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Abstract

We prove a complexity dichotomy for a class of counting problems expressible as bipartite
3-regular Holant problems. For every problem of the form Holant (f |=3), where f is any
integer-valued ternary symmetric constraint function on Boolean variables, we prove that it is
either P-time computable or #P-hard, depending on an explicit criterion of f . The constraint
function can take both positive and negative values, allowing for cancellations. In addition,
we discover a new phenomenon: there is a set F with the property that for every f ∈ F the
problem Holant (f |=3) is planar P-time computable but #P-hard in general, yet its planar
tractability is by a combination of a holographic transformation by

[
1 1
1 −1

]
to FKT together

with an independent global argument.

1 Introduction

Holant problems encompass a broad class of counting problems [1, 2, 3, 9, 10, 11, 12, 17, 18, 20, 24,
25, 27]. For symmetric constraint functions this is also equivalent to edge-coloring models [21, 22].
These problems extend counting constraint satisfaction problems. Freedman, Lovász and Schrijver
proved that some prototypical Holant problems, such as counting perfect matchings, cannot be
expressed as vertex-coloring models known as graph homomorphisms [16, 19]. The classification
program of counting problems is to classify as broad a class of these problems as possible into either
#P-hard or P-time computable.

While much progress has been made for the classification of counting CSP [4, 6, 7, 14], and
some progress for Holant problems [5], classifying Holant problems on regular bipartite graphs is
particularly challenging. In a very recent paper [15] we initiated the study of Holant problems on the
simplest setting of 3-regular bipartite graphs with nonnegative constraint functions. Admittedly,
this is a severe restriction, because nonnegativity of the constraint functions rules out cancellation,
which is a source of non-trivial P-time algorithms. Cancellation is in a sense the raison d’être
for the Holant framework following Valiant’s holographic algorithms [24, 25, 26]. The (potential)
existence of P-time algorithms by cancellation is exciting, but at the same time creates obstacles if
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we want to classify every problem in the family into either P-time computable or #P-hard. At the
same time, restricting to nonnegative constraint functions makes the classification theorem easier
to prove. In this paper, we remove this nonnegativity restriction.

More formally, a Holant problem is defined on a graph where edges are variables and vertices
are constraint functions. The aim of a Holant problem is to compute its partition function, which
is a sum over all {0, 1}-edge assignments of the product over all vertices of the constraint function
evaluations. E.g., if every vertex has the Exact-One function (which evaluates to 1 if exactly
one incident edge is 1, and evaluates to 0 otherwise), then the partition function gives the number
of perfect matchings. In this paper we consider Holant problems on 3-regular bipartite graphs
G = (U, V,E), where the Holant problem Holant (f |=3) computes the following partition function∗

Holant(G) =
∑

σ:E→{0,1}

∏

u∈U
f
(
σ|E(u)

) ∏

v∈V
(= 3)

(
σ|E(v)

)
,

where f = [f0, f1, f2, f3] at each u ∈ U is an integer-valued constraint function that evaluates to
fi if σ assigns exactly i among 3 incident edges E(u) to 1, and (=3) = [1, 0, 0, 1] is the Equality

function on 3 variables (which is 1 iff all three are equal). E.g., if we take the Exact-One function
f = [0, 1, 0, 0] then Holant (f |=3) counts the number of exact-3-covers; if f is the Or function
[0, 1, 1, 1] then Holant (f |=3) counts the number of all set covers.

The main theorem in this paper is a complexity dichotomy (Theorem 8.1): for any rational-
valued function f of arity 3, the problem Holant (f |=3) is either #P-hard or P-time computable,
depending on an explicit criterion on f . The main advance is to allow f to take both positive and
negative values, thus cancellations in the sum

∑
σ:E→{0,1} can occur.

A major component of the classification program is to account for some algorithms, called
holographic algorithms, that were initially discovered by Valiant [24]. These algorithms introduce
quantum-like cancellations as the main tool. In the past 10 to 15 years we have gained a great deal
of understanding of these mysteriously looking algorithms. In particular, it was proved in [12] that
for all counting CSP with arbitrary constraint functions on Boolean variables, there is a precise
3-way division of problem types: (1) P-time computable in general, (2) P-time computable on
planar structures but #P-hard in general, and (3) #P-hard even on planar structures. Moreover,
every problem in type (2) is computable in P-time on planar structures by Valiant’s holographic
reduction to Fisher-Kasteleyn-Temperley algorithm (FKT) for planar perfect matchings. In [8]
for (non-bipartite) Holant problems with symmetric constraint functions, the 3-way division above
persists, but problems in (2) includes one more subtype unrelated to Valiant’s holographic reduction.
In this paper, we have a surprising discovery. We found a new set of functions F which fits into
type (2) problems above, but the planar P-time tractability is neither by Valiant’s holographic
reduction alone, nor entirely independent from it. Rather it is by a combination of a holographic
reduction together with a global argument. An example of this set of problem is as follows: We
say (X,S) is a 3-regular k-uniform set system, if S consists of a family of sets S ⊂ X each of size
|S| = k, and every x ∈ X is in exactly 3 sets. If k = 2 this is just a 3-regular graph. We consider
3-regular 3-uniform set systems. We say S ′ is a leafless partial cover if every x ∈

⋃
S∈S′ S belongs

to more than one set S ∈ S ′. We say x is lightly covered if |{S ∈ S ′ : x ∈ S}| is 2, and heavily
covered if this number is 3.

∗If we replace f by a set F of constraint functions, each u ∈ U is assigned some fu ∈ F , and replace (=3) by EQ,
the set of Equality of all arities, then Holant (F | EQ) can be taken as the definition of counting CSP.
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Problem : Weighted-Leafless-Partial-Cover.
Input : A 3-regular 3-uniform set system (X,S).
Output :

∑
S′(−1)l2h, where the sum is over all leafless partial covers S ′, and l (resp. h) is the

number of x ∈ X that are lightly covered (resp. heavily covered).

One can show that this problem is just Holant (f |=3), where f = [1, 0,−1, 2]. This problem is
a special case of a set of problems of the form f = [3a+ b, a− b,−a+ b, 3a− b]. We show that all
these problems belong to type (2) above, although they are not directly solvable by a holographic
algorithm since they are provably not matchgates-transformable.

In this paper, we use Mathematica™ to perform symbolic computation. In particular, the proce-
dure CylindricalDecomposition in Mathematica™ is an implementation (of a version) of Tarski’s
theorem on the decidability of the theory of real-closed fields. Some of our proof steps involve
heavy symbolic computation. This stems from the bipartite structure. In order to preserve this
structure, one has to connect each vertex from LHS to only vertices from RHS when constructing
subgraph fragments called gadgets. In 3-regular bipartite graphs, it is easy to show that any gadget
construction produces a constraint function that has the following restriction: the difference of the
arities between the two sides is 0 mod 3. This severely limits the possible constructions within
a moderate size, and a reasonable sized construction tends to produce gigantic polynomials. To
“solve” some of these polynomials seems beyond direct manipulation by hand.

We believe our dichotomy (Theorem 8.1) is valid even for (algebraic) real or complex-valued
constraint functions. However, in this paper we can only prove it for rational-valued constraint
functions. There are two difficulties of extending our proof beyond Q. The first is that we use the
idea of interpolating degenerate straddled functions, for which we need to ensure that the ratio
of the eigenvalues of the interpolating gadget matrix is not a root of unity. With rational-valued
constraint functions, the only roots of unity that can occur are in a degree 2 extension field. For
general constraint functions, they can be arbitrary roots of unity. Another difficulty is that some
Mathematica™ steps showing the nonexistence of some exceptional cases are only valid for Q. We
list the essential Mathematica™ procedures used in this proof in an appendix.

2 Preliminaries

We now introduce the concept of gadget. A gadget, such as those illustrated in Figure 1 to Fig-
ure 8, is a bipartite graph G = (U, V,Ein, Eout) with internal edges Ein and dangling edges Eout.
There can be m dangling edges internally incident to vertices from U and n dangling edges inter-
nally incident to vertices from V . These m + n dangling edges correspond to Boolean variables
x1, . . . , xm, y1, . . . , yn and the gadget defines a signature

f(x1, . . . , xm, y1, . . . , yn) =
∑

σ:Ein→{0,1}

∏

u∈U
f
(
σ̂|E(u)

) ∏

v∈V
(=3)

(
σ̂|E(v)

)
,

where σ̂ denotes the extension of σ by the assignment on the dangling edges.
As indicated before, in the setting of 3-regular bipartite graph, we have limited number of

symmetric gadgets with reasonable sizes. To preserve the bipartite structure, we must be careful
in any gadget construction how each external wire is to be connected, i.e., as an input variable
whether it is on the LHS (those of f which can be used to connect to (=3) on the RHS), or it is on
the RHS (those of (=3) which can be used to connect to f on the LHS).
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Figure 1: G1

In each figure of gadgets presented later, we use a blue square to represent a signature from
LHS, which under most of the cases will be [1, a, b, c], a green circle to represent the ternary equality
[1, 0, 0, 1], and a black triangle to represent a unary signature whose values depend on the context.

A signature grid Ω = (G,π) over a signature set F consists of a graph G = (V,E) and a mapping
π that assigns to each vertex v ∈ V an fv ∈ F and a linear order of the incident edges at v. For
signature sets F and G, a bipartite signature grid over (F | G) is a signature grid Ω = (H,π) over
F ∪ G, where H = (V,E) is a bipartite graph with bipartition V = (V1, V2) such that π (V1) ⊆ F
and π (V2) ⊆ G. In this paper, we consider the bipartite Holant problem where F = {f} consists
of a single rational-valued ternary symmetric Boolean function and G = {[1, 0, 0, 1]} consists of
Equality3.

