
ar
X

iv
:2

00
4.

12
22

4v
4

 [
cs

.D
S]

 1
6

A
pr

 2
02

1

An Almost Optimal Approximation Algorithm for Monotone

Submodular Multiple Knapsack ⋆

Yaron Fairsteina, Ariel Kulika,2, Joseph (Seffi) Naora,1, Danny Raza, Hadas Shachnaia

aComputer Science Department, Technion, 3200003, Haifa, Israel

Abstract

We study the problem of maximizing a monotone submodular function subject to a
Multiple Knapsack constraint. The input is a set I of items, each has a non-negative
weight, and a set of bins of arbitrary capacities. Also, we are given a submodular,
monotone and non-negative function f over subsets of the items. The objective is to find
a packing of a subset of items A ⊆ I in the bins such that f(A) is maximized.

Our main result is an almost optimal polynomial time (1 − e−1 − ε)-approximation
algorithm for the problem, for any ε > 0. The algorithm relies on a structuring technique
which converts a general multiple knapsack constraint to a constraint in which the bins
are partitioned into groups of exponentially increasing cardinalities, each consisting of
bins of uniform capacity. We derive the result by combining structuring with a refined
analysis of techniques for submodular optimization subject to knapsack constraints.

1. Introduction

Submodular optimization has recently attracted much attention as it provides a uni-
fying framework capturing many fundamental problems in combinatorial optimization,
economics, algorithmic game theory, networking, and other areas. Furthermore, submod-
ularity also captures many real-world practical applications where economy of scale is
prevalent. Classic examples of submodular functions are coverage functions [10], matroid
rank functions [3] and graph cut functions [11]. A recent survey on submodular functions
can be found in [1].

Submodular functions are defined over sets. Given a ground set I, a function f :
2I → R≥0 is called submodular if for every A ⊆ B ⊆ I and i ∈ I \B, f(A∪{i})− f(A) ≥
f(B ∪ {i})− f(B).3 This reflects the diminishing returns property: the marginal value

⋆A preliminary version of this paper appeared in Proc. of the 28th Annual European Symposium on
Algorithms (ESA), Pisa (Virtual Conference), September 2020.

Email addresses: yyfairstein@gmail.com (Yaron Fairstein), kulik@cs.technion.ac.il (Ariel
Kulik), naor@cs.technion.ac.il (Joseph (Seffi) Naor), danny@cs.technion.ac.il (Danny Raz),
hadas@cs.technion.ac.il (Hadas Shachnai)

1This research was supported in part by US-Israel BSF grant 2018352 and by ISF grant 2233/19
(2027511)

2Corresponding author.
3Equivalently, for every A,B ⊆ I: f(A) + f(B) ≥ f(A ∪B) + f(A ∩B).

Preprint submitted to Elsevier April 19, 2021

http://arxiv.org/abs/2004.12224v4

from adding i ∈ I to a solution diminishes as the solution set becomes larger. A set
function f : 2I → R is monotone if for any A ⊆ B ⊆ I it holds that f(A) ≤ f(B). While
in many cases, such as coverage and matroid rank function, the submodular function is
monotone, this is not always the case (cut functions are a classic example).

The focus of this work is optimization of monotone submodular functions. In [21]
Nemhauser and Wolsey presented a greedy based (1− e−1)-approximation for maximiz-
ing a monotone submodular function subject to a cardinality constraint, along with a
matching lower bound in the oracle model. A (1−e−1) hardness of approximation bound
is also known for the problem under P 6= NP, due to the hardness of max-k-cover [10]
which is a special case. The greedy algorithm of [21] was later generalized to monotone
submodular optimization with a knapsack constraint [18, 23].

A major breakthrough in the field was the continuous greedy algorithm presented
in [24]. Initially used to derive a (1 − e−1)-approximation for maximizing a monotone
submodular function subject to a matroid constraint, the algorithm has become a primary
tool in the development of monotone submodular maximization algorithms subject to
various other constraints. These include d-dimensional knapsack constraints [19], and
combinations of d-dimensional knapsack and matroid constraints [7]. A variant of the
continuous greedy algorithm for non-monotone functions is given in [12].

In the multiple knapsack problem (MKP) we are given a set of items, where each item
has a weight and a profit, and a set of bins of arbitrary capacities. The objective is to find
a packing of a subset of the items that respects the bin capacities and yields a maximum
profit. The problem is one of the most natural extensions of the classic Knapsack problem
arising also in the context of Virtual Machine (VM) allocation in cloud computing. The
practical task is to assign VMs to physical machines such that capacity constraints are
satisfied, while maximizing the profit of the cloud provider. A submodular cost function
allows cloud providers to offer complex cost models to high-volume customers, where the
price customers pay for each VM can depend on the overall number of machines used by
the customer.

A polynomial time approximation scheme for MKP was first presented by Chekuri
and Khanna [5]. The authors also ruled out the existence of a fully polynomial time
approximation scheme for the problem. An efficient polynomial time approximation
scheme was later developed by Jansen [16, 17].

1.1. Our Results

In this paper we consider the submodular multiple knapsack problem (SMKP). The
input consists of a set of n items I and m bins B. Each item i ∈ I is associated with a
weight wi ≥ 0, and each bin b ∈ B has a capacity Wb ≥ 0. We are also given an oracle
to a non-negative monotone submodular function f : 2I → R≥0. A feasible solution to
the problem is a tuple of m subsets (Ab)b∈B such that for every b ∈ B it holds that
∑

i∈Ab
wi ≤ Wb. The value of a solution (Ab)b∈B is f

(
⋃

b∈B Ab

)

. The goal is to find a

feasible solution of maximum value.4

4We note that the set of bins B is part of the input for SMKP, thus the number of bins is non-constant.
This is one difference between SMKP and the problem of maximizing a submodular set function subject
to d knapsack constraints (or, a d-dimensional knapsack constraint) where d is fixed (for more details
see, e.g., [19]).

2

The problem is a natural generalization of both Multiple Knapsack [5] (where f is
modular or linear), and the problem of monotone submodular maximization subject to a
knapsack constraint [23] (where m = 1). Our main result is stated in the next theorem.

Theorem 1. For any ε > 0, there is a randomized (1−e−1−ε)-approximation algorithm
for SMKP.

As mentioned above, a (1 − e−1) hardness of approximation bound is known for the
problem under P 6= NP, due to the hardness of max-k-cover [10] which is a special case
of SMKP. This is a vast improvement over previous results. Feldman presented in [13]

a
(

e−1
3e−1 − o(1)

)

≈ 0.24-approximation for the special case of identical bin capacities,

along with a 1
9 -approximation for general capacities. To the best of our knowledge, this

is the best known approximation ratio for the problem.5

Simultaneously and independently to our work, Sun et. al. [22] presented a deter-
ministic greedy based (1− e−1 − ε)-approximation for the special case of identical bins.
In a later version [?], which appeared after the publication of the preliminary version
of this paper, Sun et. al. derived a randomized (1 − e−1 − ε)-approximation for general
SMKP instances, matching our result, by using a different approach.

1.2. Tools and Techniques

Our algorithm relies on a refined analysis of techniques for submodular optimization
subject to d-dimensional knapsack constraints [19, 4, 7], combined with sophisticated
application of tools used in the development of approximation schemes for packing prob-
lems [8].

At the heart of our algorithm lies the observation that SMKP for a large number
of identical bins (i.e., ∀b ∈ B, Wb = W for some W ≥ 0) can be easily approximated
via a reduction to the problem of maximizing a submodular function subject to a 2-
dimensional knapsack constraint (see, e.g., [19]). Given such an SMKP instance and
ε > 0, we partition the items to small and large, where an item i ∈ I is small if wi ≤ εW
and large otherwise. We further define a configuration to be a subset of large items which
fits into a single bin, and let C be the set of all configurations. It follows that for fixed
ε > 0, the number of configurations is polynomial.

Using the above we define a new submodular optimization problem, to which we
refer as the block-constraint problem. We define a new universe E which consists of all
configurations C and all small items, E = C ∪ {{i}| i is small}. We also define a new
submodular function g : 2E → R≥0 by g(T) = f

(
⋃

A∈T A
)

. Now, we seek a subset of
elements T ⊆ E such that T has at most m = |B| configurations, i.e., |T ∩ C| ≤ m, and
the total weight of sets selected is at most m ·W ; namely,

∑

A∈T w(A) ≤ m ·W , where
w(A) =

∑

i∈A wi.
It is easy to see that the optimal value of the block-constraint problem is at least the

value of the optimum for the original instance. Moreover, a solution T for the block-
constraint problem can be used to generate a solution for the SMKP instance with only

5Sun et. al. [22] indicate that a
(

1− e1−e−1

− o(1)
)

≈ 0.468-approximation for the problem can be

derived using the techniques of [4]. We note that this derivation is non-trivial (no details were given
in [4]).

3

a small loss in value. As there are no more than m configurations, and all other items
are small, the items in T can be easily packed into (1+ ε)m+1 bins of capacity W using
First Fit. Then, it is possible to remove εm + 1 of the bins while maintaining at least

m
(1+ε)m+1 ≥

1
1+2ε of the solution value, for m ≥ 1

ε
. Once these εm+ 1 bins are removed,

we have a feasible solution for the SMKP instance. The block-constraint problem can
be viewed as monotone submodular optimization subject to a 2-dimensional knapsack
constraint. Thus, a (1− e−1 − ε)-approximate solution can be found efficiently [19].

