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Abstract

Time-space tradeoff has been studied in a variety of models, such as Turing machines, branching programs,

and finite automata, etc. While communication complexity as a technique has been applied to study finite

automata, it seems it has not been used to study time-space tradeoffs of finite automata. We design a new

technique showing that separations of query complexity can be lifted, via communication complexity, to

separations of time-space complexity of two-way finite automata. As an application, one of our main results

exhibits the first example of a language L such that the time-space complexity of two-way probabilistic

finite automata with a bounded error (2PFA) is Ω̃(n2), while of exact two-way quantum finite automata

with classical states (2QCFA) is Õ(n5/3), that is, we demonstrate for the first time that exact quantum

computing has an advantage in time-space complexity comparing to classical computing.

Keywords: Quantum computing, Time-space complexity, Two-way finite automata, Communication

complexity, Lifting theorems, Query algorithms
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1. Introduction

An important way to get deeper insights into the power of various quantum resources and operations is

to explore the power of various quantum variations of the basic models of classical computation. Of a special

interest is to do that for various quantum variations of the classical finite automata, especially for those that

use limited amounts of quantum resources. It has been proved [37] that exact 1-way quantum finite automata

with classical states (1QCFA) [9, 57] have no state (space) complexity advantage over deterministic finite
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autumata in recognizing a language [38]. One of the main results in this paper shows that exact two-way

quantum finite automata with classical states (2QCFA) [9], however, do have complexity advantage over

two-way probabilistic finite automata (2PFA). We will show this advantage via the time-space complexity

(i.e, the product of the time and the logarithm of the number of states).

Time-space tradeoff is an important topic that dates back at least as early as [23] where time-space

tradeoff for Turing machines were studied. It is often too difficult to obtain separation results for time

complexity or space complexity alone, hence in practice one alternative is to study the product of time and

space, so-called the time-space tradeoff. This has been studied in a variety of models, such as Turing machines

and branching programs [11, 13, 14], finite automata [25], and other specific computational problems [38, 39],

etc.

Early time-space tradeoff results are mostly obtained via various combinatorial methods, such as [18, 23,

25] etc. One strong tool for studying the time-space tradeoff for branching programs is via communication

complexity, see e.g., [11, 13, 14]. The time-space tradeoff for language recognition and automata have

been studied before, such as [12, 25, 31], however, communication complexity was not involved. For time

complexity alone, consider the non-regular language L = {xnyn | n ≥ 1}. It is well-known that 2DFA cannot

recognize L, 2PFA recognizes L with exponential time [26, 27], while 2QCFA needs only polynomial time [9].

This separation is also shown via combinatorial analysis. On the other hand, communication complexity has

been used to study languages [30]. Communication complexity has also been applied to study finite automata,

though previous studies are concerned on space complexity of the (classical and quantum) automata, such

as [29, 32, 33, 34, 36, 54].

In this work, we show how to use communication complexity to obtain time-space complexity results

for two-way finite automata. We develop a technique, namely “lifting technique”, that automatically lifts

separations of query complexity to separations of time-space complexity of two-way finite automata. With

this we immediately obtain separation results for finite automata from known separations in query model.

Our technique can also be viewed as an application of lifting theorems in communication complexity to the

study of time-space complexity of finite automata.

Below we briefly discuss the lifting technique, and summarize its applications and limitations.

1.1. The lifting technique

Let h : {0, 1}p → {0, 1} be a Boolean function. Let D(h) and Q(h) denote the deterministic query

complexity and the quantum query complexity of h, respectively (see Definition in Section 2.2). Suppose we

know a separation in the query complexity world,

D(h) ≫ Q(h), (1)
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where ≫ means that Q(h) = o(D(h)). Let TS2DFA(L) and TS2QCFA(L) denote the time-space complexity

of recognizing language L by a 2DFA and a 2QCFA, respectively (see Definition in Section 2.1). We will

define a language L depending on h and show that

TS2DFA(L) & D(h) and TS2QCFA(L) . Q(h), (2)

where the notation & and . hide certain parameters. (1) and (2) together imply that

TS2DFA(L) ≫ TS2QCFA(L). (3)

In this way, we “lift” a separation result for query complexity (1) to a separation for time-space complexity

for two-way finite automata (3). Below we give some detail on (2).

Let the alphabet Σ = {0, 1,#}. Every two-party Boolean function f : {0, 1}n × {0, 1}n → {0, 1} induces

a language Lf (n) defined as follows

Lf (n) = {x#ny ∈ Σ∗ | x, y ∈ {0, 1}n, f(x, y) = 1}. (4)

On one hand, we show that two-way finite automata recognizing Lf (n) can be translated to communi-

cation protocols solving f . Let Dcc(f) and Rcc(f) denote the deterministic communication complexity of f

and randomized communication complexity of f with a bounded error, respectively.

Theorem 1.1. TS2DFA(Lf (n)) ≥ n(Dcc(f)− 1), TS2PFA(Lf (n)) ≥ n(Rcc(f)− 1).

Given a function h : {0, 1}p → {0, 1} and a two-party function g : {0, 1}m × {0, 1}m → {0, 1}, they
naturally define another two-party function f : {0, 1}pm × {0, 1}pm → {0, 1} as follows,

f(x, y) = h(g(x1, y1), g(x2, y2), . . . , g(xp, yp)), (5)

where (xi, yi) ∈ {0, 1}m × {0, 1}m. We denote (5) by f = h ◦ g, i.e., f is a composed function of h and g.

Let IPm denote the two-party inner product function IPm(a, b) =
∑m

j=1 ajbj mod 2, where a, b ∈ {0, 1}m.

Applying appropriate lifting theorems in communication complexity, Theorem 1.1 implies the following

corollary which corresponds to the first part of (2). Let R(h) denote the randomized query complexity of h.

Let TS2PFA(L) denote the time-space complexity of recognizing language L by a 2PFA.

Corollary 1.1. Let h : {0, 1}p → {0, 1} and f = h ◦ IPm where m = Θ(log p). Let n = pm be the input size

for f , then

TS2DFA(Lf(n)) ≥ Ω̃(nD(h)) (6)

and

TS2PFA(Lf (n)) ≥ Ω̃(nR(h)). (7)
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Remark 1.1. The reason for choosing g = IPm is that to prove Corollary 1.1 we need to use some lifting

theorems in communication complexity which requires choosing g = IPm (or some other functions satisfying

certain properties, but IPm is a simple and valid choice). We refer the interested reader to [21, 22].

