normalizing the
strength of v. More formally, assuming an initial ratio r, in v, Max bids r - (1 —r) - St(v) - 8,
where 3, is the normalization factor and = € IR>;. In this section we show how to choose
the normalization factor. We associate with every = > 1, two numbers: a ratio r, and (3,
both in (0,1]. We think of (r;),>1 as a sequence and a play gives rise to a walk on the
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sequence, which corresponds to the changes in energy in the bidding game. When the walk
is in z > 1, Max uses the normalization factor .. If Max wins a bidding, we take a step up
on the sequence, modeling the increase of energy, and when Min wins, we talk a step down.
The size of the step depends on the strength of v. We prove existence of sequences with
properties given in the following lemma and formally define Max’s strategy after it.

» Lemma 12. Consider a game G, a finite set of non-negative strengths S C IR>¢, a ratio
rr24r(1—r)

P G e g there exist

r € (0,1), and a tazman parameter T € [0,1]. For every K >

sequences (13)g>1 and (Bg)z>1 with the following properties.

1. Maz’s bid does not exceed his budget, thus, for each position x € IR>1 and strength s € S,
we have By -s-1-(r—1) <ry.

2. Min cannot force the game beyond position 1, thus for every s € S\{0} and 1 <z < 1+7s,
we have By -s-1-(r—1)>1—1,.

3. The ratios tend to r from above, thus for every x € IR>1, we havery > r, and limy_,o0 74 =
r.

4. No matter who wins a bidding, Mazx’s ratio can only improve. Thus, in case of winning

and in case of losing, we respectively have

Te —Pg-s-r-(r—1)
1—-(1=7)-By-s-r-(r—1)

We first show how Lemma 12 implies Theorem 9.

T$+T'Ba:'3'7"'(7"—1)
17(177)'5x‘8'?”'(?"71) > Te—sr

> Tet(1—7r)-K-s and

Proof that Lemma 12 implies Lemma 10. Fix ¢ > 0, we construct strategy for Max guar-
anteeing a payoff greater than —e, as wanted. Observe that

r _ r(r(l —r)+7) _rHr=n) p
Tr24r(l—r - _ 2 2 _ - - [
T+(177’)W_~(_T(1L) r(l—r)+r2+7m2+r(1-r) 147

Thus, since by assumption MP(RT"("")(G)) = 0 and MP(RT?(G)) is a continuous function in
p € [0,1] [8, 22], we can pick K > F(r,r) such that MP(RT™F0-7% (G)) > —e.

We now describe Max’s strategy. We think of the change in Max’s ratio as a walk on
IR>1. Each position z € IR>; is associated with a ratio r,. The walk starts in a position zg
such that Max’s initial ratio is at least r,. Let v =7 and g = K(1 —r). Suppose the token
is placed on a vertex v € V. Then, Max’s bid is - (1 —r) - 8, - St(v), where the ratios of Max
and Min are normalized to sum up to 1, and he proceeds to v+ upon winning. If Max wins,
the walk proceeds up - St(v) steps to x + uSt(v), and if he loses, the walk proceeds down to
x — vSt(v). Suppose Min fixes some strategy and let @ = v1,...,v, be a finite prefix of the

play that is generated by the two strategies. Suppose the walk following 7 reaches x € IR.
Then, using the terminology of the previous section, we have z = o — G(7) - v + I(7) - p1.
Lemma 12 shows that the walk always stays above 1, thus x > 1. Combining with Lemma 11,
we get ’;f—i(l —z0) + P+ (n—1) -MP(RT7## (G)) < E(r). Thus, dividing both sides by n
and letting n — oo, since xy and P are constants depending only on K we conclude that
this strategy guarantees payoff at least MP(RT77 (G)) > —e. <

We continue to prove Lemma 12.

Proof of Lemma 12. Note that % is well-defined for r € (0,1). Fix 7 € [0, 1]

and r € (0,1). Let K > % Observe that the two inequalities in Point 4 are
equivalent to:
Toers — o < Tr(L—=7)Brs + (1 = 7)r(1 — 1) BeSrau—rs,

Te = Te4+K(1-r)s > 7‘(1 - T)Bacs - (1 - T)T(l - T)Bxsra:jLK(lfr)y
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Point 3 combined with monotonicity in the above expressions, implies that we can replace
the last term in each of them by r in order to obtain stronger inequalities. Therefore, it
suffices for (ry),>1 and (B;)z>1 to satisfy

Toors —To S TT(L=1)Bss + (1 — 7)r(1 — 1)Bysr,
Te = Tapk(1—r)s = T(1 =7)Bzs — (1 = 7)r(1 — 1) Bysr,
which is equivalent to
Tops — T < 7(1—7)Bs[t + (1 —7)r],
Te = TotK(1—r)s = r(1—7r)Bys[1 — (1 —7)r]. (1)
We seek (r)z>1 and (B;)z>1 in the form r, = v*~1 4+ (1 —4*~Y)r and 8, = fy* ! for some
v, 8 € (0,1). Note that this choice ensures Points 1 and 3. Therefore, we just need to show

that we can find 7, 8 € [0, 1] for which the inequalities in (1) hold for any s € S. Substituting
ry and B, in terms of v and B, the inequalities in (1) reduce to

Toeps —Te =71y = 1)(1 —71) ; By Lr(1 = r)s[r + (1 — 7)r],

? n—
Te = Tot K(1—r)s = G - ny(1_7')s)(1 — 1) > By (1 —r)s[l — (1 —7)r].