Our approximation algorithm for SMKP is based on a generalization of the above.
We refer to a set of bins of identical capacity as a block, and show how to reduce an
SMKP instance into a submodular optimization problem with a d-dimensional knapsack
constraint, in which d is twice the number of blocks plus a constant. While, generally,
this problem cannot be solved for non-constant d, we use a refined analysis of known
algorithms [19, 7] to show that the problem can be efficiently solved if the blocks admit
a certain structure, to which we refer as leveled.

We utilize a grouping technique, inspired by the work of Fernandez de la Vega and
Lueker [8], to convert a general SMKP instance to a leveled instance. We sort the bins in
decreasing order by capacity and then partition them into levels, where level t, t ≥ 0, has
N2+t bins, divided into N2 consecutive blocks, each containing N t bins. We decrease
the capacity of each bin to the smallest capacity of a bin in the same block. While the
decrease in capacity generates the leveled structure required for our algorithm to work,
it only slightly decreases the optimal solution value. The main idea is that given an
optimal solution, each block of decreased capacity can now be used to store the items
assigned to the subsequent block on the same level. Also, the items assigned to N blocks
from each level can be evicted, while only causing a reduction of 1

N
to the profit (as only

N of the N2 blocks of the level are evicted). These evicted blocks are then used for the
items assigned to the first block in the next level.

2. Preliminaries

Our analysis utilizes several basic properties of submodular functions. Given a mono-
tone submodular function f : 2I → R≥0 and a set S ⊆ I, we define fS : 2I → R≥0 by
fS(A) = f(S ∪ A) − f(S). It follows that fS is a monotone, non-negative submod-
ular function (see Claim 15 in Appendix A). The proof of the next claim is given in
Appendix A.

Claim 2. Let f : 2I → R≥0 be a non-negative, monotone and submodular function,
and let E ⊆ 2I × X for some set X (each element of E is a pair (S, h) with S ⊆ I
and h ∈ X). Then the function g : 2E → R≥0 defined by g(A) = f

(

∪(S,h)∈AS
)

is
non-negative, monotone and submodular.

While Claim 2 is essential for our algorithm, it is important to emphasize it does not
hold for non-monotone submodular functions.

Many modern submodular optimization algorithms rely on the submodular Multi-
linear Extension (see, e.g., [3, 19, 20, 25, 12, 2]). Given a function f : 2I → R≥0, its
multilinear extension is F : [0, 1]I → R≥0 defined as:

F (x̄) =
∑

S⊆I

f(S)
∏

i∈S

x̄i

∏

i∈I\S

(1 − x̄i).

4

The multilinear extension can be interpreted as an expectation of a random variable.
Given x̄ ∈ [0, 1]I we say that a random set X is distributed according to x̄, X ∼ x̄,
if Pr(i ∈ X) = x̄i and the events (i ∈ X)i∈I are independent. It follows that F (x̄) =
EX∼x̄[f(X)].

The unified greedy algorithm of [12] can be used to find approximate solution for
maximization problems of the form maxF (x̄) s.t. x̄ ∈ P , where F is the multilinear
extension of a monotone submodular function f , and P is a down-monotone polytope.
The algorithm uses two oracles, one for f and another which given λ̄ ∈ R

I returns a
vector x̄ ∈ P such that x̄ · λ̄ is maximal. The algorithm returns x̄ ∈ P such that F (x̄) ≥
(

1− e−1 − o(1)
)

maxȳ∈P∩{0,1}I F (ȳ). The result can also obtained via the continuous
greedy of [4].

We use I = (I, w,B,W, f) to denote an SMKP instance consisting of a set of items
I with weights wi for i ∈ I, a set of bins B with capacities Wb for b ∈ B, and objective
function f . Given a set A ⊆ I, let w(A) =

∑

i∈A wi. We denote by OPT(I) the optimal
solution value for the instance I.

3. The Approximation Algorithm

In this section we present our approximation algorithm for SMKP. Given an instance
I of the problem, let A∗ = ∪b∈BA

∗
b be an optimal solution of value OPT (I). We first

observe that there exists a constant size subset A = ∪b∈BAb, where Ab ⊆ A∗
b , satisfying

the following property: the value gained from any item in i ∈ A∗ \A is small relative to
OPT (I). Thus, our algorithm initially enumerates over all possible partial assignments of
constant size. Each assignment is then extended to an approximate solution for I. Among
all possible partial assignments and the respective extensions the algorithm returns the
best solution. Thus, from now on we restrict our attention to finding a solution for the
residual problem, obtained by fixing the initial partial assignment.

Formally, given an SMKP instance, I = (I, w,B,W, f), a feasible partial solution
(Ab)b∈B and ξ ∈ N, we define the residual instance I ′ = (I ′, w,B,W ′, f ′) with respect to

(Ab)b∈B and ξ as follows. Let A = ∪b∈BAb and set I ′ =
{

i ∈ I \A
∣

∣

∣ fA({i}) ≤
f(A)
ξ

}

.

The weights of the items remain the same and so is the set of bins. For every b ∈ B we
set W ′

b = Wb−w(Ab). Finally, the objective function of the residual instance is f ′ = fA.

Lemma 3. Let I be an SMKP instance, ξ ∈ N, and (A∗
b)b∈B an optimal solution for

I such that A∗
b1
∩ A∗

b2
= ∅ for any b1, b2 ∈ B, b1 6= b2. If

∑

b∈B |A
∗
b | ≥ ξ there is a

feasible solution (Ab)b∈B for I such that Ab ⊆ A∗
b for any b ∈ B,

∑

b∈B |Ab| = ξ, and
(A∗

b \Ab)b∈B is a feasible solution for the residual instance of I ′ w.r.t (Ab)b∈B and ξ.

Proof. Let (A∗
b)b∈B be an optimal solution for the SMKP instance. Define A∗ =

∪b∈BA
∗
b and order the items of A∗ by their marginal values. That is, A∗ = {a1, . . . , ar}

where fTℓ−1
({aℓ}) = maxa∈A∗\Tℓ−1

fTℓ−1
({a}) with Tℓ = {a1, . . . , aℓ} for every 1 ≤ ℓ ≤ r

(also, T0 = ∅). Define (Ab)b∈B by Ab = A∗
b ∩ {a1, . . . , aξ} for every b ∈ B and A =

∪b∈BAb. We therefore have A = {a1, . . . , aξ}.
For any b ∈ B, it holds that w(Ab) ≤ w(A∗

b) ≤ Wb, and thus (Ab)b∈B is a feasible
solution for I. Furthermore, for any b ∈ B it holds that Ab ⊆ A∗

b by definition. As the
sets (A∗

b)b∈B are disjoint it follows that
∑

b∈B |Ab| = ξ.

5

Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ. It
remains to show that (A∗

b \Ab)b∈B is a feasible solution for I ′. For every ξ < i ≤ r and
1 ≤ ℓ ≤ ξ it holds that fA({ai}) ≤ fTℓ−1

({ai}) ≤ fTℓ−1
({aℓ}) where the first inequality

follows from the submodularity of f and the second by the definition of aℓ. Combining
the last inequality with f ′ = fA we obtain,

ξ · f ′({ai}) = ξ · fA({ai}) ≤

ξ
∑

ℓ=1

fTℓ−1
({aℓ}) = f(A)− f(∅) ≤ f(A).

Thus, ai ∈ I ′, implying that A∗
b \Ab ⊆ I ′ for any b ∈ B. Furthermore, for any b ∈ B,

w(A∗
b \Ab) = w(A∗

b)− w(Ab) ≤Wb − w(Ab) = W ′
b.

It follows that (A∗
b \Ab)b∈B is a solution for the residual instance. �

Next, we observe that instances of SMKP are easier to solve when the number of
distinct bin capacities is small (e.g., uniform bin capacities), leading us to consider bin
blocks:

Definition 4. For a given instance of SMKP we say that a subset of bins B̃ ⊆ B is a
block if all the bins in B̃ have the same capacity, i.e., for bins b1 and b2 belonging to the
same block it holds that Wb1 = Wb2 .

Following an enumeration over partial assignments, our algorithm reduces the number
of blocks by altering the bin capacities. To this end, we use a specific structure that we
call leveled, defined as follows.

Definition 5. For any N ∈ N, we say that a partition (Bj)
k
j=0 of a set B of bins with

capacities (Wb)b∈B is N -leveled if Bj is a block, and |Bj | = N⌊
j

N2 ⌋ for all 0 ≤ j ≤ k.

By the above definition, we can view each set of consecutive blocks of the same size
as a level. For 0 ≤ j ≤ k, block j belongs to level ℓ = ⌊ j

N2 ⌋. Thus, for level ℓ > 0 the
number of bins in each block of level ℓ is N times the number of bins in each block of
level ℓ− 1.