On the other hand, we show that quantum query algorithms for h can be translated to two-way finite

automata recognizing Lf (n) where f = h ◦ g. Let Qǫ(h) denote the quantum query complexity of h where

the error is at most ǫ. Let QE(h) denote the quantum query complexity of h where there is no error.

Let TS2QCFA,exact(L) denote the time-space complexity of recognizing L by a 2QCFA with no error. The

following theorem corresponds to the second part of (2).

Theorem 1.2. Let f = h ◦ g be of the form (5), let n = pm be the input size for f . Then,

TS2QCFA(Lf (n)) = O
(
Qǫ(h) · n · (log p+m)

)
, (8)

and the error for the 2QCFA is at most ǫ. In particular, setting ǫ = 0 and m = Θ(log p), then

TS2QCFA,exact(Lf (n)) = O
(
QE(h) · n · logn

)
= Õ

(
nQE(h)

)
. (9)

Remark 1.2. This is a good place to discuss the definition (4). For Boolean function f : {0, 1}n×{0, 1}n →
{0, 1}, one could define Lf (q) = {x#qy ∈ Σ∗ | x, y ∈ {0, 1}n, f(x, y) = 1}, and then optimize over q to get

the largest separation. Let us consider 2DFA and 2QCFA as an example. With this new definition, ignoring

lower order log terms, the result for Corollary 1.1 becomes TS2DFA(Lf (q)) ≥ Ω̃(q ·D(h)), and the result for

Theorem 1.2 (see details in Theorem 3.1) becomes TS2QCFA(Lf(q)) ≤ Õ((q + n) · Qǫ(h)). From Corollary

1.1, since n = pm and m = Θ(log p), we have p = Θ̃(n). So, suppose we have a function h for which

D(h) = Ω̃(nα), Qǫ(h) = Õ(nβ), for some 0 ≤ β ≤ α ≤ 1. (10)

Then, TS2DFA(Lf (q)) ≥ Ω̃(q · nα) and TS2QCFA(Lf (q)) ≤ Õ((q + n) · nβ). With a simple calculation, one

finds that the largest separation is achieved at q = n, in which case

TS2DFA(Lf (q)) ≥ Ω̃(n1+α), TS2QCFA(Lf (q)) ≤ Õ(n1+β). (11)

1.2. Separation results for time-space complexity

Let h : {0, 1}p → {0, 1} be a Boolean function. Let f = h ◦ IPm where m = Θ(log p). Let n = pm be

the input size for f . Consider the language Lf (n) defined in (4). As described in Section 1.1, we apply

Corollary 1.1 and Theorem 1.2 together to lift a separation for the query complexity of h to a separation for

the time-space complexity of Lf (n). Using known separation results for total Boolean functions, we obtain

the following separations for time-space complexity for two-way finite automata.

Theorem 1.3. In each of the following cases, there exist a total function f : {0, 1}n×{0, 1}n → {0, 1} (the

function f is different for each case), such that
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(1) TS2DFA(Lf (n)) = Θ̃(n2) and TS2QCFA(Lf (n)) ≤ Õ(n5/4).

(2) TS2DFA(Lf (n)) = Θ̃(n2) and TS2QCFA,exact(Lf (n)) ≤ Õ(n3/2).

(3) TS2PFA(Lf (n)) = Θ̃(n2) and TS2QCFA(Lf (n)) ≤ Õ(n4/3).

(4) TS2PFA(Lf (n)) = Θ̃(n2) and TS2QCFA,exact(Lf(n)) ≤ Õ(n5/3).

However, the functions h involved in the Theorem 1.3 are all quite complicated. In Section 4 we give two

other simple examples with weaker separations, in these examples the languages are explicit.

Remark 1.3. Instead of total functions, one could consider partial functions h. Since the lifting theorem we

use (e.g., [21]) also holds when h is a partial function, and the simulation theorem Theorem 1.2 also holds

(it will become clear in the proof of Theorem 3.1) when h is a partial function, we can also obtain separations

of time-space complexity when f are partial functions. For example, [1] constructs a partial function h on

n bits such that R(h) ≥ Ω̃(
√
n) and Qǫ(h) ≤ O(1). By adapting the discussion in (10) and (11), we can

show that there is a partial function f such that TS2PFA(Lf (n)) = Θ̃(n3/2) and TS2QCFA(Lf(n)) ≤ Õ(n).

However, by making a change of variable n = N4/3, this separation is just as strong as (3) of Theorem 1.3.

For separations of QE from D or R, we are not aware of separations by partial functions that are stronger

than total functions, as a result, we can not improve (2) or (4) of Theorem 1.3 by partial functions.

1.3. The limitations of the lifting technique

A minor limitation of the lifting technique is that we requirem = Θ(log p) in Corollary 1.1, this restriction

renders the lower bound to be of the form Ω̃ instead of Ω, i.e., we always lose a logn factor in the lower bound

obtained in this way. This limitation comes from the current limitation of lifting theorems in communication

complexity, which requires that m ≥ Ω(log p).

Another limitation of the lifting technique is the following. Different versions of query complexity, such

as D(h), R(h), QE(h) and Q(h), are known to be polynomially related for total functions (see, e.g., [20]). In

fact, Aaronsonet al. [2] showed that D(h) ≤ O(Q(h)4) for every h. Hence, among 2DFA, 2PFA, 2QCFA and

2QCFA without error, the separation of time-space complexity obtainable from the above lifting method

could only be Ω(n2) and O(nα) for some α ≥ 5/4 > 1, if we use only total functions. In particular, since

D(h) ≤ O(R(h)3) (see [20]), the above lifting method could prove, at most, that some language L satisfies

TS2DFA ≥ Ω(n2) and TS2PFA(L) ≤ O(n4/3). However, this limitation might possibly be overcome by using

better separations of partial functions.

The next theorem shows that sometimes a better separation for time-space complexity can be obtained

by directly simulating communication protocols using two-way finite automata. Let

LEQ(n) = {x#ny | x, y ∈ {0, 1}n, x = y}. (12)
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This language separates the time-space complexity of 2DFA and 2PFA with tight bounds.

