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Abstract

Floyd and Knuth investigated in 1990 register machines which can add, subtract and compare

integers as primitive operations. They asked whether their current bound on the number of

registers for multiplying and dividing fast (running in time linear in the size of the input) can be

improved and whether one can output fast the powers of two summing up to a positive integer in

subquadratic time. Both questions are answered positively. Furthermore, it is shown that every

function computed by only one register is automatic and that automatic functions with one input

can be computed with four registers in linear time; automatic functions with a larger number of

inputs can be computed with 5 registers in linear time. There is a nonautomatic function with

one input which can be computed with two registers in linear time.

Keywords and phrases Register Machines (Addition Machines); Addition, Subtraction and Or-

der as Primitive Operations; Automatic Functions; Integers; Abstract Complexity
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2 Addition Machines, Automatic Functions and Open Problems of Floyd and Knuth

1 Introduction

Hartmanis and Simon [26] showed that register machines which can add and multiply and

perform bitwise Boolean operations in unit time and which can hold arbitrarily big numbers

can solve NP-hard problems (and beyond) with polynomially many primitive steps. Though

this model is powerful, mathematicians and computer scientists have nevertheless seen quite

some usefulness in determining for arithmetic circuits using + and ∗ how many operations

and what depth they need to compute natural concepts like permanents and determinants

over integers and other rings. Early work in this area is surveyed by Pippenger [28]. A more

recent sample result is by Agrawal and Vinay [1] showing that circuits of depth four (with

multiple-fanin for both arithmetic operations) can compute much more than those of depth

3. Furthermore, blackbox algorithms for polynomial identity testing use algebraic operations

as their primitives, with some assumptions on the ring used in which these computations

are carried out; for example one might try to minimise the amount of randomness used

in such an algorithm [2]. These studies address various models like the usage of algebraic

operations on real numbers, the study of operations on the integers and on finite fields.

However, when considering the full functionality of arithmetics in computer programs or

circuits, the model is too powerful when using infinite rings like the integers. In contrast

to this, Hartmanis and Simon [26] showed that register machines which have only addition,

subtraction and comparison instructions on the integers can carry out arbitrary polynomial

time operations in polynomial time but not more, so they are a realistic model of computation

with primitive steps that are more comprehensive than those of Turing machines or counter

machines. Due to the unit costs of addition, some operations became faster, for example

multiplication can be done in O(n) instead of the fastest known O(n log n), which counts

multitape Turing machine steps and was recently discovered by Harvey and van der Hoeven

[16]. By definition, addition and subtraction are O(1) instead of O(n). On the other hand,

Stockmeyer [34] showed that even if a machine can add, subtract and multiply in unit time,

it cannot compute the following functions in o(n) steps: x 7→ x/2, x 7→ (x mod 2); the

same lower bound also holds for addition machines. Indeed, for many regular sets, addition

machines need time Θ(n) similar to Turing machines which must often inspect all digits to

decide the membership.

Floyd and Knuth [13] systematically studied register machines which can add, subtract

and compare and called them “addition machines”; in the following text, addition machines

and register machines are used synonymously. Knuth recalled this work in Floyd’s obituary

[24] as one of the joint works he enjoyed a lot in the later stage of their collaboration. They

found that addition machines form a natural model and they provided various algorithms

for arithmetic on them, in particular as Floyd and Knuth looked for alternatives to the

usual Turing machine models with their tiny primitive steps. Anisimov [3, 4] studied the

idea of Floyd and Knuth of using ideas borrowed from Fibonacci numbers for implementing

arithmetic on large numbers with addition and investigated it thoroughly; later, he and

Novokshonov [5, 6, 27] implemented the algorithms of Floyd and Knuth [5, 6, 27].

Schönhage [31] has proven that allowing subtraction and comparison increases the power

of machines which can only add and do equality iff allowing division increases the power of

such machines. Simon [33] extended these studies, in particular he took register machines

which can add, subtract and compare as the base case and then looked into details – beyond

what he had done jointly with Hartmanis [26] – what impact additional operations have.

This work was extended also by other authors as Trahan and Bhanukumar [35].

The model of Floyd and Knuth [13] is indeed well-motivated from the fact that many
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of the above investigated relations increase the computational power of polynomial time

operations substantially. Floyd and Knuth were, however, less interested in comparing their

model with variations than in establishing the power of linear time operations and a fine-

grained time-complexity for natural operations on their model, here linear time means linear

in the number of digits of a binary or decimal representation of the input numbers (if there

are several inputs, one has to take the sum of the digits needed for each input number plus

the number of the inputs). Their model is motivated from the idea that a central processing

unit of a computer has only few accumulators or registers which perform basic arithmetic

and other operations and for which few of these registers are sufficient; when abstracting the

model and allowing arbitrarily large values for the registers, the additive operations turn

out to be an adequate choice, as they, as mentioned before, preserve the class of polynomial

time operations.

The precise model of Floyd and Knuth [13] allows the following primitive operations

which count each as 1 step: Adding or subtracting two registers and assigning the value to

(a perhaps same or different) third register; conditional goto in dependence of outcome of

the comparison of two registers with <, ≤, >, ≥, =, 6=; unconditional goto; reading of input

into registers and writing of output from registers. However, Floyd and Knuth [13] did not

allow operations with constants; as some programs need to handle constants, they allowed

that one additional input 1 is read in and stored in a dedicated register in order to have

access to constants. Floyd and Knuth also considered the domain of all real numbers or

the domain of a proper subgroup of the real numbers other than the integers, that might

explain their reluctance to handle constants. However, the present work does not go into

details of these data structures different from the integers and the authors of the present

work think that operations and comparisons with constants are very natural and should

be included into the instruction set. Furthermore, they consider only the integers Z or

the natural numbers N = {z ∈ Z : z ≥ 0} as domains for the algorithms considered; all

algorithms can be done with integers in linear time, but in some cases, only the subcase of

natural numbers is considered in order to reduce the amount of handling of trivial cases; for

that reason, Floyd and Knuth also pose several questions for natural numbers rather than

integers.

Floyd and Knuth [13] were precisely interested in two types of questions: First, how fast

are their algorithms in terms of the order of steps needed in dependence of input size? Here

the precise way of measuring the size depended on their own algorithms and the question was

mainly whether these can be outperformed. Second, for those where the time complexity is

optimal, what is the number of registers needed by the addition machine to carry out these

operations. Both the time complexity and the number of registers (as some type of space

measure) are aspects fundamental to computer science. Space has two aspects, (1) the size

of the numbers in the registers and (2) the amount of registers itself. As (2) is constant,

it does not influence the asymptotic space usage; however, it makes a big difference what

this constant is and when too small, many operations can only be carried out in suboptimal

time. Furthermore, explicit restrictions on (1) might contravene the spirit of the work which

allows the numbers to be unrestricted in size and to measure the influence of the size only

indirectly by its affect on the runtime of the algorithm, so that (2) is the only real space

parameter available.

The expressibility of CNF-SAT-formulas depends on the number of literals allowed

per clause; 1 literal per clause restricts expressiveness very much and allows not to code

anything interesting; 2 literals per clause allows to code so much that counting solutions

becomes hard while checking solvability is still easy; 3 literals per clause makes the problem
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hard to solve and NP-complete. Similarly, for register machines, the number of registers

available allows for more and more complex linear time algorithms to be carried out and it is

of scientific interest to find for natural operations like multiplying, dividing and so on where

this threshold is. As the basics were already known from the works of Hartmanis and Simon

[26, 33] as well as others, the research looked now more at the details. Floyd and Knuth were

able to determine optimally the computation time and the number of needed registers for

the greatest common divisor of two numbers (linear time, 3 registers) and obtained for other

operations like multiplying and dividing the optimal time bound while they were unsure of

the number of registers needed (Question (2)). Questions (3), (4) and (5) then are questions

where they obtained a good algorithm, but could not prove its optimality with respect to

computation time; for these topics the number of registers were secondary to them, though

they are important. Here is the precise list of the open questions of Floyd and Knuth [13]:

(1) Can the upper bound in Theorem 1 (in [13]) be replaced by 8 logΦ N + β?

(2) Can an integer addition machine with only 5 registers compute x2 in O(log x)

operations? Can it compute the quotient ⌊y/z⌋ in O(log y/z) operations?

(3) Can an integer addition machine compute xy mod z in o((log y)(log z)) operations,

given 0 ≤ x, y < z?

(4) Can an integer addition machine sort an arbitrary sequence of positive integers

〈q1, q2, . . . , qm〉 in o((m + log(q1 · q2 · . . . · qm) log m) steps?

(5) Can the powers of 2 in the binary representation of x be computed and output

by an integer addition machine in o((log x)2) steps? For example, if x = 13, the

program should output the numbers 8, 4, 1 in some order. (This means, it does

not need to be the top-down default order.)

(6) Is there an efficient algorithm to determine whether a given r×r matrix of integers

is representable as a product of matrices of the form I + Ei,j? (I is the diagonal

matrix of the identity mapping and Ei,j has a single 1 and everything else 0 at the

coordinate (i, j).)

For details of [13, Theorem 1] and further explanations to the notions of (1) and (6), please

consult their paper; the present paper addresses only questions (2)–(5). In particular, the

present work provides positive answers to (2) and (5): Floyd and Knuth [13] showed that

one can compute the greatest common divisor with three registers in linear time and they

also showed that, in the absence of constants as operands, this number is optimal. For the

operations listed in (2) they need six registers. Theorems 4 and 5 below show that one can

solve the operations in (2) with four registers used — or, if one like Floyd and Knuth [13]

does not allow operations with constants, the algorithm needs five registers and still matches

the bound of the Open Question. The operations considered in Problem (2) are to compute

the square of a number and the integer division in the time needed by the algorithms of

Floyd and Knuth which used six registers, but to bring down the register number to at most

five. The runtime for the squaring has to be Ω(n) where n is the number of bits of the input

while for the integer division, the algorithm has to run in time linear in the number of bits

of the output, note that the latter can be smaller than the number of bits of each of the

inputs.

In Question (5), Floyd and Knuth [13] looked at the binary representation of natural

numbers and wanted to know the powers of two involved. In other words, given an unknown

finite set E ⊆ N and reading the input x =
∑

y∈E 2y, can an addition machine compute

and list out all terms 2y with y ∈ E in any order in time o(n2)? The answer is affirmative

and the basic algorithm is to translate a number given as binary input b1b2 . . . bn by reading
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the bits b1, b2, . . . at the top position and adding up the corresponding powers so that one

gets the binary number in reverse order bnbn−1 . . . b2b1 and then to read out the bits at the

top while doubling up a variable from 1, 2, 4, . . . and outputting 2n−m in the case that

bm = 1. This algorithm runs in time O(n) and since in some cases n numbers are output,

the runtime is optimal.

