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—— Abstract

Efficient algorithms for computing and processing additively weighted Voronoi diagrams on planar
graphs have been instrumental in obtaining several recent breakthrough results, most notably the
almost-optimal exact distance oracle for planar graphs [Charalampopoulos et al., STOC’19], and
subquadratic algorithms for planar diameter [Cabello, SODA’17, Gawrychowski et al., SODA’18].
In this paper, we show how Voronoi diagrams can be useful in obtaining dynamic planar graph
algorithms and apply them to classical problems such as dynamic single-source shortest paths and
dynamic strongly connected components.

First, we give a fully dynamic single-source shortest paths data structure for planar weighted
digraphs with 5(n4/ %) worst-case update time and O(log? n) query time. Here, a single update can
either change the graph by inserting or deleting an edge, or reset the source s of interest. All known
non-trivial planarity-exploiting exact dynamic single-source shortest paths algorithms to date had
polynomial query time. Further, note that a data structure with strongly sublinear update time
capable of answering distance queries between all pairs of vertices in polylogarithmic time would
refute the APSP conjecture [Abboud and Dahlgaard, FOCS’16].

Somewhat surprisingly, the Voronoi diagram based approach we take for single-source shortest
paths can also be used in the fully dynamic strongly connected components problem. In particular,
we obtain a data structure maintaining a planar digraph under edge insertions and deletions, capable
of returning the identifier of the strongly connected component of any query vertex. The worst-case
update and query time bounds are the same as for our single-source distance oracle. To the best of
our knowledge, this is the first fully dynamic strong-connectivity algorithm achieving both sublinear
update time and polylogarithmic query time for an important class of digraphs.
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1 Introduction

The dynamic shortest paths problem seeks for a data structure maintaining a graph under
updates and supporting shortest path queries.! Depending on the set of supported updates,
we call such a graph data structure fully dynamic if both edge insertions and deletions are
allowed, incremental if only edge insertions (or edge weight decreases) are supported, or
decremental if only edge deletions (or weight increases) are allowed. In the all-pairs variant
of dynamic shortest paths problem one has to support shortest path queries between any
pair of vertices of the graph. In the single-source variant all shortest paths queries have
to originate in a fixed distinguished vertex and the only parameter of a query is the target
vertex.

For the most general setting where one requires ezact answers, Demetrescu and Italiano [31]
gave a fully dynamic algorithm (improved slightly by Thorup [77]) recomputing the all-pairs
shortest paths matrix in nearly optimal 6(n2) amortized time even if real edge weights are
allowed. Note that recomputing the distance matrix from scratch takes O(nm) = O(n?)
time [55]. Fully dynamic all-pairs shortest paths data structures with subcubic worst-case
update bounds are also known [5,46,78]. There exist faster algorithms if the input graph is
unweighted and partially dynamic (i.e., incremental or decremental) [6,7]. However, none of
the known results improves upon a trivial, recompute-from-scratch algorithm with 5(mn)
update time and O(1) query time if the graph is sparse, i.e., m = 5(71) For the single-source
variant, all known non-trivial exact dynamic shortest paths algorithms [37] are partially
dynamic and yield no improvement over the respective recompute-from-scratch algorithm in
the sparse case either.

The lack of progress on obtaining an exact fully dynamic single-source shortest paths

37¢) initialization time, O(m!'~¢) amortized update time and O(n'~¢)

algorithms with O(n
query time at the same time can be explained by a matching lower bound conditional on the
(static) APSP conjecture [73]. In fact, breaking this barrier even in the partially dynamic
setting for undirected unweighted graphs would be a large breakthrough [43].

As a result, since finding good exact algorithms for general graphs seems hopeless, one
needs to look for either approximate solutions or restrict their attention to more structured
graph classes. Indeed, a large body of research has been devoted to designing approzrimate
dynamic shortest paths algorithms, especially in partially dynamic settings [9-13, 15,26, 29,
43-45,48-50, 59, 60], which find many applications, e.g., in various maximum flow related
problems [29,67]. Unfortunately, many of the known fastest approximate dynamic shortest
path algorithms (e.g. [9,44,48]) suffer from assuming an oblivious adversary, which significantly
limits their applicability (cf. e.g., [29]).

Similarly, dynamic shortest paths problems have also been studied for important graph
classes like planar graphs [3,4,38,56,63,66], or low treewidth-graphs [3,58]. The primary
reason why faster dynamic shortest paths algorithms in these cases are possible is the
existence of non-trivial distance oracles for these classes. A distance oracle is a compact
representation of the graph’s shortest paths such that the distance (or a distance estimate)
between any pair of vertices can be retrieved efficiently. For general graphs, such non-trivial
distance oracles exist only for undirected graphs and assuming an approximation ratio of at
least 3 [25,79,82]. On the contrary, for planar graphs many non-trivial exact distance oracles

L We will identify shortest paths queries with distance queries. Almost all known dynamic shortest paths
algorithms (for some exceptions see [74,80]) can also report the actual path in nearly linear (in the
number of the path’s edges) time after computing a distance estimate.
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have been proposed [19,27,33,38,56,63,69]. The first exact oracles with polylogarithmic query
time and subquadratic space have been obtained only recently [23,30,41], following Cabello’s
breakthrough of employing Voronoi diagrams for the planar diameter problem [20]. Also
near-optimal (in terms of query time, construction time, and used space) (14 €)-approximate
distance oracles have been known for nearly two decades [62,76], and a lot of effort has been
put to push the known bounds as close to optimal as possible [22,42,61,84].

Dynamic shortest paths in planar graphs. In this paper our focus is on computing shortest
paths in dynamic planar graphs and applications. Klein and Subramamian were the first
to give a planarity-exploiting dynamic shortest paths algorithm [66] — their data structure
worked for undirected graphs, was fully dynamic, (1+¢)-approximate and had O(n2/3) update
and query time bounds. A data structure with the same bounds (up to polylogarithmic
factors), but for ezact distances in directed graphs was obtained in the breakthrough work

of Fakcharoenphol and Rao [38] (later extended and slightly improved in [24,40, 54,56, 63]).

Abraham et al. [4] gave a faster (1 + €)-approximate dynamic algorithm for undirected graphs
with O(n!/2) update and query times. Karczmarz [58] matched this bound for directed
planar graphs, albeit only in the (1 + €)-approximate decremental setting. Abboud and
Dahlgaard [1] showed that by the APSP conjecture, one should not expect an exact dynamic
all-pairs shortest paths data structure for planar graphs with strongly sublinear product of
update time and query time. However, no exact data structure to date has matched this
product lower bound while retaining strongly sublinear update time.

The single-source scenario is much less studied for dynamic planar graphs. Karczmarz [58]
showed a decremental (1+e¢)-approximate single-source shortest paths algorithm for minor-free
(and thus also planar) digraphs with 5(711/ 2) update time and O(1) query time. Although not
explicitly stated in the literature, the all-pairs data structure of [63] can be easily converted
to a fully dynamic exact single-source distance oracle with O(n2/3) update time and O(n'/3)
query time. However, no fully dynamic single-source shortest paths algorithm for planar
graphs to date has been able to achieve sublinear update time and polylogarithmic query
time, or at least break through the 5(n) update-query time product barrier, even in the
approximate setting.

Our results. In this paper we show the first exact dynamic single-source shortest paths
algorithm for planar graphs with strongly sublinear update time and polylogarithmic query
time. Our algorithm, summarized by the following theorem and described in Section 3, is
deterministic and can be easily extended to report paths.