A symmetric signature is a function that is invariant under any permutation of its variables.
The value of such a signature depends only on the Hamming weight of its input. We denote a
ternary symmetric signature f by the notation f = [f0, f1, f2, f3], where fi is the value on inputs
of Hamming weight i. The Equality of arities 3 is (=3) = [1, 0, 0, 1]. A symmetric signature f is
called (1) degenerate if it is the tensor power of a unary signature; (2) Generalized Equality, or Gen-
Eq, if it is zero unless all inputs are equal. Affine signatures were discovered in the dichotomy for
counting constraint satisfaction problems (#CSP) [5]. A (real valued) ternary symmetric signature
is affine if it has the form [1, 0, 0,±1], [1, 0, 1, 0], [1, 0,−1, 0], [1, 1,−1,−1] or [1,−1,−1, 1], or by
reversing the order of the entries, up to a constant factor. If f is degenerate, Gen-Eq, or affine,
then the problem #CSP(f) and thus Holant (f |=3) is in P (for a more detailed exposition of this
theory, see [5]). Our dichotomy asserts that, for all signatures f with fi ∈ Q, these three classes are
the only tractable cases of the problem Holant (f |=3); all other signatures lead to #P-hardness.

By a slight abuse of notation, we say [1, a, b, c] is #P-hard or in P depending on weather the
problem Holant ([1, a, b, c] | (=3)) is #P-hard or in P, respectively. We shall invoke the following
theorem [20] when proving our results:

Theorem 2.1. Suppose a, b ∈ C, and let X = ab, Z =
(
a3+b3

2

)2
. Then Holant ([a, 1, b] | (=3)) is

#P-hard except in the following cases, for which the problem is in P.

1. X = 1;
2. X = Z = 0;
3. X = −1 and Z = 0;
4. X = −1 and Z = −1.

An important observation is that in the context of Holant (f | (=3)), every gadget construction
produces a signature with m ≡ n mod 3, wherem and n are the numbers of input variables (arities)
from the LHS and RHS respectively. Thus, any construction that produces a signature purely on
either the LHS or the RHS will have arity a multiple of 3. In order that our constructions are more
manageable in size, we will make heavy use of straddled gadgets with m = n = 1 that do not belong
to either side and yet can be easily iterated. The signatures of the iterated gadgets are represented
by matrix powers.
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Consider the binary straddled gadget G1 in Figure 1. Its signature is G1 = [ 1 b
a c ], where G1(i, j)

(at row i column j) is the value of this gadget when the left dangling edge (from the “square”) and
the right dangling edge (from the “circle” (=3)) are assigned i and j respectively, for i, j ∈ {0, 1}.
Iterating G1 sequentially k times is represented by the matrix power Gk

1 . It turns out that it is very
useful either to produce directly or to obtain by interpolation a rank deficient straddled signature,
which would in most cases allow us to obtain unary signatures on either side. With unary signatures
we can connect to a ternary signature to produce binary signatures on one side and then apply
Theorem 2.1. The proof idea of Lemma 2.2 is the same as in [15] for nonnegative signatures.

Lemma 2.2. Given the binary straddled signature G1 = [ 1 b
a c ], we can interpolate the degenerate

binary straddled signature [ y xy
1 x ], provided that c 6= ab, a 6= 0, ∆ =

√
(1− c)2 + 4ab 6= 0 and λ

µ
is

not a root of unity, where λ = −∆+(1+c)
2 , µ = ∆+(1+c)

2 are the two eigenvalues, and x = ∆−(1−c)
2a

and y = ∆+(1−c)
2a .

Proof. We have x+y = ∆/a 6= 0 and so
[−x y

1 1

]−1
exists, and the matrix G1 has the Jordan Normal

Form

G1 =

(
1 b
a c

)
=

(
−x y
1 1

)(
λ 0
0 µ

)(
−x y
1 1

)−1

.

Here the matrix G1 is non-degenerate since c 6= ab, and so λ and µ are nonzero. Consider

D =
1

x+ y

(
y xy
1 x

)
=

(
−x y
1 1

)(
0 0
0 1

)(
−x y
1 1

)−1

.

Given any signature grid Ω where the binary degenerate straddled signature D appears n times, we
form gadgets Gs

1 where 0 ≤ s ≤ n by iterating the G1 gadget s times and replacing each occurrence
of D with Gs

1. (Here for s = 0 we simply replace each occurrence of D by an edge.) Denote the
resulting signature grid as Ωs. We stratify the assignments in the Holant sum for Ω according to
assignments to [ 0 0

0 1 ]

- (0, 0) i times;
- (1, 1) j times;

with i+j = n; all other assignments will contribute 0 in the Holant sum for Ω. The same statement
is true for each Ωs with the matrix

[
λs 0
0 µs

]
. Let ci,j be the sum, in Ω, over all such assignments of

the products of evaluations of all other signatures other than that represented by the matrix [ 0 0
0 1 ],

including the contributions from
[−x y

1 1

]
and its inverse. The same quantities cij appear for each

Ωs, independent of s, with the substitution of the matrix
[
λs 0
0 µs

]
. Then, for 0 ≤ s ≤ n, we have

HolantΩs
=
∑

i+j=n

(
λiµj

)s · ci,j (2.1)

and HolantΩ = c0,n.
Since λ/µ is not a root of unity, the quantities λiµn−i are pairwise distinct, thus (2.1) is a full

ranked Vandermonde system. Thus we can compute HolantΩ from HolantΩs
by solving the linear

system in polynomial time. Thus we can interpolate D in polynomial time.

The next lemma allows us to get unary signatures.
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(a) f1 (b) f2

(c) f3 (d) f4

Figure 2: Four gadgets where each triangle represents the unary gadget [1, x]

Lemma 2.3. For Holant( [1, a, b, c] | =3), a, b, c ∈ Q, a 6= 0, with the availability of binary degen-
erate straddled signature [ y xy

1 x ] (here x, y ∈ C can be arbitrary), in polynomial time
1. we can interpolate [y, 1] on the LHS,

Holant({[1, a, b, c], [y, 1]} | =3) ≤T Holant([1, a, b, c]| =3);

2. we can interpolate [1, x] on the RHS,

Holant([1, a, b, c] |{(=3), [1, x]}) ≤T Holant([1, a, b, c]| =3),

except for two cases: [1, a, a, 1], [1, a,−1 − 2a, 2 + 3a].

Proof. For the problem Holant({[1, a, b, c], [y, 1]} | =3), the number of occurrences of [y, 1] on LHS
is 0 mod 3, say 3n, since the other signatures are both of arity 3. Now, for each occurrence of
[y, 1], we replace it with the binary straddled signature [ y xy

1 x ], leaving 3n dangling edges on RHS
yet to be connected to LHS, each of which represents a unary signature [1, x]. We build a gadget to
connect every triple of such dangling edges. We claim that at least one of the connection gadgets
in Figures 2a, 2b, 2c and 2d creates a nonzero global factor. The factors of these four gadgets
are f1 = cx3 + 3bx2 + 3ax + 1, f2 = (ab + c)x3 + (3bc + 2a2 + b)x2 + (2b2 + ac + 3a)x + ab + 1,
f3 = (a3+ b3+ c3)x3+3(a2+2ab2+ bc2)x2+3(a+2a2b+ b2c)x+1+2a3+ b3 and f4 = (ab+2abc+
c3)x3 + (2a2 + b+2a2c+3ab2 + bc+3b2c)x2 + (3a+3a2b+ ac+2b2 +2b2c+ ac2)x+1+ 2ab+ abc
respectively. By setting the four formulae to be 0 simultaneously, with a 6= 0, a, b, c ∈ Q and x ∈ C,
we found that there is no solution†. Thus, we can always “absorb” the left-over [1, x]’s at the cost
of some easily computable nonzero global factor.

For the other claim on [1, x] on RHS, i.e.,

Holant([1, a, b, c] | {(=3), [1, x]}) ≤T Holant([1, a, b, c] | =3)

†We use Mathematica, where a complex x (or y) is written as u+ vi, and the real and imaginary parts of fi are
both set to 0. The empty intersection of f1 = f2 = f3 = f4 = 0 is proved by cylindrical decomposition, an algorithm
for Tarski’s theorem on real-closed fields.
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(a) g1 (b) g2 (c) g3

Figure 3: Three gadgets where each triangle represents the unary gadget [y, 1]

we use a similar strategy to “absorb” the left-over copies of [y, 1] on the LHS by connecting them
to (=3) in the gadgets in the Figures 3a, 3b or 3c. These gadgets produce factors g1 = y3 + 1,
g2 = y3 + by2 + ay + c and g3 = y3 + 3a2y2 + 3b2y + c2 respectively. It can be directly checked
that, for complex y, all these factors are 0 iff y = −1, and the signature has the form [1, a, a, 1] or
[1, a,−2a − 1, 3a+ 2].

A main thrust in our proof is we want to be assured that such degenerate binary straddled
signature can be obtained, and the corresponding unary signatures in Lemma 2.3 can be produced.
We now first consider the two exceptional cases [1, a, a, 1] and [1, a,−2a − 1, 3a + 2] where this is
not possible.

Lemma 2.4. The problem [1, a, a, 1] is #P-hard unless a ∈ {0,±1} in which case it is in P.

Proof. If a = 0 or a = ±1, then it is either Gen-Eq or degenerate or affine, and thus the problem
Holant( [1, a, a, 1] | =3) is in P. Now assume a 6= 0 and a 6= ±1.

Using the gadget G1, we have ∆ = |2a| and x = y = ∆/2a = ±1 depending on the sign of a. So
we get the signature [y, 1] = [±1, 1] on LHS by Lemmas 2.2 and 2.3. Connecting two copies of [y, 1]
to [1, 0, 0, 1] on RHS, we get [1, 1] on RHS regardless of the sign. Connecting [1, 1] to [1, a, a, 1] on
LHS, we get [1 + a, 2a, 1 + a] on LHS. The problem Holant( [1 + a, 2a, 1 + a] | =3) is #P-hard by
Theorem 2.1 unless a = 0,±1 or −1

3 , thus we only need to consider the signature [3,−1,−1, 3].
If a = −1

3 , we apply holographic transformation with the Hadamard matrix H =
[
1 1
1 −1

]
. Note

that [3,−1,−1, 3] = 4((1, 0)⊗3+(0, 1)⊗3)−(1, 1)⊗3. Here each tensor power represents a truth-table
of 8 entries, or a vector of dimension 8; the linear combination is the truth-table for the symmetric
signature f = [3,−1,−1, 3], which is in fact a short hand notation for the vector

(f000, f001, f010, f011, f100, f101, f110, f111) = (3,−1,−1,−1,−1,−1,−1, 3).