For (3) and (4), answering these questions depends on what the expression o(f(m, n))

for multivariate Little Oh Calculus precisely means. There are various competing definitions

and the followings are the two popular notions where the first is taken from the Wikipedia

page of the Big Oh Calculus:

(a) The definition on Wikipedia, based on the algorithms textbook of Cormen, Leiser-

son, Rivest and Stein [12, Exercise 3.1-8]: A function f(m, n) is in O(g(m, n)) iff

there exist a constant c > 0 and numbers m0, n0 such that whenever m ≥ m0 or

n ≥ n0 then f(m, n) ≤ c · g(m, n). Due to this “or”, it makes according to the

Wikipedia page a difference whether the natural numbers start with 0 or with 1:

m + n ∈ O(m · n) if the variables start with 1 while this fails in the case that

variables start with 0 (choose m = 0 and let n = 0, 1, 2, 3, . . .). Cormen, Leiser-

son, Rivest and Stein ask readers to form the other concepts analogously. So for

multi-variate Little Oh expressions one can define that g(m, n) ∈ o(f(m, n)) iff for

every rational c > 0 there is a c′ > 0 such that for all (m, n) with max{m, n} ≥ c′,

g(m, n) ≤ c · f(m, n).

(b) Another popular definition of multivariate Big Oh and Little Oh Calculus does not

use a maximum like Wikipedia but a minimum. For the Little Oh notation, this

means that g(m, n) ∈ o(f(m, n)) iff for every rational c > 0 there is a constant c′

such that whenever c′ ≤ min{m, n} then g(m, n) ≤ c · f(m, n).

One can define variants (a) and (b) analogously if more than two variables are involved or,

as in (4), the number of variables is a variable itself. Note as an example the following

difference: m + n ∈ o(m · n) for (b) but not for (a), independently on where the natural

numbers start (as long as the start-value is a constant). Howell [17, 18] calls the above O∃

and O∀ and argues that both do not generalise fundamental properties of the one-variable

case and therefore he provides his own third definition.

The findings are now the following: When one takes the Wikipedia definition (a) of

the Little Oh Calculus, one can answer both (3) and (4) to the negative, that is, these

algorithmic improvements do not exist. However, consider a special case of (4) where a

register machine first reads m, then q1, q2, . . . , qm and then a k and then has to output

qk. In this special case the register machine has only to archive, but not sort the numbers.

Now for Definition (a) of the Little Oh Calculus, the answer is that this cannot be done in

o((m+log(q1 ·q2 · . . . ·qm) log m) steps. However, for version (b) of the definition, the answer

would be that it is indeed possible (where now the minimum of m and all the read values of

q1, . . . , qm have to be above c′). Thus the answer to questions (3) and (4) might indeed be

quite sensitive to what underlying definition for the multivariate Oh Calculus is chosen and

therefore these questions are only partially answered until answers for all common variants

of the Little Oh Calculus are found.

The work on this paper revealed a close connection between automatic functions and the

number of registers in a register machine; here an automatic function is a generalisation of

the notion of regular sets to that of functions, for more details on this topic, see Section 5

below. For machines having one register only, all functions computed are, perhaps partial,

automatic functions, independently of the computation time used; furthermore, they are a
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quite restricted subset of the set of all automatic functions. On the other hand, automatic

functions can all be implemented with only few registers. For automatic functions with

several inputs (this number of inputs has to be constant), one can compute them with five

registers. Furthermore, registers machines with two registers can compute nonautomatic

functions in linear time; even in the setting of Floyd and Knuth where there are no operations

with constants.

The results in this paper were jointly developed by the authors when Xiaodong Jia wrote

his UROP thesis about this topic [25].

2 On the Methods and Notions in this Paper

◮ Remark 1 (Allowed Commands). In the following let x, y, z be registers (which might refer

to the same register in this definition only) and k be an integer constant and let ℓ be a line

number (which is constant in each case and cannot be varied, for variations in jump targets,

one uses if-then-else commands). Furthermore, R ranges over the comparison operators

<, =, >, 6=, ≤, ≥. The following type of commands are allowed:

1. Let x = y + z; let x = y + k; let x = y − z; let x = y − k; let x = k − y; let x = k;

2. Read x; Write x;

3. If x R y then begin . . . end else begin . . . end;

4. If x R k then begin . . . end else begin . . . end;

5. Goto ℓ.

The else-part of if-then-else statements might also be omitted; similarly bracketing by “be-

gin” and “end” might be omitted for single statements. Below additional constructs will

be allowed, as long as those can be translated into the above constructs in a way that the

number of operations only increases by a constant per use of the construct and that the num-

ber of registers used in total by the program is not changed. These additional constructs

therefore increase only the readability without doing an essential change.

Read and write commands count also as unit commands and read or write a full register

content. The size of the input can be arbitrary, but the size parameter n of a function

depends on the size of all inputs read. If it is one input then the size is just the number

of binary bits, that is, the least number n ≥ 1 such that −2n < x < 2n. This number is

a rounded version of the base 2 logarithm of the input number and its precise definition is

the number of binary digits needed to write down the full number. Note that O(log(x)) is

always the same as O(n) for the number n of digits of an x > 0 written using an arbitrary

but fixed base b ≥ 2. For several inputs, the corresponding theorem will always say how the

input size is measured; also please refer to the discussion in the Introduction on the Big Oh

calculus involving several variables.

◮ Remark 2 (Usage of Constants). Floyd and Knuth [13] allowed the usage of integer constants

only indirectly by reading the constant once from the input and storing it in some register

where it is available until no longer needed. The main constant needed is 1 (0 is the difference

of a register with itself). However, this one additional register is also enough, as every integer

constant to be added or subtracted can be replaced by adding or subtracting the 1 a constant

number of times. Similarly for comparing x with k, one subtracts k − 1 from x, does the

comparison and adds k − 1 back to x.

Though operations with constants are an obstacle for proving lower bounds, the authors

of this paper think that allowing operations with constants is natural. For example, early

CPUs like MC6800 from Motorola could add and subtract and compare either one register
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(called accumulator) with another one or with constants, furthermore, the CPU could not

multiply – one of the authors used a computer with this CPU at his secondary school.

If one wants to translate results on number of registers sufficient for a computation of

a function from the model of this paper to the model of Floyd and Knuth, one has in

general to add one to the number of registers used.

◮ Remark 3 (Variables and Registers). When writing programs, one might in addition to the

registers also consider variables which hold values from a constant range, say bits. These

variables do not count for the bound on the number of registers, as they can be implemented

by doubling up the program (in the case of bits) and then jumping back and forth between

the two copies of the problem, which will then be adjusted to the variable having the value

0 in the first copy and the value 1 in the second copy; here is an example.

1. Read x; read y;

2. If x < y then b = 1 else b = 0;

3. Let x = x + y; let y = x + x;

4. Let y = y + b;

5. Write y.

An optimised way of implementing this without using b is the following:

1. Read x; read y;

2. If x < y then goto 5;

3. Let x = x + y; let y = x + x;

4. Goto 7;

5. Let x = x + y; let y = x + x;

6. Let y = y + 1;

7. Write y.

In the worst case, the full program has to be transformed into k consecutive copies where

k is the number of values the variable can take. One loads a value into such a variable

by jumping into the corresponding copy; if it is read out, the variable is at each of the

copies of the program replaced by the corresponding integer constant. Floyd and Knuth [13]

used a similar method at the program P6 where they permuted the order of the registers

without giving the code for it. Letters at the beginning of the English alphabet are used for

such constant range variables, while letters at the end of the English alphabet are used for

registers.

3 Solving Open Problems (2) and (5) of Floyd and Knuth

In Open Problem (2), Floyd and Knuth [13] were interested in the optimal number of

registers needed for basic operation on a register machine that can add and subtract and

compare; they considered general subgroups of the reals, but concentrated on the integers

which are also the model of this work. A side-constraint is that this number of registers

should take the time consumption of the operation into account and so, for multiplication,

remainder and division, it should be in O(n) and not larger. Floyd and Knuth [13] gave an

unbeatable algorithm of calculating the remainder using the Fibonacci numbers to go up and

down in exponentially growing steps from the smaller number to the bigger number and back.

Furthermore, they showed that the tasks cannot be solved with two registers. While the

Fibonacci method is unbeatable for many items, some of the following problems withstood

attemps to solve them with this method. The present work addresses the corresponding
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problems left open in their work. The next theorem solves the first part of the Open

Problem (2) of Floyd and Knuth [13].

◮ Theorem 4. Multiplication can be done using four registers in time linear in the size of

the smaller number (in absolute value). In particular the squaring of a number x can be

done with four registers in linear time, that is, in time proportional to log(|x|) for x ≥ 2.

Proof. Multiplication can be done with four registers in time linear in the size of the smaller

number. The algorithm is as follows:

1. Begin Read x; read y; let a = 1;

2. If x < 0 then begin let x = −x; let a = −a end;

3. If y < 0 then begin let y = −y; let a = −a end;

4. If y < x then begin let v = x; let x = y; let y = v end;

5. Let v = 1; let w = 0; let x = x + x; let x = x + 1;

6. If v > x then goto 7;

let v = v + v; goto 6;

7. Let x = x + x; if v = x then goto 8;

let w = w + w;

if x > v then begin let w = w + y; let x = x − v end;

goto 7;

8. If a = −1 then begin let w = −w end;

Write w; End.

The following arguments verify the runtime-properties of the algorithm. For this let n be

the number of binary digits needed to write down the, by absolute value, smaller one of the

numbers x and y. Line 1 reads the input and initialises the sign-variable a as 1. Lines 2, 3

and 4 enforce that x, y are updated to the minimum and the maximum of the absolute values

of these two inputs and that a is the sign from −1 and +1 with which the nonnegative output

has to be multiplied in the last line 8 before the output; so if either both x, y were input as

negative numbers or none then a = 1 else a = −1. The verification of these properties is

straight forward and omitted.

The idea of the remaining part is to read out the top bit of x and double x until all

bits except for the last one are read out. For this one needs a perparation in lines 5 and

6: Line 5 sets v = 1 and w = 0 and updates x to 2x + 1. v is the variable which will later

hold the least power of 2 larger than the just updated x. Line 6 doubles v until v > x, thus

v = 10n+1 in binary after completing the loop in that line where n + 1 is the number of the

binary digits of the updated x, that is the convention n = 0 holds in the case that one of

the original inputs is zero.