» Theorem 1. Let G be a real-weighted planar digraph with a source s € V(G). There exists
an O(nlogn)-space data structure maintaining G under edge insertions, edge deletions, and
source changes with O(n*/®log? n) worst-case update time that can compute distg(s,v) for
any v € V(Q) in O(log? n) time. The initialization time is O(nlog?n).

To the best of our knowledge, this result constitutes the first known application of
additively weighted Voronoi diagrams machinery (first introduced by Cabello [20]) in dynamic
graph algorithms. More specifically, it is obtained by combining fully dynamic maintenance
of r-divisions [66, 75], the shortest paths algorithm for dense distance graphs [38], the recent
efficient construction of dual Voronoi diagrams [23] via FR-Dijkstra [38], and the efficient
point location data structure for Voronoi diagrams [41].

We now provide a brief overview of the data structure underlying Theorem 1. We maintain
distances in G from the source vertex s to each boundary vertex of each piece of an r-division
of G using FR-Dijkstra. For each piece of the r-division, we maintain an additively weighted
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Voronoi diagram augmented with a point location data structure, with weights equal to the
distances from s. Upon a query for distg(s,v), we perform a point location query on the
Voronoi diagram of a piece of the r-division that contains v.

It is worth noting that our data structure (and in fact all data structures obtained in this
paper) works in the most general model of dynamic planar graphs where we only require
that G remains planar after each update. Some fully dynamic planar graph algorithms
assume a weaker plane model (e.g., [32,35,54]) where some plane embedding of G is fixed
and we only allow inserting edges connecting vertices that lie on a common face of (that
embedding of) G.

We also generalize our single-source data structure to the case when, instead of a single
source s, a set of facilities F C V is given, and our goal is to locate the closest (i.e., minimizing
distg(f,v)) facility f € F for a given query vertex.? We show that maintaining such a data
structure under edge updates issued to G, or updates to the facilities set F’, is possible using
O(n3/* . |F|** + n*/%) worst-case update time. The query time remains O(log?n). Note
that even though multiple-source shortest paths or maximum flow problems can be typically
easily reduced to the single-source case by adding a super-source, such a reduction does not
preserve planarity and indeed handling multiple sources tends to be challenging in planar
graphs (cf. e.g., [16,17]). Our generalized data structure handles up to O(n'/®) sources as
efficiently as the single-source case. Moreover, the update time remains strongly sublinear
unless the number of facilities is not strongly sublinear.

Surprisingly, we show that the same framework that we use to prove Theorem 1 can
be applied to obtain interesting results not directly related to the shortest paths problem.
Namely, in Section 4 we show a fully dynamic strong-connectivity algorithm for planar graphs,
encapsulated in the following theorem.

» Theorem 2. Let G be a planar digraph. There exists an O(nlogn)-space data structure
maintaining G under edge insertions and deletions with 0(77,4/5 1og2 n) worst-case update
time that can compute the identifier of the strongly connected component of any v € V(G) in
O(log®n) time. The initialization time is O(nlog®n).

We now sketch the main ideas behind our fully dynamic strong-connectivity algorithm. As
in Subramanian’s dynamic all-pairs reachability algorithm [75], the base of our data structure
is a graph X, called a reachability certificate, that sparsifies the reachability information
between boundary vertices OR of a fully dynamic r-division R with few holes. Naively
recomputing the strongly connected components of X gives us the restriction of the strongly
connected components of G to the boundary vertices OR. The main challenge, of course,
is to compute the identifier of a strongly connected component (SCC) of an arbitrary non-
boundary vertex v of G, internal to some piece P of the r-division R. To this end, we use
the following observation: suppose by, ..., by are some vertices of G lying in distinct strongly
connected components of G. Then, v is strongly connected to some b; if and only if b; is in
the topologically earliest SCC of G reachable from v and b; is in the topologically latest SCC
of G that can reach v. Roughly speaking, this observation applied to the boundary vertices of
P labeled using the topological order of their respective SCCs in the certificate X, allows us
to identify the SCC of v using two point-location queries on the Voronoi diagram of piece P.
Each such point location query, computes, instead of the nearest site of v, the highest (or
lowest) priority site that can reach v (that v can reach, resp.), and can be simulated using a
standard point location query on a Voronoi diagram [41].

2 One can also view F as a set of sites of a graphic Voronoi diagram — then the query locates the cell of
the Voronoi diagram wrt. F' that a given vertex v belongs to.
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Whereas maintaining strongly connected components is a well-studied problem in partially
dynamic settings [8,14,47,53], we are not aware of any non-trivial fully dynamic strongly
connected components data structures designed specifically for this problem for any digraph
class — note that one could use a fully dynamic transitive closure data structure for this task:
for example, the dynamic plane transitive closure data structure of [32] which has a(nl/ 2)
update and query time. Such a strongly connected components data structure (i.e., with both
update and query bounds O(n'=¢)) for general graphs is in fact ruled out by a conditional
(on SETH) lower bound [2]. As a result, to the best of our knowledge, we obtain the first
fully dynamic strongly connected components algorithm to achieve sublinear update-query
time product for any important class of digraphs.

The undirected counterpart of the dynamic strongly connected components problem, the
dynamic connectivity problem, is very well-studied. Near-optimal deterministic amortized
update bounds [51,52,83] and randomized worst-case update bounds [57,81] (see also [71]) are
known for fully dynamic general graphs. An almost optimal deterministic worst-case update
bound was very recently achieved in [28]. For fully dynamic planar graphs polylogarithmic
worst-case update bounds are known to be achievable even deterministically [34].

2 Preliminaries

Throughout the paper we consider as input a simple, directed and weighted planar graph G
with n vertices, and no negative weight cycles. We call a planar graph G plane if some
embedding of G is assumed. We use |G| to denote the number of vertices of G. Since simple
planar graphs are sparse, |E(G)| = O(|G|) as well.

We use the terms weight and length for edges and paths interchangeably throughout
the paper. For any two vertices u,v € V(G), we denote by distg(u,v) the length of some
shortest ©w — v path in the graph G.

Multiple-source shortest paths. The multiple-source shortest paths (MSSP) data struc-
ture [21,63] represents all shortest path trees rooted at the vertices of a single face f in a
weighted plane digraph using a persistent dynamic tree. It can be constructed in O(nlogn)
time, requires O(nlogn) space, and can report any distance between a vertex of f and any
other vertex in the graph in O(logn) time. MSSP can be augmented to also return the first
edge of this path (and each of its subsequent edges) in O(loglogn) time (cf. [56]).

Separators and recursive decompositions. Miller [68] showed how to compute, in a trian-
gulated plane graph with n vertices, a simple cycle of size 2v/2y/n that separates the graph
into two subgraphs, each with at most 2n/3 vertices. Simple cycle separators can be used to
recursively separate a planar graph until pieces have constant size. The authors of [64] show
how to obtain a complete recursive decomposition tree 7(G) of a triangulated graph G using
cycle separators in O(n) time. 7(G) is a binary tree whose nodes correspond to subgraphs
of G (pieces), with the root being all of G and the leaves being pieces of constant size. We
identify each piece P with the node representing it in 7(G). We can thus abuse notation
and write P € T(G). The boundary vertices OP of a non-leaf piece P are vertices that P
shares with some other piece @ € T(G) that is not P’s ancestor. For convenience we extend
the boundary set OL of a leaf piece L to its entire vertex set V(L). We assume P to inherit
the embedding of G. The faces of P that are faces of G are called natural, whereas the faces
of P that are not natural are the holes of P. The construction of [64] additionally guarantees
that for each piece H € T(G), (a) H is connected, (b) if H is non-leaf, then each natural
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face f of H is a face of a unique child of H, (¢) H has O(1) holes containing precisely the
vertices OH. Throughout, to avoid confusion, we use nodes when referring to 7(G) and
vertices when referring to G or its subgraphs. It is well-known [18,41,53,64] that by suitably
choosing cycle separators one can also guarantee that (1) > pcr(q) [H| = O(nlogn), (2)
X HeT(©) |0H|? = O(nlogn), and (3) |0H| = O(y/n/c?), where node H of T(G) has depth d
and ¢ > 1 is some constant.