Also note that, (1, 0)H = (1, 1), (0, 1)H = (1,−1) and (1, 1)H = (2, 0), thus [3,−1,−1, 3]H⊗3 =
4((1, 1)⊗3+(1,−1)⊗3)−(2, 0)⊗3 = 4[2, 0, 2, 0]−[8, 0, 0, 0] = [0, 0, 8, 0], which is equivalent to [0, 0, 1, 0]
by a global factor. So, we get

Holant ([3,−1,−1, 3] | (=3)) ≡T Holant
(
[3,−1,−1, 3]H⊗3 | (H⊗3)−1[1, 0, 0, 1]

)

≡T Holant ([0, 0, 1, 0] | [1, 0, 1, 0])
≡T Holant ([0, 0, 1, 0] | [0, 0, 1, 0])
≡T Holant ([0, 1, 0, 0] | [0, 1, 0, 0])

where the first reduction is by Valiant’s Holant theorem [25], the third reduction comes from the
following observation: given a bipartite 3-regular graph G = (V,U,E) where the vertices in V are

7



assigned the signature [0, 0, 1, 0] and the vertices in U are assigned the signature [1, 0, 1, 0], every
nonzero term in the Holant sum must correspond to a mapping σ : E → {0, 1} where exactly two
edges of any vertex are assigned 1. The fourth reduction is by simply flipping 0’s and 1’s. The
problem Holant ([0, 1, 0, 0] | [0, 1, 0, 0]) is the problem of counting perfect matchings in 3-regular
bipartite graphs, which Dagum and Luby proved to be #P-complete (Theorem 6.2 in [13]).

Lemma 2.5. The problem [1, a,−2a − 1, 3a + 2] is #P-hard unless a = −1 in which case it is in
P.

Proof. Observe that the truth-table of the symmetric signature [1, a,−2a− 1, 3a+2] written as an
8-dimensional column vector is just

2(a+ 1)

([
1
0

]⊗3

+

[
0
1

]⊗3
)

− a+ 1

2

([
1
1

]⊗3

+

[
1
−1

]⊗3
)

− a

[
1
−1

]⊗3

.

Here again, the tensor powers written as 8-dimensional vectors represent truth-tables, and the
linear combination of these vectors “holographically” reconstitute a truth-table of the symmetric
signature [1, a,−2a − 1, 3a+ 2].

We apply the holographic transformation with the Hadamard matrix H =
[
1 1
1 −1

]
. Note that

(1, 0)H = (1, 1), (0, 1)H = (1,−1), (1, 1)H = (2, 0) and (1,−1)H = (0, 2), and we get

Holant ([1, a,−2a − 1, 3a + 2] | (=3)) ≡T Holant
(
[1, a,−2a − 1, 3a + 2]H⊗3 | (H⊗3)−1[1, 0, 0, 1]

)

≡T Holant ([0, 0, a + 1,−3a− 1] | [1, 0, 1, 0])
≡T Holant ([0, 0, a + 1, 0] | [0, 0, 1, 0])

(2.2)

where the last equivalence follows from the observation that for each nonzero term in the Holant
sum, every vertex on the LHS has at least two of three edges assigned 1 (from [0, 0, a+1,−3a−1]),
meanwhile every vertex on the RHS has at most two of three edges assigned 1 (from [1, 0, 1, 0]).
The graph being bipartite and 3-regular, the number of vertices on both sides must equal, thus
every vertex has exactly two incident edges assigned 1.

Then by flipping 0’s and 1’s, Holant ([0, 0, a + 1, 0] | [0, 0, 1, 0]) ≡T Holant ([0, a + 1, 0, 0] | [0, 1, 0, 0]).
For a 6= −1, this problem is equivalent to counting perfect matchings in bipartite 3-regular graphs,
which is #P-complete by Theorem 6.2 in [13]. If a = −1, the signature [1,−1, 1,−1] = [1,−1]⊗3 is
degenerate, and thus in P. The holographic reduction also reveals that, not only the problem is in
P, but the Holant sum is 0.

We can generalize Lemma 2.5 to get the following corollary.

Corollary 2.6. The problem Holant (f |=3), where f = [3a+b,−a−b,−a+b, 3a−b], is computable
in polynomial time on planar graphs for all a, b, but is #P-hard on general graphs for all a 6= 0.

Proof. The following equivalence is by a holographic transformation using H =
[
1 1
1 −1

]
:

Holant (f | (=3)) ≡T Holant
(
fH⊗3 | (H−1)⊗3(=3)

)

≡T Holant ([0, 0, a, b] | [1, 0, 1, 0])
≡T Holant ([0, 0, a, 0] | [0, 0, 1, 0])
≡T Holant ([0, a, 0, 0] | [0, 1, 0, 0])

8



where the third reduction follows the same reasoning as in the proof of Lemma 2.5. When a 6= 0,
Holant ([0, a, 0, 0] | [0, 1, 0, 0]) is (up to a global nonzero factor) the perfect matching problem on
3-regular bipartite graphs. This problem is computable in polynomial time on planar graphs and
the reductions are valid for planar graphs as well. It is #P-hard on general graphs (for a 6= 0).

Remark: The planar tractability of the problem Holant (f |=3), for f = [3a+b,−a−b,−a+b, 3a−
b], is a remarkable fact. It is neither accomplished by a holographic transformation to matchgates
alone, nor entirely independent from it. One can prove that the signature f is not matchgates-
transformable (for nonzero a, b; see [5] for the theory of matchgates and the realizability of signatures
by matchgates under holographic transformation). In previous complexity dichotomies, we have
found that for the entire class of counting CSP problems over Boolean variables, all problems that
are #P-hard in general, but P-time tractable on planar graphs, are tractable by the following
universal algorthmic strategy—a holographic transformation to matchgates followed by the FKT
algorithm [12]. On the other hand, for (non-bipartite) Holant problems with arbitrary symmetric
signature sets, this category of problems (planar tractable but #P-hard in general) is completely
characterized by two types [8] : (1) holographic transformations to matchgates, and (2) a separate
kind that depends on the existence of “a wheel structure” (unrelated to holographic transformations
and matchgates). Here in Corollary 2.6 we have found the first instance where a new type has
emerged.

Proposition 2.7. For G1 = [ 1 b
a c ], with a, b, c ∈ Q, if it is non-singular (i.e., c 6= ab), then it has

two nonzero eigenvalues λ and µ. The ratio λ/µ is not a root of unity unless at least one of the
following conditions holds: 




c+ 1 = 0

ab+ c2 + c+ 1 = 0

2ab+ c2 + 1 = 0

3ab+ c2 − c+ 1 = 0

4ab+ c2 − 2c+ 1 = 0

(2.3)

Proof. We have λ = −∆+(1+c)
2 and µ = ∆+(1+c)

2 , where ∆ =
√

(1− c)2 + 4ab. Since a, b, c ∈ Q, if
λ
µ
is a root of unity it belongs to an extension field of Q of degree 2. Thus it can only be one of the

following 8 values: ±1, ±i, ±1±
√
3i

2 , where i =
√
−1. This gives us the cases listed in (2.3).

Now we introduce two more binary straddled signatures —G2 and G3 in Figure 4. The signature
matrix of G2 is

[
w b′

a′ c′

]
, where w = 1 + 2a3 + b3, a′ = a + 2a2b + b2c, b′ = a2 + 2ab2 + bc2 and

c′ = a3+2b3+c3. Similar to G1, we have ∆
′ =

√
(w − c′)2 + 4a′b′, two eigenvalues λ′ = −∆′+(w+c′)

2

and µ′ = ∆′+(w+c′)
2 . If a′ 6= 0, we have x′ = ∆′−(w−c′)

2a′ , y′ = ∆′+(w−c′)
2a′ and if further ∆′ 6= 0 we can

write its Jordan Normal Form as

G2 =

(
w′ b′

a′ c′

)
=

(
−x′ y′

1 1

)(
λ′ 0
0 µ′

)(
−x′ y′

1 1

)−1

. (2.4)

The signature matrix of G3 is
[
1+ab a2+bc
a+b2 ab+c2

]
. In this case we define w = 1+ab, a′ = a+b2, b′ = a2+bc

and c′ = ab+ c2. Then the corresponding quantities ∆′, λ′, µ′, x′, y′ can be defined in the same way,
and its Jordan Normal Form takes the same form as in (2.4).

Similar to Proposition 2.7, we have the following claim on G2 and G3.
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(a) G2 (b) G3

Figure 4: Two binary straddled gadgets

Proposition 2.8. For each gadget G2 and G3 respectively, if the signature matrix is non-degenerate,
then the ratio λ′/µ′ of its eigenvalues is not a root of unity unless at least one of the following con-
ditions holds, where A = w + c′, B = (c′ − w)2 + 4a′b′.





A = 0

B = 0

A2 +B = 0

A2 + 3B = 0

3A2 +B = 0

(2.5)

Lemma 2.9. Suppose a, b, c ∈ Q, a 6= 0 and c 6= ab and a, b, c do not satisfy any condition in (2.3).

Let x = ∆−(1−c)
2a , y = ∆+(1−c)

2a and ∆ =
√

(1− c)2 + 4ab. Then for Holant( [1, a, b, c] | =3),
1. we can interpolate [y, 1] on LHS;
2. we can interpolate [1, x] on RHS except for 2 cases: [1, a, a, 1], [1, a,−1 − 2a, 2 + 3a].

Proof. This lemma follows from Lemma 2.2 and Lemma 2.3 using the binary straddled gadget G1

with singaure matrix [ 1 b
a c ]. Note that c 6= ab indicates that matrix G1 is non-degenerate, and λ/µ

not being a root of unity is equivalent to none of the equations in (2.3) holds.