The second and main loop is in Line 7. Prior to this, the value of x in binary is

bnbn−1 . . . b11 where bnbn−1 . . . b1 is the smaller absolute value of the two inputs and bn = 1

unless n = 0.

Now the loop invariant is the following: After m rounds through the loop in line 7, the

value of the variable w is bnbn−1 . . . bn−(m−1) times y and the value of x is bn−m . . . b110m

where 0m means m zeroes. The initial value of w is thus just 0 so that the loop invariant

holds initially (after zero times executing the loop).

The loop body does per iteration the following. First x is updated to x+x, that is, takes

the value bn−m . . . b110m+1. In the case that m = n this means that x = v and the next

conditional goto command to 8 quits the loop with w having the value bnbn−1 . . . b1 times y

as required, so that the right output will be given. Otherwise it is v 6= x and m < n. Now
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w is doubled up so that w takes the value bnbn−1 . . . bn−(m−1)0 times y. Now x ≥ v iff the

top bit bn−m of x is 1. This is reflected by the next if-then-statement: If x > v an update

is done that x = x − v (so that the topmost bit of x is set to 0 and thus erased) and w is

updated to w+y. After that if-command the value of x is bn−m−1 . . . b110m+1 and the value

of w is bnbn−1 . . . bn−m times y. Thus the loop invariant from above holds also after doing

the loop body m + 1 times and the last command in line 7 jumps to the beginning of the

line to do the next iteration of the loop body.

Lines 2,3,8 handle the sign of the operands, where the product of the sign is stored in

a in order to handle the negative numbers. Remark 3 explains that one can have variables

which use only constantly many values without having to increase the number of registers;

therefore one does not need an extra register for variable a. Line 4 handles an optimisation

which was not required by Floyd and Knuth and which just orders x, y as x ≤ y, not relevant

for squaring.

For the runtime, note that there are only two loops, in lines 6 and 7. The loop in line 6

doubles up a number until it is greater than the input and this number is initially 1, thus it

runs O(n) times where n is the length of the input in bits. The loop in line 7 runs through

the loop n + 1 rounds, thus again is O(n) with the parameter m being m = 0, 1, 2, . . . , n. So

the overall runtime is O(n). ◭

This example illustrates the multiplication in order to make the verification of the algorithm

easier. Now assume that x and y are the binary numbers 1101 and 100001. In line 5, x is

updated to 11011 (a coding bit 1 appended), v is initialised to 1 and w is initialised to 0.

Now line 6 doubles v until v > x, that is until v has one digit more than x and the values

of x, y, v, w are as follows:

x 11011

y 100001

v 100000

w 0

In line 7, the registers x, w will be doubled up in each round with a special exit out of the

loop if x = v prior to doubling w as that means that the coding bit has reached the position

of the 1 in v and that the multiplication is complete. Furthermore, if after doubling up

x > v then v is subtracted from x and w is updated to w + y.

This is now illustrated by giving the values of the various numbers during the iterations

of the loop using example from above, note that only x and w change while y and v remain

always the same, thus they are only in the first two lines.

x 11011 // x before the loop;

w 0 // w before the loop;

y 100001 // y throughout the loop;

v 100000 // v throughout the loop;

x 10110 // leading 1 read out and v subtracted from x;

w 100001 // y added to w;

x 01100 // leading 1 read out and v subtracted from x;

w 1100011 // w doubled up and y added to w;

x 11000 // leading 0 read out and no subtraction;

w 11000110 // w doubled up and no addition;

x 10000 // leading 1 read out and v subtracted from x;

w 110101101 // w doubled up and y added to w;
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x 100000 // after the last doubling up of x, v=x and loop end;

w 110101101 // value of w from last loop body returned as result.

The last line 8 just multiplies the output with −1 to the power of the number of negative

inputs. So in the case that the original input was either 1101,-100001 or -1101,100001 then

the output is -110101101 else it is 110101101.

Floyd and Knuth [13] overcame the obstacle that one cannot divide by 2 in constant time

in an addition machine by resorting to the Zeckendorf representation of natural numbers

where each natural number is the unique sum of non-adjecent Fibonacci numbers [36]. When

multiplying v with x, they had auxiliary register u, w, y, z where initially one reads v, x and

sets w = v and u = x − x and y = z = 1. Part of the invariant is that y ≤ z, y, z are

adjecent Fibonacci numbers, v = y · v′ and w = z · v′ where v′ is the initially read value of

v. After initialisation, the constant 1 is not needed again. So y, z are the first Fibonacci

numbers and on the way up, one does the following updates:

(1) y = y + z; v = w + v; swap y, z; swap v, w;

until y ≤ x < z. Note that swapping can be obtained by renaming the variables without

doing any real operation. Once this is achieved, one updates

(2) x = x − y; u = u + v;

and then does repeatedly the updates

(3) z = z − y; w = w − v; swap y, z; swap v, w;

until either x < y = z (that is, x = 0 and y = 1 and z = 1) or y ≤ x < z. In the first

case the program terminates with output u, in the second case it goes to statement (2) and

continues from there.

Floyd and Knuth [13] resorted to the Zeckendorf representation of numbers for the reason

that one can go up and go down in this representation; however, one needs two registers

to store two neighbouring Fibonacci numbers, namely y, z; furthermore, one needs v, w to

store the products of y · v′ and z · v′, concurrently, as well, where v′ is the initial value of

v. So on one hand, due to the bidirectionality, the Fibonacci representation is easier to use

than powers of 2 for the same purpose, on the other hand, one needs instead of one register

to store a power of 2 now two registers to store two neighbouring Fibonacci numbers as well

as two registers to store the product of one of the factors with these neighbouring Fibonacci

numbers. Thus this algorithm, though more flexible with respect to going down in the

Fibonacci numbers, needs more registers than the algorithm of Theorem 4. The obstacle

of generating the powers of two summing up to an input number in linear time was not

resolved by Floyd and Knuth, but left as Open Problem (5). Thus their approach of using

the Zeckendorf representation was their way around this obstacle. A part of the algorithm

to multiply binary numbers is to identify the corresponding powers of two which occur in a

factor, thus Open Question (5) is asked in order to decide whether one can at least do the

easier part of the multiplication, that is, to extract the powers of two which sum up to a

given factor in linear (or even subquadratic) time.

The next theorem solves the second part of Open Problem (2) of Floyd and Knuth [13].

◮ Theorem 5. The integer division x = Floor(y/z) with z 6= 0 can be carried out with

4 registers in time O(m) where m is the smallest natural number such that 2m times the

absolute value of z is greater or equal the absolute value of y.
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Proof. There are four registers, x, y, z are related to the input and output of the algorithm

as specified in the theorem and u is the least number of the form z · 2ℓ which is at least as

large as y (after y, z have been made positive to avoid sign-problems). As in the algorithm

for Theorem 4, the key idea is to read out binary numbers at the top by comparing them

with a power of 2; here however, one compares not with 2ℓ but 2ℓ · z and the termination

condition is that z, which will be doubled up as well, reaches u. Besides initialising x = 0

and u = z, the main function of lines 1, 2, 5 and 6 is to read the inputs y, z, to handle the

sign and to write the output x; lines 3 and 4 compute integer division for y ≥ 0 and z ≥ 1

and the reader can concentrate on this part to understand the key ideas of the algorithm.

The formal algorithm is as follows.

1. Begin read y; read z; let x = 0;

2. If z < 0 then begin z = −z; y = −y end;

if z = 0 then goto 6;

if y < 0 then begin a = −1; y = −y end else begin a = 1 end;

let u = z;

3. If u ≥ y then goto 4; u = u + u; goto 3;

4. if y ≥ u then begin y = y − u; x = x + 1 end;

if u = z then goto 5;

let x = x + x; let y = y + y; let z = z + z; goto 4;

5. If a = −1 then begin let x = −x; if y > 0 then let x = x − 1 end;

6. Write x end.

The next paragraphs give the verification for the main case that y ≥ 0 and z ≥ 1. The

other cases are left to the reader; due to these main assumptions, the instructions in Line 2

(except for letting u = z) and Line 5 can be ignored, as they handle the exceptions for the

case that the above assumption is not satisfied. The output in the case of division by 0 is

irrelevant.

If 0 ≤ y < z then the loop in Line 3 is skipped and the if-then statement at the beginning

of line 4 leaves x, y unchanged and the next statement has u = z (due to the loop in line 3

not being done) and returns 0, this shows correctness for this basic case.

While register u is not greater or equal to y, u is doubled up in Line 3. Note that

therefore u = 2m · z for the minimal m with 2m · z ≥ y after processing Line 3; m can be 0

and m is identical with the above same-name parameter of the runtime of the algorithm.

For Line 4, let y′, z′ be the respective values of y, z before entering the line which are the

absolute values read of what has been read into y, z at the beginning of the program.

The invariants of Line 4 is that after s rounds of this line, y has the value 2s ·y′ −x ·z′ ·2m

and z has the value 2s · z′ and 0 ≤ y < 2u. In round s, the algorithm first checks whether

y ≥ u and if so, subtracts u from y and increments x by 1, in other words, 2m · z′ gets

subtracted from y and 1 added to x so that the difference y − x · z′ · 2m before and after

this update are the same; furthermore, after the update the property 0 ≤ y − x · z′ · 2m < u

holds. If now u = z then the algorithm quits the loop else it doubles up x, y, z and goes

into the next round of the loop. The algorithm indeed quits after m rounds, as z is initially

z′, doubled up exactly once in each round and u = 2m · z′. When the algorithm quits the

loop, then 0 ≤ 2m · y′ − x · 2m · z′ < u = 2m · z′ and, when dividing by 2m, one sees that

0 ≤ y′ − x · z′ < z′ so that y − x · z′ is indeed in {0, 1, . . . , z′ − 1} as the integer division by

z′ requires. Thus x is the intended downrounded value of y′/z′.

The loops in lines 3 and 4 run m times, as in line 3 one measures how often one has to

double up u (which was z) to reach or overshoot the value of y and the loop in line 4 brings



12 Addition Machines, Automatic Functions and Open Problems of Floyd and Knuth

up z by doubling up this register until u is reached. The handling of the sign is done in lines

2 and 5 and the values of x, y, z, u are at least 0 in the loops in 3 and 4. ◭

In Open Problem (5), Floyd and Knuth [13] ask whether there is a register machine which

can in subquadratic time compute the powers of 2 giving the sum of a given number x in

arbitrary order (but each outputting only once). For example, for x = 100, the algorithm

should output 4, 32, 64 in arbitrary order. The next algorithm for this runs in linear time

and needs only four registers; thus the algorithm satisfies the subquadratic runtime bound

requested by Floyd and Knuth [13].