The recursive decomposition algorithm of [64] works with no changes and maintains all the
properties of T(G) even if the initial graph G has a predefined set of boundary vertices G
of size O(y/|G]) located on O(1) of G’s faces. These faces are predefined as holes of G' and
are the only faces of G that are allowed to be non-triangular.

An r-division [39] R of a planar graph, for r € [1,n], is a decomposition of the graph
into O(n/r) pieces, each of size O(r), such that each piece P has O(y/r) boundary vertices
(denoted OP), i.e., vertices shared with some other piece of R. We denote by OR the set
Uper OP. If additionally all pieces are connected, and the boundary vertices of each piece
P of the r-division R are distributed among O(1) faces of P (also called holes® of P), we
call R an r-division with few holes.

In [64] it was shown that for every r larger than some constant, 7 (G) admits an r-division
with few holes, i.e., there exists a subset of nodes of 7(G) forming an r-division with few
holes of G. Using this property, it is shown in [64] that an r-division with few holes of a
triangulated graph can be computed in linear time. More generally, given a geometrically
decreasing sequence of numbers (7, "m—1,---,71), where 1 is a sufficiently large constant,
riy1/7mi > b for all ¢ for some b > 1, and r,,, = n, we can obtain r;-divisions with few holes
for all ¢ in time O(n) in total. For convenience, we define the only piece in the r,,-division
to be G itself. These r-divisions satisfy the property that a piece in the r;-division is a — not
necessarily strict — descendant (in 7(G)) of a piece in the r;-division for each j > i. We also
call such sequence of r;-divisions obtained from 7 (G) a recursive (7, ...,r1)-division of G.

We assume for simplicity that all holes we ever encounter are simple cycles. Unfortunately,
this is not true in general. However, non-simple holes do not pose a significant obstacle, and
can be avoided by suitably extending the graphs, as discussed numerous times in the past,
see e.g., [23,53,56,72].

Dense distance graphs and FR-Dijkstra. For a plane digraph H with weights from
R> U {00} and a distinguished set 0H C V(H) of boundary vertices lying on O(1) faces
of H, we denote by DDGp the complete weighted graph on 0H whose edge weights rep-
resent distances between all pairs of vertices of 9H in H. DDGpy can be computed in
O ((|H| +|0H|*)logn) time using MSSP [63]. In particular, dense distance graphs for all
pieces H € T(G) can be computed in O(nlog®n) time.

When H = {H, ..., H,} is a collection of plane graphs, we set DDG(H) := oy DDGH.

» Lemma 3 (FR-Dijkstra [38,40]). Given all DDGp,, one can compute a single-source
shortest paths tree from any source s in DDG(H) in O (311, |0H;|log? n) time, where
n = |V(DDG(H))|.4

3 This definition is slightly more general than the definition of a hole of a piece P € T(G). Namely, the
definition of an r-division does not assume a fixed embedding of the entire G; it only assumes some
fixed embeddings of individual pieces.

4 In particular H; may be single-edge. This way, this lemma captures also the case when we compute
shortest paths in a collection of DDGs with some auxiliary vertices and edges.
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We now state some fairly standard definitions and lemmas about representing distances
between some vertices of G of interest using unions of dense distance graphs of a recursive
decomposition’s (or r-division’s) pieces (for instance cf. [24]), adapted to our notation. We
include their proofs for completeness in Appendix A. For example, Lemma 4 captures the
well-known observation of [38] that in order to compute a shortest path between any pair of
vertices of G, it is enough to compute a shortest path in a union of dense distance graphs
from T (G) with only O(y/n) vertices in total.

Let L be some leaf of T(G). We define the cone of L, denoted coneg(L), to be the
collection of pieces of T(G) containing L, all ancestors of L, and all siblings of (weak) ancestors
of L. For some collection £ of leaf pieces of T(G), we define coneg (L) = (J,c coneg(L).

» Lemma 4 ([24,38]). Let L be some collection of leaf pieces of T(G). Then:
1. For any u,v € V(DDG(coneg(L))), dista(u,v) = distppa(cones (£)) (U V).

2. ZHGconeg(ﬁ) |aH| =0 (\/ nl‘cl) .

Let R be an r-division with few holes of G and T (P) be a recursive decomposition of
P € R with the root boundary set to 9P. For any v € V(G) \ 9G, let L, be some leaf
containing v in the unique piece P, € R containing v. For any X C V(G) let us define

coner (X) = RUU,ex\ar conep, (Ly).

» Lemma 5 ([24,38]). Let X C V(G) be non-empty. Then:
1. For any u,v € V(DDG(coner(X))), distg(u,v) = distppg(coner (X)) (U V)-

2. S htcconen () [9H] = O (n/ /7 +min (/- [XT, 1X] - 7).

Fully dynamic r-divisions. Many dynamic algorithms for planar graphs maintain r-divisions
and useful auxiliary data structures under dynamic updates. The exact set of supported
updates to G varies; e.g., [38,56,63] support only edge weight changes, [54] assumes embedding-
preserving insertions, whereas [66,75] only assume that the graph G remains planar at all
times. We stick to the last, most general setting. The core of the construction behind the
following theorem is due to Klein and Subramanian [66, 75]; for completeness we give a
complete proof in Appendix A.

» Theorem 6. Let G = (V, E) be a weighted planar graph. Suppose that adding infinite-weight

edges to G does not have effect on any properties of G that we care about. Let r € [1,n].
There is a data structure maintaining an r-division with few holes R of some GT such

that:

1. G is obtained from G by adding infinite-weight edges.

2. FEach P has all its faces except its holes triangular and is accompanied with some auziliary
data structures that can be constructed in T(r) time given P and use S(r) space.

The data structure uses O (n+ 2 - S(r)) space and can be initialized in O (n+ 2 - T(r))
time. After each edge deletion and edge insertion (preserving the planarity of G), it can be
updated in O(r + T (r)) worst-case time.

Additively weighted Voronoi diagrams. Let G be a directed planar graph of size n with
real edge-lengths, and no negative-length cycles. Assume that all faces of G are triangles
except, perhaps, a single face f. Let S be the set of vertices that lie on f, called sites, i.e.,
S = V(f). Let us assign to each site s € S a weight w(s) € R>¢ U {oo}. The additively
weighted distance dist&(s,v) between a site s € S and a vertex v € V(G) is defined as
w(s) + distg(s,v).

31:7
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The additively weighted Voronoi diagram of (S,w) within G, denoted by VD(S,w), is
a partition of V(G) into pairwise disjoint sets, one set Vor(s) for each site s € S. The set
Vor(s), which is called the Voronoi cell of s, contains all vertices in V(G) that are closer
(wrt. distg) to s than to any other site in S.