We have similar statements corresponding to G2 (resp. G3). When the signature matrix is
non-degenerate and does not satisfy any condition in (2.5), we can interpolate the corresponding
[y′, 1] on LHS, and we can also interpolate the corresponding [1, x′] on RHS except when y′ = −1.

Definition 2.10. For Holant( [1, a, b, c] | =3), with a, b, c ∈ Q, a 6= 0, we say a binary straddled
gadget G works if the signature matrix of G is non-degenerate and the ratio of its two eigenvalues
λ/µ is not a root of unity.

Remark: Explicitly, the condition that G1 works is that c 6= ab and a, b, c do not satisfy any
condition in (2.3), which is just the assumptions in Lemma 2.9. G1 works implies that it can be
used to interpolate [y, 1] on LHS, and to interpolate [1, x] on RHS with two exceptions for which
we already proved the dichotomy. The x, y are as stated in Lemma 2.9.

Similarly, when the binary straddled gadget G2 (resp. G3) works, for the corresponding values
x′ and y′, we can interpolate [y′, 1] on LHS, and we can interpolate [1, x′] on RHS except when
y′ = −1.

The ternary gadget G4 in Figure 5 will be used in the proof here and later.
The unary signatures ∆0 = [1, 0] and ∆1 = [0, 1] are called the pinning signatures because they

“pin” a variable to 0 or 1. One good use of having unary signatures is that we can use Lemma 2.12
to get the two pinning signatures. Pinning signatures are helpful as the following lemma shows.
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Figure 5: G4

Lemma 2.11. If ∆0 and ∆1 are available on the RHS in Holant( [1, a, b, c] | =3), where a, b, c ∈ Q,
ab 6= 0, then the problem is #P-hard unless [1, a, b, c] is affine or degenerate, in which cases it is in
P.

Proof. Connecting [1, 0], [0, 1] to [1, a, b, c] on LHS respectively, we get binary signatures [1, a, b]
and [a, b, c]. Then we can apply Theorem 2.1, and the problem is #P-hard unless both [1, a, b] and
[a, b, c] are in P. When ab 6= 0, both [1, a, b] and [a, b, c] are in P only when [1, a, b, c] = [1, 1, 1 − 1]
or [1,−1, 1, 1] or [1,−1,−1,−1] or [1, 1,−1, 1] or [1, 1,−1,−1] or [1,−1,−1, 1], where the last two
are affine and hence in P. Due to the symmetry by flipping 0 and 1 in the signature, it suffices to
consider only f = [1, 1, 1,−1] and g = [1,−1, 1, 1]; they are neither affine nor degenerate.

For both f and g we use the gadget G4 to produce ternary signatures f ′ = [1, 1, 3, 3] and
g′ = [1, 1,−1, 3] respectively. Neither are among the exceptional cases above. So Holant( f | =3)
and Holant( g | =3) are both #P-hard.

The following lemma lets us interpolate arbitrary unary signatures on RHS, in particular ∆0

and ∆1, from a binary gadget with a straddled signature and a suitable unary signature s on RHS.
Mathematically, the proof is essentially the same as in [23], but technically Lemma 2.12 applies to
binary straddled signatures.

Lemma 2.12. Let M ∈ R2×2 be a non-singular signature matrix for a binary straddled gadget
which is diagonalizable with distinct eigenvalues, and s = [a, b] be a unary signature on RHS that
is not a row eigenvector of M . Then {s ·M j}j≥0 can be used to interpolate any unary signature on
RHS.

3 Dichotomy when ab 6= 0 and G1 works

Figure 6: Non-linearity gadget, where a triangle represents the unary gadget [y, 1]
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Let us introduce a non-linearity gadget in Figure 6 where the triangles represent [y, 1]. It is on
the RHS with a unary signature [y2 + yb, ya+ c]. The following two lemmas will be used in proof
of Theorem 3.3.

Lemma 3.1. Let a, b, c ∈ Q, ab 6= 0, and satisfy (con1) a3 − b3 − ab(1 − c) = 0 and (con2)
a3 + ab + 2b3 = 0. Then Holant( [1, a, b, c] | =3) is #P-hard unless it is [1,−1, 1,−1] = [1,−1]⊗3,
which is degenerate, in which case the problem is in P.

Proof. If a+ b2 = 0, then [1, a, b, c] = [1,−1, 1,−1] which is degenerate. Now we assume a+ b2 6= 0.
Here we use Gadget G3.

First assume G3 works. Using a+ b2 6= 0 together with (con1 ) and (con2 ), we can verify that
∆ =

√
4(a+ b2)(a2 + bc) + (c2 − 1)2 6= 0, and we can write the Jordan Normal Form

G3 =

(
1 + ab a2 + bc
a+ b2 ab+ c2

)
=

(
−x y
1 1

)(
λ 0
0 µ

)(
−x y
1 1

)−1

,

where λ = 1+2ab+c2−∆
2 , µ = 1+2ab+c2+∆

2 , x = ∆+c2−1
2(a+b2)

, y = ∆−c2+1
2(a+b2)

. Because G3 works, [y, 1]

on LHS is available. Use this [y, 1] in the non-linearity gadget in Figure 6, we get the unary
signature

[
y2 + yb, ya+ c

]
on the RHS. By Lemma 2.12, we can interpolate any unary signature,

in particular ∆0 and ∆1 on RHS and apply Lemma 2.11, unless
[
y2 + yb, ya+ c

]
is proportional

to a row eigenvector of G3, namely [1,−y] and [1, x]. Thus the exceptions are ya+ c = x(y2 + yb)

and ya + c = −y(y2 + yb). Notice that now xy = a2+bc
a+b2

. The first equation implies c = ab or

a+ b2 = 0 or a3 − b3c+ ab(−1 + c2) = 0. The second equation implies a+ b2 = 0 or f1 = 0 where
f1 = a3 + 4a6 + 3a5b2 + a3b3 − c− 4a3c+ 6a4bc− 6a2b2c− b3c− 3a2b5c− 3a3c2 − 3abc2 − 4b3c2−
a3b3c2 − 6ab4c2 − 4b6c2 +3c3 +4a3c3 +6a2b2c3 +3b3c3 + a3c4 + 3abc4 +4b3c4 − 3c5 − b3c5 + c7. So
there are four exceptional cases,





c = ab

a+ b2 = 0

a3 − b3c+ ab(−1 + c2) = 0

f1 = 0

(3.6)

For each of them, together with (con1 ) and (con2 ), we get 3 equations and can solve them using
Mathematica™. For rational a, b, c, when ab 6= 0, there are only two possible results — [1,−1, 1,−1]
and [1,−1

3 ,−1
3 , 1]. The first one violates a+ b2 6= 0, and the second has been proved to be #P-hard

in Lemma 2.4. For all other cases when G3 works, we have the pinnng signatures ∆0 and ∆1 on
the RHS and then the lemma is proved by Lemma 2.11.

Now suppose G3 does not work. Then by Proposition 2.8, we get at least one more condition,
either one in (2.5) or (a+b2)(a2+bc) = (1+ab)(ab+c2) which indicates that G3 is degenerate. For
each of the 6 conditions, together with (con1 ) and (con2 ), we can solve them using Mathematica™
for rational a, b, c. The only solution is [1,−1, 1,−1] which violates a + b2 6= 0. The proof of the
lemma is complete.

Lemma 3.2. Let a, b, c ∈ Q, ab 6= 0, and satisfy (con1) a3 − b3 − ab(1 − c) = 0 and (con2)
(a4b+ ab4)2 = (a5 + b4)(b5 + a4c). Then Holant( [1, a, b, c] | =3) is #P-hard unless it is [1, a, a2, a3],
which is degenerate and thus in P.
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Proof. Eliminating c from (con1 ) and (con2 ) we get a11−a9b+a6b4+a5b6−a4b5−a3b7+a2b9−b10 =
0, which, quite miraculously, can be factored as (a2 − b)(a9 + a4b4 + a3b6 + b9) = 0. If b = a2, then
with (con1 ), we get c = a3 thus the signature becomes [1, a, a2, a3] which is degenerate. We assume
a9 + a4b4 + a3b6 + b9 = 0, then the rest of the proof is essentially the same as Lemma 3.1.

Theorem 3.3. For a, b, c ∈ Q, ab 6= 0, if G1 works, then the problem Holant( [1, a, b, c] | =3) is
#P-hard unless it is degenerate or Gen-Eq or affine, and thus in P.

Proof. If [1, a, b, c] has the form [1, a, a, 1] or [1, a,−1 − 2a, 2 + 3a] then the dichotomy has been
proved in Lemmas 2.4 and 2.5 respectively. We now assume the signature is not of these two forms.
By Lemma 2.9, when G1 works, we can interpolate [y, 1] on LHS and also [1, x] on RHS.

Let us write down the Jordan Normal Form again:

G1 =

(
1 b
a c

)
=

(
−x y
1 1

)(
λ 0
0 µ

)(
−x y
1 1

)−1

,

and λ = −∆+(1+c)
2 , µ = ∆+(1+c)

2 , x = ∆−(1−c)
2a , y = ∆+(1−c)

2a , ∆ =
√

(1− c)2 + 4ab.
Using [y, 1] and the gadget in Figure 6, we get

[
y2 + yb, ya+ c

]
on the RHS. We can interpolate

∆0 and ∆1 on RHS unless
[
y2 + yb, ya+ c

]
is proportional to a row eigenvector of G1, namely

[1,−y] or [1, x], according to Lemma 2.12. Thus the exceptions are ya+ c = (y2 + yb)x or ya+ c =
−y(y2 + yb). The first equation implies a3 − b3 − ab(1 − c) = 0 or c = ab. The second equation
implies c = ab or c = 1 + a− b.

By assumption G1 works, so c 6= ab. Thus, we consider two exceptional cases.
Case 1: a3 − b3 − ab(1− c) = 0

In this case, we have 1 − c = a3−b3

ab
and thus ∆ =

√
(1− c)2 + 4ab = |a3+b3

ab
|. One condition

(4ab + c2 − 2c + 1 = 0) in (2.3) is the same as ∆ = 0. Since G1 works, we have ∆ 6= 0 and thus
a3 + b3 6= 0, which is equivalent to a+ b 6= 0 when a, b ∈ Q.