◮ Theorem 6. On input of a number x ≥ 0 of n digits, a register machine with four registers

can output the powers of two giving the sum x in time linear in n.

Proof. The idea is to first reverse the bits in the representation of x and then to read out

the powers from the top, now using that the k-th bit stands for 2k.

1. Begin read x; if x < 0 then begin let x = −x end;

let y = 1; let z = 1; let x = x + x; let x = x + 1; let u = 0;

2. If y > x then goto 3; let y = y + y; goto 2;

3. If y = x then goto 4;

if x > y then begin let u = u + z; let x = x − y end;

let x = x + x; let z = z + z; goto 3;

4. Let z = 1; let x = u + u;

5. If x ≥ y then begin write z; let x = x − y end;

let z = z + z; let x = x + x; if x > 0 then goto 5;

End.

First one makes sure that x is not negative. Then one enters into x a termination condition

which is an additional 1 at the end in order to put the correct number of zeroes when

inverting the number. This is all done in line 1.

The first loop in line 2 determines a power of 2 which is a proper upper bound on x. This

bit of this bound is two digits ahead of the largest power of 2 in the sum of x. So x holds

the original input b1b2 . . . bn appended with a coding bit 1, where b1 = 1. Furthermore, the

register y holds the number 2n+1.

The next loop in line 3 converts the number b1b2 . . . bn1 to 1 times 2n+1 in x and

bnbn−1 . . . b10 in u; for this one starts with u = 0 and z = 1 and the loop invariant of

this loop is that after m rounds (with m ≥ 1) of the loop, x has the form bmbm+1 . . . bn1

times 2m and z has the value 2m and u has the value bm−1bm−2 . . . b2b10.

In each round of the loop, first it is checked whether x = y and if so, the loop is left.

Then it is checked whether x > y and if so, y is subtracted from x and z is added to u. At

the end, x and z are doubled up. In the first round, only the doubling up happens, as x < y.

After m rounds with m ≥ 1, x has the value bmbm+1 . . . bn1 times 2m, z has the value 2m

and u has the value bm−1bm−2 . . . b10.

In line 5 the powers of two are output whenever the leading bit of x is 1 and the leading

bit is removed from x, after that x and z are doubled up; when x = 0 the loop terminates.

So the invariant is that after m rounds of the loop in line 5, x is bn−mbn−m−1 . . . b1 times

2m+1, 2m−1 has been output iff bn−m+1 was 1 and z is 2m. As the number x was in binary

at the input b1b2 . . . bn or −b1b2 . . . bn, outputting 2m−1 iff bn−m+1 = 1 is correct.

Each of the three loops runs approximately n times where n is the number of binary bits

in x, thus the runtime is O(n). Note that in each loop, y and x, respectively, are doubled up

until the termination condition is reached. In line 2, the termination condition is just y > x
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what will be reached as y = 1 initially. In line 3, the termination condition is y = x what

will be reached, as y = 2n+1 and in each round, the bit in x at the position of the 1 in y is

removed and the remaining number doubled up until y = x; the latter condition is reached

as the last bit of x as at the beginning of step 3 is a 1. In Line 5, again the bit of x at the

position of the 1 in y is read and removed in each round and x is doubled up until the loop

terminates when x = 0. Thus all three loops run O(n) times and the overall runtime of the

algorithm is O(n). ◭

For example, one wants to output the powers of two in the number thirteen, in binary 1101.

In line 1, the number gets transformed into 11011 by appending a bit. Then y is set to 1

and doubled in line 2 until it is greater than x, that is, takes the value 100000. In line 3 the

algorithm runs through five rounds and the values of y, x, z, u after rounds 1, 2, 3, 4, 5 are as

follows:

y 100000 // remains like this through-out the loop

x 110110 // coding bit appended and doubled up in round 1

u 0 // initialised as 0 and not modified in round 1

z 10 // doubled up in round 1

x 101100 // bit 1 read out and doubled up in round 2

u 10 // old z added to u in round 2

z 100 // doubled up in round 2

x 011000 // bit 1 read out and doubled up in round 3

u 110 // old z added to u in round 3

z 1000 // doubled up in round 3

x 110000 // bit 0 read out and doubled up in round 4

u 0110 // nothing added in round 3, leading zero for readability

z 10000 // doubled up in round 4

x 100000 // bit 1 read out and doubled up in round 5

u 10110 // old z added to u in round 5

z 100000 // doubled up in round 5

x 100000 // not modified as x=y in round 6, loop terminated

z 1 // z is set to 1 in line 4 after termination of loop

x 101100 // x is doubled up in line 4

Here the values in the loop in line 5 with the above data:

y 100000 the register y remains unchanged

x 101100 before round 1

z 1 before round 1

x 011000 bit 1 is read out, y subtracted from x and x doubled up in round 1

1 is output in round 1

z 10 z is doubled up after outputting z in round 1

x 110000 bit 0 is read out and x is doubled up in round 2

z 100 z is doubled up without being output in round 2

x 100000 bit 1 is read out, y subtracted from x and x doubled up in round 3

100 is output in round 3

z 1000 z is doubled up after outputting z in round 3

x 000000 bit 1 is read out, y subtracted from x and x doubled up in round 4

1000 is output in round 4

10000 z is doubled up after outputting z in round 4

x 000000 loop terminates after round 4 as x = 0
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4 Open Problems (3) and (4) and Multivariate Oh Notations

There are several ways to define the Big and Little Oh Notations in several variables. Wiki-

pedia (version (a)) gives with reference to Cormen, Leiserson, Rivest and Stein [12, page

53] for the following definition: f(x1, x2, . . . , xk) is in O(g(x1, x2, . . . , xk)) if there are con-

stants c, d such that for all tuples (x1, x2, . . . , xk) where at least one coordinate is above d,

f(x1, x2, . . . , xk) ≤ c ·g(x1, x2, . . . , xk). The analogous definition for f ∈ o(g(x1, x2, . . . , xk))

is that for all constants c > 0 there is a constant d such that for all tuples with (x1, x2, . . . , xk)

with at least one of the coordinates above d, f(x1, x2, . . . , xk) ≤ c · g(x1, x2, . . . , xk). If one

would not require that only one coordinate is above d but all coordinates are above d, the

next result is not applicable. Version (b) of the multivariate Little Oh Calculus requires that

not only one coordinate but all coordinates are above d and, in the case that the number of

coordinates varies as well, that there are at least d coordinates in the tuples considered.

Floyd and Knuth [13] asked whether one can compute xy modulo z in time o(n · m)

where n is the number of digits of y and m is the number of digits of z. The following

example answers Question (3) only for the Wikipedia definition (variant (a)) of the Little

Oh Calculus

◮ Example 7. In this example, when denoting values modulo z, in order to estimate their

size modulo z, these are numbered as −z/2, −z/2 + 1, . . . , −1, 0, 1, . . . , z/2 − 1 and not as

0, 1, . . . , z−1, as part of this example requires to study the first nonzero bit of such numbers.

z is always even.

One chooses y > 2 and z to be so large that the constant of the little o is below 0.1/(y ·

log(y)). Furthermore, x is 2m/(y+1) and it is understood that z is chosen such that x > y and

that x is an integer. Now one estimates that at every operation (addition or subtraction)

of the register machine, the largest register increases its value, modulo z, by at most a

factor 2. Note that, modulo z, the largest input is x = 2m/(y+1) and that the output is

xy = 2m·y/(y+1) which is smaller than z/2. Thus one would need that, modulo z, the first

nonzero digit of the largest registers goes from m/(y + 1) to m · y/(y + 1) which requires

at least m · (y − 1)/(y + 1) additions. This amount of additions is larger than c · m · n, as

c ≤ 0.1/(n · y) and (y − 1)/(y + 1) ≥ 0.5, so the algorithm cannot make enough additions

and subtractions for producing a result which, modulo z, equals xy.

◮ Theorem 8. Consider the task that a register program reads in a positive number m

followed by m positive numbers q1, . . . , qm followed by one number k ∈ {1, 2, . . . , m} in this

order and has then to output qk. In the following, let r = log(max{2, q1, q2, . . . , qm}) and

let f(m, r) = r · m · log(m). This task cannot be done in o(f(m, r)) steps in the case that

one applies Definition (a) of the Little Oh Calculus and it can be done in o(f(m, r)) steps

in the case one applies Definition (b) of the Little Oh Calculus.

Proof. For the result concerning Definition (a) of the Little Oh Calculus, given a register

program with s registers, let m = 2s and fix it at this constant and let r be so large that all

tuples of m r-digit numbers the input has to be processed in time f(m, r)/(m2 log(m)) = r/m

- what is possible as m is now fixed in the Little Oh Calculus and the r is chosen so large

that the runtime is smaller than f(m, r) times the rational number 1/(m2 log m). At the

same time, as 2m r-bit numbers are read, the machine must save them in its registers and

be able to recall each of them and also know the position of each number. Thus there

are after reading the m numbers 2m(r−1) many different m-tuples of r-bit numbers (with

leading bit 1 at the top position). It is now not possible to store them in a one-one way

in s registers if all s registers have numbers strictly below 22r−3, as those jointly use only



S. Jain, X. Jia, A.F. Sabili and F. Stephan 15

m/2 · (2r − 3) = m(r − 1.5) bits and can take only 2m(r−1.5) many values. If two m-tuples

are mapped to the same memory and differ on item k, then the algorithm will for one of the

m-tuples make a mistake when the next number read is k. Thus one of the numbers must at

least have 2r − 2 bits. However, when reading only r-bit numbers and the smaller value of

m, there must be at least r − 2 additions or subtractions in order to create a number which

has properly 2r − 2 bits (with the highest order bit being 1). As m ≥ 2 and r − 2 > r/m for

all sufficiently large r, the computing task is not in o(f(m, r)) when the Little Oh Calculus

is taken according to Definition (a).

For Definition (b), the idea is to prove that the task is in O(m · r). By the definition of

(b), O(m · r) ⊆ o(f(m, r)) as limm,r→∞m · r/f(m, r) = limm,r→∞ 1/ log(m) = 0 provided

that both m, r go to infinity and not only their maximum (as (a) requires).

The algorithm is to use O(m · r) operations to create a queue which is fed at the bottom

and read out at the top. For the ease of readability of the program, all numbers in the input

are required to be positive (so at least 1) and this is not tested explicitly (though it would

be trivial to do so).