In the following and throughout, whenever we work with Voronoi diagrams we assume
that (1) G is strongly connected, (2) shortest paths in G are unique, and (3) additively
weighted shortest paths in G are unique, i.e., for each v € V(@) there is a unique site s
minimizing dist&(s,v). Note that these assumptions make the Voronoi cells well-defined
and simply connected, and guarantee that they indeed form a partition of V(G). We will
explicitly ensure that these requirements are met for G, .S and the weight function whenever
we define a Voronoi diagram on G.

There is a dual representation VD* (S, w) of Voronoi diagram VD(S, w) as a tree of constant
degree with O(]S|) vertices and edges [41]. An efficient FR-Dijkstra based algorithm for
computing VD*(S,w) was presented by Charalampopoulos et al. [23].

» Theorem 7 ([23]). Suppose that we have at hand a recursive decomposition T(G) of G,
with the only hole of G being f and S = V(f). Further suppose that we have DDG g computed
for each piece H € T(G). Then, we can compute VD*(S,w) in O(y/n - [S|log?n) time.

» Remark 8. The algorithm underlying Theorem 7 implicitly assumes that Vor(s) is non-
empty for all s € S. In Appendix B, we discuss why this assumption is not necessary, relying
on [41].

In a point location query for some Voronoi diagram VD(S,w), we are given a vertex
v € V(G) and are requested to find the site s € S such that v € Vor(s) and also the value of
dist& (s, v). Gawrychowski et al. [41] showed the following result.

» Theorem 9 ([41]). Suppose that we have at hand an MSSP data structure for G with
sources from the face f. Given some dual representation VD*(S,w), we can preprocess it in
O(|S|) time, so that point location queries for VD(S,w) can be answered in O(log?n) time.

3  Fully Dynamic Single Source Shortest Paths

In this section we show our single-source exact distance oracle for planar graphs with
O(n*®log®n) update time and O(log?n) query time and thus prove Theorem 1. For
simplicity, let us assume that G is non-negatively weighted. Negative edges can be handled
as in [56] — see Appendix C.

» Theorem 1. Let G be a real-weighted planar digraph with a source s € V(G). There exists
an O(nlogn)-space data structure maintaining G under edge insertions, edge deletions, and
source changes with O(n*/®log® n) worst-case update time that can compute distg(s,v) for
any v € V(G) in O(log®n) time. The initialization time is O(nlog®n).

The base of our data structure is a dynamic r-division R with few holes, as given in
Theorem 6. Note that in our shortest-paths problem, indeed adding infinite-weight edges to G
does no harm. Hence, in the following we work with the graph GT from Theorem 6 when
computing distances, but identify it, without loss of generality, with our original graph G.

For technical reasons, however, we would like to avoid dealing with infinite weights in
some of our data structures handling individual pieces. In the real-weighted fully dynamic
setting, however, we cannot fix a sufficiently large finite number, larger than all edge weights
that will ever appear in the future graph G, beforehand. Instead, we do the following. For
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each P € R, let Mp be a sufficiently large finite number, e.g., larger than the sum of finite
edge weights in P. Consider Mp to be an auxiliary data structure of P as in Theorem 6. We
will use Mp to simulate infinite edge weights in P, and also for detecting paths non-existent
in the original graph G (but having infinite weight in G* N P). As a result, below we assume
each infinite weight in P (or any auxiliary data structure related to P) is replaced by Mp in
all the computations performed locally on the piece P, whereas globally (when performing
some computation for many pieces at once, like the shortest paths algorithm of Lemma 3)
we treat all edge or path weights in P that are at least Mp as infinite.
For each piece P € R we store the following additional data structures.
We store the recursive decomposition 7 (P) with the initial boundary set to 9P, and also
DDGs for all the pieces H € T(P).
For each hole h of P, let P;, be the piece P after applying the following standard
augmentations. First, P is extended into a graph P} using O(r) vertices and edges of
weight Mp embedded inside either the piece or other (than h) holes of P that would
make P strongly connected and triangulated (except for the hole h) without changing the
distance between any pair of reachable vertices in P. The graph P is in turn obtained
from P; by changing P}’s edge weights into O(1)-size vectors as described in [36] so that
there is a unique shortest path (wrt. the lexicographical order on path weights, defined as
the coordinate-wise sum of the path’s individual edge weights) between any u,v € V(Py)
with cost of the form (distps (u,v),-). As proven in [36], one can compute P, from P
deterministically in linear time. The O(1)-size vector weights, in turn, can be easily
packed into usual single-number weights.
For each Py, we store an MSSP data structure initialized for the hole h. Recall that an
MSSP data structure can be computed in O(rlogr) time. Moreover, we store a recursive
decomposition T (Pp,) of P, with the boundary 9Py of the root piece set to 0P NV (h) of
size O(+y/r). For each node (piece) H € T (P,), we also store DDGp. Since the sum of
sizes of all the pieces of T(P}) is O(rlogr), computing all these dense distance graphs
takes O(rlog® r) time (see Section 2).

Note that computing piecewise auxiliary data structures defined so far takes O(r log?r)
time. So, by Theorem 6, they can be updated in O(r log? ) worst-case time after G undergoes
an update.

After the initialization and each update, once R and all auxiliary data structures are
updated, we compute for each P € R a point location data structure.

» Lemma 10. Given a weight function w : 9P — R U oo, one can compute in O(r3/* log? T)
time a data structure L(P) answering the following queries in O(log?r) time: given any
v € V(P), compute the value minpeyp{w(b) + distp(b,v)} along with the minimizer b.

Proof. Since 9P is a union of O(1) sets Py, we can compute the desired minimum over
each JP, separately and then take the minimum over all h.

Let us first note that negative values of w are not a problem. We can turn negative
weights into non-negative by adding some common large value to the weights of all sites. We
can thus suppose wlog. that all values of w are non-negative.

If all the weights are infinite, the queries can be answered trivially in O(1) time. So in
the following assume that there is at least one site whose weight is finite.

Let S = 0P, = {s1,...,8k} be the set of sites. In order to guarantee that for each
v € V(G) there is a unique site s minimizing dist& (s, v), we will break ties by considering
(w(s;),1) instead of w(s;) as the weight of site s;, adding a second coordinate to each edge
weight in Py, set to 0, and comparing additively weighted distances lexicographically. Clearly,
this extension does not break any of the properties of Pj,.
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Recall that P, has finite non-negative real weights, is strongly connected, has unique
shortest paths, and has a single face h that is possibly non-triangular that contains all the
sites S. Moreover, the additively weighted distances in P}, are unique. Therefore, we can
invoke Theorem 7 to construct the dual representation VD*(S,w) of the Voronoi diagram

VD(S,w). This requires O <\/7"|8Ph| log? n) =0 (r?/4 log? n) time.
Then, we construct the point location data structure of Theorem 9 for VD(S,w). Note

that we have an MSSP data structure for Pj, for hole i and hence point location queries,
given VD*(S,w), can be answered in O(log®n) time. <

We invoke Lemma 10 with weight function w(b) := distg(a, b) in order to construct L(P)
for each P € R. This requires O (n/r1/4 - log? n) time in total. By Lemma 5, the values
distc (s, b) for all b € OR can be computed in O (n/y/r - log?n) time if we run the single-
source shortest paths algorithm of Lemma 3 (FR-Dijkstra) on the graph DDG(conerg(s)).
We also compute distp, (s, u) for all u € Ps, where P; is an arbitrary piece containing s using
Dijkstra’s algorithm in O(rlogr) time.

