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Abstract

A unital, that is, a block-design 2−(q3+1, q+1, 1), is embedded in
a projective plane Π of order q2 if its points and blocks are points and
lines of Π. A unital embedded in PG(2, q2) is Hermitian if its points
and blocks are the absolute points and non-absolute lines of a unitary
polarity of PG(2, q2). A classical polar unital is a unital isomorphic,
as a block-design, to a Hermitian unital. We prove that there exists
only one embedding of the classical polar unital in PG(2, q2), namely
the Hermitian unital.

1 Introduction

In finite geometry, embedding of geometric structures into projective spaces
has been a central question for many years which still presents numerous
open problems. The most natural one asks about existence and uniqueness,
that is, whether a block-design can be embedded in a given projective plane
and, if this is the case, in how many different ways such an embedding can be
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done. In this paper we deal with such a uniqueness problem for embedding
of the Hermitian unital, as a block design, into a Desarguesian projective
plane.

A unital is defined to be a set of q3 + 1 points equipped with a family of
subsets, each of size q+1, such that every pair of distinct points is contained
in exactly one subset of the family. Such subsets are usually called blocks, so
unitals are block-designs 2− (q3 + 1, q+ 1, 1). A unital is embedded in a pro-
jective plane Π of order q2, if its points are points of Π and its blocks are lines
of Π. Sufficient conditions for a unital to be embeddable in a projective plane
are given in [8]. Computer aided searches suggest that there should be plenty
of unitals, especially for small values of q, but those embeddable in a project-
ive plane are quite rare, see [1, 3, 11, 9]. In the Desarguesian projective plane
PG(2, q2), a unital arises from a unitary polarity in PG(2, q2): the points of
the unital are the absolute points, and the blocks are the non-absolute lines
of the polarity. The name of “Hermitian unital” is commonly used for such
a unital since its points are the points of the Hermitian curve defined over
GF(q2). A classical polar unital is a unital isomorphic, as a block-design, to
a Hermitian unital. By definition, the classical polar unital can be embedded
in PG(2, q2) as the Hermitian unital. It has been conjectured for a long time
that this is the unique embedding of the classical polar unital in PG(2, q2)
although no explicit reference seems to be available in the literature. Our
goal is to prove this conjecture. Our notation and terminology are standard.
The principal references on unitals are [2, 6].

2 Projections and Hermitian unital

Let H be a Hermitian unital in the Desarguesian plane PG(2, q2). Any non-
absolute line intersects H in a Baer subline, that is a set of q + 1 points
isomorphic to PG(1, q). Take any two distinct non-absolute lines ` and `′.
For any point Q outside both ` and `′, the projection of ` to `′ from Q takes
` ∩ H to a Baer subline of `′. We say that Q is a full point with respect to
the line pair (`, `′) if the projection from Q takes ` ∩H to `′ ∩H.

From now on, we assume that ` and `′ meet in a point P of PG(2, q2)
not lying in H. We denote the polar line of P with respect to the unitary
polarity associated to H by P⊥. Then P⊥ is a non-absolute line. We will
prove that if q is even then P⊥ ∩ H contains a unique full point. This does
not hold true for odd q. In fact, we will prove that for odd q, P⊥∩H contains
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zero or two full points depending on the mutual position of ` and `′.
To work out our proofs we need some notation and known results regard-

ing H and the projective unitary group PGU(3, q) preserving H.
Up to a change of the homogeneous coordinate system (X1, X2, X3) in

PG(2, q2), the points of H are those satisfying the equation

Xq+1
1 +Xq+1

2 +Xq+1
3 = 0. (1)

Since the unitary group PGU(3, q) preserving H acts transitively on the
points of PG(2, q2) not lying in H, we may assume P = (0, 1, 0). Then
P⊥ has equation X2 = 0. Also, since the stabilizer of P in PGU(3, q) acts
transitively on the non-absolute lines through P , ` may be assumed to be
the line of equation X3 = 0.

In the affine plane AG(2, q2) arising from PG(2, q2) with respect to the line
X3 = 0, we use the coordinates (X, Y ) where X = X1/X3 and Y = X2/X3.
Then the points of H in AG(2, q2) have affine coordinates (X, Y ) that satisfy
the equation

Xq+1 + Y q+1 + 1 = 0,

whereas the points of H at infinity are the q + 1 points M = (1,m, 0) with
mq+1 + 1 = 0. In this setting the line `′ is a vertical line and hence it has
equation X − c = 0 where cq+1 + 1 6= 0 as `′ is a non-absolute line. In the
following, we will use `c to denote the line with equation X − c = 0.

