
Polynomial Time Approximation Schemes for
Clustering in Low Highway Dimension Graphs
Andreas Emil Feldmann
Charles University, Prague, Czech Republic
feldmann.a.e@gmail.com

David Saulpic
LIP6, Sorbonne Université, Paris, France
david.saulpic@lip6.fr

Abstract
We study clustering problems such as k-Median, k-Means, and Facility Location in graphs of low
highway dimension, which is a graph parameter modeling transportation networks. It was previously
shown that approximation schemes for these problems exist, which either run in quasi-polynomial
time (assuming constant highway dimension) [Feldmann et al. SICOMP 2018] or run in FPT time
(parameterized by the number of clusters k, the highway dimension, and the approximation factor)
[Becker et al. ESA 2018, Braverman et al. 2020]. In this paper we show that a polynomial-time
approximation scheme (PTAS) exists (assuming constant highway dimension). We also show that
the considered problems are NP-hard on graphs of highway dimension 1.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Approximation Scheme, Clustering, Highway Dimension

Digital Object Identifier 10.4230/LIPIcs.ESA.2020.46

Related Version A full version of the paper is available at http://arxiv.org/abs/2006.12897.

Funding Andreas Emil Feldmann: Supported by the Czech Science Foundation GAČR (grant #19-
27871X), and by the Center for Foundations of Modern Computer Science (Charles Univ. project
UNCE/SCI/004).

Acknowledgements We thank Vincent Cohen-Addad for helpful discussions.

1 Introduction

Clustering is a standard optimization task that seeks a “good” partition of a metric space,
such that two points that are “close” should be in the same part. A good clustering of
a dataset allows to retrieve and exploit data, and is therefore a common routine in data
analysis. The underlying data can come from various sources and represent many different
objects. In particular, it is often interesting to cluster geographic data. In that case, the
metric space can be given by a transportation network, which can be modeled by graphs
with low highway dimension.

In this article, we study some popular clustering objectives, namely Facility Location,
k-Median, and k-Means, in graphs with constant highway dimension. The two latter
problems seek to find a set S of k points called centers in a metric (V,dist) that minimizes∑
v∈V (minf∈S dist(v, f))p, with p = 1 for k-Median and p = 2 for k-Means. The objective

for Facility Location is slightly different: each point f of the metric space has an opening
cost wf , and the goal is to find a set S that minimizes

∑
f∈S wf +

∑
v∈V minf∈S dist(v, f).

These problems are APX-hard in general metric spaces [4].
To bypass the hardness of approximation known for these problems, researchers have

considered low dimensional input, such as Euclidean spaces of fixed dimension, metrics with
bounded doubling dimension, or with bounded genus. Many algorithmic tools were developed

© Andreas Emil Feldmann and David Saulpic;
licensed under Creative Commons License CC-BY

28th Annual European Symposium on Algorithms (ESA 2020).
Editors: Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders; Article No. 46; pp. 46:1–46:22

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0001-6229-5332
mailto:feldmann.a.e@gmail.com
https://orcid.org/0000-0003-4208-8541
mailto:david.saulpic@lip6.fr
https://doi.org/10.4230/LIPIcs.ESA.2020.46
http://arxiv.org/abs/2006.12897
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 PTASs for Clustering in Low Highway Dimension Graphs

for that purpose: in their seminal work, Arora et al. [3] gave the first polynomial time
approximation scheme (PTAS) for k-Median in R2, which generalizes to a quasi-polynomial
time approximation scheme (QPTAS) in Rd for fixed d. This result was generalized by
Talwar [20], who gave a QPTAS for metrics with bounded doubling dimension, and more
recently by Cohen-Addad et al. [10], who gave a near-linear time approximation scheme.

In this work we focus on transportation networks, for which it can be argued that metric
spaces with bounded doubling dimension are not a suitable model: for instance, hub-and-
spoke networks seen in air traffic networks do not have low doubling dimension. Therefore
we study graphs with constant highway dimension, which formalize structural properties
of such networks. The following definition is taken from Feldmann et al. [14]. Here the
ball βv(r) of radius r around v ∈ V is the set of all vertices at distance at most r from v.

I Definition 1. The highway dimension of a graph G is the smallest integer h such that, for
some universal constant c > 4, for every r ∈ R+, and every ball βv(cr) of radius cr, there are
at most h vertices in βv(cr) hitting all shortest paths of length more than r that lie in βv(cr).

For this class of graphs, the only known approximation algorithms for clustering that
compute (1 + ε)-approximations for any ε > 0 either run in quasi-polynomial time, i.e.,
QPTASs [14], or with runtime f(h, k, ε) · n for some exponential function f , i.e., paramet-
erized approximation schemes [6, 8]. Thus an open problem is to identify polynomial-time
approximation schemes (PTASs) for clustering in graphs of constant highway dimension.

1.1 Our results
Our main result is a PTAS for clustering problems on graphs of constant highway dimension.
For convenience, we define slightly more general problems than those stated above. The
k-Clusteringq problem is defined as follows. An instance I consists of a metric (V,dist), a
set of facilities (or centers) F ⊆ V , and a demand function χ : V → N0. The goal is to find a
set S ⊆ F with |S| ≤ k minimizing

∑
v∈V χ(v) ·minf∈S dist(v, f)q. We call all vertices v ∈ V

with χ(v) > 0 the clients of I. k-Median and k-Means are special cases of k-Clusteringq,
where q = 1 and q = 2.

The input to the Facility Locationq problem is the same as for k-Clusteringq, but
additionally each facility f ∈ F has an opening cost wf ∈ R+. The goal is to find a set
S ⊆ F minimizing

∑
f∈S wf +

∑
v∈V χ(v) · minf∈S dist(v, f)q. Facility Location is a

special case of Facility Locationq, where q = 1.
Our main theorem is the following, where X = maxv∈V χI(v) is the largest demand (note

that for k-Median, k-Means, or Facility Location we typically have X = 1).

I Theorem 2. For any ε > 0, a (1 + ε)-approximation for k-Clusteringq and Facility
Locationq can be computed in (nX)(hq/ε)O(q) time on graphs of highway dimension h.

In particular, this algorithm is much faster than the quasi-polynomial time approximation
scheme of Feldmann et al. [14] for k-Median or Facility Location. The runtime of
our algorithm also significantly improves over the exponential dependence on k in the
approximation schemes of Becker et al. [6], Braverman et al. [8] for k-Median.

It has so far been open whether these clustering problems are NP-hard on graphs of
constant highway dimension. We complement our main theorem by showing that they are
NP-hard even for the smallest possible highway dimension. This answers an open problem
given in [14]. Here the uniform Facility Locationq problem has unit opening costs for all
facilities.

A. E. Feldmann and D. Saulpic 46:3

I Theorem 3. The k-Clusteringq and uniform Facility Locationq problems are NP-hard
on graphs of highway dimension 1.

1.2 Related work
On clustering problems. The problems we focus on in this article are known to be APX-hard,
even in Euclidean spaces (see e.g. [4]). In general metric spaces, the current best polynomial-
time algorithm for Facility Location achieves a 1.488-approximation [19], while the best
approximation factor is 2.67 for k-Median ([9]) and 6.357 for k-Means [2].

When restricting the class of graphs, a near-linear time approximation scheme for doubling
metrics was developed in [10]; we will discuss the close relations between our work and this
one in Section 1.3. Local search techniques also yield a PTAS in minor-free graphs or with
bounded doubling dimension [11, 15], and a Θ(q)-approximation for the k-Clusteringq
problem in general metric spaces [17].

Another technique for dealing with clustering problems is to compute coresets, a com-
pressed representation of the input. An ε-coreset is a weighted set of points such that for
every set of centers, the cost for the original set of points is within a (1 + ε)-factor of the cost
for the coreset. Braverman et al. [8] recently proved that graphs with highway dimension h
admit coreset of size Õ((k + h)O(1/ε)). This enables to compute a (1 + ε)-approximation by
enumerating all possible solutions of the coreset. However, this coreset does not have small
highway dimension,1 and thus cannot be used to boost our algorithms.

On highway dimension. The highway dimension was originally defined by Abraham et al.
[1], who specifically chose balls of radius 4r in the Definition 1. Since the original definition
in [1], several other definitions have been proposed. In particular, Feldmann et al. [14] proved
that when choosing a radius cr in Definition 1 for any constant c strictly larger than 4, it
is possible to exploit the structure of graphs with constant highway dimension in order to
obtain a QPTAS for problems such as TSP, Facility Location, and Steiner Tree. As
Abraham et al. [1] point out, the choice of the constant is somewhat arbitrary, and we use
the above definition so that we may exploit the structural insights of [14] for our algorithm.
These structural properties were also leveraged by Becker et al. [6] who gave a PTAS for
the Bounded-Capacity Vehicle Routing problem, and a parameterized approximation
scheme for the k-Center problem (which is essentially k-Clusteringq with q =∞) and
k-Median. In the lower bound side, Disser et al. [12] showed that Steiner Tree and TSP
are weakly NP-hard even when the highway dimension is 1, i.e., each of them is NP-hard but
an FPTAS exists for graphs of highway dimension 1.

It is worth mentioning that further definitions of the highway dimension exist (for a
detailed discussion see [7, 14]). In particular, for a more general definition of the highway
dimension than the one of Definition 1, Feldmann [13] gave a parameterized 3/2-approximation
algorithm with runtime 2O(kh logh)nO(1) for k-Center.

1.3 Our techniques
To obtain Theorem 2, we rely on the framework recently developed by Cohen-Addad et al.
[10] for doubling metrics. More precisely, they show that the split-tree decomposition of
Talwar [20] has some interesting properties, and exploit them to design their algorithm.

1 Indeed, a subset of a metric with small highway dimension does not necessarily have small highway
dimension as well: think of a star metric on which the center is removed.

ESA 2020

46:4 PTASs for Clustering in Low Highway Dimension Graphs

Our main contribution is to provide a decomposition with similar properties in graphs with
constant highway dimension. This is done relying on some structural properties of such
graphs presented by Feldmann et al. [14]. We start by giving the outline of the algorithm
from [10], and then explain how to carry the results over to the highway dimension setting.