First, when s = 0, both sides of both inequalities are equal to 0 so both inequalities clearly
hold. Recall that S is a finite set of non-negative strengths. Thus, when s > 0, it takes
values in 0 < s; < ... < s,, and the above inequalities are equivalent to
_1
v > (1 + prs[r+ (1 — T)r]) s
1
v < (1= Brs[l — (1 —7)r]) T, (2)

Since both of these expressions are in (0, 1), to conclude that v, 8 € (0,1) exist, it suffices to
show that there is some 8 € (0,1) such that
max (14 fBrs[t+ (1 — T)TD_% < min  (1-8rs[l —(1—7)r]) R (3)

s€{s1,...,8n T se{s1,..,8n}

Note that the LHS of (3) is monotonically increasing in s > 0 whereas the RHS is monoton-
ically decreasing in s > 0, therefore it suffices to find g € (0,1) for which

(1 + Brsg[t+ (1 — T)T])_ﬁ < (1 — Brsi[1—(1— T)T])K“%ﬂl (4)

By Taylor’s theorem (1 +3)® = 1 + ay + O(y?), so Taylor expanding both sides of (4) in
8 >0 we get
1
(1+Brsy[r+ (1 —7)r]) ™ =1-Br+(1—71)r] + O0(5?),
1
(1= Brsi[l = (1 —7)r]) K70 =1 — ﬁﬁ[l —(L=7)r]+0(8”).
Therefore, if we show that [7 + (1 — 7)r] > m[l — (1 = 7)r], the linear coefficient of 3
on the LHS of (4) will be strictly smaller than the linear coefficient of S on the RHS. Thus,

for sufficiently small 8 > 0, (4) will hold, which concludes the proof of the lemma. This
condition is equivalent to

K> r[1—(1—7)r] vl (=) B 2 +r(l—r)
A-nr+0-7)7r] QA-=n)[rd-=7)+r] 71-7)2+r(1-71)

which is true by assumption. Thus, Points 1, 3, and 4 hold. In the full version, we show that

Point 2 holds. <
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4.4 General mean-payoff taxman games

We extend the solution to general games. Recall that the threshold ratio in mean-payoff
games is a necessary and sufficient initial ratio with which Max can guarantee a payoff of at
least 0.

» Theorem 13. Threshold ratios exist in mean-payoff taxman games.

Proof. Consider a mean-payoff taxman game G = (V, E, w) with taxman parameter 7. If
G is strongly-connected, then by Theorem 9, the threshold ratio in all vertices in G is the
same and is r € (0,1) for r such that MP(RTY("")(G)) = 0. If no such r exists, then either
MP(RTY("1)(G)) < 0, in which case the threshold ratios are 1, or MP(RT¥(™0)(G)) > 0, in which
case the threshold ratios are 0. The proof for general games follows along the same lines as
the proof for reachability games. For each bottom strongly-connected component S; of G
we find the threshold ratio r; € (0,1) as in the above. We play a “generalized” reachability
game on G as follows. The game ends once the token reaches one of the BSCCs in G. Max
wins the game iff the first time the game enters a BSCC S;, Max’s ratio is greater than r;.
Showing existence of threshold ratios in the generalized game follows the same argument as
for reachability games [13]. <

5 Computational Complexity

We show, for the first time, computational complexity results for taxman games. We study the
following problem, which we call THRESH: given a taxman game G with taxman parameter
7 and a vertex vg in G, decide whether Th(vg) > 0.5. The correspondence in Theorem 9 gives
the second part of the following theorem, and for the first part, in the full version, we show a
reduction from THRESH to the existential theory of the reals [7].

» Theorem 14. For taxman reachability, parity, and mean-payoff games THRESH is in
PSPACE. For strongly-connected mean-payoff games, THRESH is in NP N coNP.

6 Discussion

We study, for the first time, infinite-duration taxman-bidding games, which span the spectrum
between Richman and poorman bidding. For qualitative objectives, we show that the
properties of taxman coincide with these of Richman and poorman bidding. For mean-payoff
games, where Richman and poorman bidding have an elegant though surprisingly different
mathematical structure, we show a complete understanding of taxman games. Our study of
mean-payoff taxman games sheds light on these differences and similarities between the two
bidding rules. Unlike previous proof techniques, which were ad-hoc, we expect our technique
to be easier to generalize beyond taxman games, where they can be used to introduce concepts
like multi-players or partial information into bidding games.
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