In Section 3.1 we give Algorithm 2 which generates an N -leveled partition of the bins,
B̃ = ∪kj=0B̃j with the capacities of the bins (Wb)b∈B modified to (W̃b)b∈B̃. We show that
solving the problem with these new bin capacities may cause only a small harm to the
optimal solution value. In particular, we prove (in Section 3.1) the following.

Lemma 6. Algorithm 2 is a polynomial time algorithm which given N ∈ N, a set of bins
B and capacities (Wb)b∈B, returns a subset of bins B̃ ⊆ B, capacities (W̃b)b∈B, and an
N -leveled partition (B̃j)

k
j=0 of B̃, such that

1. The bin capacities satisfy W̃b ≤Wb, for every b ∈ B̃.

2. For any set of items I, weights (wi)i∈I , a submodular non-negative function f :
2I → R≥0, and a feasible assignment (Sb)b∈B for the instance (I, w,B,W, f),

there exists a feasible assignment (S̃b)b∈B̃ for the instance (I, w, B̃, W̃ , f) such that

f
(

⋃

b∈B̃ S̃b

)

≥
(

1− 1
N

)

f
(
⋃

b∈B Sb

)

and
⋃

b∈B̃ S̃b ⊆
⋃

b∈B Sb.

6

We refer to B̃ and W̃ as the N -leveled constraint of B and W .

Once the instance is N -leveled, we proceed to solve the problem (fractionally) and
apply randomized rounding to obtain an integral solution (see Section 3.2). Algorithm 4
utilizes efficiently the leveled structure of the instance. Instead of having a separate
constraint for each bin in a block − to bound the total size of the items packed in this
bin − we use only two constraints for each block. The first constraint is a knapsack
constraint referring to the total capacity of a block, and the second constraint restricts
the number of configurations assigned to the block.6 Thus, the number of constraints
significantly decreases if the blocks are large. Since leveled instances also have a constant
number of blocks consisting of a single bin, those are handled separately via the notion
of δ-restricted SMKP.

Given δ > 0, the input for δ-restricted SMKP includes the same parameters as an
input for SMKP, and also a subset Br ⊆ B of restricted bins. A solution for δ-restricted
SMKP is a feasible assignment (Ab)b∈B satisfying also the property that ∀b ∈ Br the
items assigned to b are relatively small; namely, for any b ∈ Br and i ∈ Ab it holds that
wi ≤ δWb.

Given the N -leveled instance of our problem, we turn the blocks of a single bin
(that is, blocks B̃j such that |B̃j | = 1) to be restricted. We note that while items of
weight greater than δWb may be assigned to these blocks in some optimal solution, the
overall number of such items is bounded by a constant. Indeed, our initial enumeration
guarantees that evicting these items from an optimal solution may cause only small harm
to the optimal solution value, allowing us to consider the instance as δ-restricted.

In Section 3.2 we show the following bound on the performance guarantee of Algo-
rithm 4, which uses randomized rounding. The algorithm is parameterized by µ ∈ (0, 0.1)
(to be determined). Suppose we are given a δ-restricted SMKP instance I, such that the
unrestricted bins are partitioned into blocks, i.e., B \Br = B1 ∪ . . . ∪Bk, and

υ = max
i∈I

f({i})− f(∅). (1)

Lemma 7. For µ ∈ (0, 0.1), Algorithm 4 returns a feasible solution (Sb)b∈B such that

E [f(∪b∈BSb)] ≥ (1− e−1) (1−µ)3

1+µ
(1− γ)OPT(I), where

γ = exp

(

−
µ3

16
·
OPT(I)

υ

)

+ |Br| exp

(

−
µ2

12
·
1

δ

)

+ 2 ·
k
∑

j=1

exp

(

−
µ2

12
|Bj |

)

.

Algorithm 1 gives the pseudocode of our approximation algorithm for general SMKP
instances. The algorithm uses several configuration parameters that will be set in the
proof of Lemma 8.

Lemma 8. For any ε > 0, there are parameters N, ξ, δ, µ such that, for any SMKP
instance I, Algorithm 1 returns a solution of expected value at least (1−e−1−ε)OPT(I).

6We defined a configuration in Section 1.2.

7

Algorithm 1: Algorithm for SMKP

Input : An SMKP instance I = (I, w,B,W, f) and the parameters N, ξ, δ and
µ.

1 forall feasible assignments A = (Ab)b∈B such that
∑

b∈B |Ab| ≤ ξ do
2 Let I ′ = (I ′, w,B,W ′, f ′) be the residual instance of I w.r.t (Ab)b∈B and ξ.

3 Run Algorithm 2 with the bins B and capacities (W ′
b)b∈B . Let B̃ and

(W̃b)b∈B̃ be the output, and B̃ = ∪kj=0B̃j the partition of B̃ to leveled

blocks. Let Ĩ = (I ′, w, B̃, W̃ , f ′) be the resulting instance.

4 Let ĨR be the δ-restricted SMKP instance of Ĩ with the restricted bins

B̃r = ∪
min{N2−1,k}
j=0 B̃j .

5 Solve ĨR using Algorithm 4 with parameter µ, and the partition

B̃ \ B̃r = ∪kj=N2 B̃j . Denote the returned assignment by (S̃b)b∈B̃ , and let

Sb = S̃b for b ∈ B̃ and Sb = ∅ for b ∈ B \ B̃.
6 If f(∪b∈B(Ab ∪ Sb)) is higher than the value of the current best solution, set

(Ab ∪ Sb)b∈B as the current best solution.

7 end
8 Return the best solution found.

Proof. We start by setting the parameter values. The reason for selecting these values

will become clear later. Given a fixed ε ∈ (0, 0.1), there is µ ∈ (0, 0.1) such that (1−µ)3

1+µ
≥

(1 − ε2). By the Monotone Convergence Theorem,

lim
N→∞

2N2 ·
∞
∑

t=1

exp

(

−
µ2 ·N t

12

)

=
∞
∑

t=1

lim
N→∞

2N2 exp

(

−
µ2 ·N t

12

)

= 0.

It follows that there are N > 1
ε2

and δ > 0 such that

N2 exp

(

−
µ2

12
·
1

δ

)

+ 2N2 ·
∞
∑

t=1

exp

(

−
µ2

12
N t

)

<
ε2

2
. (2)

Finally, we select ξ such that ξ ≥ N2

ε2δ
and exp

(

−µ3

16 ·
ξ
5

)

≤ ε2

2 .

Let I = (I, w,B,W, f) be an SMKP instance, and let (A∗
b)b∈B be an optimal solution

for I. Assume w.l.o.g that A∗
b1
∩A∗

b2
= ∅ for any b1, b2 ∈ B, b1 6= b2. Define A∗ = ∪b∈BA

∗
b .

If |A∗| ≤ ξ, there is an iteration of Line 1 in which A∗
b = Ab for all b ∈ B. Therefore, in

this iteration we have at Line 6 f(∪b∈B(Ab ∪ Sb)) ≥ f(A∗), and the algorithm returns
a solution of value at least f(A∗). Otherwise, by Lemma 3, there is a feasible solution
(Ab)b∈B such that Ab ⊆ A∗

b ,
∑

b∈B |Ab| = ξ and (A∗
b \ Ab)b∈B is a feasible solution for

I ′, the residual instance of I w.r.t (Ab)b∈B and ξ. It follows that there is an iteration of
Line 1 which considers this solution (Ab)b∈B . We focus on this iteration for the rest of
the analysis.

Let A = ∪b∈BAb. If f(A) ≥ (1 − e−1)f(A∗) then when the algorithm reaches Line
6 it holds that f(∪b∈B(Ab ∪ Sb)) ≥ f(A) ≥ (1 − e−1)f(A∗); therefore, the algorithm

8

returns a (1− e−1)-approximation in this case. Henceforth, we can assume that f(A) ≤
(1 − e−1)f(A∗). Then,

f ′(∪b∈B(A
∗
b \Ab)) = f ′(A∗ \A) = f(A∗)− f(A) ≥

f(A)

1− e−1
− f(A) =

1

e − 1
f(A).

Since (A∗
b \Ab)b∈B is a feasible solution for I ′, and by Lemma 6, it holds that

OPT(Ĩ) ≥

(

1−
1

N

)

f ′(A∗ \A) ≥ (1− ε2)f ′(A∗ \A), (3)

where Ĩ is the instance defined in Step 3. The last inequality follows from the definition
of N . Let (Db)b∈B̃ be an optimal solution for Ĩ. Consider (Dr

b)b∈B̃ where Dr
b = Db \{i ∈

Db|wi > δ · W̃b} for b ∈ B̃r (the set B̃r is defined in Line 4) and Dr
b = Db for b ∈ B̃ \ B̃r.

It follows that Dr
b is a solution for the δ-restricted SMKP instance ĨR. As for any b ∈ B̃r

it holds that |{i ∈ Db|wi > δ · W̃b}| ≤
1
δ
, we have

OPT
(

ĨR
)

≥ f ′
(

∪b∈B̃D
r
b

)

≥ OPT
(

Ĩ
)

−
N2

δ · ξ
f(A) ≥ (1 − ε2)f ′ (A∗ \A)− ε2 · f(A).