Now, we can compute distg(s,v) for a query vertex v as follows. If the shortest s — v
path in G does not go through R, then it is fully contained in P and therefore v € Py and
distg (s, v) = distp, (s, v), i.e., we have distg(s,v) already computed. Otherwise, let P, be
an arbitrary piece containing v. Observe that we have distg(s, v) = minyeop, {dista(s, b) +
distp, (b, v)} where the minimizer b corresponds to the a boundary vertex of some shortest
s — v path in G. So this case can be reduced to a single query to the data structure L(P,).
This takes O(log®n) time.

The worst-case update time is O(r log®r + mve log? r). By setting r = n
O(n*/®log? n) worst-case update time. Since the space usage per piece is O(rlog ), we need
O(nlogn) space.

4/5

we get

» Remark 11. Our data structure can be extended to report, following the computation
of distg(s,v), a shortest s — v path @ in time nearly linear in the number of edges of Q.
This follows easily by the fact that the MSSP data structure [63] can report shortest paths
efficiently (see e.g., [56] for details). Therefore, we can efficiently expand the used edges of
dense distance graphs and the shortest b — v path into actual edges in G.

3.1 A Dynamic Closest Facility Data Structure

We can generalize the dynamic single-source shortest paths data structure as follows. Suppose
we replace a single source vertex s with a set of facilities FF C V. Given F, for a query
vertex v we would like to compute minye p{dist(f,v)}, and also possibly f € F' minimizing
this expression. A dynamic update would consist of either an edge update or changing the
set F'. In other words, such a problem can be seen as dynamic point location in a Voronoi
diagram wrt. F', where each update either changes the graph or resets the Voronoi diagram
of interest.

In this setting, we consider the following simple generalization of the single-source data
structure. Let the update procedure first compute the distances d(b) = min e p{diste(f,b)}
for all b € OR. Note that by Lemmas 5 this can be achieved by computing single-source
shortest paths in the graph DDG(Dp), where Dy = coneg (F), extended with 0-weight edges
sf, where s is an auxiliary super-source. By Lemma 3 this can be done in O((y/n|F|+n/\/r+
|F)log®n) = O((y/n|F| + n*/%)log® n) time. By using weights w := d in the individual
point-location data structures L(P), P € R, a single point location query on L(P,) (recall
that P, is some piece containing v) would compute the desired closest facility f, minimizing
distg (fy,v) unless the sought (weighted) shortest f, — v does not go through a boundary



P. Charalampopoulos and A. Karczmarz

vertex of R. We could in principle handle such paths by proceeding as in the single-source
case and computing shortest paths naively in each piece containing a facility. However, this
could take time Q(r - min(n/r, |F|)), i.e., linear in n even for moderately large facility set
sizes, e.g., |F| = Q(n'/).

To improve upon this simple approach, we proceed as follows. Let (pp,...,p1) be such a
sequence of integers that p,, =r, p1 = O(1) and p;+1/p; = 2 for all i < m. For each P € R
we store a recursive (py,,. .., p1)-division consisting of pieces of 7(P) (cf. Section 2). Let
Rp,; be the p;-division of P. All Rp; can be computed in linear time given 7 (P) [64]. Note
that R;, defined as the union of Rp; over all pieces P € R, actually forms an p;-division
with few holes of the entire graph G. In particular, we have R,, = R.

We store the extended pieces Q) (recall how we obtained extended pieces P, with
unique shortest paths from P in the single-source case) plus their recursive decompositions
T(Qr), DDGs, and an MSSP data structure for all pieces @ of all T(P) instead of just
the pieces of R,, = R as we did in the single-source case. However, we stress that these
auxiliary components for a piece @ C P where P € R, are counted as accompanying data
structures of the piece P. So, we compute O(1) fresh recursive decompositions 7(Q},) for
each piece Q € T(P) — computing each takes O(|Q|log®n) time. As a result, by the bound
> oer(py |Ql = O(|P[log |P|), the time to compute accompanying data structures of piece P
increases to O(rlog®n).

Given the set of facilities F, let j be such that p; = © (min (%, r)) Redefine Dy =
coner, (F). Again, let us compute distances d(b) = minyer{distg(f,b)} (and the closest facil-
ities) for all b € Uy ¢p,. [0H| using FR-Dijkstra on DDG(Dr) extended with a super-source s

and auxiliary edges sf, f € F'. This takes O ((\/n|F| + n/@) log? n) = O(~y/n|F|log?n)
time by Lemmas 3 and 5.

It only remains to show how to handle computation of closest facilities for
v E V\UHEBF OH. Recall that the pieces Dp cover the entire G, no facility f is an
internal (non-boundary) vertex of a piece H € Dr, and each v € V' \ Uyep, OH is clearly
an internal vertex of a unique piece H, € Dp. Consequently, by Lemma 10, the closest
facility to v can be found in O(log2 n) time using a single query to the data structure L(H,).
For this to be possible, upon update we need to build the data structures L(H) for all
H € Dp. By Lemma 10, this takes O (ZHGDF VIH]| - |0H]log? n) time. Let us now bound
this sum. First, let us consider the sum restricted to the pieces H € Dr N'R;, i.e., the pieces
of r-division R;. Since p; = Q(n/|F|) or p; = Q(r) we get:

ol > VIH[-[0H[log’n | =

HEDRNR,
o) (n ~p?/4log2n> =0 (<n3/4 R 4 734) 10g2n) :
pj r

On the other hand, if H ¢ Dp N'R;, then H € conep,(Ly), where f € F\ R;, Py is the
unique piece of R; containing f, and L is some leaf of T (Py) containing f. For a fixed f,
by the definition of conep,(Ly), there are O(logn) pieces H satisfying this, at most two per
each level ¢ of T(Py). Hence, the sum of \/|H| - |0H| over such pieces can be bounded by

Yoo\ Prl - /| Prl/ct = O(p?/4). Summing over all f, and using p; = O(n/|F|), we get

o Z VIH|-[0H|log*n | =0 <|F| -p:;/4 log? n) =0 (n3/4 | F)Y* 10g? n) .

HeDE \Rj
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To conclude, the update time is O ((n3/4 S FIMA 4 Tfﬁ) log? n + rlog® n) By setting
r = (n/logn)*® we obtain the following theorem.

» Theorem 12. Let G be a real-weighted planar digraph with a set F C V' of facilities. There
exists an O(n log? n)-space data structure maintaining G under edge insertions, edge deletions,

and changes of the facilities set F' with O ((n3/4 . \F\1/4 + n4/5) logn/5 n) worst-case update
time that can compute minye p{dist(f,v)} along with the respective closest facility of v for
any v € V(G) in O(log® n) time. The initialization time is O(nlog®n).

4  Fully Dynamic Strongly Connected Components

In this section we show that a strategy similar to that of Section 3 can be used to obtain
a fully dynamic strong-connectivity algorithm. Again, we maintain an r-division R and
some auxiliary data structures for all the individual pieces. Formally, using a dynamic
r-division as in Theorem 6 may require introducing new infinite-weight edges to G which in
turn may change the reachability relation in G. We circumvent this problem by setting the
weights of the original edges of G to 0, and all auxiliary edges plus infinity (simulated in the
implementation by sufficiently large values Mp inside individual pieces, as in Section 3). This
way, u can reach v in G if and only if distg(u,v) = 0, and otherwise distg(u,v) = oo. All
known properties of reachability in plane graphs also extend to reachability using 0-weight
paths (assuming non-negative weights). In the following, whenever we say that v is reachable
from u, or there exists a u — v path, we mean distg(u,v) = 0.