Fix a point Q of H lying on P⊥. Then Q = Q(a, 0) with aq+1 + 1 = 0.
Take a point M = (1,m, 0) at infinity lying in H, and project it to `c from
Q. If the point T = (c, t) is the result of the projection then t = (c − a)m.
Therefore, T lies on H if and only if caq + acq + 2 = 0.

2.1 The case q odd

Let q be an odd prime power. As aq = −a−1, caq + acq + 2 = 0 can also be
written in the form

a2cq + 2a− c = 0. (2)

By abuse of notation, let
√

1 + cq+1 and −
√

1 + cq+1 denote the roots of the
equation Z2 = 1 + cq+1. Then the solutions of (2) are

a1,2 = −1±
√
1+cq+1

cq
. (3)
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Here,
√

1 + cq+1 ∈ GF(q) if and only if 1 + cq+1 is a (non-zero) square ele-
ment in GF(q). Actually, this case cannot occur. In fact, (2) together with√

1 + cq+1 ∈ GF(q) yield cqa+ 1 = ±
√

1 + cq+1 whence

(cqa+ 1)q+1 = (
√

1 + cq+1)q+1 = (
√

1 + cq+1)2 = 1 + cq+1.

Expanding the left hand side and using aq+1 = −1 we obtain caq + cqa =
2cq+1, whence −c+cqa2−2acq+1 = 0. Subtracting (2) gives either 1+cq+1 = 0,
or a = 0. The former case cannot occur by the choice of `c. In the latter
case, Q = (0, 0) but the origin does not lie in H.

Therefore,
√

1 + cq+1 ∈ GF(q2) \ GF(q). Hence
√

1 + cq+1 = iu, with
u ∈ GF(q) where GF(q2) is considered as the quadratic extension of GF(q)
by adjunction of a root i of the polynomial X2 − s with a fixed non-square
element s ∈ GF(q). From iq = −i, we get (

√
1 + cq+1)q = −

√
1 + cq+1. Hence

aq+1
1 = aq1a1 = − (

√
1+cq+1−1)(

√
1+cq+1+1)

cq+1 = −1.

This shows that Q1 = (a1, 0) lies in H. Similarly, Q2 = (a2, 0) ∈ H.
Since a1 and a2 do not depend on the choice of M , both points Q1 and

Q2 are full points with respect to the line pair (`, `c). The projection ϕ with
center Q1 which maps ` to `c takes the point M = (1,m, 0) to the point
T ′ = (c,m(c − a1)), and the projection ϕ′ with center Q2 mapping `c to `
takes the point T = (c, t) to the point M ′ = (1,m′, 0) with m′ = t(c− a2)−1.
Therefore, the product ψ = ϕ′ ◦ ϕ is the automorphism of the line ` with
equation

m′ = dm, (4)

where d = c−a1
c−a2 = −1−

√
1+cq+1

1+
√
1+cq+1 . We show that ψq+1 is the identity auto-

morphism of `. From (4), ψq+1 takes the point M = (1,m, 0) to the point
M̄(1, m̄, 0), where m̄ = dq+1m with

dq+1 =
(
−1−

√
1+cq+1

1+
√
1+cq+1

)q+1

=
(
−1−

√
1+cq+1

1+
√
1+cq+1

)q (
−1−

√
1+cq+1

1+
√
1+cq+1

)
.

Since
√

1 + cq+1
q

= −
√

1 + cq+1 this yields dq+1 = 1.
Now we count the automorphisms ψ when c ranges over GF(q2).
We show that each u ∈ GF(q)∗ produces such an automorphism. Observe

that (iu)2 = su2 is a non-square element in GF(q). As the norm function
x 7→ xq+1 from GF(q2)∗ in GF(q)∗ is surjective, GF(q2) contains a nonzero
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element c such that su2 = 1 + cq+1. Therefore, either iu =
√

1 + cq+1, or
iu = −

√
1 + cq+1. With this notation, either

m′ = −1−iu
1+iu

m (5)

or
m′ = −1+iu

1−ium. (6)

Any two different choices of u in (5) produce two different automorphisms
of `. In fact, if u, v ∈ GF(q)∗, and

−1−iu
1+iu

= −1−iv
1+iv

,

then u = v. Similarly, for (6) different values of u define different automorph-
isms. Furthermore, replacing u by −u in (6) gives (5).