(4)
The second inequality follows from the definition of residual instance, and the third
inequality from (3) and the choice of ξ. Since f ′(A∗ \A) ≥ 1

e−1f(A) and ε ∈ (0, 0.1), it

follows that OPT(ĨR) ≥
f(A)
5 .

Let υ = maxi∈I′ f ′({i}). By Lemma 7, we have that

E

[

f ′(∪b∈B̃S̃b)
]

≥ (1−e−1)
(1 − µ)3

1 + µ
(1−γ)OPT(ĨR) ≥ (1−e−1)(1−ε2)(1−γ)OPT(ĨR),

(5)
where

γ = exp
(

−µ3

16 ·
OPT(ĨR)

υ

)

+ |B̃r| exp
(

−µ2

12 ·
1
δ

)

+ 2 ·
∑k

j=N2 exp
(

−µ2

12 |B̃j |
)

≤ exp
(

−µ3

16 ·
OPT(ĨR)
ξ−1f(A)

)

+ |B̃r| exp
(

−µ2

12 ·
1
δ

)

+ 2 ·
∑k

j=N2 exp
(

−µ2

12 |B̃j |
)

≤ exp
(

−µ3

16 ·
ξ
5

)

+N2 exp
(

−µ2

12 ·
1
δ

)

+ 2 ·N2 ·
∑∞

t=1 exp
(

−µ2

12N
t
)

≤ ε2. (6)

The first inequality uses υ = maxi∈I′ f ′({i}) ≤ ξ−1f(A) (by the definition of I ′).

The second inequality holds since OPT(ĨR) ≥
f(A)
5 , |B̃r| ≤ N2 and there are at most

N2 blocks B̃j of size N t. The last inequality uses (2) and the choice of ξ. Combining (6)
with (5) and (4), we obtain

E [f(∪b∈B(Ab ∪ Sb))] ≥ f(A) + E

[

f ′(∪b∈B̃S̃b)
]

≥ f(A) + (1− e−1)(1− ε2)2OPT(ĨR)

≥f(A) + (1− e−1)(1 − ε2)3f ′(A∗ \A)− ε2f(A) ≥ (1 − e−1 − ε)f(A∗).

Hence, in this iteration the solution considered in Line 6 has expected value at least
(1 − e−1 − ε)f(A∗). This completes the proof of the lemma. �

Lemma 9. For any constant parameters N , ξ, δ and µ, Algorithm 1 returns a feasible
solution for the input instance in polynomial time.

9

Proof. We first note that for any fixed parameter values the algorithm has a polynomial
running time. The number of assignments considered in Line 1 can be trivially bounded
by (n ·m)ξ. As Algorithms 2 and 4 are polynomial in their input size, the operations in
each iteration are also done in polynomial time.

For each iteration of Line 1, by Lemma 7, (S̃b)b∈B̃ is a feasible solution to ĨR. There-

fore, for any b ∈ B either w(Sb) = w(∅) ≤ W ′
b or w(Sb) = w(S̃b) ≤ W̃b ≤ W ′

b, where the
last equality follows from Lemma 6. Therefore, w(Ab ∪Sb) ≤ w(Ab) +W ′

b ≤Wb. Hence,
the solution considered in each iteration is feasible for the input instance. �

Theorem 1 follows from Lemmas 8 and 9.

3.1. Structuring the Instance

In this section we present Algorithm 2 and prove Lemma 6. Our technique for gener-
ating an N -leveled partition can be viewed as a variant of the linear grouping technique
of [8]. We start with a brief overview of the classical concepts of grouping and shifting
in the context of a multiple knapsack constraint.

Let B = {1, 2, . . . ,m} be a set of bins with capacities (Wb)b∈B , where W1 ≥ W2 ≥
. . . ≥ Wm and m = q · N2 for some integer q ≥ 1. We can partition B into N2 groups
(sets) B1, . . . , BN2 , each consists of q consecutive bins, i.e., Bj = {(j−1) ·q+1, . . . , j ·q}
for 1 ≤ j ≤ N2. Thus, the capacity of a bin in Bj is greater or equal to the capacity of
a bin in Bj+1.

We use the partition to define new capacities for the bins. The new capacity of a
bin b ∈ Bj is W̃b = minb′∈Bj

Wb′ = Wq·j , the minimal (original) capacity of a bin in its
group. Clearly, given an SMKP instance I = (I, w,B,W, f) and a feasible assignment
(Sb)b∈B for the instance, it may be that (Sb)b∈B is infeasible for the instance with the
new capacities Ĩ = (I, w,B, W̃ , f).

We can apply shifting to partially circumvent this hurdle. Given b ∈ Bj+1, j 6= N2,
the set Sb complies with the new capacity constraint of any bin b′ ∈ Bj , i.e., w(Sb) ≤

Wb ≤ W̃b′ . Define a new assignment (S̃b)b∈B by S̃b = Sb+q for b ∈ B \ BN2 and S̃b = ∅

for b ∈ BN2 . As b+ q ∈ Bj+1 for any b ∈ Bj , j 6= N2, it follows that (S̃b)b∈B is a feasible

assignment for Ĩ . Furthermore, (S̃b)b∈B is an assignment of all the items in (Sb)b∈B,
except for the items

⋃

b∈B1
Sb assigned to the first group in (Sb)b∈B . The assignment of

these items is handled by different techniques.
Algorithm 2 applies grouping with non-uniform group size to generate the N -leveled

partition. The algorithm assumes w.l.o.g that the set of bins is B = {1, 2, . . . ,m} and
that the bins are ordered by capacity,W1 ≥W2 ≥ . . . ≥Wm. It defines groups (or blocks)

of bins, where group j consists of N ⌊ j

N2 ⌋ consecutive bins, for j ≥ 0. The capacity of
the bins in each group is reduced to the minimal capacity of a bin in this group. This
procedure is formalized in Algorithm 2. A simple illustration for a small instance is given
in Figure 1.

10

Level 0 Level 1 Level 2

Figure 1: Input and output example for Algorithm 2 with N = 2. The original capacities, W , are
represented by empty rectangles, whereas the hatched rectangles represent the new capacities W̃ . Note
that the last three bins are discarded by the algorithm as they do not form a full block.

Algorithm 2: Structure in Blocks

Input : A set of bins B, capacities (Wb)b∈B and N ∈ N.
1 Let B = {1, . . . ,m} where W1 ≥W2 ≥ . . . ≥Wm.

2 Let k = max
{

ℓ ∈ N

∣

∣

∣

∑ℓ
r=0 N

⌊ r

N2 ⌋ ≤ m
}

.

3 Define B̃j =
{

b
∣

∣

∣

∑j−1
r=0 N

⌊ r

N2 ⌋ < b ≤
∑j

r=0N
⌊ r

N2 ⌋
}

for 0 ≤ j ≤ k.

4 Let B̃ =
⋃k

j=0 B̃j , and W̃b = minb′∈B̃j
Wb′ for all 0 ≤ j ≤ k and b ∈ B̃j .

5 Return B̃, (W̃b)b∈B̃ and the partition (B̃j)
k
j=0.

By construction, we have that (B̃j)
k
j=0 is an N -leveled partition of B̃. Furthermore,

B̃ ⊆ B and W̃b ≤ Wb for any b ∈ B̃. Finally, it can be easily observed that Algorithm
2 has a polynomial running time. Thus, to complete the proof of Lemma 6 we need to
show that property 2 holds as well. To this end, we use a variant of the shifting argument
outlined in the above overview.

Lemma 10. Let N ∈ N, B be a set of bins with capacities (Wb)b∈B and let B̃, W̃ be
the output of Algorithm 2 for the input B, W and N . Furthermore, let I be a set of
items with weights (wi)i∈I , f : 2I → R≥0 be a submodular non-negative function, and

(Sb)b∈B be a feasible assignment for (I, w,B,W, f). Then there is (S̃b)b∈B̃ feasible for

(I, w, B̃, W̃ , f) such that f
(

⋃

b∈B̃ S̃b

)

≥
(

1− 1
N

)

f
(
⋃

b∈B Sb

)

and
⋃

b∈B̃ S̃b ⊆
⋃

b∈B Sb.

Clearly, Lemma 10 completes the proof of Lemma 6. To prove Lemma 10 we use the
following property of submodular functions.

Lemma 11. Let h : 2I → R be a submodular function and let S1, . . . , SN ⊆ I be disjoint
sets. Then there is 1 ≤ r∗ ≤ N such that

h

⋃

1≤r≤N, r 6=r∗

Sr

 ≥

(

1−
1

N

)

h(S1 ∪ . . . ∪ SN).

11

L0

S0,0 S0,1 S0,2

1 1 1 1 1 1 1 1 1

L1

S1,0 S1,1 S1,2

3 3 3 3 3 3 3 3 3

L2 9 9 9 9 9 9 9 9 9

Eviction

1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3

9 9 9 9 9 9 9 9 9

Sh
uffl

in
g

1 1 1 1 1 1 1 1 1

3 3 3 3 3 3 3 3 3

9 9 9 9 9 9 9 9 9

Shifting

1 1 1 1 1 1 3

3 3 3 3 3 3 9

9 9 9 9 9 9 9 9 9

Figure 2: Illustration of the steps in the proof of Lemma 10 for N = 3. Each row represents a level and
each box represents either a block or a super-block. The number in the box is the number of bins in the
block and a gray background implies that the block is non-empty.