As in Section 3, for each piece of R we store a recursive decomposition, dense distance
graphs and MSSP data structures. All these data structures are also maintained for pieces
of R with all edges reversed — for a piece P we call this graph the reverse of P and denote it
by Prev-

Another ingredient is a collection of reachability certificates Xp for all the pieces, as
defined in the following lemma due to Subramanian [75], slightly adjusted to certify 0-weight
paths.

» Lemma 13 ([75]). Let P € R be a piece. There exists a directed graph Xp, where
OP C V(Xp), of size O(y/rlogr) satisfying the following property: for any u,v € OP,
distp(u,v) = 0 if and only if there exists a w — v path in Xp. The graph Xp can be
computed in O(rlogr) time.

We include the reachability certificate in the set of auxiliary piecewise data structures.
Since reachability certificates can be computed in O(rlogr) time, maintaining them does
not incur any additional asymptotic cost. The following lemma is a direct consequence
of Lemma 13.

» Lemma 14. For any u,v € IR, u can reach v in G if and only if u can reach v in
X =Uper Xp-

Proof. Let u,v € OR. Since each Xp certifies the reachability between 0P in P, clearly a
u — v path in X implies an existence of a u — v path in G. Now suppose there is a u — v
path @ in G. Split P into maximal subpaths @1, ..., Qk, such that each @Q; is fully contained
in a single piece P; € R. For each i, the endpoints a, b of @); are contained in dP; and hence
there exists a a — b path in Xp C X. Consequently, there exist a v — v path in X. |

To handle an edge update, after R and auxiliary data structures are updated, we compute
the strongly connected components of X (defined as in Lemma 14) in O(|X|) = O(n/+/7)
time using any classical linear-time algorithm. For any b € OR, let sx (b) denote an integer



P. Charalampopoulos and A. Karczmarz

identifier of b’s strongly connected component in X. By additionally sorting the SCCs of X
topologically we can further assume that sy satisfies the following property: if a,b € OR
are not strongly connected, but a can reach b in X then sx(a) < sx(b). By Lemma 14,
for a,b € OR, we have sx(a) = sx(b) if and only if a and b are strongly connected in G;
moreover, if a can reach b in G, then sx(a) < sx(b).

We also define and maintain similar SCC-identifiers sp for individual pieces P, i.e., for
u,v € V(P), sp(u) = sp(v) implies u, v are strongly connected in P, whereas sp(u) < sp(v)
implies there is no v — w path in P. Clearly, the identifiers sp can be recomputed in O(r)
time given P, so we also include them into the set of auxiliary per-piece data structures.

For any @Q € {X} UR, let Sg be the set of used identifiers of the form sg(-). Observe
that we can easily guarantee that the sets Sg are pairwise disjoint, e.g., by using disjoint
integer ranges for different sets Sq.

The final component of our data structure, is, again a collection of per-piece point location
data structures. For each P € R, we have two point location data structures L(P™) and
L(P) of Lemma 10. After each edge update, L(P™") is computed for PV with weight
function w = sx. On the other hand, L(P) is initialized with weight function w = —sx. As
in Section 3, all these point location data structures are recomputed in O(n/r'/* - log® n)
time (over all pieces).

We now describe how our data structure handles a query for an SCC identifier of a
vertex v. The returned identifier always comes from the set (Jg¢ (x1ur 5@ Let P, be some
piece containing v. Let $pmin be the value computed by L(P!V) for vertex v. Let spax be
minus the value computed by L(P,) for v. If either of Spmin, Smax €quals £00 0T Smin # Smax
holds, we return sp, (v). Otherwise, we return sy, € Sx. The following lemma establishes
the correctness of this query procedure.

» Lemma 15. Let u,v € V(G) and let sy, s, be the respective identifiers returned by the
query procedure. Then, s, = s, if and only if u and v are strongly connected in G.

Proof. Suppose s, = s,,. If s, € Sp for some piece P, then s, = s, implies that u and v are
strongly connected in P and thus also in G. So suppose s, € Sx. Take any b € R such
that s, = sx(b). We now prove that v and b are strongly connected in G. Similarly we prove
that u and b are strongly connected in G. By transitivity it will follow that v and v are
indeed strongly connected.

Let Py, Smin, Smax be defined as in the query procedure’s description. Recall that s, € Sx
implies that Spin, Smax are finite and s, = Spin = Smax- Since all edges of P, have weight 0,
and Smayx is finite, Smax in fact represents the maximum value sx (a) among those a € 9P,
such that a path a — v exists in P,. Similarly, observe that sy, represents the minimum
value sx(¢) among those ¢ € 9P, such that a path ¢ — v exists in P*V, i.e., such that a
path v — ¢ exists in P,. Let us denote by a and ¢ the respective vertices of 0P, attaining
the maximum and minimum values of sx. Since sx(a) = sx(c), there exists a path ¢ — a
in G. However, by the definition of a and ¢, paths a — v and v — ¢ also exist in G, and
hence a,v and c are strongly connected in G. Since a is clearly strongly connected to b by
sx(a) = sx(b), indeed v and b are strongly connected in G.

Now let us move to proving the “ <= ” direction. Suppose v and v are strongly connected
in G. First consider the case when there exists some vertex b € IR located in the same
strongly connected component of G as u and v. In this case we prove that s, = sx(b). An
analogous proof that s, = sx(b) will establish s, = s,. Since v and b are strongly connected,
there exist some paths Q1 = v — b and () =b — v in G. Let vy be the first vertex on @,
such that v; € P, — note that v; necessarily exists since b € OR. Similarly set vy to be
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the last vertex on )2 such that vo € dP,. Observe that the subpaths v — v; and vy — v of
Q1 and @5 respectively lie entirely inside P,. Hence, spin and spax are finite and we have
Smax > Sx(v2) and smin < sx(v1). Recall that there exists a walk v — v; = b — v — v,
so in fact vy, va,b are strongly connected, i.e., sx(v1) = sx(v2) = sx(b). Thus, we obtain
Smin < 5x(0) < Smax-

On the other hand, let a € 9P, be such that a path a — v exists in P, and spax = sx(a)
(a exists by Smax # £00). Similarly, let ¢ € P, be such that a path v — ¢ exists in P,
and $min = Sx(c). Since a path a — ¢ through v exists in P, (so also in G), we have
that smax < Smin by the fact that the identifiers Sx respect the topological order of the
SCCs of X. Recall that we have already proved spin < $x(b) < Smax S0 in fact we have
Smin = Smax = Sx (), and consequently s, = sx (b).

Finally, suppose there is no vertex of OR in the SCC of G containing u and v. First, this
implies that u,v ¢ OR and all © — v and v — u paths are contained in a single, unique
piece P. This implies that sp(u) = sp(v). Hence it is sufficient to prove s, = sp(u) and
sy = sp(v). We prove the latter equality; proving the former is analogous. Recall that s, is
not set to sp(v) only if both Smin, Smax are finite and Spin = Smax. This can only happen
if there exists vertices a,c € 0P such that a can reach v in P, v can reach ¢ in P and
$x(€) = Smin = Smax = Sx(a), i.e., a and ¢ are strongly connected in G. But this implies
that a,c and v are strongly connected in GG, which contradicts the fact that the SCC of v
in G does not contain vertices of OR. <

The running time analyses of both the update and query procedures are identical to the
analyses of Section 3. Hence, we have proved the following theorem.