On doubling metrics. The starting point of many approximation algorithms for doubling
metrics is a decomposition of the metric, as presented in the following lemma.2 A hierarchical
decomposition D of a metric (V,dist) is a set of partitions B0,B1, . . . ,Bλ, where Bi refines Bi+1,
i.e., every part B ∈ Bi is contained in some part of Bi+1. Moreover, in B0 every part contains
a singleton vertex, while Bλ contains only one part, namely V . For a point v ∈ V and a
radius r > 0, we say that the ball βv(r) is cut at level i if i is the largest integer for which
the ball βv(r) is not contained in a single part of Bi. For any subset W ⊆ V we define
λ(W) = dlog2 diam(W)e.

I Lemma 4 (Reformulation of [20, 5] as found in [10]). For any metric (V,dist) of doubling
dimension d and any ρ > 0, there exists a polynomial-time computable randomized hierarchical
decomposition D = {B0, . . . ,Bλ(V)} such that:
1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts βv(r) at level i] ≤ 2O(d) · r/2i.
2. Portal set: every part B ∈ Bi where Bi ∈ D comes with a set of portals PB ⊆ B that is

a. concise: the size of the portal set is bounded by |PB | ≤ 1/ρd, and
b. precise: for every node u ∈ B there is a portal p ∈ PB with dist(u, p) ≤ ρ2i+1.

We sketch briefly the standard use of this decomposition. For clustering problems, one can
show that there exists a portal-respecting solution with near-optimal cost (see Talwar [20]).
In this structured solution, each client connects to a facility via a portal-respecting path that
enters and leaves any part B of D only through a node of the portal set PB . Those portals
therefore act as separators of the metric. A standard dynamic program approach can then
compute the best portal respecting solution.

To ensure that there is a portal-respecting solution with near-optimal cost, one uses the
preciseness property of the portal set: the distortion of connecting a client c with a facility f
through portals instead of directly is bounded as follows. Let i be the level at which D cuts
c and f , meaning that i is the maximum integer for which c and f lie in different parts
of Bi. At every level j ≤ i, the distortion incurred by using portals is ρ2j . Hence the total
distortion is

∑
j≤i ρ2j = ρ2i+1. Now, property (1) of the decomposition ensures that c and f

are cut at level i with probability O(dist(c, f)/2i). Hence combining those two bounds over
all levels ensures that, in expectation, the distortion between c and f is O(dist(c, f) · ρλ(V)).
Since λ(V) = O(logn), choosing ρ = ε/ logn gives a distortion of O(εdist(c, f)). Summing
over all clients proves that there exists a near-optimal portal-respecting solution.

The issue with this approach is that the number of needed portals is O(logd n), and the
dynamic program has a runtime that is exponential in this number. Thus the time complexity
is quasipolynomial. The novelty of [10] is to show how to reduce the number of portals to a
constant. The idea is to reduce the number of levels on which a client can be cut from its
facility.

2 We remark that in [10] the preciseness of Lemma 4 was expressed akin to the weaker property found in
Lemma 5, which however would not lead to a near-linear time approximation scheme as claimed in [10],
but rather a PTAS as shown in this work. This can however easily be alleviated for [10] by using the
stronger preciseness as stated here in Lemma 4.

A. E. Feldmann and D. Saulpic 46:5

For this, they present a processing step of the instance, that helps deal with clients cut
from their facility at a high level. Roughly speaking, their algorithm computes a constant
factor approximation L, and a client c is called badly-cut if D cuts it from its closest facility
of L at a level larger than log(dist(c, L)/ε). Every badly-cut client is moved to its closest
facility of L. Moreover, every client at distance less than εdist(c, L) of its closest facility of L
can be moved to it as well. It is then shown that this new instance ID has small distortion,
which essentially means that any solution to ID can be converted to a solution of the original
instance I while only losing a (1 + ε)-factor in quality. In this instance ID, all clients are cut
from their closest facility of L at some level between log(ε dist(c, L)) and log(dist(c, L)/ε).
Using this property, it can be shown that c and its closest center in the optimal solution are
also cut at a level in that range. As there are only O(log(1/ε)) levels in this range, by the
previous argument, the number of portals is a constant. (See Section 2 for formal definitions
and lemmas.)

On highway dimension. The above arguments for doubling metrics hold thanks to Lemma 4.
In this work, we show how to construct a similar decomposition for low highway dimension:

I Lemma 5. Given a shortest-path metric (V,dist) of a graph with highway dimension h, a
subset W ⊆ V , and ρ > 0, there exists a polynomial-time computable randomized hierarchical
decomposition D = {B0, . . . ,Bλ(W)} of W such that:
1. Scaling probability: for any v ∈ V , radius r, and level i, we have

Pr[D cuts βv(r) at level i] ≤ σ · r/2i, where σ = (h log(1/ρ))O(1).
2. Interface: for any B ∈ Bi on level i ≥ 1 there exists an interface IB ⊆ V , which is

a. concise: |IB | ≤ (h/ρ)O(1), and
b. precise: for any u, v ∈ B such that u and v are cut by D at level i− 1, there exists

p ∈ IB with dist(u, p) + dist(p, v) ≤ dist(u, v) + 34 · ρ2i.

Our construction relies on the town decomposition from [14], which has the following
properties: for a graph with highway dimension h and a given ρ > 0, every part T of the
decomposition (called a town) has a set XT of hubs with doubling dimension O(h log 1/ρ),
such that for any two vertices u and v in different child towns of T , there is a vertex x ∈ XT

such that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) · dist(u, v) – see Theorem 8 for more details.
This hub set XT is similar to the portal set of Lemma 4, but has some fundamental

differences: the first one is that the decomposition is deterministic, and so it may happen
that a client and its facility are cut at a very high level – something that happens only
with tiny probability in the doubling setting thanks to the scaling probability. Another
main difference is that the size of XT might be unbounded. As a consequence, it cannot be
directly used as a portal set in a dynamic program. To deal with this, we combine the town
decomposition with a hierarchical decomposition of each set XT according to Lemma 4, to
build an interface as stated in Lemma 5.

A further notable difference to portals is that the preciseness property of the resulting
interface is weaker. In particular, while there is a portal close to each vertex of a part,
the hubs can be far from some vertices as long as they lie close to the shortest path to
other vertices, which however can be far (due to Lemma 9). As a consequence no analog
of near-optimal portal-respecting paths exist. Instead, when connecting a client c with a
facility f we need to use the interface point of IB provided by the preciseness property of
Lemma 5 close to the shortest path between c and f , where B contains both c and f . This
shifts the perspective from externally connecting vertices of a part to vertices outside a part,
as done for portals, to internally connecting vertices of parts, as done here.

ESA 2020

46:6 PTASs for Clustering in Low Highway Dimension Graphs

As a consequence, we develop a dynamic program, which follows more or less standard
techniques as for instance given in [3, 18], but needs to handle the weaker preciseness
property of the interface. The main idea is to guess the distances from interface points to
facilities while recursing on the decomposition D of Lemma 5. Due to the shifted perspective
towards internally connecting vertices of parts, the runtime of the dynamic program depends
exponentially on the total number of levels. However, it can be shown that it suffices to
compute a solution on a carefully chosen subset W of the metric for which only a logarithmic
number of levels of the decomposition need to be considered, and thus the runtime is
polynomial.

1.4 Outline
After defining the concepts we use, and stating various structural lemmas in Section 2, we
show how to incorporate our decomposition into the framework of [10]. The proof of Lemma 5
is then presented in Section 3. The formal algorithm is deferred to Section 4. We conclude
the main body of this paper with the hardness proof of Theorem 3 in Section 5.

2 Preliminaries

On doubling metrics. The doubling dimension of a metric is the smallest integer d such
that for any r > 0 and v ∈ V , the ball βv(2r) of radius 2r around v can be covered by at
most 2d balls of half the radius r. A doubling metric is a metric space where the doubling
dimension is bounded. In those spaces, one can show the existence of small nets:

I Definition 6. A δ-net of a metric (V,dist) is a subset of nodes N ⊆ V with the property
that every node in V is at distance at most δ from a net point of N , and each pair of net
points of N are at distance more than δ.

I Lemma 7 ([16]). Let (V,dist) be a metric space with doubling dimension d. If its diameter
is D, and N is a δ-net of V , then |N | ≤ 2d·dlog2(D/δ)e. Moreover, any subset W ⊆ V has
doubling dimension at most 2d.

On highway dimension. We note that for simplicity we will set c = 8 in Definition 1
throughout this paper, even if all claimed results are also true for other values of c. When we
refer to a metric as having highway dimension h, we mean that it is the shortest-path metric
of a graph of highway dimension h. The main result we will use about highway dimension is
existence the of the following decomposition:

I Theorem 8 ([14]). Given a shortest-path metric (V,dist) of highway dimension h, and
ρ > 0, there exists a polynomial-time computable deterministic hierarchical decomposition T ,
called the town decomposition, such that every part T ∈ T , called a town, has a set of hubs3
XT ⊆ T with the following properties:
a. doubling: the doubling dimension of XT is d = O(log(h log(1/ρ))), and
b. precise: for any two vertices u and v in different child parts of T , there is a vertex

x ∈ XT such that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) · dist(u, v).

The town decomposition behaves differently from those in Lemmas 4 and 5 in several
ways. The main properties we will need here are the following.

I Lemma 9 ([14]). For any T ∈ T we have diam(T) < dist(T, V \T). Furthermore, for any
child town T ′ of T we have diam(T ′) ≤ diam(T)/2.

3 called approximate core hubs in [14].

A. E. Feldmann and D. Saulpic 46:7

On how to incorporate our decomposition into the framework of [10]. Assume we are
given an instance I of k-Clusteringq or Facility Locationq on some metric (V,dist),
together with a hierarchical decomposition D of the metric with the properties listed in
Lemma 5. We start by defining the badly cut clients. In the following, we fix an optimal
solution OPT and an approximate solution L, and we define τ(ε, q, σ) = log2(σ(q+1)q/εq+1).

I Definition 10 (badly cut [10]). Let (V,dist) be a metric of an instance I of k-Clusteringq
or Facility Locationq, D be a hierarchical decomposition of the metric with scaling
probability factor σ, and ε > 0. If Lv is the distance from v to the closest facility of an
approximate solution L to I, then a client c is badly cut w.r.t. D if the ball βc(3Lc/ε) is cut
as some level i greater than log2(3Lc/ε) + τ(ε, q, σ).

Similarly, if OPTv is the distance from v to the closest facility of the optimum solution
OPT of I, then a facility f ∈ L is badly cut w.r.t. D if βf (3OPTf) is cut at some level i
greater than log2(3OPTf) + τ(ε, q, σ).