12

The proof of the Lemma 11 is given in Appendix A.

Proof of Lemma 10. W.l.o.g assume that B = {1, 2, . . . ,m} and W1 ≥ W2 ≥ . . . ≥
Wm. Furthermore, assume the sets (Sb)b∈B are disjoint. We modify (Sb)b∈B using a
sequence of steps, eventually obtaining a feasible assignment (S̃b)b∈B̃ for (I, w, B̃, W̃ , f).
Figure 2 gives an illustration of these steps.

Define B̃k+1 = B \ B̃. We note that B̃k+1 may be empty. We partition {B̃j| 0 ≤ j ≤
k+ 1} into levels and super-bloks. We consider each N2 consecutive blocks to be a level,
and each N consecutive blocks within a level to be a super-block. Formally, level t is

Lt =
{

j | t ·N2 ≤ j < min{(t+ 1)N2, k + 2}
}

for 0 ≤ t ≤ ℓ with ℓ =
⌊

k+1
N2

⌋

. We note that if ℓ = 0, then (Sb)b∈B is a feasible assignment

for the instance (I, w, B̃, W̃ , f) and the claim hold. Thus, we may assume that ℓ ≥ 1.
The super-block r of level t is

St,r =
{

j | t ·N2 + r ·N ≤ j < t ·N2 + (r + 1) ·N
}

for 0 ≤ r < N and level 0 ≤ t < ℓ (we do not partition the last level into super-blocks).

It follows that B =
⋃ℓ

t=0

⋃

j∈Lt
B̃j and Lt =

⋃N−1
r=0 St,r for 0 ≤ t < ℓ. Furthermore, for

any j ∈ Lt, j 6= k + 1 it holds that |B̃j | = N t and |B̃k+1| < N ℓ. Essentially, all the
blocks of level t are of the same size, and the number of bins in a super-block in level
t−1 is the number of bins in a single block of level t. We use this property in the shifting
process where the assignments of items to bins in the first blocks of level t are shifted to
the last super-block of level t − 1. The eviction and shuffle steps, described below, are
used to ensure that all bins in the last super-block of each level are empty when shifting
is applied.

We modify the assignment (Sb)b∈B using the following steps.
Eviction: We first evict a super-block of bins from each level (except the last one). Let
R =

⋃

j∈Lℓ

⋃

b∈B̃j
Sb be the subset of items assigned to the last level, and let g : 2I → R≥0

defined by g(Q) = f(Q ∪ R). Note that g is submodular and non-negative (see Claim
13). Also, let Vt,r =

⋃

j∈St,r

⋃

b∈B̃j
Sb be the set of items assigned to super-block r of

level t for 0 ≤ r < N and 0 ≤ t < ℓ. Then, by definition, we have

f

(

⋃

b∈B

Sb

)

= g

(

N−1
⋃

r=0

ℓ−1
⋃

t=0

Vt,r

)

.

Furthermore, we note that the sets
(

⋃ℓ−1
t=0 Vt,r

)N−1

r=0
are disjoint. Hence, by Lemma 11

there is 0 ≤ r∗ < N such that

g

⋃

0≤r<N, r 6=r∗

ℓ−1
⋃

t=0

Vt,r

 ≥

(

1−
1

N

)

· g

(

N−1
⋃

r=0

ℓ−1
⋃

t=0

Vt,r

)

=

(

1−
1

N

)

f

(

⋃

b∈B

Sb

)

.

We define a new assignment (Tb)b∈B by

Tb =

{

∅ b ∈ Bj for j ∈ St,r∗ and 0 ≤ t < ℓ

Sb otherwise
13

for any b ∈ B. Thus,

f

(

⋃

b∈B

Tb

)

= g

⋃

0≤r<N−1, r 6=r∗

⋃

j∈St,r

ℓ−1
⋃

t=0

Vt,r

 ≥

(

1−
1

N

)

f

(

⋃

b∈B

Sb

)

. (7)

It also holds that T is a feasible assignment for the instance (I, w,B,W, f), since Tb ∈
{Sb, ∅} for any b ∈ B. By the same argument, it follows that

⋃

b∈B Tb ⊆
⋃

b∈B Sb.

Shuffling: We now generate a new assignment T̃ such that
⋃

b∈B T̃b =
⋃

b∈B Tb, and the
last super-block in each level (except the last one) is empty. This property is obtained
by moving the assignments of the bins in super-block N − 1 to the bins of super-block
r∗ for every 0 ≤ t < ℓ.

In case r∗ = N − 1 we simply define (T̃b)b∈B by T̃b = Tb for any b ∈ B. Otherwise we
have r∗ 6= N − 1. For any 0 ≤ t < ℓ, let ϕt :

⋃

j∈St,r∗
B̃j →

⋃

j∈St,N−1
B̃j be a bijection

from the bins of super-block r∗ to the bins of the last super-block of level t (note that

both sets have the same cardinality, thus such a bijection exists). We define
(

T̃b

)

b∈B
by

T̃b =

∅ b ∈ B̃j for j ∈ St,N−1, 0 ≤ t < ℓ

Tϕt(b) b ∈ B̃j for j ∈ St,r∗ , 0 ≤ t < ℓ

Tb otherwise

for any b ∈ B. For b ∈ B̃j with j ∈ St,r∗ , 0 ≤ t < ℓ it holds that

w
(

T̃b

)

= w
(

Tϕt(b)

)

≤Wϕt(b) ≤Wb

where the last inequality follows from ϕt(b) > b. Also, for any other bin b ∈ B it holds
that T̃b ∈ {∅, Tb} thus w(T̃b) ≤Wb.

In both cases it holds that
⋃

b∈B T̃b =
⋃

b∈B Tb and T̃ is a feasible assignment for
(I, w,B,W, f).
Shifting: In this step we generate a feasible assignment (S̃b)b∈B̃ for the instance (I, w, B̃, W̃ , f).
As the bins of the last super-block in each level (except the last level) are vacant in
(

T̃
)

b∈B
, we use them for the assignment of the first block of the next level. This can be

done since N blocks of level t contain the same number of bins as a single block of level
t + 1. We also use blocks in levels greater than 0 which are not in the last super-block
to store the assignment of the subsequent block in the same level.

Formally, define (S̃b)b∈B̃ by

S̃b =

T̃b+Nt+1 b ∈ B̃j with j ∈ St,N−1, 0 ≤ t < ℓ

T̃b+Nt b ∈ B̃j with j ∈ Lt \ St,N−1, 0 < t < ℓ

T̃b+Nℓ b ∈ B̃j with j ∈ Lℓ, b+N ℓ ≤ m

∅ b ∈ B̃j with j ∈ Lℓ, b+N ℓ > m

T̃b b ≤ N2 −N

for any b ∈ B̃. The first case defines the shifting of the assignments of the first block of
level t+1 to the last super-block of level t. The second and third cases define the shifting

14

of assignments of a block to the previous block. The forth case handles the last block in
B̃, and the last case indicates that the assignments of the first N2 − N bins remain in
place.

Let b ∈ B̃. If S̃b = ∅ then w(S̃b) = 0 ≤ W̃b. If b ≤ N2 −N then {b} = B̃b−1. Hence,
w(S̃b) = w(T̃b) ≤Wb = W̃b. In any other case, there are 0 < j < j′ ≤ k + 1 and b′ ∈ B̃j′

such that b ∈ B̃j and S̃b = T̃b′ . It follows that Wb′ ≤ W̃b by the definition of W̃b. Thus,

w(S̃b) = w(T̃b′) ≤Wb′ ≤ W̃b. That is, (S̃b)b∈B̃ is feasible for (I, w, B̃, W̃ , f).

Clearly,
⋃

b∈B̃ S̃b ⊆
⋃

b∈B T̃b. Let i ∈
⋃

b∈B T̃b; thus, there is b ∈ B such that

i ∈ Tb. There is 0 ≤ j ≤ k + 1 such that b ∈ B̃j . Also, since Tb 6= ∅ it holds that

b 6∈ St,N−1 for all 0 ≤ t ≤ ℓ. If j ∈ L0 then S̃b = T̃b as b 6∈ S0,N−1, hence i ∈
⋃

b∈B̃ S̃b.
Otherwise, either j ∈ Lt \ St,N−1 for 1 ≤ t < ℓ or j ∈ Lt for t = ℓ , it can be

verified that in both cases S̃b−Nt = T̃t; thus, i ∈
⋃

b∈B̃ S̃b. Therefore, it also holds that
⋃

b∈B̃ S̃b =
⋃

b∈B T̃b =
⋃

b∈B Tb ⊆
⋃

b∈B Sb, and by (7)

f

⋃

b∈B̃

S̃b

 = f

(

⋃

b∈B

T̃b

)

≥

(

1−
1

N

)

· f

(

⋃

b∈B

Sb

)

.

�

3.2. Solving a Continuous Relaxation and Rounding

In this section we give Algorithm 4 which outputs a solution satisfying Lemma 7.
The input for the algorithm is a δ-restricted SMKP instance along with a partition
B \Br = B1 ∪ . . .∪Bk of the bins, where Bj is a block for all 1 ≤ j ≤ k. The algorithm
utilizes the block-constraint instance defined in Section 3.2.1. We give the algorithm in
Section 3.2.2.