Theorem 1.4. TS2DFA(LEQ(n)) = Θ(n2), TS2PFA(LEQ(n)) = Θ(n logn).

Observe that the EQn(x, y) can be viewed as a composed function of the form (5) where h is the ANDn

function and g is the negation of the xor function, in particular m = 1. Because m = 1 6= Θ(logn), we

can not apply Corollary 1.1 to obtain the lower bound for TS2DFA(LEQ(n)) from the lower bound on the

query complexity of ANDn. Instead, we need to apply Theorem 1.1 directly with a lower bound on the

communication complexity of EQn.

The rest of the paper is organized as follows. Section 2 defines formally all the related two-way finite

automata, time-space complexity, quantum query algorithms and the two-party communication model. Sec-

tion 3 proves the theorems discussed in Section 1.1 and Theorem 1.4. Section 4 proves Theorems 1.3. The

last section discusses our method and some open problems.

2. Definitions

2.1. Two-way finite automata and time-space complexity

We assume familiarity with (1-way) deterministic finite automaton (DFA), which is denoted by a tuple

(S,Σ, δ, s0, Sacc, Srej), where S is a finite set of states, Σ is a finite set of input symbols called the alphabet,

δ is a transition function, s0 ∈ S is an initial state, and Sacc, Srej ⊆ S are the sets of accepting states and

rejecting states, respectively (hence Sacc ∩ Srej = ∅). Let Σ∗ denote the set of all possible strings over the

alphabet Σ.

Informally, a two-way deterministic finite automaton (2DFA) is a DFA whose tape head can move to the

left, be stationary, or move to the right. A two-way probabilistic finite automaton (2PFA), firstly defined in

[41], has access to randomness in choosing the next state.

Definition 2.1. A 2DFA is a tuple M = (S,Σ, δ, s0, Sacc, Srej). The input to M is of the form |cw$ where

w ∈ Σ∗, and |c, $ 6∈ Σ are two special symbols called the left end-marker and right end-marker, respectively.

The transition function δ is of the following form

δ : S ×
(
Σ ∪ {|c, $}

)
→ S × {−1, 0, 1}, (s, σ) 7→ (s′, d),

which means that when M is currently in state s and reads a symbol σ, its state changes to s′ and the tape

head moves according to d. The value of d = −1, 0, 1 corresponds to move to the left, be stationary, and

move to the right, respectively. M accepts a string w ∈ Σ∗ if when M runs on |cw$, the final state is an

accepting state in Sacc. A language L ⊆ Σ∗ is recognized by M if M accepts every w ∈ L and rejects every

w 6∈ L.
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A 2PFA is also a tuple M = (S,Σ, δ, s0, Sacc, Srej), where the transition function δ is of the following

form

δ : S ×
(
Σ ∪ {|c, $}

)
× S × {−1, 0, 1} → [0, 1], (s, σ, s′, d) 7→ p,

which means that when M is currently in state s and reads a symbol σ, there is a probability p such that

its state changes to s′ and the tape head moves according to d. M accepts w ∈ Σ∗ with probability 1 − ǫ if

when M runs on |cw$, Pr[sf ∈ Sacc] ≥ 1 − ǫ where sf is the random final state. A language L ⊆ Σ∗ is said

to be recognized by M with error ǫ if every w ∈ L is accepted by M with probability at least 1− ǫ, and every

w 6∈ L is accepted by M with probability at most ǫ.

Quantum finite automata were proposed by Kondacs andWatrous [40] and also by Moore and Crutchfields

[45] and further studied in [6, 15, 16, 17, 43, 46, 52]. 2QCFA were introduced by Ambainis and Watrous [9]

and further studied in [8, 51, 55, 56].

Intuitively, a 2QCFA is a 2DFA that has access to a fixed-size quantum register, upon which it may

perform quantum transformations and measurements. Below we give its formal definition, see [9] for detail.

Definition 2.2 ([9]). A 2QCFA is a tuple M = (Q,S,Σ,Θ, δ, q0, s0, Sacc, Srej), where S,Σ, δ, s0, Sacc, Srej

are similar to 2DFA as in Definition 2.1, whereas Q is a finite set of quantum basis states, Θ is the quantum

transition function that governs the quantum portion of M, and q0 is the quantum initial state. Specifically,

suppose M is currently at quantum state |φ〉, at classical state s ∈ S − Sacc − Srej, and reads a symbol σ,

then Θ(s, σ) can be either a unitary transformation or an orthogonal measurement that acts on |φ〉.

(1) If Θ(s, σ) is a unitary transformation, then firstly M changes its quantum state from |φ〉 to Θ(s, σ) |φ〉,
and then changes its classical state from s to s′ and tape head moves to direction d where δ(s, σ) =

(s′, d);

(2) If Θ(s, σ) is an orthogonal measurement, then δ(s, σ) is a mapping from the set of possible results of

the measurement to S × {−1, 0, 1}. M firstly collapses its quantum state from |φ〉 to a result of the

measurement, say |ϕ〉, then the classical state and head change according to δ(s, σ)(ϕ).

M halts when its classical state reaches an accepting state in Sacc or a rejecting state in Srej. Since

the result of every quantum measurement is probabilistic, the change of the classical state would also be

probabilistic. The strings that are accepted by M with probability 1 − ǫ, and the language recognized by M
with error ǫ, are both defined in the same way as for 2PFA in Definition 2.1.

Finally, we define the time-space complexity of two-way finite automata.

Definition 2.3. For every two-way finite automaton M (can be 2DFA, 2PFA, or 2QCFA), let L(M) denote

the language that it recognizes (possibly with an error ǫ ≥ 0). Define T(M) to be the time complexity of M,
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i.e., the maximal number of steps it takes for M to accept a string in L(M). Define S(M) to be the space

complexity of M, i.e., the log of the number of states of M (for 2QCFA, space complexity is the number

of qubits plus the log of the number of classical states). Let TS(M) = T(M)× S(M) denote the product of

time complexity and space complexity of M, call it the time-space complexity of M.