Given an instance I of k-Clusteringq or Facility Locationq and a decomposition D
of the metric, a new instance ID is computed to get rid of badly cut clients. The instance
ID is built from I by moving clients that are badly cut w.r.t. D to their closest facility in
L.4 For any client c of ID we denote by c̃ the original position of this client in I, i.e., if c̃ is
a badly cut client of I then c = L(c̃) and otherwise c = c̃. The set F of potential centers
in unchanged, and thus any solution of I is a solution of ID, and vice versa. Note that ID
does not contain any badly cut client w.r.t. D, and that the definition of ID depends on the
randomness of D.

To describe the properties we obtain for the new instance, given a solution S to any
instance I0 of k-Clusteringq or Facility Locationq, we define costI0(S) =

∑
v∈V χI0(v)·

dist(v, S)q to be the cost incurred by only the distances to the facilities. Given some ε > 0
and the computed instance ID from I, we define

νID = max
solution S

{
costI(S)− (1 + 2ε) costID (S) , (1− 2ε) costID (S)− costI(S)

}
.

If BD denotes the set of badly cut facilities (w.r.t D) of the solution L to I from which
instance ID is constructed, we say that ID has small distortion w.r.t. I if νID ≤ ε costI(L),
and there exists a witness solution Ŝ ⊆ F that contains BD and for which costID(Ŝ) ≤
(1 + O(ε)) costI(OPT) + O(ε) costI(L). Moreover, in the case of Facility Locationq,
Ŝ = OPT ∪BD and

∑
f∈BD wf ≤ ε ·

∑
f∈L wf .

Based on these definitions, we now state the main tool we use from [10], and which
exploits the scaling probability of our decomposition in Lemma 5 to obtain the required
structure.

I Lemma 11 ([10]). Let (V,dist) be a metric, and D be a randomized hierarchical decompos-
ition of (V,dist) with scaling probability factor σ. Let I be an instance of k-Clusteringq or
Facility Locationq on (V,dist), with optimum solution OPT and approximate solution L.
For any (sufficiently small) ε > 0, with probability at least 1− ε (over D), the instance ID
constructed from I and L as descibed above has small distortion with a witness solution Ŝ.
Furthermore, every client c of ID is cut by D from its closest facility in Ŝ at level at most
log2(3Lc̃/ε+ 4OPTc̃) + τ(ε, q, σ), where c̃ is the original position of c in I.

As a consequence of Lemma 11, a dynamic program can compute a solution recursively
on the parts of D in polynomial time, as sketched in Section 1.3 and detailed in Section 4.

4 More concretely, let χI and χID be the demand functions of I and ID, respectively. Initially we let
ID be a copy of I, so that in particular χID = χI . Then, for each client c of I that is badly cut in L
w.r.t. D, if L(c) denotes the closest facility of L to c, in ID we set χID (c) = 0 and increase χID (L(c))
by the value of χI(c) in I.

ESA 2020

46:8 PTASs for Clustering in Low Highway Dimension Graphs

3 Decomposing the graph

Figure 1 A town T and its child towns (black circles). The hubs (crosses) are decomposed by XT

(indicated by different colours). Parts B ∈ Bi+1 (red dashed) are decomposed into parts on level i
(pink dashed). Parts of Bi−1 can lie in different towns (e.g., the child town of T with subtowns in
grey).

This section is dedicated to the proof of Lemma 5. The general idea to construct D is as
follows. For doubling metrics, to decompose a part at level i, it is enough to pick a random
diameter δ ∈ [2i−2, 2i−1) and divide the part into child parts of diameter δ. This is not
doable in the highway dimension setting: if one wishes to decompose a town T , it cannot
divide any of the child towns, since it is not possible to use the approximate core hubs of T
to approximate paths inside one of the child towns. The big picture of our decomposition is
therefore as follow. To decompose a town at level i, we group randomly (as in the doubling
decomposition) the “small” child towns, and put every “big” child town in its own subpart.
As we will see, this turns out to be enough.

In order to decompose a town T , we need the following definitions. For each child town T ′
of T we identify the connecting hub x ∈ XT , which is some fixed closest hub of XT to T ′,
breaking ties arbitrarily. Moreover, given a hierarchical decomposition XT = {U0, . . . ,Uλ(XT)}
ofXT , we define for every i the connecting i-cluster of a child town T ′ of T to be the set U ∈ U`
on level ` = min{i, λ(XT)} containing the connecting hub of T ′. We then follow the steps
below, after choosing µ from the interval (0, 1] uniformly at random (cf. Figure 1):
1. Given a town T ∈ T , we apply Lemma 4 to find a randomized hierarchical decomposition
XT = {U0, . . . ,Uλ(XT)} of the hubs XT of T .

2. Using XT , we define a randomized partial decomposition of T ∩W as follows. For any i
and U ∈ Umin{i,λ(XT)}, let the set AUi ⊆ T ∩W be the union of all T ′ ∩W where T ′ is a
child town of T with the following two properties:
a. U is the connecting i-cluster of T ′, and
b. dist(T ′, V \ T ′) ≤ µ2i.
Hence AUi contains all towns somewhat close to U , and with small diameter due to
Lemma 9. We let ATi be the set containing each non-empty AUi .

3. Now, the hierarchical decomposition D = {B0, . . . ,Bλ(W)} of W can be constructed
inductively as follows. At the highest level λ(W) of D, W is partitioned in a single set:
Bλ(W) = {W}. Now, to decompose a part B ∈ Bi+1 at level i+ 1, we do the following.
Let T ∈ T be the inclusion-wise minimal town for which B ⊆ T . The “small” subtowns
of T lying inside B are grouped according to step (2) (note that dist(T ′, V \ T ′) also
bounds the diameter of T ′ by Lemma 9), and the other ones form individual subparts.
More formally, the set Bi contains every part A ∈ ATi for which A ⊆ B, and also every
set T ′ ∩W , where T ′ is a child town of T for which T ′ ∩W ⊆ B and T ′ ∩W was not
covered by the previously added parts of ATi , i.e., T ′ ∩W ∩A = ∅ for every A ∈ ATi .

A. E. Feldmann and D. Saulpic 46:9

To prove that the constructed decomposition D has the desired properties –i.e. that it
is indeed a hierarchical decomposition, with parts of bounded diameter and small scaling
probability factor –, we begin with some auxiliary lemmas, of which the first one bounds the
distance of a town to its connecting hub.

I Lemma 12. If T ′ is a child town of T with connecting hub x ∈ XT , then dist(x, T ′) ≤
(1 + 2ρ) dist(T ′, V \ T ′).

Proof. Let T ′′ be the closest sibling town to T ′, and let u ∈ T ′ and v ∈ T ′′ be the vertices
defining the distance from T ′ to T ′′, i.e., dist(u, v) = dist(T ′, T ′′) = dist(T ′, V \ T ′). By
Theorem 8, there is a hub y ∈ XT for which dist(u, y) + dist(y, v) ≤ (1 + 2ρ) · dist(u, v) =
(1 + 2ρ) · dist(T ′, V \ T ′). This implies dist(y, T ′) ≤ dist(u, y) ≤ (1 + 2ρ) · dist(T ′, V \ T ′).
Since the connecting hub x of T ′ is at least as close to T ′ as y, the claim follows. J

Based on the above lemma, we next prove a key property that the diameter of any part
of Bi ∈ D is bounded.

I Lemma 13. If ρ ≤ 1/2, then the diameter of any part of Bi ∈ D is less than 2i+4.

Proof. On the highest level λ(W) of D the only part of Bλ(W) is W itself. As λ(W) =
dlog2 diam(W)e we get diam(W) ≤ 2λ(W)+1, as required.

For any level i < λ(W), a set in Bi is equal to a set A ∈ ATi for some town T ∈ T or
it is equal to some set T ′ ∩W for a child town T ′ of T . In the former case, the set A is
equal to a set AUi for some cluster U ∈ U` where ` = min{i, λ(XT)} and U` ∈ XT . The
set AUi contains the union of sets T ′ ∩W for child towns T ′ of T , for which their connecting
hubs lie in U and dist(T ′, V \ T ′) ≤ µ2i ≤ 2i, as µ ≤ 1. Thus from Lemma 12 we get
dist(U, T ′) ≤ (1 + 2ρ)2i, and by Lemma 9 we have diam(T ′) < dist(T ′, V \ T ′) ≤ 2i. The
cluster U has diameter less than 2i+1 by Lemma 4, since it is part of the hierarchical
decomposition XT and lies on level ` ≤ i. Let u and v be the vertices of AUi defining the
diameter of AUi , i.e., dist(u, v) = diam(AUi). We may reach v from u by first crossing the
child town T ′ that u lies in, then passing over to U , then crossing U , after which we pass
over to the child town T ′′ containing v, and finally crossing this child town as well to reach v.
Hence, assuming that ρ ≤ 1/2 the diameter of AUi is bounded by

dist(u, v) ≤ diam(T ′) + dist(U, T ′) + diam(U) + dist(U, T ′′) + diam(T ′′)
< 2 · 2i + 2 · (1 + 2ρ)2i + 2i+1 = (6 + 4ρ)2i ≤ 2i+3

Now consider the other case, when a set B ∈ Bi on level i < λ(W) is equal to some set
T ′ ∩W for a child town T ′ of a town T . For such a child town T ′ there is no enforced upper
bound on the distance to other child towns as before, and thus it is necessary to be more
careful to bound the diameter of the part. Starting with B = Bi, let Bi ⊆ Bi+1 ⊆ . . . ⊆ Bj
be the longest chain of parts of increasing levels that are of the same type as B. More
concretely, for every ` ∈ {i, i+ 1, . . . , j} we have B` ∈ B` and B` is equal to some set T ′` ∩W
for a child town T ′` of the inclusion-wise minimal town T` containing B`+1. Note that in
particular j < λ(W). As we chose the longest such chain, on the next level j + 1 there is
no such set containing Bj , which means that the set Bj+1 ∈ Bj+1 for which Bj ⊆ Bj+1 is
either equal to a set A ∈ ATj+1

j+1 for some town Tj+1, or j + 1 = λ(W). In either case, from
above we get diam(Bj+1) ≤ 2j+4.