1. Read v; read w; let u = 1; let x = 0; let y = 0; let z = 1;

2. let x = x + x; let y = y + y; let z = z + z; u = u + u;

if z ≤ w then goto 2;

3. Let v = v − 1; let x = x + w; let y = y + 1; let z = 1;

if v < 1 then goto 4 else begin Read w; goto 2 end;

4. Read v; let z = 0;

5. Let x = x + x; y = y + y; let z = z + z;

If u ≤ x then begin let x = x − u; if v = 1 then let z = z + 1 end;

if u ≤ y then begin let y = y − u; let v = v − 1 end;

if (y > 0 and v > 0) then goto 5;

6. Write z.

This program produces a data structure where the number u determines the top position

of the data structure and x has the bits of the numbers one after the other and y has the

end positions of each binary number in the structure. So when entering the if-then-else

statement at the end of line 3, the data structures for the so far processed binary numbers

110, 101, 11011 looks like this:

u 1 000 000 00000

x 110 101 11011

y 1 001 00001

z 1

Furthermore, v contains the remaining numbers to be built into the data structure and w

contains the most recent number 11011 added into the data structure.

So when building up the data structure, the role of z is to space out the numbers so

that when adding w to x, the bits will not overlap with those of the previous number and

therefore u, x, y, z are doubled up until z > w. Furthermore, when w is added to x, 1 is

added to y in order to mark the last bit in each round. The inner loop of doubling up is in

line 2 and the outer loop also includes line 3 to do the additions of the current number w

to x and of the current end-bit marker to y.

In the loop of Line 5, the bits of x, y are read out in parallel by always doubling up so

that the position of the leading bit (it might be 0) is moved at the position of the only 1 of

u in binary representation and then one makes two if-statements one dealing with x having
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a 1 in this leading position and one dealing with y having a 1 in this leading position. These

leading digit of x is copied into the last position of z and that of y causes, when being 1, the

counter v to be decreased. If v is still positive, that is, if z is still 0, and if v is decremented

to 0 it means that the number currently in z is the number to be passed into the output.

If the number v was too big (and there is no number archived for that index) then y will

eventually become 0 and the loop will be aborted and some meaningless output be given.

Here the above examples after two bits of x, y are read out in the case that the value of v is

1 (what causes the bits of x to be copied to z):

u 1 0 000 00000 00

x 0 101 11011 00

y 1 001 00001 00

z 11

The 11 in z are the two first bits of the binary number 110 which was coded as first number

in x. The last bit, a 0, is still in and written here as a leading bit for better readability. The

spaces in the number are for readability and shifted to the front inline with the doubling up

of the numbers, only u remained unmodified and there the spaces are just adjusted to those

of x and y for having them at the same positions.

This algorithm verifies that the task of the problem is in O(m · r) as first the numbers

x, y, u which are doubled up in every round of the loop will have at the end m numbers of

up to r bits – more precisely r1 + r2 + . . . + rm bits in the case that the k-th input into

the register w has rk bits. Here note that m is the first input into v and the second input

into v is the index of the number to be read out (from the front). The second loop also

runs at most the same number of rounds, as after this number of rounds the value of y is 0.

y and x get doubled up in each round and their top bits, which are at the position of the

single bit one of u, are removed by subtracting if they are not zero. For that reason, the

runtime of the algorithm is O(r1 + r2 + . . . + rm) where each rk ≥ 1. This is upper bounded

by O(r · m) and, for the notion (b) of the Little Oh Calculus, O(r · m) ⊆ o(r · m · log(m)).

Note there that for a constant c′ > 0, one chooses m so large that log(m) · c′ is above the

multiplicative constant of the runtime expression O(r · m) and therefore the runtime is less

or equal c′ · r · m · log(m). ◭

◮ Remark 9. The above implies that Open Problem (4) is answered “no” when one bases

the Little Oh Calculus on version (a) which is the one on Wikipedia, as the task in Open

Problem (4) is more comprehensive than the one in the preceding theorem. Furthermore,

the result shows that there is a real chance that the answer of problems (3) and (4) might

actually depend on the version of the Little Oh Calculus chosen, so it could go in either

direction. But this “actual chance” is not yet converted into a proof, but only indicated as

a possibility. On one hand, disproving the existence of an algorithm for version (b) is much

harder than for version (a) and on the other hand, algorithms confirming that the answer

would be “yes” (as in the case of Problem (2)) are not in sight.

The proof of Theorem 8 also showed that, for constant m, a register machine with m

registers needs steps proportional to the number of bits of the input numbers to recall one

out of 2m read inputs which have all the same length; in contrast to this, the machine with

m registers can recall any of m − 1 inputs by storing them in the first m − 1 registers and

using the m-th to read the index of the recalled number. Similarly for sorting constantly

many numbers, the time depends on the length of the numbers only in the case that the

number of registers is below the number of inputs. This shows that when considering the

asymptotically fastest machines only, the number of registers forms a proper hierarchy.
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5 Regular Languages and Automatic Functions

◮ Remark 10 (Automatic Functions and Regular Sets). There is a close relation between what

can be computed by register machines with few registers and regular sets and automatic

functions. Here a function from words to words is called automatic iff there is a dfa (de-

terministic finite automaton) which can recognise whether the input x and suggested output

y match; here the dfa reads both x and y at the same speed, symbol by symbol. Further-

more, it is assumed that the input and output are padded with leading zeroes to get that

both numbers have the same length, that is, they are aligned at the back to make the corres-

ponding digits match (like in the school-book algorithm for adding decimal numbers). The

more frequent way is to align at the front, but then one has to write all numbers backward

in order to avoid problems; in the present work, it is preferred to write numbers the usual

way and to align at the back.

For a number x, let digits(x, i) be the i-ary sequence of its digits. A set X of numbers is

regular iff there is a dfa (deterministic finite automaton) recognising {digits(x, i) : x ∈ X}

for some i and a function f is automatic iff there are i, j such that the mapping digits(x, i) 7→

digits(f(x), j) is automatic as a function from words to words. Here, it is always assumed

that i ≥ 2 and j ≥ 2. The positive result that automatic functions can be computed by

register machines with four registers can even handle the case that i 6= j; however, the choice

of i, j requires four registers if at least one of them is not a power of two, otherwise three

are sufficient. For the result that every function computed by a machine with one register

is automatic, i = j is required, but any i ≥ 2 works.

Note that there is a Turing machine model for computing automatic functions on one-

tape Turing machines with one fixed starting position: Here a function f is automatic iff

a deterministic Turing machine can compute in linear time f(x) from x such that new

output f(x) starts at the same position as the old input x. This result also holds when

nondeterminsitic machines are used in place of deterministic ones [10].

The first use of the concept of automatic functions and structures dates back to Büchi’s

work on the decidability of Presburger arithmetic [8, 9]. The notions were formally intro-

duced by Hodgson [19, 20] and, independently, by Khoussainov and Nerode [23]. Grädel

[15] provides the most recent of several surveys in the field [22, 29]. The natural numbers

with addition, subtraction, comparison and multiplication by constants forms an automatic

structure in which each of these operations is realised by an automatic function, see, for

example, Jain, Khoussainov, Stephan, Teng and Zou [21].

A further example of an automatic function is the function which maps numbers in

ternary to their decimal face value images, here inputs are ternary and outputs decimal and

the corresponding function on the strings is the identity. So ternary 100 (nine) would be

mapped to one hundred and ternary 121 (sixteen) would be mapped to one hundred twenty

one. Another example is the function which preserves in decimal numbers the zeroes and

maps every other digit d to 10 − d, for example 102823 to 908287. The latter is automatic

as a function from decimal numbers to decimal numbers, but not as a function from binary

numbers to binary numbers. Also all functions computed by an addition machines with

arbitrarily many registers running for at most constantly many steps are automatic. The

theorem of Cobham and Semenov implies that functions which are automatic as functions

from binary to binary as well automatic as functions from ternary to ternary are already

definable in the Presburger arithmetic (Z, +, <, =).

◮ Remark 11 (Compact Writing of Repetitive Commands). Multiple identical or similar oper-

ations like
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x = x + y; x = x + y; x = x + y;

z = z + v; z = z + w;

u = u + u; u = u + u; u = u + u;

will be abbreviated as

x = x + 3 · y;

z = z + v + w;

u = 8 · u;

with the understanding that 3 and 8 above are constant and that this is only done if the

result of the first operation goes into the next operation as above in the case that several

operations are in a block. Multiplication with constants is only possible if this constant is

a power of two, as otherwise the bound on the number of registers on the right side of the

assignment is compromised; Floyd and Knuth had there always two of them and therefore

u = 3 ·u would need an additional register t with t = u+u; u = u+ t. However, u = u+3 · t;

can be realised as u = u+ t; u = u+ t; u = u+ t and so while u = 3 ·u is not permitted in the

programs below, u = u + 3 · t is permitted with u, t being different registers. In summary,

assignments of the form

x = i · x + j · y + k · z + ℓ;

are allowed provided that i, j, k, ℓ are integer constants and, furthermore, i is either 0 or a

power of 2 or −1 times a power of 2 and y, z are registers different from x (there might be

more or less than 2 of these registers).

◮ Remark 12 (Variables and Constant-ranged operations). Suppose k is a constant. The

following conventions simplify the writing of programs below.

The instruction y = k · y where k is a constant or a variable (which has constant

range); here one needs one additional register and just let z = y and executes k −1

times y = y + z. If k is a power of two or for an instruction of type x = x + k · y

no additional register is needed.

If 0 ≤ x < k · y then one can by a sequence of instructions load the value of

Floor(x/y) into the variable b and replaces x by the remainder of x/y. This is

done by initially having b = 0 and then k − 1 copies of the operation:

if x ≥ y then begin let x = x − y; let b = b + 1 end;

This command is written as (b, x) = (Floor(x/y), Remainder(x, y)).

Let δ be the transition function of the deterministic finite automaton (dfa) re-

cognising the regular language. In the program in Theorem 13 below, we can

make different copies of the program for the constantly many possible values of

the bounded variables a and b. When there is a need to update the values of a, b

in instruction 3, the program just jumps to the corresponding copy/instruction.

Thus, we do not count a, b as needing registers.

These methods will be used in several of the programs.

◮ Theorem 13. A register machine with three registers can check in linear time whether the

k-ary representation of a number is a member of a given regular language, where k ≥ 2 is

constant. In the case that k is a power of two, only two registers are needed.



S. Jain, X. Jia, A.F. Sabili and F. Stephan 19

Proof. Without loss of generality one assumes that the input x satisfies x ≥ 0. The three

registers are x, y, z where x holds initially the input d1d2 . . . dn and when entering line 2

of the algorithm below, the value d1d2 . . . dn1 (as a k-ary number) which is a coding digit

appended to separate out when the trailing zeroes of the input end and the new zeroes

start which the algorithm appends in subsequent steps. The register y is initialised as 1

and after line 2 holds the value kn+1, using the convention that either d1 6= 0 or n = 0.