» Theorem 2. Let G be a planar digraph. There exists an O(nlogn)-space data structure
maintaining G under edge insertions and deletions with O(n"‘/5 log? n) worst-case update
time that can compute the identifier of the strongly connected component of any v € V(G) in
O(log?® n) time. The initialization time is O(nlog®n).
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A Omitted Proofs

» Lemma 16. Let Q be some collection of pieces from T (G) such that:

1. for each leaf piece L € T(G), either L or some ancestor of L is in Q,

2. for each H € Q, if some ancestor of H is in Q, then the parent of H is also in Q.
Then for any u,v € V(DDG(Q)), distppa(o)(u,v) = dista(u,v).

Proof. Let us note that if for some H € T(G) no ancestor of H belongs to Q, then
O0H C V(DDG(Q)). We prove this claim by induction on the level ¢ of piece H. For ¢ =0,
we get H € Q, so clearly 0H C V(H) C V(DDG(Q)). Suppose ¢ > 1. The statement is
trivial if H € Q. Otherwise, consider the children H,..., Hy of H. By induction we get
0H; C V(DDG(Q)). So in fact we have 0H C Ule 0H; C V(DDG(Q)).

Since the edges of each DDGpy encode lengths of some paths in G, we have that
distppa(o)(u,v) > distg(u,v). We now prove that there is a path of length at most
distg(u,v) in DDG(Q). Let P be some shortest u — v path in G. Let H be a piece of T(G)
of minimum level that contains P. We prove our claim by induction on the level ¢ of H.
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First note that by property 1 of Q, if H ¢ Q and no descendant of H belongs to Q,
then H has a nearest ancestor H* such that H* € Q. Observe that V(DDG(Q)) NV (H)
OH*. Hence, u,v € OH* and thus distppg(o)(u,v) < distppa,,. (u,v) = disty-(u,v)
distg (u,v) = distg(u, v).

So we can assume that either H € Q or some descendant of H belongs to Q. Then by
property 2 of @, we have that either H € Q or no ancestor of H belongs to Q. In either of
these cases we have 0H C V(DDG(Q)). Suppose first £ = 0 — then H is a leaf piece and
thus H € Q. So clearly P C H C DDG(Q), i.e., distppa(g)(u,v) < distg(u,v). On the
other hand, if we assume ¢ > 1 then we can split P into maximal subpaths P, ..., P, such
that each P; = u; — v; is entirely contained in a single child of Hp. Then for each i we
have {u;,v;} C {u,v} UOH C V(DDG(Q)) so by induction we get that distppg(g)(us, vi) <
distg(ui, v;) which implies distppa (o) (u,v) < distg(u,v). <

<
<

» Lemma 4 ([24,38]). Let L be some collection of leaf pieces of T(G). Then:
1. For any u,v € V(DDG(coneg(L))), distc(u,v) = distppa(cones (£)) (U V)-

2. ZHEconeG(L) |8H| =0 (\/ n\£|)

Proof. To obtain item 1 it is enough to note that coneg (L) satisfies the requirements posed
on the collection @ in Lemma 16.

Let A be the set containing all ancestors of all the leaf pieces L € £. We show item 2 by
bounding the sum X = ", ,|0H|. Since the number of boundary vertices of a piece is
bounded by the sum of numbers of boundary vertices of its parent and its sibling, the sum
> Hecone () |0H| of our interest can be larger from X only by a constant factor.

Recall that T(G) admits an r-division for any r € [1,n], i.e., there exists such r-division
R that R C 7(G) and the boundary of each piece of R equals the boundary of that piece in
T(G). Let us split A into two parts: let A; contain those H € A that are descendants of
some piece P € R, and let Ay = A\ A;. Let Xi =3 e 4 [0H|.

Since each L € L is a descendant of a unique piece P € R, we now bound the sum of |0H |
over all ancestors of L that are descendants of P. Recall (Section 2) that if H is a piece in a
recursive decomposition of an n-vertex graph, then |0H| = O(y/n/c?) where d is the depth
of H in that decomposition. Consider the subtree of T(G) rooted at P — it forms a recursive
decomposition 7 (P) of P with some initial boundary vertex set |OP] of size O(y/r). So the
sum of |0H| over all ancestors of L that are descendants of P is actually equal to the sum
of |0H| over all ancestors H of L in T (P). Since each ancestor has distinct integral depth,
this sum is O3, /IP|/¢') = O(\/|P]) = O(y/r). Hence X; = O(|L| - /7). On the other
hand, X5 <) pcg 0P| = O(n/y/r). So we obtain X = X1 + Xy = O(n//r + |£L| - /7). By
choosing r = n/|L|, we obtain X = O(y/n - |L]) as desired. <

» Lemma 5 ([24,38]). Let X C V(G) be non-empty. Then:
1. For any u,v € V(DDG(coner (X))), distq(u,v) = distppa(coner (x)) (U, V).

2. S trcconen ) 10H| = O (n/ /7 +min (/o X, 1X] V7))

Proof sketch. The proof is completely analogous to that of items 2 and 3 of Lemma 4. It is
enough to glue the individual decompositions T (P) into a single decomposition 7'(G) such
that the root has O(n/r) children instead of just 2: the individual pieces of R. Then item 1
follows by Lemma 16. Let Y =3 e oner (x) [0H|. Note that Y = O(n/y/r+[X|[-/r). If we

have r = n/|X| < r, then we can obtain the bound Y = O(y/n - | X|) in the proof of Lemma 4.
Otherwise, | X| < n/r,so Y = O(n//7+|X|-v/7) = O0(n/\/r). SoY = O(n/\/r++/n-|X|)
<

in all cases as well.
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» Theorem 6. Let G = (V, E) be a weighted planar graph. Suppose that adding infinite-weight

edges to G does not have effect on any properties of G that we care about. Let r € [1,n].
There is a data structure maintaining an r-division with few holes R of some GT such

that:

1. G is obtained from G by adding infinite-weight edges.

2. FEach P has all its faces except its holes triangular and is accompanied with some auxiliary
data structures that can be constructed in T(r) time given P and use S(r) space.

The data structure uses O (n+ 2 - S(r)) space and can be initialized in O (n+ 2 - T(r))
time. After each edge deletion and edge insertion (preserving the planarity of G), it can be
updated in O(r + T(r)) worst-case time.

Proof. On initialization, we first connect and triangulate G using infinite-weight edges, thus
obtaining GT. Then, we compute an r-division R with few holes of G in linear time [64] and
subsequently initialize the auxiliary data structures. Let h > 2 and ¢ > 8 be constants such
that a single piece of the computed r-division has at most ¢/r boundary vertices distributed
over h holes.

We will guarantee at all times that for any single piece P, |0P| < 3cy/r, and there exist
at most 3h faces of P such that any v € JP lies on one of these faces, called holes of P.
Moreover, each edge of GT is contained in at most two pieces of R: this is satisfied initially
since the r-division of [64] forms a partition of faces of G.

Suppose that the removal of an edge e = uw is issued to G. We then remove e from each
of the at most two pieces P containing it. If P is disconnected afterwards, we replace it
with two connected pieces P, P». Otherwise, since removing e merges two faces of P, the
total number of holes of P does not increase. If, on the other hand, a new edge e = uv is
inserted, we add a new piece P, consisting of a single edge e to R. Adding P, may cause an
endpoint of e, say u, to become a boundary vertex of R. If u was not a boundary vertex
before the insertion, it had to be a vertex of a single piece P,. At this point, since a new
boundary vertex emerges in P,, we might have dP, > 3c¢y/r or 9P might no longer lie
on at most 3h faces of P,. However, there surely exist some 3h + 1 faces whose vertices
include the whole set 9P, and |0P,| < 3¢y/r + 1. To fix our invariants, we first compute
a cycle separator C of P, wrt. the boundary vertices of P, in O(r) time, and replace P,
with two pieces P, 1, P, 2 — the two subgraphs of P, induced by vertices weakly on one side
of C. Clearly, the vertices of C' become new boundary vertices afterwards. Subsequently,
we similarly break each of P, 1, P, 2 further into two parts using a cycle separator wrt. the
holes of this piece (see [64] for details). Each of the at most four resulting pieces has at
most 2(3cy/r + 1) + 2v2y/r < (2¢ + 2v/2 + 2)/r < 3¢y/r boundary vertices, and at most
2.(Bh+1)+1<2h+2 < 3h holes.