Note that for any ` ∈ {i, i + 1, . . . , j − 1} the town T ′` is a descendant town of T ′`+1,
since B`+1 is contained in T ′`+1 and T ′` is a child town of the inclusion-wise minimal town T`
containing B`+1. By Theorem 8 and Lemma 9 we thus get diam(T ′`) ≤ diam(T ′`+1)/2,

ESA 2020

46:10 PTASs for Clustering in Low Highway Dimension Graphs

which implies diam(T ′i) ≤ diam(T ′j)/2j−i. The set B = Bi is contained in T ′i , which means
diam(B) ≤ diam(T ′i). The town Tj is the inclusion-wise minimal town containing Bj+1, while
at the same time the child town T ′j of Tj contains Bj . As Bj ⊆ Bj+1, this means that Bj+1
both contains vertices inside and outside of T ′j , and so dist(T ′j , V \ T ′j) ≤ diam(Bj+1). By
Lemma 9 we know that diam(T ′j) ≤ dist(T ′j , V \T ′j), and putting all these inequalities together
we obtain

diam(B) ≤ diam(T ′i) ≤ diam(T ′j)/2j−i ≤ dist(T ′j , V \ T ′j)/2j−i

≤ diam(Bj+1)/2j−i ≤ 2j+4/2j−i = 2i+4. J

Using Lemma 13 it is not hard to prove the correctness of D, which we turn to next.
All statements marked with “?” are deferred to the full version of the paper, due to space
constraints.

I Lemma 14 (?). The tuple D = {B0, . . . ,Bλ(V)} is a hierarchical decomposition of W .

We now turn to proving the properties of Lemma 5, starting with the scaling probability.

I Lemma 15. The decomposition D has scaling probability factor σ = (h log(1/ρ))O(1).

Proof. To prove the claim, we need to prove that for any v ∈W , radius r, and level i, the
probability that D cuts the ball βv(r) at level i is at most (h log(1/ρ))O(1) · r/2i. If D cuts
βv(r) at level i, it means that βv(r) is fully contained in a part at level i + 1: let T ∈ T
be the inclusion-wise minimal town containing that part. There are two cases to consider:
either βv(r) is cut by “small” parts, i.e. there exist two distinct parts A,A′ ∈ ATi such that
v ∈ A and u ∈ A′ for some u ∈W ∩ βv(r), or not.

We start with the latter case, when βv(r) is not cut by small parts. If D cuts the ball at
level i, there are distinct parts B,B′ ∈ Bi such that v ∈ B and u ∈ B′ for some u ∈W ∩βv(r).
Assume w.l.o.g. that B /∈ ATi (which is possible to assume since βv(r) is not cut by small
parts). By construction of the decomposition, there must be a child town T ′ of T , for
which B = T ′ ∩W and dist(T ′, V \ T ′) > µ2i. Note that r ≥ dist(v, u) ≥ dist(T ′, B′′) ≥
dist(T ′, V \ T ′) ≥ µ2i, and hence µ ≤ r/2i. The decomposition D can therefore only cut
βv(r) on level i if µ < r/2i. Since µ is chosen uniformly at random from the interval (0, 1],
the probability is less than r/2i.

We now turn to the other case, when βv(r) is cut by two small parts A1 and A2. The town
T must have two child towns T1 and T2 for which v ∈ T1 ∩W ⊆ A1 and u ∈ T2 ∩W ⊆ A2.
Let x1 and x2 be the connecting hubs of T1 and T2. The decomposition D cuts v and u on
level i if and only if XT cuts x1 and x2 on level ` = min{i, λ(XT)}. Indeed, let U1 and U2 be
the connecting i-clusters of T1 and T2: then A1 = AiU1

and A2 = AiU2
, with x1 ∈ U1, x2 ∈ U2.

Thus D cuts v and u on level i if and only if U1 6= U2, i.e., if and only if XT cuts x1 and x2
on level ` = min{i, λ(XT)}.

To compute the probability that x1 and x2 are cut, it is necessary to bound the distance
between them. As v ∈ T1 and u ∈ T2 while u ∈ βv(r), for each j ∈ {1, 2} we have
dist(Tj , V \Tj) ≤ dist(T1, T2) ≤ r. By Lemma 12 the distance between Tj and its connecting
hub xj ∈ XT is thus at most (1 + 2ρ)r. Also, by Lemma 9 we have diam(Tj) < dist(Tj , V \
Tj) ≤ r, and we get

dist(x1, x2) ≤ dist(x1, T1) + diam(T1) + dist(T1, T2) + diam(T2) + dist(T2, x2) ≤ (5 + 4ρ)r.

We can reformulate the above as follows: if D cuts the ball βv(r) at level i, and βv(r)
is cut by some “small” parts A1 and A2, then XT cuts the ball βx1((5 + 4ρ)r) on level i,
where x1 is the hub defined for v above. We know that the probability of the latter event

A. E. Feldmann and D. Saulpic 46:11

is at most 2O(d)(5 + 4ρ)r/2i by Lemma 4, where d = O(log(h log(1/ρ))) is the doubling
dimension of XT by Theorem 8. Hence the probability that D cuts the ball βv(r) at level i
is bounded by (h log(1/ρ))O(1) · r/2i. Taking a union bound over the two considered cases
proves the claim. J

To prove the remaining property of Lemma 5 for D, for each B ∈ Bi we need to
choose an interface IB from the whole vertex set V . For this we use a carefully chosen
net (see Definition 6) of the hubs of the inclusion-wise minimal town T containing B, as
formalized in the following lemma.

I Lemma 16. Given B ∈ Bi for some Bi ∈ D and i ≥ 1, let T ∈ T be the inclusion-
wise minimal town containing B. We define the interface IB to be a ρ2i-net of the set
YB = {x ∈ XT | dist(x,B) ≤ (1 + 2ρ) diam(B)}. The interface IB has the conciseness and
preciseness properties of Lemma 5 for ρ ≤ 1/2.

Proof. We first prove that IB is precise. Consider two vertices u, v ∈ B that are cut at
level i− 1 by D. This means there are two distinct parts B′, B′′ ∈ Bi−1 on this level such
that v ∈ B′ and u ∈ B′′. By definition, both B′ and B′′ are unions of sets T ′ ∩W where T ′
is a child town of the inclusion-wise minimal town T containing B. Also B′ ∩ B′′ = ∅ by
Lemma 14. This means that T has two child towns T1 and T2 for which v ∈ T1 ∩W ⊆ B′
and u ∈ T2 ∩W ⊆ B′′. By Theorem 8, there is an approximate core hub x ∈ XT such
that dist(u, x) + dist(x, v) ≤ (1 + 2ρ) dist(u, v). In particular, dist(x,B) ≤ dist(u, x) ≤
(1 + 2ρ) dist(u, v) ≤ (1 + 2ρ) diam(B), as u, v ∈ B. This means that x ∈ YB. Since IB is
a ρ2i-net of YB, there is a hub p ∈ IB for which dist(x, p) ≤ ρ2i. By Lemma 13 we have
dist(u, v) ≤ diam(B) ≤ 2i+4 if ρ ≤ 1/2, and so IB is precise:

dist(u, p) + dist(p, v) ≤ dist(u, x) + 2 · dist(x, p) + dist(x, v)
≤ (1 + 2ρ) dist(u, v) + ρ2i+1 ≤ dist(u, v) + 2ρ · 2i+4 + ρ2i+1 ≤ dist(u, v) + 34 · ρ2i,

To prove conciseness, recall that diam(B) ≤ 2i+4 by Lemma 13, which means that
diam(YB) ≤ diam(B) + 2(1 + 2ρ) diam(B) ≤ 5 · 2i+4 for ρ ≤ 1/2. Since IB is a ρ2i-net
of YB, Lemma 7 implies |IB | ≤ 2d·dlog2(80/ρ)e, where d is the doubling dimension of YB.
Theorem 8 says that XT has doubling dimension O(log(h log(1/ρ))), and as YB ⊆ XT the
same asymptotic bound holds for the doubling dimension d of YB by Lemma 7. Therefore
we get |IB | ≤ (h log(1/ρ))O(log(1/ρ)) = (h/ρ)O(1), which concludes the proof. J

4 The algorithm

Let an instance I of the k-Clusteringq or Facility Locationq problem on a shortest-
path metric (V,dist) of a graph G with highway dimension h, and maximum demand
X = maxv∈V χI(v) be given. The algorithm performs the following steps:

1. compute a town decomposition T together with the hubs for each town as given by
Theorem 8.

2. compute a hierarchical decomposition D according to Lemma 5, while simultaneously
converting I into a coarse instance w.r.t. D, meaning that there is a subset W ⊆ V for
which

the clients and facilities of I are contained in W , i.e., F ∪ {v ∈ V | χI(v) > 0} ⊆W ,
and
every part of D on level at most ξ(W) = bλ(W) − 2 log2(nX/ε)c has at most one
facility, i.e., |B ∩ F | ≤ 1 for every B ∈ Bξ(W).

ESA 2020

46:12 PTASs for Clustering in Low Highway Dimension Graphs

3. compute the instance ID of small distortion as given by Lemma 11.
4. run a dynamic program on ID as given in Section 4.2, to compute an optimum rounded

interface-respecting solution (see Section 4.1 for a formal definition), and output it as a
solution to the input instance.

In a nutshell, the coarseness of the instances guarantees that only a logarithmic number
of levels need to be considered by the dynamic program. This step loses a (1 + ε)-factor
in the solution quality. The dynamic program is only able to compute highly structured
solutions, which are captured by the notion of rounding and interface-respecting. Due to
this, another (1 + ε)-factor in the solution quality is lost. In Section 4.1 we prove that the
output of the dynamic program is a near-optimal solution to the input instance (proving
Theorem 2), and we also detail step (4) of the algorithm. Then in Section 4.2 we describe
the details of the dynamic program.

4.1 Approximating the distances
One caveat of the dynamic program is that the runtime is only polynomial if the the recursion
depth is logarithmic. However when computing our decomposition on the whole metric
(V,dist), the number of levels is λ(V) + 1 = dlog2 diam(V)e+ 1, which can be linear in the
input size. Standard techniques can be used to reduce the number of levels to O(log(n/ε))
when aiming for a (1 + ε)-approximation by preprocessing the input metric. However, for
graphs of bounded highway dimension these general techniques change the hub sets and
we would have to be careful to maintain the properties we need, as given by Theorem 8.
Therefore we adapt the standard techniques to our setting via the notion of coarse instances.

The following lemma shows that we can reduce any instance to a set of coarse ones, for
which, as we will see, our dynamic program only needs to consider the highest 2 log2(nX/ε)
levels.