The register z is only used to multiply numbers with the constant k and is needed if k

is not a power of 2. Furthermore one holds two variables with constant range, these are

b ∈ {0, 1, . . . , k − 1} for the current symbol and a ranges over the possible states of a dfa

recognising the language with constant start being the start state and accept being the set

of accepting states; membership in accept can be looked up in a table using the value a

as an input. The dfa is considered to process the number from the first digit to the last

digit and without loss of generality one can assume that δ(start, 0) = start and that the dfa

never returns to start after seeing some other digit — this is to deal with leading zeroes or

the zero itself so that the start is accepting iff 0 is in the given regular language. The basic

algorithm is the following:

1. Begin read x; let y = 1; let a = start; let x = k · x + 1 using z;

2. If y > x then goto 3

else begin let y = k · y using z; goto 2 end;

3. Let x = x · k using z;

if x 6= y then begin let (b, x) = (Floor(x/y), Remainder(x/y));

let a = δ(a, b); goto 3 end;

4. If a ∈ accept then write 1 else write 0 End.

The first line reads an input x being d1d2 . . . dn in the k-ary number system, initialises y

as 1 and appends a digit 1 at the input obtaining d1d2 . . . dn1. Afterwards in line 2, y is

multiplied with k until it has one digit more than x, note that y = 10 if the input is 0 and

y = kn+1 if if the input is positive. An n-digit number is at most kn − 1 and therefore

y/k ≤ x < y after line 2.

The loop invariants of line 3 after m iterations of the loop, at the start of line 3, are that

x is dm+1 . . . dn1 times km and the digit dm+1 is at the position of the power kn and a is

the state δ(start, d1d2 . . . dm) where a = start in the case that m = 0. Here, for every word

w, δ(a, w) is the state in which the dfa is provided that it was first in state a and then read

the digits of the word w.

The loop starts with multiplying x by k which makes the digit dm+1 going at the position

of kn+1. If m = n then the trailing 1 goes into the position of kn+1 and the loop terminates

with a = δ(start, d1d2 . . . dn) which is the correct state of the dfa after reading the k-ary

representation of the full number. If the origiinal input is 0 then n = 0, the loop is skipped

and a is the start state as required.

If m < n then the loop body determines the value of the variable b as the smallest

number such that, for the current value of x, x− b · y < y. At the same time, y is subtracted

b times from x. See Remark 12 for more details. Thus after this operation, x has the value

dm+2 . . . dn1 times km+1 and b has the value dm+1. After that a is updated: Using the

precondition that a = δ(start, d1d2 . . . dm) before the update, a is updated to

δ(a, dm+1) = δ(δ(start, d1d2 . . . dm), dm+1) = δ(a, d1d2 . . . dmdm+1)

and so the loop invariant is again true after m + 1 rounds of the loop body.

This completes the verification of what is done in Line 3. Line 4 is just the output and

the look-up whether a is an accepting state is trivial.
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The program runs in time linear in the number n of k-ary digits in x, where the constant

factor depends on k; the loop in line 2 increases y by factor k until y > x and the loop body

is gone through n + 1 times (as x had been multiplied with k in line 1). The loop in line 3

moves k-ary digit by digit out at the top until x = y, the latter happens as the last k-ary

digit is 1 and y is a power of k; the loop body is executed n times, that is, the simulation of

the dfa reads n k-ary digits and then checks whether the obtained state is accepting.

Note that the register z was only needed to multiply with k without overwriting one of

the registers x and y. If k = 2ℓ for some ℓ ≥ 1, then one does not need this extra register, as

one can replace the multiplication by k with ℓ commands which double up that register. ◭

◮ Theorem 14. One-tape Turing machine constructions running for f(n) steps can be

simulated in O(f(n) + n) steps with three registers in the case that input and output is

binary (or has a base of power of two like octal and hexadecimal numbers) and with four

registers in the case that input and output are i-ary and j-ary for arbitrary but fixed i, j ≥ 2.

Proof. The basic idea is a two-stack simulation of the one-tape Turing machine which is

assumed to be two sided infinite. The input and output alphabet are assumed to be {0, 1}

and the tape alphabet is assumed to be of size 2k. Furthermore, it is assumed that the input

stands behind the head of the Turing machine (= is on the right of it) at the beginning as

well as that the output stands before (= is on the left of) it after the computation. The

scrolling takes the Turing machine only an amount of time linear in input and output size,

respectively. Though the proof is given for i = 2, j = 2, it can be generalised easily when

the input/output alphabet are different, but one needs one more register to implement the

multiplications when i or j are not powers of 2.

A three symbol window consisting of the contents of the cell to the left, under and right

of the head of the Turing machine is kept in the variables b, b′, b′′. The parts to the left of

b and to the right of b′′ are kept in a way similar to the two-stack simulation of a Turing

Machine, but in two variables (registers) x and y which represent the portion left of b and

right of b′′ respectively on the tape, with the cell closest to b (respectively b′′) being the

highest order 2k-ary digit of the tape alphabet. As the highest order bits might be 0, which

are not easily recorded in integer variables and in order read in and out the top position by

comparing integers, an auxillary variable z to indicate top of both stack is used; it is always

a power of 2. z being [2k]ℓ would indicate that there are up to ℓ-characters in the variables

x and y and there might be trailing blanks on either side of the input. There is a coding

symbol (some constant) at the bottom of each stack (in order to be able to scroll out the

full content without having to rely on an additional register) and when this is reached, the

register machine knows that there are only blanks beyond this point on the Turing tape.

Thus whenever in the simulation, one reaches the border of infinitely many blanks, a new

blank is appropriately created in the variables x or y.

The transition function δ(a, b, b′, b′′) of the Turing machine takes as input current state

a, the three symbols b, b′, b′′ (symbols on cells left of the head, under the head and right

of the head) and updates them and c to the output (a, b, b′, b′′, c) which hold now the new

state, the updated values of the three cells with content denoted as b, b′, b′′ (actually only

the cell under the head changes, but this is just for ease of writing the program) and the

move c of the head, which can be left, right, stay or halt.

At the beginning the input to the simulating algorithm is in the variable x (see line 1 of

the algorithm). Then in lines 2, 3 and 4, x is copied to y and translated from binary into

tape alphabet and z is appropriately modified (with the resulting value of x being the empty

stack, that is x = z), to mimic that the Turing Machine starts on the input with head being



S. Jain, X. Jia, A.F. Sabili and F. Stephan 21

on b′ and b′′y being the input (with b′′ being the most significant bit). Step 5 initializes the

start state and sets the variable x as the empty stack representing an infinite sequence of

blanks to the left of b.

Step 6 then does a simulation of Turing machine step by step. Note that the simulation

uses the symbols in base 2k. In each step z is appropriately updated to indicate the top

digit for the variables x and y.

After simulation of Turing machine ends, the algorithm goes to step 7, clears y, and then

converts the content of xb into the output y in step 8 — with b being the most significant

bit and with a translation from the tape alphabet into a binary number.

In the program, the tape alphabet symbol values (constants) bitzero, bitone and space

denote codings for 0, 1 and blank, respectively. The program is as follows.

1. Begin read x; let x = 2 · x + 1; let z = 1;

2. If z > x then goto 3;

let z = z + z; goto 2;

3. Let x = x + x; let b = space; let b′ = space; let b′′ = space; let y = z;

4. If x = z then goto 5; let y = y + b′′ · z;

if x > z then begin x = x − z; b′′ = bitone end else begin b′′ = bitzero end;

let x = x · 2k+1; let z = z · 2k; goto 4;

5. Let a = startstate; let x = z;

6. Let (a, b, b′, b′′, c) = δ(a, b, b′, b′′); if c = halt then goto 7;

if c = left then begin y = y + z · b′′; b′′ = b′; b′ = b;

if x 6= z then begin let x = 2k · x; let (b, x) = (Floor(x/z), Remainder(x/z))

end

else let b = space;

let x = x · 2k; let z = z · 2k end;

if c = right then begin let x = x + z · b; let b = b′; let b′ = b′′;

if y 6= z then begin let y = 2k · y; let (b′′, y) = (Floor(y/z), Remainder(y/z))

end

else let b′′ = space;

let y = y · 2k; let z = z · 2k end;

goto 6;

7. Let y = 0;

8. If b = bitone then let y = 2 · y + 1;

if b = bitzero then let y = 2 · y;

if b /∈ {bitzero, bitone} or x = z then goto 9;

let x = x · 2k; if x = z then goto 9;

let (b, x) = (Floor(x/z), Remainder(x/z)); goto 8;

9. Write y; End.

The input/output conventions are such that the program can be written the most simple

way. Other input/output conventions (head on the other side of input or output) would

require scrolling over input/output and is here left to the Turing machine program. Time

needed is O(n) for input processing, O(f(n)) for Turing Machine simulation (and each step

of Turing Machine is simulated using constant number of steps) and O(n + f(n)) for the

output. ◭

Case, Jain, Seah and Stephan [10] showed that one can compute every automatic function

with one input length n in O(n) steps on a one-tape Turing machine where the input and

the later produced output start at the same position. This criterion is even “if and only if”.
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Additional scrolling of the result or the original input as needed for the Theorem 14 is also

O(n) steps. Using this result, one gets the following corollary.

◮ Corollary 15. The output of an automatic function with a number interpreted as an i-ary

sequence of digits on the input to an output interpreted as an j-ary sequence of digits can be

computed by a register machine in linear time using four registers; if i and j are both powers

of two then only three registers are needed.

◮ Corollary 16. Automatic functions with more than one input can be implemented by a

register machine with 5 registers.

Proof. The idea is to form the convolution of constantly many numbers and feed this com-

bined input into the automatic function. If two inputs are given as i-ary and i′-ary numbers,

one forms an i · i′-ary number whose digits are, roughly spoken, pairs of the corresponding

i-ary and i′-ary digits at the same position.

1. Read first input and translate this input with an automatic function this i-ary

number into an i · i′-ary number using the same digits, let x denote the register

holding this number. This translation needs by Theorem 14 four registers, x being

one of them. This is like translating the binary number 1101 (thirteen) into the

decimal number 1101 (one thousand one hundred and one). Four registers are

needed for this.

2. Read the second input and process it using Theorem 14 with the four registers

besides x (which is not modified) and let y denote the register which holds the

result. This number was originally in base i′ and is now in base i · i′ but has the

same digits. For example, the quinary number 2323 (three hundred thirty eight)

becomes the decimal number 2323 (two thousand three hundred twenty three).