Given a language L, define its 2DFA time-space complexity, denoted by TS2DFA(L),

TS2DFA(L) = inf
M: L(M)=L

TS(M), (13)

where M ranges over all possible 2DFAs that recognize L.

Define TS2PFA(L) and TS2QCFA(L) similarly as (13), where the automata ranges over all possible 2PFA

and 2QCFA, respectively, with a bounded error.

Define TS2QCFA,exact(L) similarly as in (13), where the automata ranges over all possible 2QCFA with

no error.

We will be interested in comparing the time-space complexity of 2DFA, 2PFA, and 2QCFA for some

special languages.

Let w ∈ Σ∗ and n = |w| be its length. Since the input for two-way finite automata is of the form |cw$, it
will be convenient to index the symbols of the input via index 0, 1, . . . , n, n+ 1 where |c is at position 0 and

$ is at position n+ 1. This convention will be used in the rest of the paper.

2.2. Quantum query algorithms

We assume familiarity with basic notions in quantum computing such as unitary transformation and

measurement. Below we briefly define quantum query algorithm and complexity. For detail on classical and

quantum query complexity, see [4, 20, 24].

Given a function f : {0, 1}n → {0, 1} and an input x ∈ {0, 1}n. A quantum query Ox is defined as the

following unitary transformation working on two registers,

Ox : |i, b〉 7→ |i, b⊕ xi〉 , (14)

where i = 1, 2, . . . , n and b ∈ {0, 1}. Sometimes a quantum query algorithmmay use another working register,

in which case the quantum query Ox is defined as Ox |i, b, w〉 = |i, b⊕ xi, w〉. A t-query algorithm starts

from some initial state, say |φ〉, and performs unitary transformations and quantum queries successively and

reaches a final state |ϕ〉 = UtOxUt−1Ox · · ·U1OxU0 |φ〉, upon which a quantum measurement is performed

and outputs accordingly. The quantum query complexity of a function f , denoted by Qǫ(f), is the minimal

number of queries needed for a quantum query algorithm that for every x outputs the value of f(x) with

probability of error at most ǫ. Let Q(f) denote Q1/3(f). Let QE(f) denote the exact quantum query

complexity of f , i.e., the algorithm should output the correct value of f with probability 1. See [3, 7, 44, 47]

for details for exact query complexity.
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2.3. Communication complexity

We briefly define the standard classical two-party communication model introduced by Yao [53], for

related works see [10, 35, 42, 48].

Given a two-party function f : {0, 1}n × {0, 1}n → {0, 1}. Two players Alice and Bob both know the

function f , Alice receives an input x and Bob receives an input y. A communication protocol P defines

what bits Alice and Bob send to each other so that they both know the value f(x, y) in the end. The

communication protocol can be either one round or multiple rounds. Alice and Bob may do some individual

computation before sending each bit to the other, these individual computation are costless, the goal is to

minimize the number of bits communicated. For example, the simplest protocol is that Alice sends her input

x to Bob, using n bits, then Bob computes f(x, y) and sends this value, using only 1 bit, to Alice. The total

communication cost of this protocol is n+ 1 bits.

In a deterministic communication protocol, the individual computation is deterministic, while in a ran-

domized communication protocol, each party can use their own randomness in their individual computation1.

The deterministic communication complexity of a function f , denoted by Dcc(f), is the least number of bits

exchanged in any deterministic protocol that computes f(x, y) correctly for every input (x, y). The random-

ized communication complexity of a function f with error ǫ, denoted by Rcc
ǫ (f), is the least number of bits

in any randomized protocol that computes f(x, y) with probability of error at most ǫ for every input (x, y).

Obviously, Rcc
ǫ (f) ≤ Dcc(f) ≤ n+ 1. We abbreviate Rcc

1/3(f) simply as Rcc(f).

We will use the following fact on communication complexity of the equality function EQn. The equality

function EQn : {0, 1}n × {0, 1}n → {0, 1} is defined as EQn(x, y) = 1 iff x = y.

Lemma 2.1 ([42, 48]). Dcc(EQn) = n+ 1, Rcc(EQn) = Θ(logn).

3. Two-way finite automata and communication protocols

We will build a connection between two-way finite automata and two-party communication protocols, via

the correspondence between the language Lf (n) as defined in (4) and the two-party function f . Informally, we

show that two-way finite automata and communication protocols can simulate each other in both directions,

at least in some special cases.

3.1. From two-way finite automata to communication protocols

In this section we prove Theorem 1.1. The reason that we gain an extra factor n lies in the fact that we

interpolate # between x and y in defining Lf(n) in (4).

1This is called as the private coin communication model.
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Lemma 3.1. Let M be a 2DFA that recognizes Lf (n), then Dcc(f) ≤ TS(M)
n + 1.

Similarly, if M is a 2PFA that recognizes Lf (n) with an error ǫ, then Rcc
ǫ (f) ≤ TS(M)

n + 1; if M is a

2QCFA that recognizes Lf (n) with an error ǫ, then Qcc
ǫ (f) ≤ TS(M)

n + 1.

Proof. Recall the definition of S(M) and T(M) in Definition 2.3. Consider the following deterministic

communication protocol π. Alice starts running M with the partial input x#n. When the tape head moves

out of the partial input from the right (i.e., it wishes to read the first symbol of y), Alice sends the current

state to Bob, using S(M) bits. Note that it is unnecessary for Alice to send the tape head position to Bob

since Bob knows the tape head must be at the first position of y. Now Bob starts running M with the

partial input #ny. Similarly, if the tape head moves out of his input from the left (i.e., it wishes to read the

last symbol of x), Bob sends the current state of M to Alice using S(M) bits. They repeat this process until

the automaton reaches its final state. If the final state is an accepting state, the current player sends a single

bit 1 to the other player, indicating the simulation of M is over and the result is accepting, otherwise the

current player sends 0 indicating the result is rejecting. Since M recognizes Lf(n), the protocol π computes

f correctly. Furthermore, every time when Alice or Bob switches, she or he must have run M for at least

n steps because the # symbol must be read for at least n times. Hence, the communication cost of π is at

most S(M)× T(M)
n + 1 = TS(M)

n + 1.

The proof is the same for 2PFA. For 2QCFA, the proof is also similar: they send both the current classical

state and quantum state using qubits, the length of which by definition is at most the space complexity of

the 2QCFA.