Therefore, we have produced as many as q−1 pairwise distinct nontrivial
automorphisms ψu. A further nontrivial automorphism of ` preserving `∩H is
ψ0 of equation m′ = −m which is the restriction on ` of the linear collineation
(X1, X2, X3) 7→ (X1,−X2, X3) belonging to PGU(3, q). In fact, ψ0 occurs for
u = 0 in (5). Furthermore, ψ0 is an involution, and hence its q + 1-st power
is the identity. All these automorphisms together with the identity ψ∞ form
a set of q + 1 automorphisms of ` which preserve ` ∩ H. To show that they
form a group Ψ, replace u with 1/(sv) in (5). Then (5) reads

m′ = 1−iv
1+iv

m, (7)

and the claim follows from the fact that the product of two such maps takes
m to

1−iv
1+iv

1−iw
1+iw

m = 1−iz
1+iz

m,

with
z = v+w

1+svw
.

On the other hand, the cyclic automorphism group of ` consisting of
all maps of equation m′ = hm with h ∈ GF (q2)∗ fixes P = (0, 1, 0) and
R = (1, 0, 0). Therefore its subgroup Ψ is also cyclic, and leaves ` ∩ H
invariant acting on it regularly.
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2.2 The case q even

Let q = 2e ≥ 4. From aq+1 + 1 = 0 and t = (a + c)m, we have a =
√

c
cq

.

Therefore, T ∈ H if and only if a =
√

c
cq

. This shows that a is independent
of the choice of M on `. Thus, Q is a full point for the line pair (`, `c). It is
easily seen that Q is also a full point for the pair (`c, `).

Take two distinct non-absolute lines `c1 and `c2 through P with c1 6= 0 6=
c2, and let

γ(c1, c2) = c2(1 + cq+1
1 ) + c1(1 + cq+1

2 ).

A straightforward computation shows that Q = (a, 0) with aq+1 + 1 = 0 is
the full point for the line pair (`c1 , `c2) if and only if

a =

√
γ(c1, c2)

γ(c1, c2)q
. (8)

Furthermore, the projection with center Q which maps `c1 to `c2 , takes the
point M = (c1,m) to the point T = (c2,m(a+ c2)/(a+ c1)).

Take an element s ∈ GF(q) with absolute trace 1, and look at GF(q2) as
the quadratic extension of GF(q) arising from the (irreducible) polynomial
X2 + X + s = 0. Let i be one of the roots of this polynomial. Then the
other root is iq, and hence iq = 1 + i. Furthermore, any element α of GF(q2)
is uniquely written as x + iy with x, y ∈ GF(q), giving αq = x + y + iy and
αq+1 = x2 + xy + sy2.

Lemma 2.1. For any given c1 ∈ GF(q2)∗, with cq+1
1 6= 1, there exists only

one further c2 ∈ GF(q2)∗, with cq+1
2 6= 1 such that

γ(c1, c2) = c2(1 + cq+1
1 ) + c1(1 + cq+1

2 ) = 0. (9)

In particular, c2 = c1t, for some t ∈ GF(q)∗.

Proof. Let c1 = x1 + iy1 and c2 = x2 + iy2. Then, cq+1
1 = x21 + x1y1 + sy21 and

cq+1
2 = x22 + x2y2 + sy22.

Since

c2(1 + cq+1
1 ) = x2(1 + x21 + x1y1 + sy21) + iy2(1 + x21 + x1y1 + sy21)

and

c1(1 + cq+1
2 ) = x1(1 + x22 + x2y2 + sy22) + iy1(1 + x22 + x2y2 + sy22),

6



equation (9) holds if and only if{
x2(1 + x21 + x1y1 + sy21) + x1(1 + x22 + x2y2 + sy22) = 0
y2(1 + x21 + x1y1 + sy21) + y1(1 + x22 + x2y2 + sy22) = 0.

If x1 = 0 then c1 = iy1 with sy21 6= 1, and from the above equations,
x2 = 0 and y2 is a root of the polynomial in ξ

sy1ξ
2 + (1 + sy21)ξ + y1. (10)

Since y1 is also a root of (10), y1 and y2 are the two roots and the assertion
is proven in this case. If y1 = 0, a similar argument can be used to prove the
assertion.

Therefore x1 6= 0 6= y1 may be assumed. From{
y1x2(1 + x21 + x1y1 + sy21) + y1x1(1 + x22 + x2y2 + sy22) = 0
x1y2(1 + x21 + x1y1 + sy21) + x1y1(1 + x22 + x2y2 + sy22) = 0

(11)

we infer y1x2 = x1y2, that is, y2 = y1x2x
−1
1 . Replacing y2 by y1x2x

−1
1 in the

first equation of (11) shows that x2 is a root of the polynomial in ξ

(x21 + y1x1 + sy21)x−11 ξ2 + (1 + x21 + x1y1 + sy21)ξ + x1 = 0. (12)

Since x1 is another root of (12), x1 and x2 are the roots, and the assertion
is proven.

For the rest of this section, let

ai =

√
ci
cqi
, i = 1, 2.