3.2.1. The Block-Constraint Instance

Recall that a δ-restricted SMKP instance is defined by an SMKP instance I =
(I, w,B,W, f) and a set of restricted bins Br ⊆ B. Given such an instance, a parti-
tion B1, . . . , Bk of B \ Br to blocks and µ > 0, we define their associated block con-
straint instance as a triplet (E,P, g), where E is a set, P ⊆ [0, 1]E is a polytope and
g : 2E → R≥0 is a monotone non-negative submodular function. The instance (E,P, g)
defines the optimization problem maxT⊆E: x̄T∈P g(T); however, this point of view is only
used indirectly.7 In the following we give the formal definition of the block constraint
instance (E,P, g).

For simplicity, let {Bk+1, . . . , Bℓ} = {{b}| b ∈ Br} be a set of blocks, each consisting
of a single bin. Thus, B = ∪ℓj=1Bj . Denote the (uniform) capacity of the bins in block
Bj by W ∗

j , for 1 ≤ j ≤ ℓ. That is, for any b ∈ Bj it holds that W ∗
j = Wb. For

1 ≤ j ≤ k, we say that an item i ∈ I is j-small if wi ≤ µ ·W ∗
j , otherwise i is j-large. Let

Ij = {{i}| i is j-small} for 1 ≤ j ≤ k. For k < j ≤ ℓ define Ij = {{i} | wi ≤ δ ·W ∗
j }.

A j-configuration is a subset of j-large items which can be packed into a single bin in
Bj . That is, C ⊆ I is a j-configuration if every item i ∈ C is j-large and w(C) ≤ W ∗

j .

7For a set T ⊆ E, we use x̄T to denote the vector x̄T ∈ {0, 1}E defined by x̄T
e = 1 for e ∈ T , and

x̄T
e = 0 for e ∈ E \ T .

15

Let Cj be the set of all j-configurations for 1 ≤ j ≤ k and Cj = ∅ for k < j ≤ ℓ.

As any j-configuration has at most µ−1 items, it follows that |Cj | ≤ |I|µ
−1

, i.e., the
number of configurations is polynomial in the size of I. Furthermore, for A ⊆ I such
that w(A) ≤W ∗

j , 1 ≤ j ≤ k, there are C ∈ Cj and S ⊆ I such that all the items in S are
j-small and A = C ∪ S. Our algorithm exploits this property.

The set E is defined by E = {(S, j)| S ∈ Cj ∪ Ij , 1 ≤ j ≤ ℓ}. Informally, the
element (S, j) ∈ E represents an assignment of all the items in S to a single bin b ∈ Bj .

The function g : 2E → R≥0 is defined by g(T) = f
(

⋃

(S,j)∈T S
)

. By Claim 2, g is a

submodular, monotone and non-negative function.
We define the polytope P as follows.

P =

x̄ ∈ [0, 1]E

∣

∣

∣

∣

∣

∣

∣

∣

∑

C∈Cj

x̄(C,j) ≤ |Bj | ∀1 ≤ j ≤ k

∑

S∈Cj∪Ij

w(S) · x̄(S,j) ≤ |Bj | ·W
∗
j ∀1 ≤ j ≤ ℓ

(8)

The polytope represents a relaxed version of the capacity constraints over the bins.
For each block Bj , 1 ≤ j ≤ k, we only require that the total weight of items assigned to
bins in Bj does not exceed the total capacity of the bins in this block. We also require
that the number of j-configurations selected for Bj is no greater than the number of bins
in this block.

Our algorithm for solving δ-restricted SMKP uses the unified greedy algorithm of [12]
to find x̄ ∈ P such that G(x̄) is of high value, where G is the multilinear extension of
g. Subsequently, a random set T is sampled based on x̄. The set T is then converted
to a solution for the original instance using Algorithm 3. The approximation guarantee
of the above process relies on the following connection between the δ-restricted SMKP
instance and the block constraint instance.

Lemma 12. Let I = (I, w,B,W, f) and Br be an instance of δ-restricted SMKP, B1, . . . , Bk

a partition of B\Br to blocks and µ > 0. Furthermore, let (E,P, g) be the block constraint
instance of the above. Then the following hold:

1. There is T ⊆ E, x̄T ∈ P such that g(T) ≥ OPT(I), where OPT(I) is the optimal
solution value for δ-restricted SMKP instance I and Br.

2. Given T ⊆ E such that x̄T ∈ (1 − µ) · P , Algorithm 3 returns in polynomial time
a feasible solution (Ab)b∈B for δ-restricted SMKP instance I and Br satisfying
f(∪b∈BAb) = g(T).8

8Given a polytope Q and η ≥ 0 we use the notation η ·Q = {ηx̄ | x̄ ∈ Q}.

16

Algorithm 3: Employ a Block-Constraint Solution for SMKP

Input: A δ-restricted SMKP instance I = (I, w,B,W, f) and Br, a partition
B1, . . . , Bk of B \Br to blocks and T ⊆ E.

1 Let {Bk+1, . . . , Bℓ} = {{b}| b ∈ Br}.
2 Set Ab = ∅ for every b ∈ B.
3 Sort the elements (S, j) in T in decreasing order by the w(S) values.
4 for each (S, j) ∈ T in the sorted order do
5 Set Ab ← Ab ∪ S where b = argminb∈Bj

w(Ab).

6 end
7 Return (Ab)b∈B .

Proof. We start by proving part 1. Let (A∗
b)b∈B be an optimal solution for the δ-

restricted SMKP instance, and let Lj be the set of all j-large items for 1 ≤ j ≤ k, and
Lj = ∅ for k < j ≤ ℓ (recall we use {Bk+1, . . . , Bℓ} = {{b}| b ∈ Br}). Define

T =

k
⋃

j=1

{(A∗
b ∩ Lj , j) | b ∈ Bj}

 ∪

ℓ
⋃

j=1

⋃

b∈Bj

{({i}, j) | i ∈ A∗
b \ Lj}

 .

It can be easily shown that g(T) = f(∪b∈BA
∗
b). Furthermore, as (A∗

b)b∈B is a feasible
solution, it holds that x̄T ∈ P .

We now prove part 2. Let (Ab)b∈B be the output of Algorithm 3 for the given input.
We first note that ∪b∈BAb = ∪(S,j)∈TS, and thus g(T) = f(∪b∈BAb).

For any b ∈ Br, there is k < j ≤ ℓ such that Bj = {b}. Therefore Ab = {i|({i}, j) ∈
T }, and since x̄T ∈ (1− µ)P , it follows that w(Ab) ≤W ∗

j = Wb.
Let 1 ≤ j ≤ k and b ∈ Bj . Assume by negation that w(Ab) > Wb = W ∗

j . Let
(S, j) ∈ T be the last element in T such that S 6= ∅ and S was added to Ab in Line 5. We
conclude that w(Ab \ S) > 0, as otherwise w(Ab) = w(S) ≤ Wb, by the definition of E.
Therefore, there are at least |Bj | elements (S′, j) ∈ T such that w(S′) ≥ w(S) (else, in
the iteration of (S, j) there must be b ∈ Bj with Ab = ∅). If S ∈ Cj then w(S) > µ ·W ∗

j ,
and thus

|{S′ 6= ∅| (S′, j) ∈ T, S′ ∈ Cj}| ≥ |{S′| (S′, j) ∈ T, w(S′) ≥ w(S)}| > |Bj |,

contradicting x̄T ∈ (1− µ)P .
Therefore S /∈ Cj , and we conclude that S = {i} with wi ≤ µ ·W ∗

j . Thus, w(Ab \S) >
(1−µ) ·W ∗

j . Here, S was allocated to Ab (which is a set of minimum weight). Then, for
any b′ ∈ Bj, we have w(Ab′) ≥ w(Ab) > (1 − µ) ·W ∗

j . Thus,

∑

(S′,j)∈T

w(S′) ≥
∑

b′∈Bj

w(Ab′) > |Bj |(1− µ) ·W ∗
j ,

contradicting x̄T ∈ (1− µ)P . We conclude that w(Ab) ≤Wb.
Also, by definition, we have that for any b ∈ Br and i ∈ Ab it holds that wi ≤ δ ·Wb.

Hence, (Ab)b∈B is a solution for the restricted SMKP instance. �

17

3.2.2. An Algorithm for δ-restricted SMKP

We are now ready to present our algorithm for δ-restricted SMKP. We note that in
Line 3 of Algorithm 4 we use sampling by a solution vector x̄∗, as defined in Section 2.

Algorithm 4: Solve and Round

Input: A δ-restricted SMKP instance I and Br, a partition B1, . . . , Bk of
B \Br to blocks, and a parameter µ > 0.

1 Let (E,P, g) be the block-constraint instance of I, Br, (Bj)
k
j=1 and µ.

2 Let G : [0, 1]E → R≥0 be the multilinear extension of g. Find a solution ȳ∗ for
maxx̄∈P G(x̄) using the unified greedy of [12].