I Lemma 17 (?). Let I be an instance of k-Clusteringq or Facility Locationq on a
graph G of highway dimension h. There are polynomial-time computable instances I1, . . . , Ib
and respective hierarchical decompositions D1, . . . ,Db with the properties given in Lemma 5
for any ρ ≤ 1/2, such that for each i ∈ {1, . . . , b} the instance Ii is also defined on G and
is coarse w.r.t. Di. Furthermore, if an α-approximation can be computed for each of the
instances I1, . . . , Ib in polynomial time, then for any ε > 0 a (1 +O(ε))α-approximation can
be computed for I in polynomial time.

Lemma 17 implies that if there is a PTAS for coarse instances, we also have a PTAS
in general. Hence from now on we assume that the given instance I is coarse w.r.t. a
hierarchical decomposition D of some subset W of the vertices of the input graph G, where D
has bounded scaling probability factor and concise and precise interface sets in G according
to Lemma 5 (for some value ρ > 0 specified later)

The next step of the algorithm is to compute a new instance ID with small distortion
as given by Lemma 11. Recall that ID is obtained from I by moving badly cut clients to
facilities of L. In particular, the instance ID is also coarse w.r.t. D, which means that we
may run our dynamic program on ID.

The dynamic program exploits the interface sets of D by computing a near-optimum
“interface-respecting” solution to ID, i.e., a solution where clients are connected to facilities
through interface points. Moreover, for the dynamic program to run in polynomial time it can
only estimate the distances between interface points and facilities to a certain precision. In
general, we denote by 〈x〉i = min{(35+δ)ρ2i | δ ∈ N and ρδ2i ≥ x} the value of x rounded to

A. E. Feldmann and D. Saulpic 46:13

the next multiple of ρ2i and shifted by 35ρ2i. We then define the rounded interface-respecting
distance dist′(v, u) from a vertex v to another vertex u as follows. If v and u are not cut at
any level, i.e., v = u, then dist′(v, u) = 0. Otherwise, if i ≥ 1 is the level of D such that there
is a part B ∈ Bi with v, u ∈ B, and D cuts v and u at level i− 1, we let

dist′(v, u) = min
{

dist(v, p) + 〈dist(p, u)〉i | p ∈ IB
}
.

Note that dist′(·, ·) does not necessarily fulfill the triangle inequality, and is also not symmetric.
We therefore need the bounds of the following lemma.

I Lemma 18. For any level i ≥ 1 and vertices v and u that are cut by D on level i−1 we have
dist′(v, u) ≤ dist(v, u) + 70 · ρ2i. Let B ∈ Bj be the part on some level j ≥ i with v, u ∈ B.
For any p ∈ IB we have dist′(v, u) ≤ dist(v, u) + 〈dist(p, u)〉j.

Proof. Let B′ ∈ Bi be the part on level i containing both v and u. By Lemma 5 there
is an interface point p′ ∈ IB′ such that dist(v, p′) + dist(p′, u) ≤ dist(v, u) + 34 · ρ2i. By
definition of the rounding we also have 〈dist(p′, u)〉i ≤ dist(p′, u)+36 ·ρ2i. Hence dist′(v, u) ≤
dist(v, p′) + 〈dist(p′, u)〉i ≤ dist(v, p′) + dist(p′, u) + 36 · ρ2i ≤ dist(v, u) + 70 · ρ2i.

The second part is obvious if j = i from the definition of dist′(v, u). If j ≥ i + 1, we
use the above bound on dist′(v, u) together with the additive shift of the rounding and the
triangle inequality of dist(·, ·) to obtain

dist′(v, u) ≤ dist(v, u) + 70 · ρ2i ≤ dist(v, p) + dist(p, u) + 70 · ρ2j−1

≤ dist(v, p) + 〈dist(p, u)〉j − 35 · ρ2j + 70 · ρ2j−1 = dist(v, p) + 〈dist(p, u)〉j .J

For any non-empty set S of facilities, we define dist′(v, S) = minf∈S{dist′(v, S)}, and
for empty sets we let dist′(v, ∅) = ∞. Analogous to costI0(S), for a solution S to some
instance I0 we also define cost′I0

(S) using dist′(·, ·) as

cost′I0
(S) =

∑
v∈V

χID (v) · dist′(v, S)q.

We show the following lemma, which translates between cost′ID and costI , and is implied
by the preciseness of the interface sets and the fact that ID has small distortion. Recall that
the set of facilities is the same in I and ID, i.e., a solution to one of these instances is also a
solution to the other.

I Lemma 19 (?). Let I be an instance of k-Clusteringq or Facility Locationq with
optimum solution OPT and approximate solution L. Let ID be an instance of small distortion
for some 0 < ε < 1/2, computed from L and a hierarchical decomposition D with precise
interface sets for ρ ≤ εq+4+1/q

280σ(q+1)q according to Lemma 5. For the witness solution Ŝ of ID we
have cost′ID (Ŝ) ≤ (1 +O(ε)) costI(OPT) +O(ε) costI(L). Moreover, for any solution S we
have costI(S) ≤ (1 +O(ε)) cost′ID (S) +O(ε) costI(L).

The next lemma states the properties of the dynamic program that for any coarse
instance I0 computes an optimal rounded interface-respecting solution, which formally is a
subset OPT′ of facilities that minimizes cost′I0

(OPT′) with |OPT′| ≤ k for k-Clusteringq,
while for Facility Locationq it minimizes cost′I0

(OPT′) +
∑
f∈OPT′ wf . This step of the

algorithm exploits the conciseness of the interface sets and the coarseness of the instance to
bound the runtime. We prove the following lemma in Section 4.2.

ESA 2020

46:14 PTASs for Clustering in Low Highway Dimension Graphs

I Lemma 20. Let I0 be an instance of k-Clusteringq or Facility Locationq that for
some ε > 0 is coarse w.r.t. a hierarchical decomposition D with concise interface sets for
some 1/2 ≥ ρ > 0 according to Lemma 5. An optimum rounded interface-respecting solution
for I0 can be computed in (nX/ε)(h/ρ)O(1) time.

We are now ready to put together the above lemmas to prove Theorem 2. Due to space
constraints however, the formal proof is deferred to the full version of the paper.

4.2 The dynamic program (proof of Lemma 20)
We describe the algorithm for k-Clusteringq, and only mention in the end how to modify
the algorithm to compute a solution for Facility Locationq.

The solution is computed by a dynamic program recursing on the decomposition D. Let
W be the vertex set that D decomposes, and which contains all clients and facilities of the
coarse instance I. Roughly speaking, the table of the dynamic program will have an entry
for every part B ∈ Bi of D on all levels i ≥ ξ(W), for which it will estimate the distance
from each interface point on all higher levels j ≥ i+ 1 to the closest facility of the optimum
solution. That is, if B̃ ∈ Bj is a higher-level part for which B ⊆ B̃, then the distances from
all interface points IB̃ to facilities of the solution in B̃ will be estimated.

Here the estimation happens in two ways. First off, the distances to facilities outside
of B have to be guessed. That is, there is an external distance function d+

j that assigns a
distance to each interface point of IB̃, anticipating the distance from such a point to the
closest facility of B̃, if this facility lies outside of B. In order to verify whether the guess was
correct, each entry for a part B on level i also provides an internal distance function d−j ,
which stores the distance from each interface point of IB̃ on level j ≥ i + 1 to the closest
facility, if the facility is guessed to lie inside of B.

The other way in which distances are estimated concerns the preciseness with which
they are stored. The distance functions d+

j and d−j will only take rounded values 〈x〉j where
0 < x ≤ 2j+5, or ∞ if no facility at the appropriate distance exists. In particular, if the
facility of the solution in B̃ that is closest to p ∈ IB̃ lies outside of B then d−j (p) = ∞,
and if it lies inside of B then d+

j (p) = ∞. If there is no facility of the solution in B̃ then
both distance functions d+

j and d−j are set to ∞ for all p ∈ IB̃. Note that this means that
at least one of d+

j (p) and d−j (p) is always set to ∞. Note also that the finite values in the
domains of the distance functions admit to store the rounded distance to any facility in B̃
on level j, since the diameter of B̃ is at most 2j+4 by Lemma 13, and the distance from
any p ∈ IB̃ to B̃ is at most (1 + 2ρ) diam(B̃) by Lemma 16, i.e., for any f ∈ B̃ ∩ F we have
dist(p, f) ≤ (1 + 2ρ)2j+4 ≤ 2j+5 using ρ ≤ 1/2.

Formal definition of the table. Let us denote by IjB the interface set of the part B̃ ∈ Bj
on level j ≥ i+ 1 containing B ∈ Bi, i.e., IjB = IB̃ . Every entry of the dynamic programming
table T is defined by a part B ∈ Bi of D on a level i ∈ {ξ(W), . . . , λ(W)}, and two distance
functions d+

j , d
−
j : IjB → {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} for each j ∈ {i + 1, . . . , λ(W)},

such that max{d+
j (p), d−j (p)} = ∞ for all p ∈ IjB. Additionally, each entry comes with an

integer k′ ∈ {0, . . . , k}, which is a guess on the number of facilities that the optimum solution
contains in B.

In an entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] we store the rounded interface-respecting cost of
connecting the clients of B to facilities that adhere to the distance functions. More concretely,
let S ⊆ F ∩ B be any subset of facilities in B. We say that S is compatible with an entry
T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] if |S| = k′, and for any j ≥ i+ 1 the values of the distance functions
for every interface point p ∈ IjB are set to either

d−j (p) = 〈dist(p, S)〉j and d+
j (p) =∞, or

d+
j (p) ≤ 〈dist(p, S)〉j and d−j (p) =∞.

A. E. Feldmann and D. Saulpic 46:15

Recall that dist(v, ∅) = ∞, and so the empty set S = ∅ is compatible with an entry
T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] if k′ = 0, and the values of all internal distance functions are set to∞.

Over all sets S ⊆ F ∩ B compatible with the entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] for B ∈ Bi, the
entry should store the minimum value of CB(S), which is defined as

CB(S) =
∑
v∈B

χI0(v) ·min
{

dist′(v, S), min
j≥i+1
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}
.

If there is no compatible set S ⊆ F ∩B for the entry, then T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] =∞.
On the highest level i = λ(W), there are no distance functions to adhere to on levels

j ≥ i+ 1, and thus any set S ⊆ W of facilities is compatible with the entry for B = W

and k′ = |S|. Furthermore, cost′I0
(S) is equal to CW (S), since W contains all clients and

facilities of the coarse instance I0. In particular, the entry of T for which k′ = k and B = W ,
will contain the objective function value of the optimum rounded interface-respecting solution
to I0. Hence if we can compute the table T we can also output the optimum rounded
interface-respecting solution via this entry.