Subcase 1: a3+b3

ab
> 0. We have [1, x] = [1, ∆−(1−c)

2a ] = [1, b2

a2
] on RHS. Connect [1, x] to [1, a, b, c]

on LHS, we get the binary signature [1 + b2

a
, a + b3

a2
, b + b2c

a2
] on LHS. It is #P-hard (and

thus the problem [1, a, b, c] is #P-hard) unless one of the tractable conditions in Theorem 2.1
holds. It turns out that the only possibility is X = 1 in Theorem 2.1, which becomes(
a2 − b

) (
a3 + ab+ 2b3

)
= 0. When a2 − b = 0, together with a3 − b3 = ab (1− c), we

have c = a3, and thus [1, a, b, c] is degenerate. When a3 + ab + 2b3 = 0, together with
a3 − b3 = ab (1− c), by Lemma 3.1, [1, a, b, c] is #P-hard (with a + b 6= 0 ruling out the
exception).

Subcase 2: a3+b3

ab
< 0. We have [y, 1] = [− b2

a2
, 1] on LHS. Connecting two copies of [y, 1] to (=3)

we get [y2, 1] = [ b
4

a4
, 1] on RHS. Connecting it back to LHS, we get a binary signature [ b

4

a4
+

a, b4

a3
+ b, b5

a4
+ c] on LHS. It is #P-hard unless one of the tractable conditions in Theorem 2.1

holds. It turns out that the only possibility is X = 1 in Theorem 2.1, which becomes
(a4b+ab4)2 = (a5+b4)(b5+a4c). Together with a3−b3 = ab (1− c), by Lemma 3.2, [1, a, b, c]
is #P-hard unless it is degenerate.

Case 2: 1 + a− b− c = 0
In this case, ∆ = |a + b|, and since G1 works, one condition is 4ab + c2 − 2c + 1 = 0 in (2.3)

which says ∆ 6= 0, and thus a+ b 6= 0.
If a + b > 0, then x = a+b−(1−c)

2a = 1. Then we can interpolate [1, x] = [1, 1] on RHS (as

y = a+b+(1−c)
2a = b

a
6= −1). Else, a + b < 0, y = −a−b+(1−c)

2a = −a−b+(b−a)
2a = −1. We can get [1, 1]
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on RHS by connecting two copies of [y, 1] = [−1, 1] to [1, 0, 0, 1]. Then connecting [1, 1] to [1, a, b, c]
on LHS we get a binary signature [a+ 1, a+ b, a+ 1] on LHS. Again we can apply Theorem 2.1 to
it, and conclude that it is #P-hard. It turns out that the only feasible case of tractability is X = 1
in Theorem 2.1, which leads to [1, a,−1− 2a, 2 + 3a], but we assumed [1, a, b, c] is not of this form.
This proves the #P-hardness of Holant( [1, a, b, c] | =3).

4 Dichotomy for [1, a, b, 0]

Theorem 4.1. The problem [1, a, b, 0] for a, b ∈ Q is #P-hard unless it is degenerate or affine, and
thus in P.

Proof. If ab 6= 0 and G1 works, then this is proved in Theorem 3.3 (in this case, it cannot be a
Gen-Eq). If a = b = 0, it is degenerate and in P. We divide the rest into three cases:

1. ab 6= 0 and G1 does not work;
2. f = [1, a, 0, 0] with a 6= 0;
3. f = [1, 0, b, 0] with b 6= 0.

• Case 1: ab 6= 0 in f = [1, a, b, 0] and G1 does not work. Since c = 0 6= ab, this implies that at least
one equation in (2.3) holds. After a simple derivation, we have the following family of signatures
to consider: [1, a,− 1

ka
, 0], for k = 1, 2, 3, 4.

We use G4 to produce another symmetric ternary signature in each case. If the new signature
is #P-hard, then so is the given signature. We will describe the case [1, a,− 1

a
, 0] in more detail;

the other three types (k = 2, 3, 4) are similar.
For k = 1, the gadget G4 produces g = [3a3 +4, a4 − a− 2

a2
,−a2 + 1

a
+ 1

a4
, a3 + 3]. For a = −1,

this is [1, 0,−1, 2], which has the form [1, a′,−1−2a′, 2+3a′] and is #P-hard by Lemma 2.5. Below
we assume a 6= −1. Then all entries of g are nonzero.

We claim that the gadget G1 works using g. Since a ∈ Q, it can be checked that g is non-
degenerate since (a4 − a − 2

a2
)(−a2 + 1

a
+ 1

a4
) = (3a3 + 4)(a3 + 3) has no solution, and that no

equation in (2.3) has a solution applied to g. Hence, G1 works using g and we may apply Theorem
3.3 to g. Using the fact that a ∈ Q, one can show that g cannot be a Gen-Eq because it has no
zero entry, nor can it be affine or degenerate. Thus [1, a,− 1

a
, 0] is #P-hard.

• Case 2: f = [1, a, 0, 0] with a 6= 0. The gadget G4 produces g′ = [3a3 + 1, a4 + a, a2, a3]. Since
a ∈ Q, 3a3 + 1 6= 0. If a = −1, g′ = [−2, 0, 1,−1] and it suffices to consider [1,−1, 0, 2], in which

case G3 works where the matrix G3 =
[

1 1
−1 4

]
. We can interpolate [1, x] = [1,−3+

√
5

2 ] on RHS.

Connect it back to [1,−1, 0, 2] and get a binary signature [5+
√
5

2 ,−1,−(3+
√
5)] on LHS, which, by

Theorem 2.1, is #P-hard. Thus, [1,−1, 0, 2] is #P-hard and so is [1, a, 0, 0].
Else, a 6= −1. We claim that the gadget G1 works using g′. The signature g′ is non-degenerate

since a ∈ Q is nonzero and thus (a4 + a)a2 6= (3a3 + 1)a3. Also no equation in (2.3) has a solution
applied to g′. Hence, G1 works using g′ and we may apply Theorem 3.3 to g′. Using the fact that
a ∈ Q, one can show that g′ cannot be a Gen-Eq because it has no zero entry, nor can it be affine
or degenerate. Thus [1, a, 0, 0] is #P-hard.
• Case 3: f = [1, 0, b, 0] with b 6= 0. The gadget G1 produces a binary straddled signature
G1 =

[
1 b
0 0

]
= [ 10 ] · [ 1 b ] which decomposes into a unary signature [1, b] on RHS and a unary

signature [1, 0] on LHS. This gives us a reduction Holant(f |{(=3), [1, b]}) ≤T Holant( f | =3). To
see that, notice that in any signature grid for the problem Holant(f |{(=3), [1, b]}), the number of
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occurrences of [1, b] is 0 mod 3, say 3n. We can replace each occurrence [1, b] by G1, leaving 3n
extra copies of [1, 0] on the LHS. These can all be absorbed by connecting to (=3).

Now, if we connect [1, b] to [1, 0, b, 0] and get a binary signature [1, b2, b] on LHS. Thus,
Holant([1, b2, b]| =3) ≤T Holant(f |{(=3), [1, b]}). The problem Holant([1, b2, b]| =3) is #P-hard
except b = ±1, by Theorem 2.1, which implies that Holant( f | =3) is also #P-hard. If b = ±1,
then f is affine, and Holant( f | =3) is in P.

5 Dichotomy for [1, a, 0, c]

Theorem 5.1. The problem [1, a, 0, c] with a, c ∈ Q is #P-hard unless a = 0, in which case it is
Gen-Eq and thus in P.

Proof. When a = 0, it is Gen-Eq and so is in P. When a 6= 0, if c = 0, it is #P-hard by Theorem
4.1. In the following we discuss [1, a, 0, c] with ac 6= 0.

If c = ±1, the signature is [1, a, 0, 1] or [1, a, 0,−1]. We use G4 to produce a ternary signature
g = [3a3 + 1, a4 + a, , a2, a3 + 1] (both mapped to the same signature, surprisingly). If a = −1, it
is [1, 0,−1

2 , 0] after normalization, which by Theorem 4.1 is #P-hard and so is the given signature
[1,−1, 0, 1]. If a 6= −1, then g has no zero entry. We then claim that the gadget G1 works using g.
It can be checked that g is non-degenerate since (a4+a)a2 = (3a3 +1)(a3+1) has no solution, and
that no equation in (2.3) has a solution applied to g. Hence, G1 works using g and we may apply
Theorem 3.3 to g. Using the fact that a ∈ Q, one can show that g cannot be a Gen-Eq because it
has no zero entry, nor can it be affine or degenerate. Thus [1, a, 0,±1] are both #P-hard.

Now assume c 6= 0,±1. We claim that the gadget G1 works. It can be checked that for the
non-degenerate matrix G1 = [ 1 0

a c ], ∆ = |1 − c|, λ/µ ∈ {c, 1
c
} is not a root of unity. Next we claim

that we can obtain [1, 0] on RHS. If c < 1 by Lemma 2.9 we can interpolate [1, x] = [1, 0] on RHS
with two exceptions to which we already give a dichotomy (see the Remark after Definition 2.10).
If c > 1, we can interpolate [y, 1] = [0, 1] on LHS and so the gadget in Figure 6 produces [0, c] on
RHS, which is not proportional to the row eigenvectors [1,−y] = [1, 0] and [1, x] = [1, c−1

a
] of G1.

By Lemma 2.12, we can interpolate any unary gadget on RHS, including [1, 0]. Thus we can always
get [1, 0] on RHS. Connect [1, 0] to [1, a, 0, c] and we will get a binary signature [1, a, 0] on LHS,
which is #P-hard by Theorem 2.1. Therefore [1, a, 0, c] is #P-hard when c 6= 0,±1.

6 Dichotomy when abc 6= 0

We need four lemmas to handle some special cases.

Lemma 6.1. The problem [1,−b2, b,−b3] with b ∈ Q is #P-hard unless b = 0,±1, which is in P.