3 Let x̄∗ = 1−µ
1+µ
· ȳ∗ and sample a random set T ∼ x̄∗.

4 if T ∈ (1 − µ)P then
5 Use Algorithm 3 to convert T into a solution (Ab)b∈B for δ-restricted SMKP

instance I and Br. Return (Ab)b∈B .

6 else
7 Return (Ab)b∈B with Ab = ∅ for every b ∈ B.
8 end

For the analysis, consider first the running time. We note that, for any λ̄ ∈ R
E , a

vector x̄ ∈ P which maximizes x̄ · λ̄ can be found in polynomial time. Therefore, the
continuous greedy in Line 2 runs in polynomial time. Thus, Algorithm 4 has a polynomial
running time.

It remains to show that the algorithm returns a solution of expected value as stated
in Lemma 7. Similarly to [6], we use submodular concentration bounds within the proof.
We note it is possible to prove a variant of this lemma using an approach of [19]. While
eliminating the dependenc on υ, this will result in a more involved proof (recall that υ
is defined in (1)).

Proof of Lemma 7. For any e ∈ E define Xe to be a random variable such that Xe = 1
if e ∈ T and Xe = 0 otherwise. It follows that (Xe)e∈E are independent Bernoulli random
variables, E[Xe] = x̄∗

e and T = {e ∈ E|Xe = 1}.
We first consider blocks k < j ≤ ℓ. Let k < j ≤ ℓ and Bj = {b}. Since x̄∗ ∈ 1−µ

1+µ
P ,

it follows that E

[

∑

(S,j)∈E w(S) ·X(S,j)

]

≤ 1−µ
1+µ
· Wb. Also, w(S,j) ≤ δ ·Wb for every

(S, j) ∈ E. Using Chernoff’s bound (Theorem 3.1 in [15], see also Lemma 16), we have

Pr

∑

(S,j)∈T

w(S) > (1− µ)Wb

 ≤ exp

(

−
µ2

3
·
1− µ

1 + µ
·
1

δ

)

≤ exp

(

−
µ2

12
·
1

δ

)

, (9)

where the last inequality follows from µ ∈ (0, 0.1).
Now, let 1 ≤ j ≤ k. For every (S, j) ∈ E it holds that w(S) ≤ W ∗

j . Also,

since x̄∗ ∈ 1−µ
1+µ

P , it holds that E

[

∑

(S,j)∈E w(S) ·X(S,j)

]

≤ 1−µ
1+µ
· |Bj | · W ∗

j , and

E

[

∑

(S,j)∈E: S∈Cj
1 ·X(S,j)

]

≤ 1−µ
1+µ
· |Bj |. Therefore, by Chernoff’s bound (Theorem

18

3.1 in [15] and Lemma 16), we have

Pr

∑

(S,j)∈T

w(S) > (1− µ)|Bj |W
∗
j

 ≤ exp

(

−
µ2

3
·
1− µ

1 + µ
· |Bj |

)

≤ exp

(

−
µ2

12
· |Bj |

)

(10)

Pr

∑

(S,j)∈T : S∈Cj

1 > (1− µ)|Bj |

 ≤ exp

(

−
µ2

3
·
1− µ

1 + µ
· |Bj |

)

≤ exp

(

−
µ2

12
· |Bj |

)

. (11)

By Lemma 12, maxz̄∈P∩{0,1}E G(z̄) ≥ OPT(I). As the unified greedy of [12] yields
a (1 − e−1 − o(1))-approximation for the problem of maximizing the multilinear exten-
sion subject to a polytope constraint, it follows that G(ȳ∗) ≥ (1 − e−1)(1 − µ)OPT(I)
(under the assumption that the number of items is sufficiently large). Since the second
derivatives of G are non-positive (see [4]) it follows that

G(x̄∗) ≥
1− µ

1 + µ
G(ȳ∗) ≥ (1− e−1)

(1 − µ)2

1 + µ
OPT(I). (12)

For any (S, j) ∈ E we have |S| ≤ µ−1, and by the submodularity of f , g({(S, j)})−
g(∅) ≤ µ−1υ. Therefore, by the concentration bound of [6] (see Lemma 17), we have

Pr

(

g(T) ≤ (1− e−1)
(1 − µ)3

1 + µ
OPT(I)

)

≤ Pr (g({e ∈ E|Xe = 1}) ≤ (1− µ)G(x̄∗))

≤ exp

(

−
µ3 ·G(x̄∗)

2υ

)

≤ exp

(

−
µ3(1− e−1)

2υ

(1− µ)2

1 + µ
OPT(I)

)

≤ exp

(

−
µ3 ·OPT(I)

16 · υ

)

(13)
The first and third inequality are due to (12).

Let ω be the event x̄T ∈ (1− µ)P and g(T) ≥ (1−µ)3

1+µ
(1− e−1)OPT(I). By applying

the union bound over (9), (10), (11) and (13), we have

Pr(ω) ≥ 1−

|Br| exp

(

−
µ2

12

1

δ

)

− 2

k
∑

j=1

exp

(

−
µ2

12
|Bj |

)

− exp

(

−
µ3

16

OPT(I)

υ

)

 = 1−γ.

In case the event ω occurs, the algorithm executes Line 5, and by Lemma 12, f(∪b∈BAb) =
f(T). Hence,

E [f(∪b∈BAb)] = Pr (ω) ·E [f(∪b∈BAb)|ω] ≥ (1− γ)
(1− µ)3

1 + µ
(1− e−1)OPT(I).

Also, the algorithm either returns an empty solution when Line 7 executes, or Line
5 executes. In the latter case the solution is feasible by Lemma 12. Therefore, the
algorithm always returns a feasible solution. �

4. Discussion

In this paper we presented a randomized (1−e−1−ε)-approximation for the monotone
submodular multiple knapsack problem. Our algorithm relies on three main building

19

blocks. The structuring technique (Section 3.1) which converts a general instance to
a leveled instance, the reduction to the block-constraint instance (Section 3.2.1) and a
refined analysis of known algorithms for submodular optimization with a d-dimensional
knapsack constraint (Section 3.2.2). While the structuring technique and the refined
analysis seem to be fairly robust, the reduction to the block-constraint instance proved
to be limiting for some natural generalizations of our problem.

One notable example is the non-monotone submodular multiple knapsack problem,
in which the set function f is non-monotone. Unfortunately, in this case the function g
used for solving the block-constraint problem is not submodular. In a recent work [9]
we overcome this obstacle by applying the structuring technique and refined analysis in
conjunction with a new notion of fractional grouping to circumvent the block reduction.

While our algorithm yields an almost optimal (1− e−1− ε)-approximation for SMKP
in polynomial time, the dependence of the running time on ε renders it purely theoretical.
We note that the same holds also for the algorithms of [22]. The problem of finding a
polynomial time (1− e−1)-approximation for SMKP, i.e., eliminating the dependence on
ε, remains open.

It would be interesting to extend our results for SMKP to instances in which the profit
and weight of an item may depend on the bin to which it is assigned. More specifically,
consider the monotone submodular generalized assignment problem (SGAP) defined as
follows. The input is a set of bins B of capacities (Wb)b∈B, a set of items I, a weight
wi,b for every pair (i, b), where i ∈ I and b ∈ B (the weight of item i when assigned to
bin b), and a monotone submodular function f : 2I×B → R≥0. A feasible solution is a
set of pairs of items and bins A ⊆ I ×B such that, for any b ∈ B,

∑

{i|(i,b)∈A} wi,b ≤Wb

and, for any i ∈ I, |{b | (i, b) ∈ A}| ≤ 1. That is, the total weight of items assigned
to a bin does not exceed its capacity, and an item cannot be assigned to multiple bins.
The objective is to find a feasible solution A such that f(A) is maximized. We note that
the special case where f is modular is the well known generalized assignment problem
(GAP) (see, e.g., [14, 11]). It is likely that an α-approximation for SGAP can be derived
using ideas of [24] for α strictly smaller than 1− e−1. We conjecture that SGAP admits
a (1 − e−1)-approximation.

References

[1] Niv Buchbinder and Moran Feldman. Submodular functions maximization problems. Handbook of
Approximation Algorithms and Metaheuristics, 1:753–788, 2017.

[2] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1433–1452. SIAM, 2014.

[3] Gruia Calinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a submodular set
function subject to a matroid constraint. In International Conference on Integer Programming and
Combinatorial Optimization, pages 182–196. Springer, 2007.

[4] Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone sub-
modular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–1766,
2011.

[5] Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the multiple
knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005.

[6] Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Dependent randomized rounding for matroid
polytopes and applications. arXiv preprint arXiv:0909.4348, 2009.

20

[7] Chandra Chekuri, Jan Vondrak, and Rico Zenklusen. Dependent randomized rounding via exchange
properties of combinatorial structures. In 2010 IEEE 51st Annual Symposium on Foundations of
Computer Science, pages 575–584. IEEE, 2010.

[8] W Fernandez De La Vega and George S. Lueker. Bin packing can be solved within 1+ ε in linear
time. Combinatorica, 1(4):349–355, 1981.