Lemma 3.1 immediately implies Theorem 1.1 and the quantum counterparts, summarized below.

Corollary 3.1. The following hold,

(1) TS2DFA(Lf (n)) ≥ n(Dcc(f)− 1);

(2) TS2PFA(Lf (n)) ≥ n(Rcc(f)− 1);

(3) TS2QCFA(Lf (n)) ≥ n(Qcc(f)− 1);

(4) TS2QCFA,exact(Lf (n)) ≥ n(Qcc
E (f)− 1).

We now prove Corollary 1.1. For this purpose we briefly discuss lifting theorems in communication

complexity. Let f = h ◦ g be a composed function of the form (5). Suppose the input for f is (x, y) ∈
{0, 1}n×{0, 1}n where n = pm. Write x = (x1, . . . , xp) and y = (y1, . . . , yp) where (xi, yi) ∈ {0, 1}m×{0, 1}m.

Recall f(x, y) = h(z) where zi = g(xi, yi) for 1 ≤ i ≤ p. Given a deterministic query algorithmA computing h

and a deterministic communication protocol τ computing g, they naturally induce a communication protocol

π computing f , as follows: Alice and Bob together simulate A, when A queries zi, Alice and Bob use the

10



communication protocol τ to compute zi = g(xi, yi) (this is possible because Alice knows x hence knows

xi and Bob knows y hence knows yi, for every 1 ≤ i ≤ p), and then they jointly go to the next query

of A, and finally, the output of A will be the output for π. It is not hard to see that protocol π indeed

computes f = h ◦ g correctly, and the communication cost of π is at most the number of queries in A times

the communication cost of τ . Hence, one has

Dcc(f) ≤ D(h) ·Dcc(g).

A lifting theorem for deterministic communication complexity says the above protocol π is basically the

optimal communication protocol for f = h ◦ g. In other words, it asserts that

Dcc(f) ≥ Ω(D(h) ·Dcc(g)).

Similarly, a lifting theorem for randomized communication complexity asserts that Rcc(f) ≥ Ω̃(R(h)·Rcc(g)).

We are now ready to prove Corollary 1.1, restated below.

Corollary 1.1. Let h : {0, 1}p → {0, 1} and f = h ◦ IPm where m = Θ(log p). Let n = pm be the input size

for f , then

TS2DFA(Lf(n)) ≥ Ω̃(nD(h)) (6)

and

TS2PFA(Lf (n)) ≥ Ω̃(nR(h)). (7)

Proof. Let f = h ◦ IPm where m = log p. It is well-known (see, e.g., [42]) that Dcc(IPm) = Θ(m) and

Rcc(IPm) = Θ(m). [22, 50] showed the following lifting theorem for deterministic communication complexity

Dcc(f) = Dcc(h ◦ IPm) = Ω(D(h) log p). This together with Corollary 3.1 implies

TS2DFA(Lf (n)) ≥ n(Dcc(f)− 1) ≥ n · Ω(D(h) log p) = Ω̃(nD(h)),

where we used the fact that n = pm = p log p, hence log p = Θ̃(log n).

Chattopadhyay et al. [21] showed the following lifting theorem for randomized communication complexity

Rcc(f) = Rcc(h ◦ IPm) = Ω(R(h) log p). This together with Corollary 3.1 proves (7), similarly as above.

3.2. From communication protocols to two-way finite automata

Consider the opposite direction of Lemma 3.1: does a (classical or quantum) communication protocol for

f give rise to a two-way automaton for Lf (n)? We show that this can be done in some special cases.
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3.2.1. Simulating query algorithms

In this section we prove Theorem 1.2. For notational clarity of the proof, we consider the simpler case

m = 1 first. Recall that given a function h : {0, 1}n → {0, 1} and a two-party function g : {0, 1} × {0, 1} →
{0, 1}, they define f = h ◦ g as follows,

f(x, y) = h(g(x1, y1), g(x2, y2), . . . , g(xn, yn)). (15)

Buhrman et al. [19] showed that Qcc(f) ≤ O(Q(h) logn) = Õ(Q(h)). We focus on this special type of

communication protocols for f , i.e., protocols that are obtained via query algorithms for h. Below we show

that given a quantum query algorithm for h, one can construct a 2QCFA recognizing Lf (n) with the same

error. The simulation that we construct is inspired by [19].

We restate Theorem 1.2 in the case m = 1 in a more precise form in the following.

Theorem 3.1. Let f = h◦g be of the form (15). Suppose that there is a quantum query algorithm A solving

h with error ǫ, furthermore, suppose that A uses k quantum basis states and t queries. Then, there exists

a 2QCFA M that recognizes Lf (n) with error ǫ. Furthermore, M uses 2k quantum basis states, O(t · n)
classical states, and T(M) = O(t · n). As t = O(n),

TS(M) = O
(
tn · (log(tn) + log 2k)

)
= O

(
tn · (log n+ log k)

)
.

Proof. Given (x, y) ∈ {0, 1}n × {0, 1}n, let z = (z1, . . . , zn) ∈ {0, 1}n where

zi = g(xi, yi). (16)

Then f(x, y) = h(z).

Consider the quantum query algorithm A for h, the input to A is z. Suppose A is of the following form

with an initial quantum state |φ0〉,

|φ0〉 |φ1〉 |φ′
1〉 |φ2〉 |φ′

2〉 · · · |φt〉 |φ′
t〉 |φt+1〉 .U0 Oz U1 Oz U2 Oz Ut (17)

Consider the first segment of A,

|φ0〉 |φ1〉 |φ′
1〉 .

U0 Oz (18)

Observe that the structure of A is simply a repetition of the above segment t times, each time with possibly

a different unitary transformation. Finally, A makes one more unitary transformation Ut and then makes a

measurement on φt+1 and outputs accordingly.

We now construct a 2QCFA M that recognizes Lf (n) (with the same error as A for h). Recall that

w ∈ Lf (n) is of the form w = x#ny where (x, y) ∈ {0, 1}n × {0, 1}n, the input to M is |cw$. Assume for

simplicity that the tape is circular, i.e., after reading $, if the head moves to the right then it reaches |c.
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Firstly, it is easy (using classical states only) to check that w is of the form x#ny, otherwise reject the

input. This step uses at most O(n) classical states and O(n) time. Now assume the input is in this form.