Proof. If b = 0,±1, it is degenerate or affine. Now assume b 6= 0,±1. G1 =
[

1 b
−b2 b3

]
=
[

1
−b2

]
· [ 1 b ].

Then we can get [1,−b2] on the LHS similar to the proof in Case 3 of Theorem 4.1. Note that
connecting three copies of [1, b] with [1,−b2, b,−b3] on LHS produces a global factor 1 − b6 6= 0.
Connect [1,−b2] twice to [1, 0, 0, 1] on RHS, and we get [1, b4] on RHS. Connect [1, b4] back to
[1,−b2, b,−b3] on LHS, and we get a binary signature g = [1 − b6,−b2 + b5, b − b7], which by
Theorem 2.1 is #P-hard, and so is [1,−b2, b,−b3].
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Lemma 6.2. The problem [1, a,− 1
a
,−1] with a ∈ Q, a 6= 0 is #P-hard unless a = ±1, in which

case it is in P.

Proof. If a = ±1, [1, 1,−1−1] is affine and [1,−1, 1,−1] is degenerate, both of which are in P. Now
we assume a 6= ±1 (so the matrix

[
a−2 a
1 1

]
is invertible). We use the binary straddled gadget G2

and write down its Jordan Normal Form as

G2 =

(
2a3 + 1− a−3 −a− a−2

a2 + a−1 a3 − 1− 2a−3

)
=

(
a−2 a
1 1

)(
a3 − a−3 0
0 2a3 − 2a−3

)(
a−2 a
1 1

)−1

The matrix is non-degenerate and the ratio of its two eigenvalues are 1/2, so gadget G2 works. Since
here y = a 6= ±1, we can interpolate [1, x] = [1,−a−2] on RHS. Now connect [1, x] to [1, a,− 1

a
,−1]

on LHS and we can get a binary signature [1− 1
a
, a+ 1

a3
,− 1

a
+ 1

a2
], which by Theorem 2.1 is #P-hard,

and so is [1, a,− 1
a
,−1].

Before presenting our next lemma, we introduce a ternary gadget Gaux in Figure 7. Its signature
is [1 + 2a3 + b3, a+ 2a2b+ b2c, a2 + 2ab2 + bc2, a3 + 2b3 + c3].

Figure 7: Gaux

Lemma 6.3. The problem [1, a, b, ab] with a, b ∈ Q and a, b 6= 0 is #P-hard unless it is degenerate
or affine, which is in P.

Figure 8: Two gadgets where each triangle represents the unary gadget [1, a]

Proof. Using gadget G1, we have a degenerate matrix G1 =
[
1 b
a ab

]
= [ 1a ] · [ 1 b ]. We get [1, b] on

RHS if [1, a] can appropriately form some nonzero glabal factor. Figure 8 indicates two different
ways of “absorbing” [1, a] on LHS. The factors they provide are 1 + a3 and 1 + 3a3 + 3a2b2 + a5b2

respectively. It is easy to see that at least one of them is nonzero except a = −1 and b = ±1, i.e.,
[1,−1, 1,−1] which is degenerate or [1,−1,−1, 1] which is affine. Now assume below [1, a, b, ab] is
not these two, then we can interpolate [1, b] on RHS. Connect [1, b] back to [1, a, b, ab] on LHS and
we get the binary signature g = [1+ab, a+b2, b+bc]. If a+b2 = 0, since c = ab, the given signature
is [1,−b2, b,−b3] which, according to Lemma 6.1, is #P-hard (as we assumed just now, it is not
[1,−1,±1,∓1]). Now we assume a+ b2 6= 0. Applying Theorem 2.1 to g, it is #P-hard (and so is
the given signature [1, a, b, ab]) unless
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1. X = 1. (1 + ab)(b + bc) = (a + b2)2 implies
(
a2 − b

) (
b3 − 1

)
= 0. If a2 − b = 0, the given

signature is [1, a, a2, a3] and is degenerate. If b3 − 1 = 0, since b ∈ Q, we have b = 1 and
a 6= −b2 = −1, and the given signature is [1, a, 1, a]. We apply Gaux in Figure 7 using g to
produce a ternary signature h = [2 + 2a3, 2a+ 2a2, 2a+ 2a2, 2 + 2a3] on LHS, which has the
form [1, a′, a′, 1] after normalization, as 2 + 2a3 6= 0 for a ∈ Q and a 6= −1. So, h is #P-hard
by Lemma 2.4 unless a′ = 0,±1, which implies a = 1 (as a 6= 0,−1) in which case the given
signature is [1, 1, 1, 1] and thus in P. Thus, [1, a, 1, a] (a 6= 0) is #P-hard unless a = ±1.

2. X = Z = 0. The given signature is [1, a,− 1
a
,−1] which, by Lemma 6.2, is #P-hard unless

a = ±1.
3. X = −1, Z = 0. This turns out to be impossible.
4. X = −1, Z = −1. This is also impossible.

Note that since a, b 6= 0, [1, a, b, ab] cannot be Gen-Eq. The lemma is proved.

Lemma 6.4. The problem [1, a,−a,−1] with a ∈ Q is #P-hard unless a = ±1, 0, which is in P.

Proof. If a = ±1, 0, it is easy to see the given signature is in P, with [1, 1,−1,−1] being affine. Now
we assume a 6= ±1, 0. We use the gadget G4 to produce a ternary signature g = (1 + a)[u, v, v, u],
where u = 1− a+ a2, and v = a(1− a2). Since u, v 6= 0 and u 6= ±v, by Lemma 2.4, g is #P-hard
and so is the given signature [1, a,−a,−1].

Now we prove

Theorem 6.5. The problem [1, a, b, c] with a, b, c ∈ Q, abc 6= 0, is #P-hard unless it is degenerate,
Gen-Eq or affine.

Proof. By Theorem 3.3 and Lemma 6.3 it suffices to consider the case when the ratio of two
eigenvalues in G1 = [ 1 b

a c ] is a root of unity and c 6= ab. If the ratio of eigenvalues of G1 is a root
of unity, we know at least one condition in (2.3) holds. For convenience, we list the conditions in
(2.3) here and label them as Ri where i = 1, 2, 3, 4, 5:

R =
5∨

i=1

Ri, where





R1 : c = −1

R2 : ab+ c2 + c+ 1 = 0

R3 : 2ab+ c2 + 1 = 0

R4 : 3ab+ c2 − c+ 1 = 0

R5 : 4ab+ c2 − 2c+ 1 = 0

(6.7)

We apply Gaux in Figure 7 on [1, a, b, c], i.e. placing squares to be [1, a, b, c] and circles to be =3,
to produce a ternary signature [w, x, y, z] = [1+2a3+b3, a+2a2b+b2c, a2+2ab2+bc2, a3+2b3+c3]. If
w 6= 0 and G1 works on [w, x, y, z], by Theorem 3.3 we have [w, x, y, z] is #P-hard and thus [1, a, b, c]
is #P-hard unless at least one condition Si listed below holds, where i = 1, 2, 3, 4, 5, 6:

S =
6∨

i=1

Si where





S1 : x
2 = wy ∧ y2 = xz (degenerate form)

S2 : x = 0 ∧ y = 0 (Gen-Eq form)

S3 : w = y ∧ x = 0 ∧ z = 0 (affine form [1, 0, 1, 0])

S4 : w + y = 0 ∧ x = 0 ∧ z = 0 (affine form [1, 0,−1, 0])

S5 : w = x ∧ w + y = 0 ∧w + z = 0 (affine form [1, 1,−1,−1])

S6 : w + x = 0 ∧ w + y = 0 ∧ w = z (affine form [1,−1,−1, 1])

(6.8)
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Solve the equation system R ∧ S for variables a, b, c ∈ Q, we have the following solutions:
• a = c = −1, b = 1; the problem [1,−1, 1,−1] is in P since it is degenerate;
• a = 1, b = c = −1; the problem [1, 1,−1,−1] is in P since it is affine;
• a = c = 1, b = −1; the problem [1, 1,−1, 1] is #P-hard (use the gadget G4 to produce
[1, 1,−1, 3] after flipping 0’s and 1’s, then use it again to produce [1, 1,−5, 19] which is #P-
hard by Theorem 3.3. Note that we need to apply G4 twice in order that the condition that
G1 works in Theorem 3.3 is satisfied for the newly created ternary signature);

• a = 1
2 , b = −1

2 , c = −1; the problem [1, 12 ,−1
2 ,−1] is #P-hard by Lemma 6.4.

Continuing the discussion for the ternary signature [w, x, y, z], it remains to consider the case
when w = 0 or G1 does not work on [w, x, y, z]. For w 6= 0 we normalize [w, x, y, z] to be [1, x

w
, y
w
, z
w
]

and substituting x
w
, y
w
, z
w

into a, b, c respectively in (2.3), we get at least one condition Ti listed
below, where i = 1, 2, 3, 4, 5, 6:

T =
6∨

i=1

Ti, where





T1 : zw + w2 = 0

T2 : xy + z2 + zw + w2 = 0

T3 : 2xy + z2 + w2 = 0

T4 : 3xy + z2 − zw + w2 = 0

T5 : 4xy + z2 − 2zw + w2 = 0

T6 : xy = wz

(6.9)

Note that T1 incorporates the case when w = 0. So we have the condition R∧T . We now apply
Gaux once again using [w, x, y, z] to produce another new ternary signature [w2, x2, y2, z2] where
w2 = w3 + 2x3 + y3, x2 = w2x+ 2x2y + y2z, y2 = wx2 + 2xy2 + yz2, z2 = x3 + 2y3 + z3. Similarly
as the previous argument, if w2 6= 0 and G1 works on [w2, x2, y2, z2], we know [w2, x2, y2, z2] is
#P-hard and thus [1, a, b, c] is #P-hard unless at least one condition Ui listed below holds, where
i = 1, 2, 3, 4, 5, 6:

U =
6∨

i=1

Ui, where





U1 : x
2
2 = w2y2 ∧ y22 = x2z2 (degenerate form)

U2 : x2 = 0 ∧ y2 = 0 (Gen-Eq form)