Computing the table. We begin with a part B ∈ Bξ(W) on the lowest considered level ξ(W),
for which we know that B contains at most one facility, as I0 is coarse. If B contains no facility,
then only S = ∅ can be compatible with the entry T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] and computing the

value of the entry is straightforward given the definition of CB(S), where all incompatible
entries are set to ∞. If B contains one facility f , then any compatible set S is either empty
or only contains f . We can thus check whether either of the two options is compatible with
the entry T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] by checking if k′ is set to 0 or 1, respectively, and checking
that all values of the internal distance function are set correctly. Thereafter we can again
use the definition of CB(S) to compute the values for both possible sets S and store them in
the respective compatible entries. All incompatible entries are set to ∞.

Now fix a part B ∈ Bi that lies on a level i > ξ(W). We show how to compute all
entries T [B, k′, (d+

j , d
−
j)λ(W)
j=i+1] for all values k′ and distance functions. By induction we have

already computed the correct values of all entries of T for parts B′ ∈ Bi−1 where B′ ⊆ B.
We order these parts arbitrarily, so that B′1, . . . , B′b are the parts of Bi−1 contained in B.
We then define an auxiliary table T̂ that is similar to the table T , but should compute
the best compatible facility set in the union B′≤` =

⋃`
h=1 B

′
h of the first ` subparts of B.

Accordingly, T̂ has an entry for each union of parts B′≤`, each k′ ∈ {0, . . . , k}, and distance
functions d+

j , d
−
j : IjB → {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} for each j ∈ {i, . . . , λ(W)}, such that

max{d+
j (p), d−j (p)} =∞ for all p ∈ IjB. Here, naturally, IiB = IB, i.e., the entry also takes

the interface set of B into account.
Analogous to before, a set S ⊆ F ∩ B′≤` of facilities in the union is compatible with

an entry T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] if |S| = k′, and for any j ≥ i the values of the distance
functions for every interface point p ∈ IjB are set to either

d−j (p) = 〈dist(p, S)〉j and d+
j (p) =∞, or

d+
j (p) ≤ 〈dist(p, S)〉j and d−j (p) =∞.

Over all sets S ⊆ F ∩B′≤` compatible with T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i], the entry should store
the minimum value of Ĉ≤`(S), which is defined as

Ĉ≤`(S) =
∑
v∈B′≤`

χI0(v) ·min
{

dist′(v, S), min
j≥i
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}
.

If there is no compatible set S ⊆ F ∩B′≤` for the entry, then T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] =∞.

ESA 2020

46:16 PTASs for Clustering in Low Highway Dimension Graphs

To compute T using the auxiliary table T̂ , note that since B = B′≤b, any set S ⊆ F ∩B
is compatible with the entry T [B, k′, (d+

j , d
−
j)λ(W)

j=i+1] if and only if it is compatible with a
corresponding entry T̂ [B′≤b, k′, (d

+
j , d

−
j)λ(W)
j=i] for some internal distance function d−i on level i.

Furthermore, if d+
i (p) =∞ for all p ∈ Ii, then CB(S) = Ĉ≤b(S) for such a set S. Therefore

we can easily compute the entry T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] from T̂ by setting

T [B, k′, (d+
j , d

−
j)λ(W)

j=i+1] = min
d−

i

{
T̂ [B′≤b, k′, (d+

j , d
−
j)λ(W)

j=i] | ∀p ∈ IiB : d+
i (p) =∞

}
.

Computing the auxiliary table. Also computing an entry of T̂ for B′≤1 is easy using the
entries of T for B′1, since B′1 = B′≤1 and so (taking the index shift of i into account) we have

T̂ [B′≤1, k
′, (d+

j , d
−
j)λ(W)

j=i] = T [B′1, k′, (d+
j , d

−
j)λ(W)

j=i].

To compute entries of T̂ for some B′≤` where ` ≥ 2, we combine entries of table T for B′`
with entries of table T̂ for B′≤`−1. However we will only combine entries with distance
functions that imply compatible solutions. More concretely, we say that distance functions
(d+
j , d

−
j)λ(W)
j=i for B′≤`, (δ+

j , δ
−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1 are consistent if for
every level j ≥ i and p ∈ IjB we have one of
1. d+

j (p) = δ+
j (p) = β+

j (p) and d−j (p) = δ−j (p) = β−j (p) =∞, or
2. d−j (p) = δ−j (p) = β+

j (p) and d+
j (p) = δ+

j (p) = β−j (p) =∞, or
3. d−j (p) = δ+

j (p) = β−j (p) and d+
j (p) = δ−j (p) = β+

j (p) =∞.

The algorithm now considers all sets of consistent distance functions to compute an entry
T̂ [B′≤`, k′, (d

+
j , d

−
j)λ(W)

j=i] for ` ≥ 2 by setting it to

min
{
T [B′`, k′′, (δ+

j , δ
−
j)λ(W)

j=i] + T̂ [B′≤`−1, k
′ − k′′, (β+

j , β
−
j)λ(W)

j=i] |

k′′ ∈ {0, . . . , k′} and (d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , (β+
j , β

−
j)λ(W)

j=i are consistent
}

(1)

We now prove the correctness using two lemmas. The following lemma implies that if we
only consider consistent distance functions to compute entries recursively, then the entries
will store values for compatible solutions.

I Lemma 21. Let (d+
j , d

−
j)λ(W)
j=i for B′≤`, (δ+

j , δ
−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1
be consistent distance functions, and let S1 = B′` ∩ F and S2 = B′≤`−1 ∩ F be facility
sets. If S1 is compatible with entry T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] and S2 is compatible with
entry T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i], then the union S = S1 ∪ S2 is compatible with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i]. Moreover, Ĉ≤`(S) = CB′
`
(S1) + Ĉ≤`−1(S2).

Proof. To prove compatibility of S with the entry T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)

j=i], it suffices to
show that the distance functions are set correctly. Fix a level j ≥ i and an interface
point p ∈ IjB. There are three cases to consider, according to the definition of consistency
of the distance functions. In the first case, all three internal distance functions are set
to ∞, and all external distance functions are set to the same value. In particular, since
S1 and S2 are compatible with their respective entries, we have d+

j (p) = δ+
j (p) = β+

j (p) ≤
min{〈dist(p, S1)〉j , 〈dist(p, S2)〉j} = 〈dist(p, S)〉j , as S = S1∪S2. In the second case, β−j (p) =
δ+
j (p) = ∞ and so β+

j (p) ≤ 〈dist(p, S2)〉j , since S2 is compatible with its entry, and

A. E. Feldmann and D. Saulpic 46:17

δ−j (p) = 〈dist(p, S1)〉j , since S1 is compatible with its entry. Since we also have β+
j (p) = δ−j (p)

we get 〈dist(p, S1)〉j ≤ 〈dist(p, S2)〉j , and hence 〈dist(p, S)〉j = 〈dist(p, S1)〉j . Consistency
furthermore implies d−j (p) = δ−j (p) = 〈dist(p, S)〉j and d+

j (p) = ∞. The third case is
analogous to the second, and therefore S is compatible with its entry.

For the second part, we consider the contributions of vertices to the terms Ĉ≤`(S), CB′
`
(S1),

and Ĉ≤`−1(S2), and show that they are the same for Ĉ≤`(S) and for CB′
`
(S1) + Ĉ≤`−1(S2).

For this we first fix a vertex v ∈ B′≤`−1, and in the following distinguish the cases where its
contribution to Ĉ≤`−1(S2) and Ĉ≤`(S) is due to a facility or an interface point.

The first case is that dist′(v, S2) ≤ minj≥i, p∈Ij
B
{dist(v, p) +β+

j (p)}, i.e., the contribution
of v to Ĉ`−1(S2) is given by a facility of S2. Note that the consistency of the distance functions
always implies that β+

j (p) = d+
j (p) or d+

j (p) =∞ for any level j ≥ i and interface point p ∈ Ij ,
and so minj≥i, p∈Ij

B
{dist(v, p)+β+

j (p)} ≤ minj≥i, p∈Ij
B
{dist(v, p)+d+

j (p)}. At the same time
dist′(v, S) ≤ dist′(v, S2) as S2 ⊆ S. We hence get that dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) +

d+
j (p)}, i.e., the contribution of v to Ĉ`(S) is also given by a facility of S in this case. Thus

to show that the contribution of v to Ĉ`−1(S2) and Ĉ`(S) is the same, we need to show that
dist′(v, S) = dist′(v, S2). Note that this is implied if dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) +

β+
j (p)}, since we have dist′(v, S) ≤ dist′(v, S2) ≤ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. Thus the
following proves the claim, using that the contribution of v to Ĉ`(S) is given by a facility
of S.

B Claim 22. For v ∈ B′≤`−1, if dist′(v, S) ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} then we have
dist′(v, S) = dist′(v, S2) or dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}.

Proof. Given dist′(v, S) ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}, assume to the contrary that
we have dist′(v, S) < minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} and dist′(v, S) 6= dist′(v, S2), which,
as S = S1 ∪ S2, means dist′(v, S) < dist′(v, S2). The latter inequality implies that the value
of dist′(v, S) is obtained for some facility f ∈ S1 ⊆ B′`. In particular, v ∈ B′≤`−1 and f ∈ B′`
are cut at level i − 1, and so there is an interface point p ∈ IiB such that dist′(v, S) =
dist(v, p) + 〈dist(p, f)〉i, and f is the closest facility to p in S, i.e, 〈dist(p, S)〉i = 〈dist(p, f)〉i.
Using the former of the assumed inequalities we get dist(v, p) + 〈dist(p, f)〉i = dist′(v, S) <
dist(v, p) + β+

i (p), and so we can conclude that 〈dist(p, f)〉i < β+
i (p).

Using the inequality of the premise of the claim, we also get dist(v, p) + 〈dist(p, f)〉i =
dist′(v, S) ≤ dist(v, p) + d+

i (p), i.e. 〈dist(p, f)〉i ≤ d+
i (p). Since S is compatible with entry

T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)

j=i], we have d+
i (p) = ∞ or d+

i (p) ≤ 〈dist(p, S)〉i. In the latter case
we would have d+

i (p) ≤ 〈dist(p, S)〉i = 〈dist(p, f)〉i < β+
i (p), which however cannot happen

if the distance functions are consistent. Thus compatibility of S implies d+
i (p) = ∞ and

d−i (p) = 〈dist(p, f)〉i. In particular, we can conclude that d−i (p) has a finite value (as f
exists) and β+

i (p) differs from d−i (p). This can only mean that the third of the consistency
properties applies to p at level i, and so β−i (p) = d−i (p) = 〈dist(p, f)〉i.