We focus on simulating the first segment (18), the rest can be done similarly. Note that the unitary

operation U0 does not depend on the input z, hence it can be applied in the 2QCFA directly, as follows.

|φ0, 0〉 |φ1, 0〉

s1,0 s1,1

Θ(s1,0,|c)

|c

(19)

where the transition functions are defined by





Θ(s1,0, |c) = U0 ⊗ I,

δ(s1,0, |c) = (s1,1, 1).

(20)

That is, the quantum step applies U0 to |φ0〉 and keeps the last qubit unchanged. The classical step changes

the state to s1,1 and the tape head moves to the right.

Next, M will read the input twice to simulate the query Oz : |i, bi〉 7→ |i, zi ⊕ bi〉. It is for this purpose

that we use an extra working qubit to help us. So, the query that we will simulate is Oz ⊗ I : |i, bi, 0〉 7→
|i, zi ⊕ bi, 0〉. Since Oz |φ1〉 = |φ′

1〉, we have (Oz ⊗ I) |φ1, 0〉 = |φ′
1, 0〉 as desired. We use five steps to describe

this simulation. In all these steps, the tape head keeps moving to the right.

(1) M reads x the first time. The transition of quantum and classical states are as follows,

|φ1, 0〉 |ϕ2〉 · · · |ϕn〉 |ϕn+1〉

s1,1 s1,2 · · · s1,n s1,n+1

Θ(s1,1,x1) Θ(s1,2,x2) Θ(s1,n,xn)

x1 x2 xn

(21)

where for j = 1, . . . , n,

Θ(s1,j , xj) |i, bi, c〉 =





|i, bi, xi ⊕ c〉 , i = j,

|i, bi, c〉 , i 6= j.

(22)

Note that after this step, the state |i, bi, 0〉 in |φ1, 0〉 has changed to |i, bi, xi〉 in |ϕn+1〉 for every

i = 1, 2, . . . , n. In other words, after reading x the automaton M simulates Ox acting on the last

qubit.

(2) When M reads #, it keeps its quantum state unchanged, and classical state changes from s1,n+1 to

s1,n+2, s1,n+3 etc until s1,2n+1 after M reads the last #. For notational uniformity, we denote the

quantum state after reading the last # by |ϕ2n+1〉 = |ϕn+1〉.
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(3) M reads y the first time. Similar to reading x, this time M simulates Oy but acting on the penultimate

qubit, and also translated by x using the function g. Specifically,

|ϕ2n+1〉 |ϕ2n+2〉 · · · |ϕ3n〉 |ϕ3n+1〉

s1,2n+1 s1,2n+2 · · · s1,3n s1,3n+1

Θ(s1,2n+1,y1) Θ(s1,2n+2,y2) Θ(s1,3n,yn)

y1 y2 yn

(23)

where for j = 1, . . . , n,

Θ(s1,2n+j , yj) |i, bi, c〉 =






|i, g(c, yi)⊕ bi, c〉 , i = j,

|i, bi, c〉 , i 6= j.

(24)

Since in |ϕ2n+1〉 = |ϕn+1〉, the basis state we are interested in is in state |i, bi, xi〉 for every i = 1, . . . , n.

Hence, after Step 3, in |ϕ3n+1〉 this state has changed to |i, g(xi, yi)⊕ bi, xi〉 = |i, zi ⊕ bi, xi〉.

(4) The tape moves to the right and goes back to #, then it keeps moving to the right and reads x

the second time. This step is similar to Step (1): the automaton M simulates Ox one more time,

acting on the last qubit. As a result, the state we are interested in changes from |i, zi ⊕ bi, xi〉 to

|i, zi ⊕ bi, xi ⊕ xi〉 = |i, zi ⊕ bi, 0〉, as desired. At the end of this step, we have simulated Oz ⊗ I.

(5) The M keeps moving to the right, with quantum state unchanged, until it returns to |c, where it changes
its classical state to s2,0. Note that the final quantum state is in |φ′

1, 0〉 as desired.

We have shown that the first segment (i.e., (18)) of query algorithm A can be simulated with number

of classical states O(n) and time O(n). Obviously, the automaton M could repeat this simulation t times,

mimicing the query algorithm A. In the end M makes the same measurement as A, and accepts iff A
outputs 1 according to the measurement result. Since M simulates the query algorithm A with input

z = (g(x1, y1), . . . , (xn, yn)), it is obvious that M recognizes Lf (n) with the same error as A does. In total,

the classical states used by M is O(t · n) and T(M) = O(t · n). Since M uses one extra qubit, the number

of its quantum basis states is 2k.

It is not hard to see that a similar proof for Theorem 3.1 would prove Theorem 1.2. We omit the full

detail but point out one difference, that when g has m input bits, the 2QCFA M would use 2mk quantum

basis states, hence the additive factor log k in Theorem 3.1 becomes log(2mk) = m+ log k = m+O(log n).

3.2.2. Simulating communication protocols directly

To prove Theorem 1.4, we establish the following lemma first. The proof can be viewed as an example

that one can simulate some communication protocols directly by two-way finite automata.

Lemma 3.2. TS2PFA(LEQ(n)) = O(n log n).
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Proof. We will turn a randomized communication protocol to a 2PFA. Let us briefly recall the standard

randomized communication protocol π for solving EQn with a bounded error, for detail see [42]. Alice

samples a random prime number p ≤ n2. Viewing x ∈ {0, 1}n as an integer x ∈ {0, 1, . . . , 2n − 1}, she sends

both p and x mod p to Bob, using O(log n) bits. Bob sends 1 back to Alice if y ≡ x mod p, otherwise he

sends 0. The bit that Bob sends is the output of the protocol.

We now turn this protocol to a 2PFA M recognizing LEQ(n) with a bounded error, as follows. Let w be

an input string and |cw$ is the input to M. M firstly checks whether w is of the correct form x#ny, using

time O(n) and number of states O(n). Then M returns to the |c symbol and start simulating π. M firstly

reads x deterministically, then on reaching the first # symbol it changes its state randomly to a state sp,a,0

where p ≤ n2 is a random prime number and x ≡ a mod p. It moves its head to the right and keeps reading

# and y while keeping at the state sp,a,0. Until when it reaches $, it changes its state to sp,a,b where y ≡ b

mod p. The states sp,a,b are accepting states if a = b and rejecting states otherwise. Obviously, the time it

takes to simulate π is O(n) and the number of states is O(n6). Hence,

T(M) = O(n) +O(n) = O(n), S(M) = O(n) +O(n6) = O(n6).