Project ` to `c1 from Q1(a1, 0), then project `c1 to `c2 from Q = (a, 0), and
finally project `c2 to `. The result is the automorphism ψc1,c2 of the line `,
viewed as PG(1, q2), defined by the equation

ψc1,c2((1,m, 0)) = (1, d(c1, c2)m, 0)

where

d(c1, c2) =
(a+ c2)(a1 + c1)

(a+ c1)(a2 + c2)
.
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Using the definition of a, a1, a2, a straightforward computation gives d(c1, c2)
2

as a rational function of c1 and c2:

d(c1, c2)
2 =

c1c
q
2(1 + cq1c2)

cq1c2(1 + c1c
q
2)
,

whence

d(c1, c2) =

√
c1c

q
2(1 + cq1c2)

cq1c2(1 + c1c
q
2)
.

This also shows that d(c1, c2) is of the form αq/α = αq−1 for some α ∈ GF(q2).
Hence dq+1 = 1.

Lemma 2.2. Let α, β ∈ GF (q2)∗ with α+αq+1 6= 0 6= β + βq+1. Then there
exists δ ∈ GF(q2)∗ such that

αq + αq+1

α + αq+1
· β

q + βq+1

β + βq+1
=
δq + δq+1

δ + δq+1
.

Proof. If δ = a+ ib, then δq+δq+1

δ+δq+1 has the form c+b+ib
c+ib

, for some c ∈ GF(q).
Let α = x+ iy and β = u+ iv, with x, y, u, v ∈ GF(q). Then,

(αq + αq+1)(βq + βq+1) = (x+ y + x2 + xy + sy2)(u+ v + u2 + uv + sv2) + svy

+i[(x+ x2 + xy + sy2)v + (u+ u2 + uv + sv2)y + yv]

and

(α + αq+1)(β + βq+1) = (x+ x2 + xy + sy2)(u+ u2 + uv + sv2) + svy

+i[(x+ x2 + xy + sy2)v + (u+ u2 + uv + sv2)y + yv].

By setting b = (x + x2 + xy + sy2)v + (u + u2 + uv + sv2)y + yv and
c = (x+ x2 + xy + sy2)(u+ u2 + uv + sv2) + svy, the result follows.

In the group PGL(2, q2) of all automorphisms of `, the maps ψc1,c2 , with
cq+1
1 6= 1 6= cq+1

2 , γ(c1, c2) 6= 0 form an abelian subgroup Ψ and the order of
each automorphism in Ψ divides q + 1.

According to Lemma 2.1, a good choice for c1, c2 is c1 = s and c2 = is−1.
In this case, cq1c2(1 + c1c

q
2) = i2 and d(c1, c2) = iq−1. Hence ψc1,c2((1,m, 0)) =

(1, iq−1m, 0). Since iq−1 is a primitive (q + 1)-st root of unity, Ψ contains a
cyclic subgroup of order q + 1. Since Ψ leaves H ∩ ` invariant, this shows
that Ψ acts on H ∩ ` regularly, and Ψ is a cyclic group of order q + 1.
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3 Embedding of the polar classical unital in

PG(2, q2)

Let U be a classical polar unital isomorphic, as a design, to a Hermitian unital
of PG(2, q2). Assume that U is embedded in PG(2, q2). Since the arguments
used in Section 2 only involve points, secants and their incidences of the
Hermitian unital viewed as a block design, all assertions stated there for a
Hermitian unital remains true for U . We stress that the cyclic group Ψ of
order q+ 1 is obtained using projections which are restrictions of projections
of PG(2, q2) on the Hermitian unital. This together with the results proven
in Section 2 show that there is a cyclic automorphism group Cq+1 of the
line ` which preserves ` ∩ U . We are not claiming that Cq+1 extends to a
collineation group of PG(2, q2). We only use the facts that Cq+1 consists of
automorphisms leaving `∩U invariant and that Cq+1 acts on it regularly. By
Dickson’s classification of all subgroups of PGL(2, q2), see [13] or [7, Theorem
A.8], PGL(2, q2) has a unique conjugacy class of cyclic subgroups of order
q+1. Since PGL(2, q2) is the automorphism group of `, we have that Cq+1 is
conjugate to the subgroup Σ consisting of all maps m′ = wm where wq+1 = 1.
In other words, we can change the projective frame so that ` ∩ U becomes
a (nontrivial) Σ-orbit. Since each nontrivial Σ-orbit is a Baer subline of `,
so is ` ∩ U . As the unitary group PGU(3, q) acts transitively on the blocks
of U , we get that each block is a Baer subline, giving that U is projectively
equivalent to a Hermitian unital in PG(2, q2), see [4, 10].
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