In particular, also β−i (p) has a finite value, and using the compatibility of S2 with entry
T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i], we can conclude that there exists a facility f ′ ∈ S2 ⊆ B′≤`−1
with 〈dist(p, f ′)〉i = β−i (p) = 〈dist(p, f)〉i. Now let j ≤ i be the level for which v ∈ B′≤`−1
and f ′ ∈ B′≤`−1 are cut at level j − 1 by D. Lemma 18 implies dist′(v, f ′) ≤ dist(v, p) +
〈dist(p, f ′)〉i, but then we have

dist′(v, S2) ≤ dist′(v, f ′) ≤ dist(v, p)+〈dist(p, f ′)〉i = dist(v, p)+〈dist(p, f)〉i = dist′(v, S),

which is a contradiction to dist′(v, S) < dist′(v, S2). C

ESA 2020

46:18 PTASs for Clustering in Low Highway Dimension Graphs

The next case we consider is that minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} < dist′(v, S), i.e.,
the contribution of v to Ĉ`(S) is given by an interface point. As observed before, we
have minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} ≤ minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)} and dist′(v, S) ≤
dist′(v, S2), which implies minj≥i, p∈Ij

B
{dist(v, p) +β+

j (p)} < dist′(v, S2), i.e. in this case the
contribution of v to Ĉ`−1(S2) is also given by an interface point. Note that it also implies
dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, and thus the following claim shows that the
contribution of v to Ĉ`(S) and Ĉ`−1(S2) is the same.

B Claim 23. For v ∈ B′≤`−1, if dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)} then we have
minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} = minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}.

Proof. Given dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)}, assume to the contrary that
minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} 6= minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}. As observed before, the
consistency of the distance functions always implies β+

j (p) = d+
j (p) or d+

j (p) =∞, and thus
we must have minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} < minj≥i, p∈Ij
B
{dist(v, p) + d+

j (p)}. Let j ≥ i
and p ∈ IjB be the level and interface point for which the minimum of the former term of
this inequality is obtained. The inequality then implies β+

j (p) < d+
j (p) for this particular

point p and level j, which can only be the case if β+
j (p) <∞ and d+

j (p) =∞. The values
of β+

j (p) and d+
j (p) can only differ if the second of the consistency properties applies to p

at level j, and so β+
j (p) = d−j (p). Since β+

j (p) < ∞, the compatibility of S with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i], implies β+
j (p) = d−j (p) = 〈dist(p, S)〉j .

Now let f ∈ S ⊆ B′≤` be the facility for which dist′(v, S) = dist′(v, f) (which exists
as d−j (p) <∞). Let j′ ≤ i be the level for which v ∈ B′≤`−1 and f ∈ B′≤` are cut at level j′−1
by D. By Lemma 18 we have dist′(v, f) ≤ dist(v, p) + 〈dist(p, f)〉j , since j′ ≤ j and the part
B ∈ Bi containing v and f is itself contained in some part B̃ ∈ Bj with v, f ∈ B̃ and p ∈ IB̃ .
But then,

dist′(v, S) ≤ dist(v, p) + 〈dist(p, f)〉j = dist(v, p) + 〈dist(p, S)〉j = dist(v, p) + β+
j (p).

However the last term is equal to minj≥i, p∈Ij
B
{dist(v, p)+β+

j (p)}, which gives a contradiction
to our premise dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. C

So far we considered the case when the contribution of v to Ĉ`−1(S2) is given by a facility,
or when the contribution of v to Ĉ`(S) is given by an interface point. Thus the last case we
consider is when the contribution of v to Ĉ`−1(S2) is given by an interface point, and the contri-
bution of v to Ĉ`(S) is given by a facility, i.e., minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)} < dist′(v, S2)
and dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) + d+

j (p)}. We need to show that dist′(v, S) =
minj≥i, p∈Ij

B
{dist(v, p) +β+

j (p)}. First assume dist′(v, S) > minj≥i, p∈Ij
B
{dist(v, p) +β+

j (p)}.
Due to Claim 23 this would imply dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + d+

j (p)}, which how-
ever contradicts our assumption to the contrary, i.e., that the contribution of v to Ĉ`(S) is
given by a facility. Hence we must instead have dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p)+β+

j (p)}.
According to Claim 22, our assumption that dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p)+d+

j (p)}
implies dist′(v, S) = dist′(v, S2) or dist′(v, S) ≥ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}. In the
former case, together with our assumption that the contribution of v to Ĉ`−1(S2) is given by
an interface point, we would get dist′(v, S) > minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, for which we
saw above that this leads to a contradiction via Claim 23. Hence we are left with the other

A. E. Feldmann and D. Saulpic 46:19

implication of Claim 22, i.e., dist′(v, S) ≥ minj≥i, p∈Ij
B
{dist(v, p) + β+

j (p)}. This together
with our conclusion from above, i.e., dist′(v, S) ≤ minj≥i, p∈Ij

B
{dist(v, p) + β+

j (p)}, means
that the contribution of v to Ĉ`(S) and Ĉ`−1(S2) is the same.

By analogous arguments, the contribution of any v ∈ B′` to CB′
`
(S1) is the same as

its contribution to Ĉ≤`(S). Since B′` and B′≤`−1 partition the set B′≤`, this means that
Ĉ≤`(S) = CB′

`
(S1) + Ĉ≤`−1(S2), as required. J

The next lemma implies that the compatible facility set minimizing Ĉ≤`(S) is considered
as a solution when recursing over consistent distance functions.

I Lemma 24 (?). Let S = B′≤` ∩ F be a facility set of B′≤` that is compatible with entry
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)
j=i], and let S1 = S∩B′` and S2 = S∩B′≤`−1. Then there exist distance

functions (δ+
j , δ

−
j)λ(W)

j=i for B′`, and (β+
j , β

−
j)λ(W)

j=i for B′≤`−1 such that
(d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , and (β+
j , β

−
j)λ(W)

j=i are consistent, and
the set S1 is compatible with entry T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] and S2 is compatible with
entry T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i].

To argue that the algorithm sets the value of T̂ [B′≤`, k′, (d
+
j , d

−
j)λ(W)

j=i] correctly via (1),
consider a set S ⊆ B′≤` that is compatible with this entry and minimizes Ĉ≤`(S). By induction,
Lemma 24 implies T [B′`, |S1|, (δ+

j , δ
−
j)λ(W)

j=i] ≤ CB′
`
(S1) and T̂ [B′≤`−1, |S2|, (β+

j , β
−
j)λ(W)

j=i] ≤
Ĉ≤`−1(S2), where S1 = S ∩ B′` and S2 = S ∩ B′≤`−1. From (1) we therefore obtain
T̂ [B′≤`, |S|, (d

+
j , d

−
j)λ(W)

j=i] ≤ CB′
`
(S1) + Ĉ≤`−1(S2). By Lemma 21 only compatible sets are

stored in an entry by induction, and so the definition of S implies T̂ [B′≤`, |S|, (d
+
j , d

−
j)λ(W)
j=i] =

Ĉ≤`(S), as required.

Bounding the runtime. To bound the size of the tables T and T̂ , note that since there
are λ(W) − ξ(W) + 1 ≤ 2 log2(nX/ε) + 2 considered levels i, and each level Bi of D is a
partition of W where |W | ≤ n, there are at most O(n log(nX/ε)) parts B considered by T
in total. The other table T̂ considers the same number of parts, since a set B′≤` can be
uniquely mapped to the part B′`. The number of possible values for k′ is k + 1 = O(n).
The domain {〈x〉j | 0 < x ≤ 2j+5} ∪ {∞} of a distance function for level j has at most
d2j+5/(ρ2j)e + 1 = O(1/ρ) values, since 〈x〉j rounds a value to a multiple of ρ2j . The
conciseness of the interface sets means that |IjB | ≤ (h/ρ)O(1) according to Lemma 5. Hence
there are at most O(1/ρ)(h/ρ)O(1) = 2(h/ρ)O(1) possible distance functions. Since each entry
of the table stores two distance functions for each of at most 2 log2(nX/ε) + 2 levels, the
total number of entries of T and T̂ is at most

O(n log(nX/ε)) · n · (2(h/ρ)O(1)
)O(log(nX/ε)) = (nX/ε)(h/ρ)O(1)

.

Computing an entry of a table is dominated by (1). Going through all values k′ ≤ n and
all possible consistent distance functions to compute (1), takes n · 2(h/ρ)O(1) time, as there
are 2(h/ρ)O(1) possible distance functions. Hence the total runtime is (nX/ε)(h/ρ)O(1) , proving
Lemma 20.

The Facility Locationq problem. To compute an optimum rounded interface-respecting
solution to Facility Locationq, the tables T and T̂ can ignore the number of open
facilities k′, i.e., they have respective entries T [B, (d+

j , d
−
j)λ(W)

j=i+1] and T̂ [B′≤`, (d
+
j , d

−
j)λ(W)

j=i].

ESA 2020

46:20 PTASs for Clustering in Low Highway Dimension Graphs

Accordingly, compatibility of facility sets with entries is defined as before, but ignoring the
sizes of the sets. The value stored in each entry now also takes the opening costs of facilities
into account. That is, for any set of facilities S ⊆ F ∩B in a part B we define

CB(S) =
∑
v∈B

χI0(v) ·min
{

dist′(v, S), min
j≥i+1
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}

+
∑
f∈S

wf ,

and an entry T [B, (d+
j , d

−
j)λ(W)
j=i+1] stores the minimum value of CB(S) over all sets S compat-

ible with the entry, or ∞ if no such set exists. For S ⊆ F ∩B′≤` in a union of subparts B′≤`
we define

Ĉ≤`(S) =
∑
v∈B′≤`

χI0(v) ·min
{

dist′(v, S), min
j≥i
p∈Ij

B

{
dist(v, p) + d+

j (p)
}}

+
∑
f∈S

wf ,

and an entry T̂ [B′≤`, (d
+
j , d

−
j)λ(W)

j=i] stores the minimum value of Ĉ≤`(S) over all sets S
compatible with the entry, or ∞ if no such set exists.