3. Add y in total i times to x. For example, 1101 plus 2323 plus 2323 becomes 5747.

This number is now the convolution of both numbers, as the first 5 represents the

pair (1, 2), the next 7 represents the pair (1, 3), the next 4 represents the pair (0, 2)

and the last 7 again represents the pair (1, 3).

4. Map with an automatic function this i · i′-ary number in x to a j-ary number.

Note that every automatic function with constantly many inputs can be viewed

as an automatic function from the corresponding convolution as a single input to

the output.

If there are three inputs using i-adic, i′-adic and i′′-adic numbers, the automatic functions in

the steps before evaluating the main function translate the i-adic, i′-adic and i′′-adic digits

each into i · i′ · i′′-adic digits. Steps 2 and 3 are repeated for reading and processing the third

input, one adds the corresponding y then i·i′ times to x. The so obtained convolution is then

mapped to the j-adic number according to the given automatic function to be implemented

as done in the last step of above algorithm. Analogously one handles even larger amount of

inputs. Note that for automatic functions, the number of inputs is constant, so there are no

loops which create convolutions with an unforeseeable large base.

As the algorithm consists mainly of executing a constant amount of automatic functions,

it has linear time complexity (where the parameter n is the longest number of digits of an

input) and the constant factor in the linear term depends not only on the number of inputs

but also on the values of i, i′, i′′, . . . , j, k in the simulation of the automatic functions. Due

to the storage of the so far constructed part x of the convolution, the simulation needs

one register, namely x, more than the worst case for the simulation of the corresponding

automatic function with one input. If all bases involved are powers of two, the whole

algorithm needs only four registers, see Theorem 14 for more details. ◭



S. Jain, X. Jia, A.F. Sabili and F. Stephan 23

◮ Theorem 17. If a register program has only one register, one read-statement at the be-

ginning and one write-statement at the end then it computes an automatic function f which

is of the following special form:

There are integer constants k, h, i, j, i′, j′ such that i, i′ are powers of 2 and k, h > 0

satisfying the following:

Either f(x) = f(x + h) for all x ≥ k

or f(x) = ix + j for all x ≥ k

or f(x) = −ix + j for all x ≥ k;

Either f(x) = f(x − h) for all x ≤ −k

or f(x) = i′x + j′ for all x ≤ −k

or f(x) = −i′x + j′ for all x ≤ −k.

In the second and third line of each item, the computation time is constant and in the first

line it is either constant or exponential or nonterminating in the number of binary digits n

to represent x; furthermore, f(x) = f(x+h) means that either f is undefined on both inputs

(the nonterminating case) or f(x), f(x + h) are both defined and equal.

Proof. Note that if there are two different periods h′, h′′ for x ≥ k′ and x ≤ −k′′ then one

can take k = max{k′, k′′} and h = h′ · h′′. Thus the theorem can be formulated with just

one k and one h.

Given a program which uses only one register, one transforms this program into a normal

form with the following steps:

One introduces a variable a which takes over the sign of x and has, after this is done,

that x is at least 0 throughout the program (it is easy to see how to adjust it); furthermore

one replaces statements of the form “let x = x − x” by x = 0. A statement of the form “let

x = x + m;” where m is a constant is replaced by “let x = x + a · m”, the reason is that

the actual value of x is a · x and if a is −1, then one has to adjust all the comparisons with

constants and the addition of constants accordingly.

Furthermore, after adjusting the constants, if a statement is “let x = m − x” then one

replaces this by the statements

If x = m then begin let x = 0; goto line ℓ′′;

If x = m − 1 then begin let x = 1; goto line ℓ′′

If x = m − 2 then begin let x = 2; goto line ℓ′′;

. . .

If x = 1 then begin let x = m − 1; goto line ℓ′′;

If x = 0 then begin let x = m; goto line ℓ′′;

Let a = −a; let x = x − m; goto line ℓ′′

Here ℓ′′ is the first line number after this original statement. Furthermore, at the end, one

replaces the statement “Write x;” by

If a = −1 then begin let x = −x end; write x;

Now in the whole program, the only places where −x occurs instead of x are in the beginning

before the initial branching and at the end where the output is written.

After that, one expands the program such that every statement has its own line and

all bounded variables are replaced by having multiple copies of the original program and

jumping between these when the value of the variable changes. If-statements are now only of

the form “If x = m then goto linenumber”. Note that all comparisons must be with constants
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as the outcome of comparisons of x with itself can be replaced by either a nonconditional

jump or by completely omitting the statement.

Now one determines the largest absolute value of a constant k′ which occurs in any

statement of the form “x = x+ i” or in a comparison; for each m ≤ k′ and each line number

ℓ, one tables out what the output m′ would be if x at this line number has the value m and

then one prefixes the statement in the line by a sequence of comparisons with the constants

m from 0 to k′ and then implements the statement

if x = m then begin let x = m′; goto ℓ end;

and one puts into the last line ℓ only the command “Write x end.” which ends the program.

Furthermore, there is a further line ℓ′ for writing the statement “output is undefined” in

the case that the program does not terminate and then the program stops accordingly. One

removes after these initial checks all cases handling x ≤ k′ inside this line and has thus a

single branch instead of an comparison with a constant in the line. After that one renumbers

the program and flats out the if-statements to branch only by jumping to line numbers.

There are now up to two loops which are taken after the initial statements

if x ≥ 0 then goto ℓ′′;

let x = −x;

goto ℓ′′′;

where each of the loop, if any, is taken in the case of positive and of negative numbers. For all

x which run through the loop once without going below k′ at any time, by running through

the loop, the value of x is either updated to x+h′ or m ·x+h′ where m is a proper power of

2, so m ∈ {2, 4, 8, 16, . . .}; this case means that some statements of the form “let x = x + x”

occur in the loop. If in the first case h′ ≥ 0 or in the second case x ≥ h′ + k′ then the loop

runs forever and the value is undefined; if in the first case h′ < 0 then it depends only on

the value Remainder(x/ − h′) which branch is taken when x leaves the loop in some line

and takes a value and then branches to the end. In the case that there is no loop, that is, no

line in the program is executed twice, there are only constantly many statements carried out

and for large x, they are all the same, as never a comparison with some constant below k′

applies affirmatively. Thus the value will be computed by some doubling statements and by

statements adding or subtracting a constant. Furthermore, the output might be multiplied

with −1 at the end. Thus the value will be of the form i · x + j for all sufficiently large

positive x and of the form i′ · x + j′ for all sufficiently small negative x. Here i, i′ are powers

of 2, perhaps multiplied with −1, and the j, j′ are any integer constants.

Furthermore, if there are two periods −h′, −h′′ then h is the product of these.

The constant k has to be large enough so that the exceptions which are caused by going

below k′ somewhere in the program or by the fact that only, by absolute value, sufficiently

large x principally leading to infinite loops are also actually leading to infinite loops. These

considerations together show then that the function is of the corresponding form given in

the theorem statement.

Automatic functions are closed under composition and finite case distinctions along reg-

ular conditions. Assuming that x is represented in binary or decimal or by another base

(or even by the Fibonacci base which Floyd and Knuth mention) allows to evaluate the

remainder by a fixed number with an automatic function and the finitely many cases which

arise can be piped into a case distinction. Furthermore, addition and multiplication with

constants are automatic functions in these models, thus the function of the specific form as

listed in theorem statement are indeed automatic. ◭
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◮ Remark 18. The preceding results show that every function computed by a register machine

with one register is automatic as a function with respect to any base d ≥ 2 to represent the

digits. Furthermore, it follows from the work of Cobham [11] and Semenov [32] that such

partial functions have a graph which is definable in Presburger arithmetics, that is, which is

semilinear. However, not every semilinear function is computed by a one-register machine,

for example the function f which maps even numbers to 0 and odd numbers to itself is

definable in Presburger arithmetic but cannot be computed by a one-register machine, as

that would have to check whether x is even and that can only be done by downcounting x in

steps of 2 until a certain constant is reached; however, then the machine has lost all memory

about what x was and cannot output x in the case that x is odd. A formula defining this

function f in Presburger arithmetics is as follows:

f(x) = y ⇔ ∀z [(x = z + z → y = 0) ∧ (x = z + z + 1 → y = x)].

On the other hand, all automatic functions with one input can be computed with four

registers in linear time. The fourth register is only needed in the case that the numbers

involved are not represented in binary, for example if one wants to determine the highest

power of 3 appearing in the ternary representation of the number, so if x = 21120 then the

output is 10000 (both in ternary). Automatic functions with several inputs can be calculated

with five registers (or even four registers if all inputs and the output of the automatic function

are binary or of other arity which is a power of two).

If an automatic function is based on binary representation and its range is constant, then

one can compute it with a finite automaton where the state in which it is after processing the

full word determines the output; this automaton runs from the high-order to the low-order

bits and needs only two registers for being implemented in a register machine.

Floyd and Knuth [13, Theorem 4] showed that a register machine with two registers needs

exponentially many steps to compute the greatest common divisor of x and a constant, say

1 or 2, via a program which solves the greatest common divisor in all cases. If one only

wants x 7→ gcd(x, k) for constant prime k, then this remainder is computed by membership

in a regular set (with respect to binary representation) and can be carried out with two

registers in linear time (in the addition machine model of this paper which allows the usage

of constants).

Furthermore, one can compute with two registers more semilinear functions than with

one register, for example the automatic function x 7→ 3x. One can also compute some

nonautomatic functions of one input x like f(x) = min{2k · max{x, 1} : k ≥ 1, 2k ≥ x} via

the following program:

1. Begin read x; let y = 1; if x < 1 then begin x = 1 end;

2. Let x = x + x; let y = y + y; let y = y + y; if y < x then goto 2;

3. Write x End.

One can show that this function is not automatic; if input and output are represented in

the same base system then the simple argument that the output of an automatic function

can have only constantly many more symbols than the input is sufficient.

The following two-input function will allow a better separation by being computed with

two registers only in both the model of this paper and the model of Floyd and Knuth [13].

For this, the second input y is read before the input x in order to check whether y is strictly

positive; if y ≤ 0 or x ≤ y the output is 0.