Therefore, TS(M) = O(n log n).

The fact that M recognizes LEQ(n) with a bounded error follows from the same analysis for showing

the communication protocol π has a bounded error. For completeness, we record the analysis here. It is

obvious that M always accepts w ∈ LEQ(n). From now on, we assume w 6∈ LEQ(n) and M accepts w, or

equivalently, x 6= y but there exists some prime numbers p ≤ n2 such that x ≡ y mod p. Consider the set

Bad(x, y) = {2 ≤ p ≤ n2, p is prime | x ≡ y mod p}.

Then,

Pr[M accepts x#ny] =
|Bad(x, y)|

number of primes ≤ n2
. (25)

Let k = |Bad(x, y)|. Suppose that the prime numbers in the set Bad(x, y) are p1, p2, . . . , pk, then x ≡ y

mod pi for every 1 ≤ i ≤ k. Hence,

x ≡ y mod p1p2 · · · pk.

However, x 6= y, hence, 0 < |x−y| ≤ 2n−1. As a result, 2k ≤ p1p2 · · · pk ≤ |x−y| ≤ 2n−1, implying k ≤ n−1.

On the other hand, the prime number theorem says that the number of primes less than n2 approximates

n2

logn2 = n2

2 logn ≫ n− 1 ≥ k when n is sufficiently large. This implies limn→∞ Pr[M accepts w] = 0. In fact,

since the number of primes less than 102 is 25, one has for n = 10, Pr[M accepts x#ny] ≤ 10−1
25 = 0.36.

For every n < 10, obviously one can construct a constant time-space 2PFA (in fact even 2DFA) to recognize

LEQ(n) with no error. Hence, the lemma holds for every n.

Now we are ready to prove Theorem 1.4, restated below.
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Theorem 1.4. TS2DFA(LEQ(n)) = Θ(n2), TS2PFA(LEQ(n)) = Θ(n logn).

Proof. For 2DFA, the lower bound follows from Lemma 2.1 and Corollary 3.1, TS2DFA(LEQ(n)) ≥ n(Dcc(EQn)−
1) = n2. For the upper bound, consider the 2DFA M that firstly memorizes x, then it checks the num-

ber of # is n, and then compares y to x. Hence, L(M) = LEQ(n). It is easy to see that M can be

constructed in the form of a tree structure, resulting T(M) = 3n, and number of states O(23n). Hence

TS(M) = 3n× logO(23n) = O(n2).

For 2PFA, similarly the lower bound is TS2PFA(LEQ(n)) ≥ n(Rcc(EQn) − 1) ≥ Ω(n logn). The upper

bound comes from Lemma 3.2.

Remark 3.1. (1) Although we demonstrated with only one example (i.e., the equality function), it might

be possible that some other classical or quantum communication protocols could also be simulated directly by

two-way finite automata of corresponding types. (2) Independently from simulating communication protocols

as we show here in Lemma 3.2, the idea of reducing a general computation (e.g., whether x = y) to a modulo

computation (e.g., whether x ≡ y mod p) was also directly used in studying 2PFA. The proof for that the

non-regular language {anbn | n ≥ 1} can be recognized by 2PFA is such an example, as shown in [27].

4. Separation results for time-space complexity and examples

We are now ready to prove Theorem 1.3, restated below.

Theorem 1.3. In each of the following cases, there exist a total function f : {0, 1}n×{0, 1}n → {0, 1} (the

function f is different for each case), such that

(1) TS2DFA(Lf (n)) = Θ̃(n2) and TS2QCFA(Lf (n)) ≤ Õ(n5/4).

(2) TS2DFA(Lf (n)) = Θ̃(n2) and TS2QCFA,exact(Lf (n)) ≤ Õ(n3/2).

(3) TS2PFA(Lf (n)) = Θ̃(n2) and TS2QCFA(Lf (n)) ≤ Õ(n4/3).

(4) TS2PFA(Lf (n)) = Θ̃(n2) and TS2QCFA,exact(Lf(n)) ≤ Õ(n5/3).

Proof. Consider (1) for example. Ambainis et al. [5] showed that there exists a function h : {0, 1}p → {0, 1}
such that, D(h) ≥ Ω̃(p) and Q(h) ≤ Õ(p1/4). Let f = h ◦ IPm where m = Θ(log p). Let n = pm be the

input size for f .

By Corollary 1.1,

TS2DFA(Lf(n)) ≥ Ω̃(nD(h)) ≥ Ω̃(np) = Ω̃(n2),

where we used p = Θ̃(n) because m = Θ(log p). Furthermore, for every language L that consists of length-k

strings on an alphabet of constant size, it is easy to see that TS2DFA(L) ≤ O(k2). Hence, TS2DFA(Lf (n)) ≤
O(n2). Therefore, TS2DFA(Lf (n)) = Θ̃(n2).
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By Theorem 1.2,

TS2QCFA(Lf (n)) ≤ Õ(nQ(h)) ≤ Õ(np1/4) = Õ(n5/4).

The proofs for (2), (3) and (4) can be similarly established by applying the following separation results

for h.

Ambainis et al. [5] showed that, for (2) there exists h such that D(h) ≥ Ω̃(p) and QE(h) ≤ Õ(p1/2); and

for (4) there exists h such that R(h) ≥ Ω̃(p) and QE(h) ≤ O(p2/3).

For (3), Sherstov et al. [49] introduced a function h : {0, 1}p → {0, 1} such that R(h) ≥ Ω̃(p) and

Q(h) ≤ Õ(p1/3).

Unfortunately, the definitions of the functions h used in Theorem 1.3 are all too complicated to be defined

here. We refer the interested reader to the original papers [5, 49]. Below we give two examples where the

functions involved are simple, though the separations obtained from them are weaker than Theorem 1.3.