[9] Yaron Fairstein, Ariel Kulik, and Hadas Shachnai. tight approximations for modular and submod-
ular optimization with d-resource multiple knapsack constraints. arXiv preprint arXiv:2007.10470,
2020.

[10] Uriel Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM),
45(4):634–652, 1998.

[11] Uriel Feige and Michel Goemans. Approximating the value of two power proof systems, with
applications to max 2sat and max dicut. In Proceedings Third Israel Symposium on the Theory of
Computing and Systems, pages 182–189. IEEE, 1995.

[12] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for sub-
modular maximization. In 2011 IEEE 52nd Annual Symposium on Foundations of Computer
Science, pages 570–579. IEEE, 2011.

[13] Moran Feldman and Seffi Naor. Maximization problems with submodular objective functions. PhD
thesis, Computer Science Department, Technion, 2013.

[14] Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight approximation
algorithms for maximum separable assignment problems. Mathematics of Operations Research,
36(3):416–431, 2011.

[15] Rajiv Gandhi, Samir Khuller, Srinivasan Parthasarathy, and Aravind Srinivasan. Dependent round-
ing and its applications to approximation algorithms. Journal of the ACM (JACM), 53(3):324–360,
2006.

[16] Klaus Jansen. Parameterized approximation scheme for the multiple knapsack problem. SIAM
Journal on Computing, 39(4):1392–1412, 2010.

[17] Klaus Jansen. A fast approximation scheme for the multiple knapsack problem. In Interna-
tional Conference on Current Trends in Theory and Practice of Computer Science, pages 313–324.
Springer, 2012.

[18] Samir Khuller, Anna Moss, and Joseph Seffi Naor. The budgeted maximum coverage problem.
Information processing letters, 70(1):39–45, 1999.

[19] Ariel Kulik, Hadas Shachnai, and Tami Tamir. Approximations for monotone and nonmono-
tone submodular maximization with knapsack constraints. Mathematics of Operations Research,
38(4):729–739, 2013.

[20] Jon Lee, Vahab S Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing nonmono-
tone submodular functions under matroid or knapsack constraints. SIAM Journal on Discrete
Mathematics, 23(4):2053–2078, 2010.

[21] George L Nemhauser and Laurence A Wolsey. Best algorithms for approximating the maximum of
a submodular set function. Mathematics of operations research, 3(3):177–188, 1978.

[22] Xiaoming Sun, Jialin Zhang, and Zhijie Zhang. Tight algorithms for the submodular multiple
knapsack problem. arXiv preprint arXiv:2003.11450, 2020.

[23] Maxim Sviridenko. A note on maximizing a submodular set function subject to a knapsack con-
straint. Operations Research Letters, 32(1):41–43, 2004.

[24] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model.
In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 67–74, 2008.

[25] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM Journal
on Computing, 42(1):265–304, 2013.

Appendix A. Basic Properties of Submodular Functions

Claim 13. Let f : 2I → R be a set function and R ⊆ I. Define g : 2I → R by
g(S) = f(S ∪R) for any S ⊆ I. Then,

1. If f is submodular then g is submodular.

2. If f is monotone then g is monotone.

Proof.

21

1. Assume f is submodular. Let S, T ⊆ I. Then,

g(S) + g(T) = f(R ∪ S) + f(R ∪ T)

≥ f ((R ∪ S) ∪ (R ∪ T)) + f ((R ∪ S) ∩ (R ∪ T))

= f (R ∪ (S ∪ T)) + f (R ∪ (S ∩ T))

= g(S ∪ T) + g(S ∩ T)

Hence, g is submodular.

2. Assume f is monotone, and let S ⊆ T ⊆ I. Then R ∪ S ⊆ R ∪ T , and therefore

g(S) = f(R ∪ S) ≤ f(R ∪ T) = g(T).

Thus, g is monotone.

�

Claim 14. Let f : 2I → R≥0 be monotone and submodular function, then for any T1 ⊆
T2 ⊆ I and A ⊆ I, it holds that f(T1 ∪A)− f(T1) ≥ f(T2 ∪ A)− f(T2).

Proof. By the submodularity of f , we have

f(T1 ∪ A) + f(T2) ≥ f(T1 ∪A ∪ T2) + f((T1 ∪ A) ∩ T2) ≥ f(T2 ∪ A) + f(T1), (A.1)

where the second inequality follows from T1 ⊆ (T1 ∪ A) ∩ T2 and the monotonicity of f .
By rearranging the terms in (A.1), we have

f(T1 ∪ A)− f(T1) ≥ f(T2 ∪ A)− f(T2)

as required. �

Claim 15. Let f : 2I → R≥0 be a non-negative, monotone and submodular function,
and let S ⊆ I. Then, fS is a submodular, monotone and non-negative function.

Proof. By Claim 13, it holds that the function g : 2I → R, defined by g(R) = f(S ∪R)
for any R ⊆ I, is monotone and submodular. Since fS is the difference between g and a
constant, it is submodular and monotone as well.

It remains to show fS is non-negative. As f is monotone, for any R ⊆ I it holds that
f(S ∪R) ≥ f(S). Thus, fS(R) = f(S ∪R)− f(S) ≥ 0. �

Proof of Claim 2 . It is easy to see that g is non-negative, as f is non negative. In
addition, for any two subsets A ⊆ B ⊆ E, we have ∪(S,h)∈AS ⊆ ∪(S,h)∈BS. Thus, since
f is monotone, g is monotone as well.

We now show that g is submodular. Consider subsets A ⊆ B ⊆ E and (S, h) ∈ E \B.

g(A ∪ {(S, h)})− g(A) = f(∪(S′,h′)∈AS
′ ∪ S)− f(∪(S′,h′)∈AS

′)

≤ f(∪(S′,h′)∈BS
′ ∪ S)− f(∪(S′,h′)∈BS

′)

= g(B ∪ {(S, h)})− g(B).

The inequality follows from Claim 14 and ∪(S′,h′)∈AS
′ ⊆ ∪(S′,h′)∈BS

′. �

22

Proof of Lemma 11. We can write

h(S1 ∪ . . . ∪ SN)− h(∅) =
N
∑

r=1

(h(S1 ∪ . . . ∪ Sr)− h(S1 ∪ . . . ∪ Sr−1)) .

Therefore, there is 1 ≤ r∗ ≤ N such that

h(S1 ∪ . . . ∪ Sr∗)− h(S1 ∪ . . . ∪ Sr∗−1) ≤
1

N
(h(S1 ∪ . . . ∪ SN)− h(∅)) .

Thus,
(

1−
1

N

)

(h(S1 ∪ . . . ∪ SN)− h(∅))

≤ h(S1 ∪ . . . ∪ SN)− h(∅)− h(S1 ∪ . . . ∪ Sr∗) + h(S1 ∪ . . . ∪ Sr∗−1)

= h ((S1 ∪ . . . ∪ SN \ Sr∗) ∪ (S1 ∪ . . . ∪ Sr∗))

+ h ((S1 ∪ . . . ∪ SN \ Sr∗) ∩ (S1 ∪ . . . ∪ Sr∗))

− h(S1 ∪ . . . ∪ Sr∗)− h(∅)

≤ h (S1 ∪ . . . ∪ SN \ Sr∗) + h (S1 ∪ . . . Sr∗)− h(S1 ∪ . . . ∪ Sr∗)− h(∅)

= h

⋃

1≤r≤N, r 6=r∗

Sr

− h(∅),

where the second inequality follows from the submodularity of h. The first and last
equalities use the property that S1, . . . , SN are disjoint. By rearranging the terms, we
have

h

⋃

1≤r≤N, r 6=r∗

Sr

 ≥

(

1−
1

N

)

h(S1∪. . .∪SN)+
1

N
·h(∅) ≥

(

1−
1

N

)

h(S1∪. . .∪SN).

�

Appendix B. Chernoff’s Bound

In the analysis of Algorithm 4 we use the following Chernoff-like bounds.

Lemma 16 (Theorem 3.1 in [15]). Let X =
∑n

i=1 Xi ·λi where (Xi)
n
i=1 is a sequence

of independent Bernoulli random variable and λi ∈ [0, 1] for 1 ≤ i ≤ n. Then for any
ε ∈ (0, 1) and η ≥ E[X] it holds that

Pr (X > (1 + ε)η) < exp

(

−
ε2

3
η

)

Lemma 17 (Theorem 1.3 in [6]). Let I = {1, . . . , n}, υ > 0 and f : 2I → R+ be a
monotone submodular function such that f({i})−f(∅) ≤ υ for any i ∈ I. Let X1, . . . , Xn

be independent random variables and η = E[f({i ∈ I|Xi = 1})]. Then for any ε > 0 it
holds that

E[f({i ∈ I|Xi = 1}) ≤ (1− ε)η] ≤ exp

(

−
η · ε2

2υ

)

23

	1 Introduction
	1.1 Our Results
	1.2 Tools and Techniques

	2 Preliminaries
	3 The Approximation Algorithm
	3.1 Structuring the Instance
	3.2 Solving a Continuous Relaxation and Rounding
	3.2.1 The Block-Constraint Instance
	3.2.2 An Algorithm for -restricted SMKP

	4 Discussion
	Appendix A Basic Properties of Submodular Functions
	Appendix B Chernoff's Bound