The entries of the tables can be computed in the same manner as before, but ingoring
the sets sizes. In particular, the most involved recursion becomes

T̂ [B′≤`, (d+
j , d

−
j)λ(W)

j=i] = min
{
T [B′`, (δ+

j , δ
−
j)λ(W)

j=i] + T̂ [B′≤`−1, (β+
j , β

−
j)λ(W)

j=i] |

(d+
j , d

−
j)λ(W)

j=i , (δ+
j , δ

−
j)λ(W)

j=i , (β+
j , β

−
j)λ(W)

j=i are consistent
}
.

Note that if S1 = B′` ∩ F and S2 = B′≤`−1 ∩ F then these two sets are disjoint, and
so
∑
f∈S wf =

∑
f∈S1

wf +
∑
f∈S2

wf for the union S = S1 ∪ S2. Hence when proving
Ĉ≤`(S) = CB′

`
(S1) + Ĉ≤`−1(S2) for Lemma 21, we can ignore the facility opening costs, and

the proof remains the same as before. All other arguments carry over, and thus an optimum
rounded interface-respecting solution for an instance of Facility Locationq can also be
computed in (nX/ε)(h/ρ)O(1) time.

5 Hardness for graphs of highway dimension 1

For both k-Clusteringq and Facility Locationq we present the same reduction from the
NP-hard satisfiability problem (SAT), in which a boolean formula ϕ in conjunctive normal
form is given, and a satisfying assignment of its variables needs to be found.

For a given SAT formula ϕ with k variables and ` clauses we construct a graph Gϕ as
follows. For each variable x we introduce a path Px = (tx, ux, fx) with two edges of length 1
each. The two endpoints tx and fx are facilities of F and the additional vertex ux is a client,
i.e., χ(ux) = 1. For each clause Ci, where i ∈ [`], we introduce a vertex vi and add the
edge vitx for each variable x such that Ci contains x as a positive literal, and we add the
edge vifx for each x for which Ci contains x as a negative literal. Every edge incident to
vi has length (11c)i for the constant c > 4 due to Definition 1, and vi is also a client, i.e.,
χ(vi) = 1. In case of Facility Locationq, every facility f ∈ F has cost wf = 1, i.e., we
construct an instance of the uniform version of the problem.

I Lemma 25. The constructed graph Gϕ has highway dimension 1.

Proof. Fix a scale r > 0 and let i = blog11c(r/5) + 1c. Note that βw(cr) cannot contain
any edge incident to a vertex vj for j ≥ i + 1, since the length of every such edge is
(11c)j ≥ 11cr/5 > 2cr and the diameter of βw(cr) is at most 2cr. Thus if βw(cr) contains a
vertex vj for j ≥ i+ 1, then βw(cr) contains only vj , and there is nothing to prove. Note

A. E. Feldmann and D. Saulpic 46:21

also that any path in βw(cr) that does not use vi has length at most 2 +
∑i−1
j=1(2(11c)j + 2),

since any such path can contain at most two edges incident to a vertex vj and the paths Px
of length 2 are connected only through edges incident to vertices vj . The length of such a
path is thus strictly shorter than

2 + 2
(

(11c)i

11c− 1 − 1
)

+ 2i ≤ 5(11c)i−1 ≤ r,

where the first inequality holds since i ≥ 1 and c > 4. Hence the only paths that need to be
hit by hubs on scale r are those passing through vi, which can clearly be done using only
one hub, namely vi. J

To finish the reduction for k-Clusteringq, we claim that there is a satisfying assignment
for ϕ if and only if there is a solution for Gϕ with cost at most k+

∑`
i=1(11c)iq. If there is a

satisfying assignment for ϕ we open each facility tx for variables x that are set to true, and
we open each facility fx for variables x that are set to false. This opens exactly k facilities
and the cost of the solution is k +

∑`
i=1(11c)iq, since each of the k vertices ux is assigned to

either tx or fx at distance 1, and vertex vi is assigned to a vertex tx or fx at distance (11c)i
that corresponds to a literal of Ci that is true.

Conversely, assume there is a solution to k-Clusteringq of cost at most k+
∑`
i=1(11c)iq

in Gϕ. Note that the minimum distance from any ux to a facility is 1, while the minimum
distance from any vi to a facility is (11c)i. Thus any solution must have cost at least
k +

∑`
i=1(11c)iq, so that the assumed solution must open a facility at minimum distance

for each client of Gϕ. In particular, for each variable x, at least one of the facilities tx and
fx is opened by the solution. Moreover, as only k facilities can be opened and there are k
variables, exactly one of tx and fx is opened for each x. Thus the k-Clusteringq solution
in Gϕ can be interpreted as an assignment for ϕ, where we set a variable x to true if tx is
opened, and we set it to false if fx is opened. Since also for each vi the solution opens a
facility at minimum distance, there must be a variable in Ci that is set so that its literal
in Ci is true, i.e., the assignment satisfies ϕ. Thus due to the above lemma bounding the
highway dimension of Gϕ, we obtain the Theorem 3 for k-Clusteringq.

For Facility Locationq we claim that there is a satisfying assignment for ϕ if and only
if there is a solution for Gϕ of cost at most 2k +

∑`
i=1(11c)iq. In fact the arguments are

exactly the same as for k-Clusteringq above: if there is a satisfying assignment then a
solution for Facility Locationq of cost 2k+

∑`
i=1(11c)iq exists, by opening the k facilities

corresponding to the assignment of cost 1 each. Conversely, any solution has cost at least
k +

∑`
i=1(11c)iq due to the edge lengths, and at least k facilities need to be opened, one for

each variable gadget. This gives a minimum cost of 2k +
∑`
i=1(11c)iq, and any such solution

corresponds to a satisfying assignment of ϕ. This proves Theorem 3 for uniform Facility
Locationq.

References
1 I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension, shortest paths,

and provably efficient algorithms. In SODA, pages 782–793, 2010.
2 Sara Ahmadian, Ashkan Norouzi-Fard, Ola Svensson, and Justin Ward. Better guarantees for

k-means and euclidean k-median by primal-dual algorithms. SIAM Journal on Computing,
pages FOCS17–97, 2019.

3 Sanjeev Arora, Prabhakar Raghavan, and Satish Rao. Approximation schemes for euclidean
k-medians and related problems. In Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC ’98, pages 106–113, New York, NY, USA, 1998. ACM.
doi:10.1145/276698.276718.

ESA 2020

https://doi.org/10.1145/276698.276718

46:22 PTASs for Clustering in Low Highway Dimension Graphs

4 Pranjal Awasthi, Moses Charikar, Ravishankar Krishnaswamy, and Ali Kemal Sinop. The
hardness of approximation of euclidean k-means. In 31st International Symposium on Compu-
tational Geometry, SoCG 2015, June 22-25, 2015, Eindhoven, The Netherlands, pages 754–767,
2015.

5 Yair Bartal and Lee-Ad Gottlieb. A linear time approximation scheme for euclidean TSP. In
54th Annual IEEE Symposium on Foundations of Computer Science, FOCS, 2013.

6 A. Becker, P. N. Klein, and D. Saulpic. Polynomial-time approximation schemes for k-center
and bounded-capacity vehicle routing in metrics with bounded highway dimension. In ESA,
pages 8:1–8:15, 2018.

7 J. Blum. Hierarchy of transportation network parameters and hardness results. In IPEC,
pages 4:1–4:15, 2019.

8 Vladimir Braverman, Shaofeng H-C Jiang, Robert Krauthgamer, and Xuan Wu. Coresets for
clustering in excluded-minor graphs and beyond. arXiv preprint, 2020. arXiv:2004.07718.

9 Jaroslaw Byrka, Thomas Pensyl, Bartosz Rybicki, Srinivasan Aravind, and Khoa Trinh. An
improved approximation for k-median, and positive correlation in budgeted optimization.
In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 737–756, 2015.

10 Vincent Cohen-Addad, Andreas Emil Feldmann, and David Saulpic. Near-linear time approxim-
ations schemes for clustering in doubling metrics. In 60th IEEE Annual Symposium on Found-
ations of Computer Science, FOCS, pages 540–559, 2019. doi:10.1109/FOCS.2019.00041.

11 Vincent Cohen-Addad, Philip N Klein, and Claire Mathieu. Local search yields approximation
schemes for k-means and k-median in euclidean and minor-free metrics. SIAM Journal on
Computing, 48(2):644–667, 2019.

12 Y. Disser, A. E. Feldmann, M. Klimm, and J. Könemann. Travelling on graphs with small
highway dimension. In Graph-Theoretic Concepts in Computer Science - 45th International
Workshop, WG, volume 11789, pages 175–189. Springer, 2019.

13 A. E. Feldmann. Fixed-parameter approximations for k-center problems in low highway
dimension graphs. Algorithmica, 81(3):1031–1052, 2019.

14 A. E. Feldmann, W. S. Fung, J. Könemann, and I. Post. A (1 + ε)-embedding of low
highway dimension graphs into bounded treewidth graphs. SIAM Journal on Computing,
47(4):1275–1734, 2018.

15 Zachary Friggstad, Mohsen Rezapour, and Mohammad R. Salavatipour. Local search yields
a PTAS for k-means in doubling metrics. SIAM J. Comput., 48(2):452–480, 2019. doi:
10.1137/17M1127181.

16 Anupam Gupta, Robert Krauthgamer, and James R. Lee. Bounded geometries, fractals,
and low-distortion embeddings. In Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’03, 2003.

17 Anupam Gupta and Kanat Tangwongsan. Simpler analyses of local search algorithms for
facility location. CoRR, abs/0809.2554, 2008. arXiv:0809.2554.

18 Stavros G Kolliopoulos and Satish Rao. A nearly linear-time approximation scheme for the
euclidean k-median problem. SIAM Journal on Computing, 37(3):757–782, 2007.

19 Shi Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. Inf.
Comput., 222:45–58, 2013.

20 K. Talwar. Bypassing the embedding: algorithms for low dimensional metrics. In Proceedings
of the thirty-sixth annual ACM symposium on Theory of computing, pages 281–290. ACM,
2004. doi:10.1145/1007352.1007399.

http://arxiv.org/abs/2004.07718
https://doi.org/10.1109/FOCS.2019.00041
https://doi.org/10.1137/17M1127181
https://doi.org/10.1137/17M1127181
http://arxiv.org/abs/0809.2554
https://doi.org/10.1145/1007352.1007399

	Introduction
	Our results
	Related work
	Our techniques
	Outline

	Preliminaries
	Decomposing the graph
	The algorithm
	Approximating the distances
	The dynamic program (proof of Lemma 20)

	Hardness for graphs of highway dimension 1