To define a composed function of the form (5), we need to specify both h and g. In both examples the

two-party function g is simply the ∧ function, g = ∧ : {0, 1} × {0, 1} → {0, 1}, i.e., g(a, b) = 1 iff a = b = 1.

We proceed to define the two hs. The first function is the ORn : {0, 1}n → {0, 1}, i.e., ORn(x) = 0 iff

xi = 0 for every 1 ≤ i ≤ n. To define the second function NEn for n = 3d where d ∈ N, we start by defining

NE1 : {0, 1}3 → {0, 1} as follows: NE1(x1, x2, x3) = 0 if x1 = x2 = x3, otherwise NE1(x1, x2, x3) = 1. The

function NEn : {0, 1}n → {0, 1} is defined by composing NE1 with itself d times, i.e.,

NEn(x) = NEd(x) = NE1(NEd−1(x1, . . . , x3d−1),NEd−1(x3d−1+1, . . . , x2·3d−1),NEd−1(x2·3d−1+1, . . . , x3d)).

Hence, the two composed functions are the following. The first one is the so-called intersection function

INTSn = ORn ◦∧. The second one is RNEn = NEn ◦∧. The corresponding two languages are the following.

LINTS(n) = {x#ny | x, y ∈ {0, 1}n, there exists some coordinate i such that xi = yi = 1}, (26)

and

LRNE(n) = {x#ny | x, y ∈ {0, 1}n,RNEn(x, y) = 1}. (27)

Theorem 4.1. The following hold.

(i) TS2PFA(LINTS(n)) = Ω(n2), TS2QCFA(LINTS(n)) = O(n3/2 logn).

(ii) TS2PFA(LRNE(n)) = Ω(n2), TS2QCFA,exact(LRNE(n)) = O(n1.87 logn).

Proof. (i) The lower bound follows from Theorem 1.1 and Rcc(INTSn) = Ω(n) (see e.g., [42]). The upper

bound follows from Theorem 1.2 and the fact that Grover [28] showed Q(ORn) = O(
√
n). (ii) Similarly, this

follows from Ambainis [3] where it was shown that Rcc(RNEn) = Ω(n) and QE(NEn) = O(n0.87).
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5. Discussion

We developed a technique that, when used together with lifting theorems in communication complexity,

automatically lifts separations of query complexity to separations of time-space complexity of two-way finite

automata. We use this lifting technique to obtain a collection of new time-space separations for two-way finite

automata in Theorem 1.3. Our results can be viewed as an application of lifting theorems in communication

complexity to the complexity of automata. Since the lower bound in Corollary 3.1 holds for Qcc
E as well, our

technique in theory could be used to derive a time-space separation between TS2QCFA,exact and TS2QCFA.

This would require a currently unknown lifting theorem for quantum communication complexity.

A limitation of our lifting technique is that the separation result obtained for time-space complexity

for recognizing Lf(n) is not necessarily tight, even if the corresponding separation in query complexity for

h is tight. It is possible to improve some of the separation results in Theorem 1.3 by directly simulating

certain communication protocols as we demonstrated in Theorem 1.4. The lifting technique we developed

also demonstrates that why a lifting theorem with constant-size gadgets (i.e., do not require m = Θ(log p)

in Corollary 1.1 but allow any m ≥ Ω(1)) would be more desirable, as we discussed in Section 1.3.

In studying time-space tradeoffs for Turing machines and branching programs, the multiparty number

on the forehead communication model (see [42]) has been successfully used, see e.g., [11, 14]. It might be

interesting to see if our technique could be extended to those settings.

Acknowledgement

We thank the anonymous referees whose valuable comments led to a much improved version of the

paper. S. Z. thanks A. Ambainis, C. Mereghetti, B. Palano and A. Anshu for discussions. This work was

supported by the Major Key Project of PCL, the National Natural Science Foundation of China (Nos.

62361021,62272492), Guangxi Science and Technology Program (No.GuikeAD21075020), the Guangdong

Basic and Applied Basic Research Foundation (No. 2020B1515020050), the Innovation Program for Quantum

Science and Technology (2021ZD0302900).

References

[1] Scott Aaronson and Andris Ambainis. Forrelation: A problem that optimally separates quantum from

classical computing. In Proceedings of the forty-seventh annual ACM symposium on Theory of comput-

ing, pages 307–316, 2015.

[2] Scott Aaronson, Shalev Ben-David, Robin Kothari, and Avishay Tal. Quantum implications of huang’s

sensitivity theorem. arXiv preprint arXiv:2004.13231, 2020.

18



[3] Andris Ambainis. Superlinear advantage for exact quantum algorithms. SIAM Journal on Computing,

45(2):617–631, 2016.

[4] Andris Ambainis. Understanding quantum algorithms via query complexity. In Proceedings of the

International Congress of Mathematicians: Rio de Janeiro 2018, pages 3265–3285, 2018.

[5] Andris Ambainis, Kaspars Balodis, Aleksandrs Belovs, Troy Lee, Miklos Santha, and Juris Smotrovs.

Separations in query complexity based on pointer functions. Journal of the ACM (JACM), 64(5):1–24,

2017.

[6] Andris Ambainis and Rusins Freivalds. 1-way quantum finite automata: strengths, weaknesses and

generalizations. In Proceedings of the 39th Annual Symposium on Foundations of Computer Science,

pages 332–341. IEEE, 1998.

[7] Andris Ambainis, Jozef Gruska, and Shenggen Zheng. Exact quantum algorithms have advantage for

almost all boolean functions. Quantum Information & Computation, 15(5-6):435–452, 2015.

[8] Andris Ambainis and Nikolajs Nahimovs. Improved constructions of quantum automata. Theoretical

Computer Science, 410(20):1916–1922, 2009.

[9] Andris Ambainis and John Watrous. Two-way finite automata with quantum and classical states.

Theoretical Computer Science, 287(1):299–311, 2002.

[10] Anurag Anshu, Rahul Jain, Priyanka Mukhopadhyay, Ala Shayeghi, and Penghui Yao. New one shot

quantum protocols with application to communication complexity. IEEE Transactions on Information

Theory, 62(12):7566–7577, 2016.
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[30] Juraj Hromkovič. Relation between chomsky hierarchy and communication complexity hierarchy. Acta

Math. Univ. Com, 48(49):311–317, 1986.
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