U3 : w2 = y2 ∧ x2 = 0 ∧ z2 = 0 (affine form [1, 0, 1, 0])

U4 : w2 + y2 = 0 ∧ x2 = 0 ∧ z2 = 0 (affine form [1, 0,−1, 0])

U5 : w2 = x2 ∧ w2 + y2 = 0 ∧w2 + z2 = 0 (affine form [1, 1,−1,−1])

U6 : w2 + x2 = 0 ∧ w2 + y2 = 0 ∧ w2 = z2 (affine form [1,−1,−1, 1])

(6.10)
Solve the equation system R ∧ T ∧ U for rational-valued variables a, b, c, we have the following

solutions:
• a = c = −1, b = 1; the problem [1,−1, 1,−1] is in P since it is degenerate;
• a = 1, b = c = −1; the problem [1, 1,−1,−1] is in P since it is affine;
• a = −1, b = c = 1; the problem [1,−1, 1, 1] is #P-hard (use the gadget G4 to produce
[1, 1,−1, 3], use it again to produce [1, 1,−5, 19] which is #P-hard by Theorem 3.3);

• a = c = 1, b = −1; the problem [1, 1,−1, 1] is #P-hard (this is the reversal of [1,−1, 1, 1]);
• a = 1

2 , b = −1
2 , c = −1; the problem [1, 12 ,−1

2 ,−1] is #P-hard by Lemma 6.4.
Otherwise, we know w2 = 0 or G1 does not work on [w2, x2, y2, z2]. Similarly, we know at least
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one condition Vi listed below holds, where i = 1, 2, 3, 4, 5, 6:

V =
6∨

i=1

Vi, where





V1 : z2w2 + w2
2 = 0

V2 : x2y2 + z22 + z2w2 + w2
2 = 0

V3 : 2x2y2 + z22 + w2
2 = 0

V4 : 3x2y2 + z22 − z2w2 +w2
2 = 0

V5 : 4x2y2 + z22 − 2z2w2 + w2
2 = 0

V6 : x2y2 = w2z2

(6.11)

Finally, solve the equation system R ∧ T ∧ V for variables a, b, c ∈ Q, we have the following
solutions:

• a = −1, b = c = 1; the problem [1,−1, 1, 1] is #P-hard (see the case above for R ∧ T ∧ U);
• a = c = 1, b = −1; the problem [1, 1,−1, 1] is #P-hard (this is the reversal of [1,−1, 1, 1]);
• a = −b, c = −1; the problem [1, a,−a,−1] is #P-hard unless a = ±1, 0 by Lemma 6.4.
The proof is now complete.

7 Dichotomy for [0, a, b, 0]

We quickly finish the discussion for [0, a, b, 0] with the help of previous theorems on [1, a, b, c].

Theorem 7.1. The problem [0, a, b, 0] with a, b ∈ Q is #P-hard unless a = b = 0, in which case
the Holant value is 0.

Proof. We apply the gadget G4 on [0, a, b, 0] to produce the ternary signature g = [3a2b2, a(a3 +
2b3), b(2a3 + b3), 3a2b2].

If ab 6= 0, we can normalize g to be the form [1, a′, b′, c′]. Since a, b, c ∈ Q, we have a′b′c′ 6= 0. By
Theorem 6.5, we know [1, a′, b′, c′] is #P-hard (and so is [0, a, b, 0]) unless it is degenerate, Gen-Eq
or affine. However, that [1, a′, b′, c′] in P implies b = a, i.e. the given signature is [0, a, a, 0]. It
suffices to consider [0, 1, 1, 0]. We apply the gadget Gaux on [0, 1, 1, 0] and get the ternary signature
[3, 2, 2, 3] which is #P-hard by Lemma 2.4, so [0, 1, 1, 0] is #P-hard.

Now if exactly one of a and b is 0, it suffices to consider the problem [0, 1, 0, 0]. This problem
is to count the number of exact set covers in a 3-regular 3-uniform set system. This problem is
#P-hard by Lemma 6.1 in [15].

8 Main Theorem

We are now ready to prove our main theorem. The following is a flowchart of the logical structure
for the proof of Theorem 8.1.

Flowchart of proof structure:
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[f0, f1, f2, f3]
Dichotomy
for [0, a, b, 0],
Theorem 7.1

[1, a, b, c]
Dichotomy
for [1, a, b, 0],
Theorem 4.1

By possibly
flipping, get
[1, a, 0, c],

dichotomy in
Theorem 5.1

Dichotomy in
Theorem 6.5

if f0 = f3 = 0

else, by
possibly
flipping

if c = 0
if c 6= 0

and ab = 0

else (i.e.,
abc 6= 0)

Theorem 8.1. The problem Holant{ [f0, f1, f2, f3] | (=3)} with fi ∈ Q (i = 0, 1, 2, 3) is #P-hard
unless the signature [f0, f1, f2, f3] is degenerate, Gen-Eq or belongs to the affine class.

Proof. First, if f0 = f3 = 0, by Theorem 7.1, we know that it is #P-hard unless it is [0, 0, 0, 0]
which is degenerate. Note that in all other cases, [0, f1, f2, 0] is not Gen-Eq, degenerate or affine.

Assume now at least one of f0 and f3 is not 0. By flipping the role of 0 and 1, we can assume
f0 6= 0, then the signature becomes [1, a, b, c] after normalization.

If c = 0, the dichotomy for [1, a, b, 0] is proved in Theorem 4.1.
If in [1, a, b, c], c 6= 0, then a and b are symmetric by flipping. Now if ab = 0, we can assume

b = 0 by the afore-mentioned symmetry, i.e., the signature becomes [1, a, 0, c]. By Theorem 5.1,
it is #P-hard unless a = 0, in which case it is Gen-Eq. In all other cases, it is not Gen-Eq or
degenerate or affine.

Finally, for the problem [1, a, b, c] where abc 6= 0, Theorem 6.5 proves the dichotomy that it is
#P-hard unless the signature is degenerate or Gen-Eq or affine.
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Appendix

In this paper we use Mathematica™ to carry out symbolic computations. In particular, the func-
tion CylindricalDecomposition is used heavily. It is an implementation of Tarski’s theorem on
the decidability of the theory of real-closed fields, and can prove the non-existence solutions of
polynomial systems.

• In the proof of Lemma 2.3, we use CylindricalDecomposition to show that the intersection
of f1 = f2 = f3 = f4 = 0 is empty for a, b, c ∈ Q and x ∈ C, where f1 = cx3 + 3bx2 + 3ax + 1,
f2 = (ab + c)x3 + (3bc + 2a2 + b)x2 + (2b2 + ac + 3a)x + ab + 1, f3 = (a3 + b3 + c3)x3 + 3(a2 +
2ab2 + bc2)x2 + 3(a + 2a2b+ b2c)x+ 1 + 2a3 + b3 and f4 = (ab+ 2abc + c3)x3 + (2a2 + b+ 2a2c+
3ab2 + bc + 3b2c)x2 + (3a + 3a2b + ac + 2b2 + 2b2c + ac2)x + 1 + 2ab + abc. We write x as u + vi
with u, v ∈ R, and set both the real and imaginary parts of each fi to 0.

1 Clear["Global ‘*"];

2 (* below x = u + vi is complex ,

3 r3 is real part of x^3, i3 is imaginary part of x^3 ,

4 r2 is real part of x^2, i2 is imaginary part of x^2,

5 r1 is real part of x, i1 is imaginary part of x *)

6

7 r3 = u^3 - 3 u v v;

8 i3 = 3 u u v - v^3;

9 r2 = u u - v v;

10 i2 = 2 u v;

11 r1 = u;

12 i1 = v;

13 (* below f_k1 is real part of f_k , f_k2 is imaginary part of f_k ,

14 where k = 1,2,3,4 *)

15 f11 = c r3 + 3 b r2 + 3 a r1 + 1;

16 f12 = c i3 + 3 b i2 + 3 a i1;

17 f21 = (a b + c) r3 + (3 b c + 2 a a + b) r2 + (2 b b + a c + 3 a) r1 +

18 a b + 1;

19 f22 = (a b + c) i3 + (3 b c + 2 a a + b) i2 + (2 b b + a c + 3 a) i1;

20 f31 = (a^3 + b^3 + c^3) r3 + 3 (a a + 2 a b b + b c c) r2 +

21 3 (a + 2 a a b + b b c) r1 + 2 a^3 + b^3 + 1;

22 f32 = (a^3 + b^3 + c^3) i3 + 3 (a a + 2 a b b + b c c) i2 +

23 3 (a + 2 a a b + b b c) i1;

24 f41 = (a b + 2 a b c + c^3) r3 + (2 a a + b + 3 a b b + 2 a a c +

25 b c + 3 b c c) r2 + (3 a + 3 a a b + 2 b b + a c + 2 b b c +

26 a c c) r1 + 1 + 2 a b + a b c;

27 f42 = (a b + 2 a b c + c^3) i3 + (2 a a + b + 3 a b b + 2 a a c +

28 b c + 3 b c c) i2 + (3 a + 3 a a b + 2 b b + a c + 2 b b c +

29 a c c) i1;

30

31 CylindricalDecomposition[

32 f11 == 0 && f12 == 0 && f21 == 0 && f22 == 0 && f31 == 0 &&

33 f32 == 0 && f41 == 0 && f42 == 0, {a, b, c, u, v}]

• In the proof of Lemma 3.1, we use CylindricalDecomposition several times to solve a polynomial
system in a, b, c. There, (con1) is a3 − b3 − ab(1− c) = 0 and (con2) is a3 + ab+2b3 = 0. Together
with a third condition, we solve for a, b, c ∈ Q. The third equation is among one in (3.6) (note that
we use the function Factor here to get an irreducible polynomial f1 over Q), or one in (2.5), or
(a+ b2)(a2 + bc) = (1 + ab)(ab+ c2).
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1 Clear["Global ‘*"];

2 (* dsq means\Delta^2 *)

3

4 dsq = 1 + 4 a^3 + 4 a^2 b^2 + 4 a b c + 4 b^3 c - 2 c^2 + c^4;