Observe that a single edge update can introduce O(1) new pieces of size O(r) in the
maintained r-division, and the sizes of the existing pieces do not increase. For each of the
affected pieces we recompute the auxiliary data structures in O(T'(r)) time. As a result, after
O(n/r) updates, there are still O(n/r) pieces, each of size O(r) and with O(y/r) boundary
vertices distributed over O(1) holes of that piece. Consequently, after every Q(n/r) updates,
we reinitialize R for the current graph G in O (n+ % -T(r)) time. Hence, the amortized
time to update R is O(r + T'(r)).

Finally, observe that our data structure can be modified in a standard way (see e.g., [5])
to have O(r 4+ T'(r)) worst-case update time bound instead of just an amortized one. This is
possible since our update procedure actually takes O(r 4+ T(r)) worst-case time apart from
once every k = Q(n/t) updates when the whole data structure is rebuilt in O (n + 2 - T'(r))
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worst-case time. To this end we apply the time-slicing technique. We use two copies of our
data structure switching their roles every k/2 updates. One copy is for handling at most
k/2 updates and answering queries, and another is being gradually reinitialized in chunks of
Q(r+ T'(r)) time (of either initialization or updates replayed) in the background. <

B Empty Voronoi Cells

Here, we briefly explain why the algorithm of [23] that underlies Theorem 7 works irrespective
of whether there are empty Voronoi cells.

We need a few more definitions. Let f* be the vertex of the dual graph of G corresponding
to the face f, where the sites lie. For an additively weighted Voronoi diagram VD(S,w) over
a triangulated graph (possibly apart from face f), we call a face whose incident vertices
belong to three different Voronoi cells ¢richromatic. Let VDg(S,w) be the forest obtained
by considering the dual edges of G whose endpoints belong to different Voronoi cells. Then,
we obtain VD7 (S,w) by repeatedly contracting edges of the forest that have an endpoint of
degree 2. We obtain VD3(S,w) by creating one copy of f* for each of its incident edges —
inheriting only that edge. The vertices of VD3 (.S, w) that are not copies of f* are in one-to-one
correspondence with the trichromatic faces of G, other than f. If VD3(S,w) is a tree then we
are done. Otherwise, is some cell of VD(S,w) is empty, VD3 (S, w) might be a forest. However,
as shown in Section 6 of [41], VD3(S,w) can be turned into the sought tree VD*(S,w) in
O(]S]) time.

The algorithm of [23] for computing VD*(S,w) implicitly assumes that all Voronoi cells
are non-empty, and hence that VD3 (S, w) is a tree. This algorithm performs FR-Dijkstra
computations on G in order to compute the trichromatic faces of G, and a representation
of shortest paths from the sites to the vertices incident to these trichromatic faces. Then,
VD3 (S,w) can be straightforwardly retrieved from this representation. If we run the same
algorithm without assuming that there are no non-empty Voronoi cells, the sites with empty
Voronoi cells can be easily read from the shortest paths tree obtained from FR-Dijkstra
(more specifically, these are the sites whose some ancestor in this tree is also in S). Since the
proof of correctness of the algorithm of [23] for computing the trichromatic faces actually
only requires the set S to lie on a single face of G (and not necessarily to be equal to V(f)),
we can re-run it with S pruned from “empty” sites. From all the trichromatic faces and the
corresponding shortest paths from sites to their incident vertices, we can retrieve the forest
VD3(S,w) in the same way as if it were a tree. Finally, we can then turn this forest into the
sought tree VD*(S,w) in O(|S|) time as in [41].

C Negative Edges in the Fully Dynamic SSSP Algorithm

Recall that p : V(H) — Ris called a feasible price function of H if dist g (u, v)+p(u)—p(v) >0
for all u,v € V(H). A feasible price function is guaranteed to exist if H contains no negative-
cost cycle. It is well-known that, provided that a graph H is strongly connected, a vector of
distances from any vertex of H constitutes a feasible price function of H.

As in the fully dynamic all-pairs algorithm of [56], we maintain functions ¢ : OR — R
and ¢p : OP — R, where P € R, such that ¢ is some feasible price function of G restricted
to OR, and each ¢p is a feasible price function of P.

Since single-source shortest paths in planar graphs with negative weights can be computed
in O(nlog? n) time [65,70], each ¢p can be seen as an accompanying data structure of piece P
computable in O(rlog?r) time and maintained by the fully dynamic r-division algorithm.
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The functions ¢p allow to treat individual graphs P and P} as non-negatively weighted when
computing all the needed DDGs and MSSP data structures, and also point location data
structures L(P).

It is known [40,56] that the FR-Dijkstra algorithm (as in Lemma 3) can handle negative
weights in DDG(H) with no asymptotic overhead if a feasible price function on DDG(#H)
is provided. Therefore, we would like to have a feasible price function on DDG(conexg (s))
to compute distances from s in DDG(conexr (s)) needed by the update algorithm. We can
extend ¢ from OR to all vertices in DDG(coneg(s)) as follows. Note that all pieces in
coner (s) except of those in R have their parents also in coneg(s). We call those pieces
H € coneg(s) for which we know the value of ¢ on all of OH processed. Initially, only the
pieces P € R are processed by the definition of ¢. While there are still unprocessed pieces,
we take any unprocessed piece H whose parent A € 7T (P) has already been processed. Let

H' be the sibling of H in T(P). Observe that ¢p is a feasible price function of A as well.

We extend ¢ to boundary vertices of H, H' by computing shortest paths on DDG({H, H'})
from vertices A, with the initial distance to each v € OA set to ¢(v), and using FR-Dijkstra
(Lemma 3) with price function ¢p. This way, only the initial distances of A are possibly
negative from the point of view of FR-Dijkstra. This does not constitute a problem for either
Dijkstra’s algorithm or FR-Dijkstra though (see [56]; one can treat the initial distances as
weights of edges going out of a super-source; these weights can be all increased by the same
large value to be made positive). One can show from the definition of ¢ that the values of
¢ on OA will not be altered and the computed distances form a feasible price function on
OH UOH' in G. Hence, given that 94 C OH UOH’, we can process the children H, H' of a
processed piece A in O((|OH| + |0H'|)log® n) time. Summing over all pieces, we obtain by
Lemma 5 that extending ¢ to all V(DDG (coner (s))) takes O(n/\/rlog? n) time. This cost
is therefore negligible.

Note that an edge deletion or weight increase cannot break the feasibility of ¢. We might
need to recompute ¢ only upon insertion or weight decrease of some edge uv. As shown by
Kaplan et al. [56], the new “global” price function ¢’ (or a negative cycle) can be found by
computing distances from v to IR U{u} in DDG(coneg (u,v)) (before applying the insertion)
using FR-Dijsktra and the old price function ¢. This can be done in O(n/+/r log® n) time by
first extending the old ¢ to V(DDG(coneg (u,v))) as described above and then running the
single-source shortest paths algorithm of Lemma 3.
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