1. Begin read y; let x = y − y; if y ≤ x then goto 3;

read x; if x ≤ y then begin x = y − y; goto 3 end;
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2. Let x = x + x; let y = y + y; let y = y + y; if y < x then goto 2;

3. Write x End.

If y ≤ 0 or x ≤ y then the output is 0 else the output is the 2k · x for the first number

k ≥ 1 with 2k · y ≥ x. Now when fixing y = 1 and considering x > y, the corresponding

restricted function x 7→ min{2k · x : k ≥ 1, 2k ≥ x} equals to the function f from above on

these outputs. One can now see that for x with 2k−1 < x ≤ 2k, the output is 2k · x. Thus

whenever x > 1 and f(x + 2) − f(x + 1) = f(x + 1) − f(x) then f(x + 1) − f(x) is a power

of 2 and thus the set of powers of 2 in the range of f is first-order definable from f , thus

assuming that f is automatic and using that +, < are automatic, one gets that the powers

of 2 are automatic. Thus the base used for representing the numbers in the output must be

a power of 2, say 2j [11]. Furthermore, x is a power of 2 iff x = 1 or the three conditions

x > 1, f(x + 1) − f(x) > f(x) − f(x − 1) are satisfied. So the powers of 2 are also definable

in the input alphabet and therefore a regular set, again one can conclude that the base of

the digits used in the input alphabet for the automatic function is a power of 2, say 2i.

Now one shows that f cannot be automatic, as it maps one regular set to a nonregular

set. For this, note that when it comes to a set A of natural numbers, for all h, the set

{binary digits of a : a ∈ A} is regular iff the set {digits in base 2h of a : a ∈ A} is regular, as

one can consider the digits in base 2h as h subsequent digits in binary at the corresponding

positions. For example, hexadecimal 5F38 is binary 101 1111 0011 1000 when grouping the

digits accordingly. Now one considers the set A = {2k + 1 : k ≥ 1}. The set of binary

representations of A is the set {1} · {0}∗ · {1} which is regular as this regular expression

shows. However, f(A) is the set of all 2k+1 · (2k + 1) whose binary representations have one

1 at the upper end of the number and the other 1 just at the middle, all other digits are 0,

more precisely, they are of the form 10k−110k+1 when putting the highest order bits first.

An easy application of the pumping lemma shows that the set of binary representations of

f(A) is not regular.

Note that the bound of two registers for this program is optimal, as Theorem 17 showed

that all register programs with only one register compute an automatic function.

6 Sample Programs

Sample programs are available at

https://www.comp.nus.edu.sg/~fstephan/registermachineprog/

and the programs are distinguished from those in the paper as follows: Output handling

and syntax has to follow C/C++; subroutines for the update of the finite automata state

and the checking of the acceptance conditions are extra C++ functions and the macro for

Floor/Remainder at the regular set program is expanded to the code it stands for. The

programs are the following five:

1. register-division.cpp

This program implements the division for Open Question (2).

2. register-multiplication.cpp

This program implements the multiplication for Open Question (2). Note that squaring

(what Floyd and Knuth asked for) is a special case of multiplication where both inputs

are the same.

3. register-poweroftwo.cpp

This program solves Open Question (5).

https://www.comp.nus.edu.sg/~fstephan/registermachineprog/
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4. register-regset-octaleor.cpp

The program checks regular set membership. Here k = 8, that is, k is a power of two.

Therefore one can determine regular set membership with two registers x, y only. The

regular set implemented is that where the exclusive or over all octal digits of the number

gives an octal digit with exactly two bits 1 and one bits 0. The digits in question are 3,

5, 6 as they are binary 011, 101, 110.

5. register-regset-threedecimaldigits.cpp

This also checks a membership in a regular set, namely whether there are exactly three

nonzero decimal digits in the decimal representation of the number. The finite automaton

counts the nonzero decimal digits up to four. As the base is 10, the program needs three

registers x, y, z.

The programs are in C++ and in a Unix-type operating system, one can compile them with

the command g++ and then execute the file a.out created. They are tried to be as similar

to the code in the paper as possible. Note that the programs have implemented the registers

as “long long int” but for very large inputs, there might be overflow errors, either explicit

or implicit by computation errors. Here u, v, w, x, y, z in the variables are registers which

can normally hold arbitrarily large numbers; the variables a, b, c, d are also implemented as

“long long int” to avoid type conversion, but they take only one of finitely many values, for

example the current digit and the state in a finite automaton setting for the last two sample

programs. The programs are there to facilitate the checking of the validity of the solutions

of Open Problems (2) and (5) as well as of the regular set result.

7 Conclusion

Floyd and Knuth investigated the questions which basic numerical operations can be done

by addition machines in linear time and, furthermore, how many registers are needed for

this. The present work answers two problems left open by Floyd and Knuth completely: In

Open Problem (2) they asked whether the number of five registers to do squaring, integer

multiplication and integer division in linear time can be obtained and the answer is affirmat-

ive. In Open Problem (5) they asked whether one can improve the runtime of an algorithm

to output all powers of two appearing in the binary representation of a natural number in

subquadratic time and the answer is that it can even be done in linear time.

The authors of the present work think that the usage of constants when adding, sub-

tracting or comparing is natural and should be allowed. Therefore their upper bounds on

the number of registers obtained deviate in general by one from those of Floyd and Knuth

[13]. In order to be honest, the following table gives the results on the number of registers

needed for the various tasks performed in both models, in the model of this paper and in the

model of Floyd and Knuth. Floyd and Knuth write “an integer addition machine can make

use of the constant 1 by reading that constant into a separate, dedicated register.” So the

1 is given as an additional input to the machine. All operations with a constant (addition

and subtraction) can be carried out by repeatedly adding or subtracting this register. One

can compare x with constant k by k − 1 times subtracting the register y which carries 1

to x, compare with y, doing the conditional goto command and then adding y again k − 1

times to x. Most tasks below need this additional register. The lower bound proof of Floyd

and Knuth [13] for the remainder does not go through in the model of this paper due to

remainder by a constant being doable with two registers, it is just equivalent to evaluating

a finite automaton whose states have the output value with respect to binary representation

(or any other fixed base) and thus Theorem 13 gives bound 2. However, Floyd and Knuth
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asks for an algorithm which can compute the remainder for all input-output pairs (x, y) and

then they prove that in their model, three registers are needed by showing that determining

the remainder even for any fixed value y ≥ 1 takes exponential time. The proof using this

fixed value y does not go through, though it seems to the authors that the result might

perhaps hold with another, more sophisticated proof which is not the topic of this paper, as

in the general case a machine with two registers must forget one of the inputs in order to

store intermediate values, this is generally only possible with the easy exponential method

by continuously subtracting from x or adding to x the value y until 0 ≤ x < y, as the

remainders of x by y and x − y by y and x + y by y are all the same. Floyd and Knuth [13]

showed that no method of this type works in linear time.

Operation Model of Model of Bounds of Source

this paper Floyd and Floyd and

Knuth [13] Knuth [13]

Remainder 3 3 3 Floyd and

Knuth [13]

Greatest Common Divisor 3 3 3 Floyd and

Knuth [13]

Multiplication 4 5 6 Theorem 4

Squaring 4 5 6 Theorem 4

Integer Division 4 5 6 Theorem 5

Powers of Two 4 5 − Theorem 6

Membership in Regular Set 2, 3 3, 4 − Theorem 13

Automatic function 3, 4 4, 5 − Corollary 15

(multi-variable) 4, 5 5, 6 − Corollary 16

Some nonautomatic function 2 2 3 Remark 18

When there are two entries for regular sets and automatic functions, it means that the value

depends on whether all bases of numbers involved can be chosen to be a power of 2. If this

is the case then the first value applies else the second value applies. “Model of Floyd and

Knuth” means the best known upper bound so far given (including this paper) when the

program is written in the model of Floyd and Knuth where the constant 1 has to be replaced

by a designated register and operations with constants are not allowed. “Bounds of Floyd

and Knuth” means the best bound on the number of registers for computing the function

in linear time as it is given in the paper of Floyd and Knuth. The entry “−” means in the

case of outputting the powers of two that the current time bound was not matched and in

the case of regular sets that the topic was not investigated by Floyd and Knuth.

“Some nonautomatic function” in the table means that there is a function which is

not automatic and which can be computed with two registers in linear time. This is the

nonautomatic function in two variables provided in Remark 18. The remainder result by

Floyd and Knuth is a nonautomatic function which is also computed by a register machine

with three registers in linear time — note that the divides-relation and thus the remainder

function are nonautomatic in every automatic representation of natural numbers including

those of binary numbers or k-ary numbers in general [7].

Besides optimising the number of registers used, the paper also looked into the runtime

bounds. Open Problem (5) actually asked only for the runtime bound and the O(n) al-

gorithm of the present paper is optimal, as there might be in the worst case n different

numbers which must be output, see the case where the n-bit number is 2n − 1. Open prob-

lems (3) and (4) ask whether algorithms provided by Floyd and Knuth can be improved
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asymptotically, that is, for the obtained time-bounds O(log(y) · log(z)) steps for (3) and

O((m + log(q1 · q2 . . . qm)) log m) steps for (4), can one replace O(. . .) by o(. . .)?

The results show that in both cases this is impossible, provided one uses the Wikipedia

Definition (a) for the multivariate Oh Calculus. However, the proofs do not work with the

alternative Definition (b). Furthermore, the lower bound for (4) is obtained not for the

original task but for the simpler task to read in m and then m numbers and then read an

index of which number has to be recalled; this simpler task can always be done at least as

fast as sorting. This task fails for Definition (a) of the Little Oh Calculus but works for the

Definition (b) of the Little Oh Calculus. Thus these two problems are only partially solved

and would be completely solved only when they are answered for all common versions of

the multivariate Oh Calculus; it is even possible that the answer to the questions depends

on the multivariate Oh Calculus chosen as it did for the simplified task.

There is a close relationship between register machines and automatic functions. All

functions computed by a register machine with only one register can also be computed by

an automatic function and this function is automatic independently of the base for the

representation of the numbers as a sequence of digits; thus these functions are a proper

subclass of those definable in Presburger arithmetic. On the other hand, even if one takes

the most general definition for automatic functions from tuples of numbers to numbers in

the sense that for each input and also for the output one can choose the base of the digits

independently of what is taken for the others of the inputs and the output, the resulting

function can still be computed with five registers in linear time. Furthermore, there are

functions which can be computed with two registers in linear time which are not automatic.

As all the primitive operations of the register machine (adding, subtracting, comparing)

are automatic functions and relations, one could use the automatic functions and relations

as a primitive operations for a register machine and would obtain a notion of primitive

steps which has the same class of polynomial time computable functions and relations as

the register machine or as the Turing machine [14, 30]. However, the more fine-grained

time complexities change. Division by constants and remainders by constant can be done

in constant time and the Θ(n) bound of Stockmeyer [34] for register machines with both

addition and multiplication does not carry over to this model.
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