5 d = 1 - c c;

6 e = 2 (a + b b);

7

8 (*y^3 + y^2 b + y a + c\[ Equal]0 is transformed to LHS = RHS below ,

9 by eliminating the square root part

10 i.e., we give a function in real domain *)

11

12 LHS = dsq *( dsq + 3 d d + 2 d e b + e e a)^2;

13 RHS = (dsq *(3 d + e b) + d d d + d d e b + e e a d + c e e e)^2;

14 Factor[LHS - RHS]

15 (* the factor result is f1 * (a + b b) ^3 , where f1 is below *)

16

17 f1 = a^3 + 4 a^6 + 3 a^5 b^2 + a^3 b^3 - c - 4 a^3 c + 6 a^4 b c -

18 6 a^2 b^2 c - b^3 c - 3 a^2 b^5 c - 3 a^3 c^2 - 3 a b c^2 -

19 4 b^3 c^2 - a^3 b^3 c^2 - 6 a b^4 c^2 - 4 b^6 c^2 + 3 c^3 +

20 4 a^3 c^3 + 6 a^2 b^2 c^3 + 3 b^3 c^3 + a^3 c^4 + 3 a b c^4 +

21 4 b^3 c^4 - 3 c^5 - b^3 c^5 + c^7;

22 f2 = a + b b;

23 f3 = c - a b;

24 f4 = a^3 - b^3 c + a b (c c - 1);

25 con1 = a a a - b b b - a b (1 - c) == 0;

26 con2 = a a a + a b + 2 b b b == 0;

27 (* the following four commands correspond to (3.7) in paper ,

28 the exceptional cases of that G3 works but may not interpolate any \

29 unary ,

30 *)

31 CylindricalDecomposition[con1 && con2 && f1 == 0, {a, b, c}]

32 CylindricalDecomposition[con1 && con2 && f2 == 0, {a, b, c}]

33 CylindricalDecomposition[con1 && con2 && f3 == 0, {a, b, c}]

34 CylindricalDecomposition[con1 && con2 && f4 == 0, {a, b, c}]

35

36 A = 1 + 2 a b + c^2;

37 B = 4 a^3 + 4 a^2 b^2 + 4 a b c + 4 b^3 c + (-1 + c^2) ^2;

38 h1 = A == 0;

39 h2 = B == 0;

40 h3 = A A + B == 0;

41 h4 = A A + 3 B == 0;

42 h5 = 3 A A + B == 0;

43 (* G3 doesn ’t work *)

44 CylindricalDecomposition[con1 && con2 && h1 , {a, b, c}]

45 CylindricalDecomposition[con1 && con2 && h2 , {a, b, c}]

46 CylindricalDecomposition[con1 && con2 && h3 , {a, b, c}]

47 CylindricalDecomposition[con1 && con2 && h4 , {a, b, c}]

48 CylindricalDecomposition[con1 && con2 && h5 , {a, b, c}]

49 CylindricalDecomposition[

50 con1 && con2 && a^3 - a b + a b c + b^3 c - c^2 - a b c^2 == 0, {a,

51 b, c}]

• In the proof of Lemma 3.2, similarly, we have the code below.

1 Clear["Global ‘*"];

2 (* note that the following con2 is not the same one as in the lemma ,

24



3 however , according to the proof of the lemma ,

4 it suffices to consider this new con2 with the original con1 *)

5

6 con1 = a a a - b b b - a b (1 - c) == 0;

7 con2 = a^9 + a^4 b^4 + a^3 b^6 + b^9 == 0;

8

9 f1 = a^3 + 4 a^6 + 3 a^5 b^2 + a^3 b^3 - c - 4 a^3 c + 6 a^4 b c -

10 6 a^2 b^2 c - b^3 c - 3 a^2 b^5 c - 3 a^3 c^2 - 3 a b c^2 -

11 4 b^3 c^2 - a^3 b^3 c^2 - 6 a b^4 c^2 - 4 b^6 c^2 + 3 c^3 +

12 4 a^3 c^3 + 6 a^2 b^2 c^3 + 3 b^3 c^3 + a^3 c^4 + 3 a b c^4 +

13 4 b^3 c^4 - 3 c^5 - b^3 c^5 + c^7;

14 f2 = a + b b;

15 f3 = c - a b;

16 f4 = a^3 - b^3 c + a b (c c - 1);

17

18 CylindricalDecomposition[con1 && con2 && f1 == 0, {a, b, c}]

19 CylindricalDecomposition[con1 && con2 && f2 == 0, {a, b, c}]

20 CylindricalDecomposition[con1 && con2 && f3 == 0, {a, b, c}]

21 CylindricalDecomposition[con1 && con2 && f4 == 0, {a, b, c}]

22

23 A = 1 + 2 a b + c^2;

24 B = 4 a^3 + 4 a^2 b^2 + 4 a b c + 4 b^3 c + (-1 + c^2) ^2;

25

26 h1 = A == 0;

27 h2 = B == 0;

28 h3 = A A + B == 0;

29 h4 = A A + 3 B == 0;

30 h5 = 3 A A + B == 0;

31

32 CylindricalDecomposition[con1 && con2 && h1 , {a, b, c}]

33 CylindricalDecomposition[con1 && con2 && h2 , {a, b, c}]

34 CylindricalDecomposition[con1 && con2 && h3 , {a, b, c}]

35 CylindricalDecomposition[con1 && con2 && h4 , {a, b, c}]

36 CylindricalDecomposition[con1 && con2 && h5 , {a, b, c}]

37 CylindricalDecomposition[

38 con1 && con2 && a^3 - a b + a b c + b^3 c - c^2 - a b c^2 == 0, {a,

39 b, c}]

• In the proof of Theorem 6.5, again we use CylindricalDecomposition to solve equation systems
R ∧ S, R ∧ T ∧ U and R ∧ T ∧ V . In solving the system R ∧ T ∧ V which requires a significant
amount of computation, we apply CylindricalDecomposition to each sub-system Ri ∧ Tj ∧ Vk

where i ∈ {1, 2, 3, 4, 5}, j, k ∈ {1, 2, 3, 4, 5, 6} separately by using the function Manipulate and
combine their solutions. There are a total of 5× 6× 6 = 180 sub-systems in R ∧ T ∧ V .

1 Clear["Global ‘*"];

2 w = 1 + 2 a a a + b b b;

3 x = a + 2 a a b + b b c;

4 y = a a + 2 a b b + b c c;

5 z = a a a + 2 b b b + c c c;

6

7 w2 = w^3 + 2 x^3 + y^3;

8 x2 = w w x + 2 x x y + y y z;

9 y2 = w x x + 2 x y y + y z z;

10 z2 = x x x + 2 y y y + z z z;

11

25



12 tricon = a b c != 0;

13 (* R: G1 doesn ’t work on [1,a,b,c] *)

14 R1 = c == -1;

15 R2 = a b + c c + c + 1 == 0;

16 R3 = 2 a b + c c + 1 == 0;

17 R4 = 3 a b + c c - c + 1 == 0;

18 R5 = 4 a b + c c - 2 c + 1 == 0;

19 R = R1 || R2 || R3 || R4 || R5;

20

21 (* T: G1 doesn ’t work on [w,x,y,z] *)

22 T1 = z w + w w == 0;

23 T2 = x y + z z + z w + w w == 0;

24 T3 = 2 x y + z z + w w == 0;

25 T4 = 3 x y + z z - z w + w w == 0;

26 T5 = 4 x y + z z - 2 z w + w w == 0;

27 T6 = x y == w z;

28 T = T1 || T2 || T3 || T4 || T5 || T6;

29

30

31 (* S:[w,x,y,z] in P *)

32 S1 = x x == w y && y y == x z;

33 S2 = x == 0 && y == 0;

34 S3 = w == y && x == 0 && z == 0;

35 S4 = w + y == 0 && x == 0 && z == 0;

36 S5 = w == x && w + y == 0 && w + z == 0;

37 S6 = w + x == 0 && w + y == 0 && w == z;

38 S = S1 || S2 || S3 || S4 || S5 || S6;

39

40 (* U:[w2 ,x2 ,y2 ,z2] in P *)

41 U1 = x2 x2 == w2 y2 && y2 y2 == x2 z2;

42 U2 = x2 == 0 && y2 == 0;

43 U3 = w2 == y2 && x2 == 0 && z2 == 0;

44 U4 = w2 + y2 == 0 && x2 == 0 && z2 == 0;

45 U5 = w2 == x2 && w2 + y2 == 0 && w2 + z2 == 0;

46 U6 = w2 + x2 == 0 && w2 + y2 == 0 && w2 == z2;

47 U = U1 || U2 || U3 || U4 || U5 || U6;

48

49 CylindricalDecomposition[tricon && R && S, {a, b, c}]

50

51 CylindricalDecomposition[tricon && R && T && U, {a, b, c}]

52

53

54 (* Below , con1 , con2 , con3 corresponds to R, T, V in paper , \

55 respectively *)

56 Manipulate [

57 CylindricalDecomposition[

58 con1 && con2 && con3 && (a b c != 0), {a, b, c}], {con1 , {c == -1,

59 a b + c c + c + 1 == 0, 2 a b + c c + 1 == 0,

60 3 a b + c c - c + 1 == 0,

61 4 a b + c c - 2 c + 1 == 0}}, {con2 , {z w + w w == 0,

62 x y + z z + z w + w w == 0, 2 x y + z z + w w == 0,

63 3 x y + z z - z w + w w == 0, 4 x y + z z - 2 z w + w w == 0,

64 x y == w z}}, {con3 , {z2 w2 + w2 w2 == 0,

65 x2 y2 + z2 z2 + z2 w2 + w2 w2 == 0, 2 x2 y2 + z2 z2 + w2 w2 == 0,

66 3 x2 y2 + z2 z2 - z2 w2 + w2 w2 == 0,

67 4 x2 y2 + z2 z2 - 2 z2 w2 + w2 w2 == 0, x2 y2 == w2 z2 }}]
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