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Abstract

A unital, that is, a block-design 2— (¢3+1,¢+1, 1), is embedded in
a projective plane II of order ¢ if its points and blocks are points and
lines of II. A unital embedded in PG(2,¢?) is Hermitian if its points
and blocks are the absolute points and non-absolute lines of a unitary
polarity of PG(2,¢?). A classical polar unital is a unital isomorphic,
as a block-design, to a Hermitian unital. We prove that there exists
only one embedding of the classical polar unital in PG(2, ¢%), namely
the Hermitian unital.

1 Introduction

In finite geometry, embedding of geometric structures into projective spaces
has been a central question for many years which still presents numerous
open problems. The most natural one asks about existence and uniqueness,
that is, whether a block-design can be embedded in a given projective plane
and, if this is the case, in how many different ways such an embedding can be

*Géabor Korchméros: gabor.korchmaros@unibas.it and

Alessandro Siciliano: alessandro.siciliano@unibas.it
Dipartimento di Matematica, Informatica ed Economia - Universita degli Studi della Ba-
silicata - Viale dell’Ateneo Lucano 10 - 85100 Potenza (Italy).

fTamds Szényi: szonyiQcs.elte.hu
ELTE Eo6tvos Lorand University, Department of Computer Science and MTA-ELTE Geo-
metric and Algebraic Combinatorics Research Group, Pdzmany Péter sétdny 1/C - 1117
Budapest (Hungary)



done. In this paper we deal with such a uniqueness problem for embedding
of the Hermitian unital, as a block design, into a Desarguesian projective
plane.

A wunital is defined to be a set of ¢° + 1 points equipped with a family of
subsets, each of size ¢+ 1, such that every pair of distinct points is contained
in exactly one subset of the family. Such subsets are usually called blocks, so
unitals are block-designs 2 — (¢* +1,¢+1,1). A unital is embedded in a pro-
jective plane II of order ¢2, if its points are points of I and its blocks are lines
of Il. Sufficient conditions for a unital to be embeddable in a projective plane
are given in [8]. Computer aided searches suggest that there should be plenty
of unitals, especially for small values of ¢, but those embeddable in a project-
ive plane are quite rare, see [1, 3, 11, 9]. In the Desarguesian projective plane
PG(2,¢%), a unital arises from a unitary polarity in PG(2, ¢?): the points of
the unital are the absolute points, and the blocks are the non-absolute lines
of the polarity. The name of “Hermitian unital” is commonly used for such
a unital since its points are the points of the Hermitian curve defined over
GF(¢?). A classical polar unital is a unital isomorphic, as a block-design, to
a Hermitian unital. By definition, the classical polar unital can be embedded
in PG(2, ¢?) as the Hermitian unital. It has been conjectured for a long time
that this is the unique embedding of the classical polar unital in PG(2, ¢?)
although no explicit reference seems to be available in the literature. Our
goal is to prove this conjecture. Our notation and terminology are standard.
The principal references on unitals are [2, 6].

2 Projections and Hermitian unital

Let H be a Hermitian unital in the Desarguesian plane PG(2, ¢*). Any non-
absolute line intersects H in a Baer subline, that is a set of ¢ + 1 points
isomorphic to PG(1,¢q). Take any two distinct non-absolute lines ¢ and ¢'.
For any point () outside both ¢ and ¢, the projection of £ to ¢ from () takes
¢ N H to a Baer subline of /. We say that Q is a full point with respect to
the line pair (£,¢') if the projection from @) takes {NH to ¢’ NH.

From now on, we assume that ¢ and ¢ meet in a point P of PG(2,¢?)
not lying in 4. We denote the polar line of P with respect to the unitary
polarity associated to H by P+. Then P+ is a non-absolute line. We will
prove that if ¢ is even then P+ N %H contains a unique full point. This does
not hold true for odd ¢. In fact, we will prove that for odd ¢, P*N#H contains



zero or two full points depending on the mutual position of ¢ and ¢'.

To work out our proofs we need some notation and known results regard-
ing H and the projective unitary group PGU(3, q) preserving H.

Up to a change of the homogeneous coordinate system (X7, X5, X3) in
PG(2,4?%), the points of H are those satisfying the equation

X 4 X3 4 Xt =o. (1)

Since the unitary group PGU(3,q) preserving H acts transitively on the
points of PG(2,¢*) not lying in H, we may assume P = (0,1,0). Then
P+ has equation X, = 0. Also, since the stabilizer of P in PGU(3, q) acts
transitively on the non-absolute lines through P, ¢ may be assumed to be
the line of equation X3 = 0.

In the affine plane AG(2, ¢?) arising from PG(2, ¢?) with respect to the line
X3 = 0, we use the coordinates (X,Y) where X = X;/X;5 and Y = X,/ X;.
Then the points of H in AG(2, ¢*) have affine coordinates (X,Y) that satisfy
the equation

Xq+1 4 Yq+1 11 = O,

whereas the points of H at infinity are the ¢ + 1 points M = (1,m,0) with
m9T + 1 = 0. In this setting the line ¢ is a vertical line and hence it has
equation X — ¢ = 0 where ¢?™! +1 # 0 as ¢ is a non-absolute line. In the
following, we will use /. to denote the line with equation X — ¢ = 0.

Fix a point Q of H lying on PL. Then Q = Q(a,0) with a?*! +1 = 0.
Take a point M = (1,m,0) at infinity lying in H, and project it to £. from
Q. If the point T = (¢, t) is the result of the projection then t = (¢ — a)m.
Therefore, T' lies on H if and only if ca? 4+ ac? + 2 = 0.

2.1 The case ¢ odd

Let ¢ be an odd prime power. As a? = —a™!, ca? + ac? + 2 = 0 can also be
written in the form
a’c? +2a —c = 0. (2)

By abuse of notation, let /1 + ¢¢t! and —+/1 4 ¢4*t! denote the roots of the
equation Z? =1+ ¢!, Then the solutions of (2) are

a1 = —1EVIidet™ Ltcat! . (3)
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Here, V1 + cit! € GF(q) if and only if 1 + ¢?™! is a (non-zero) square ele-
ment in GF(¢q). Actually, this case cannot occur. In fact, (2) together with

V14 it € GF(q) yield ¢?a+ 1 = £v/1 4 ¢4*! whence
(an + 1)q+1 — ( /1 4 Cq+1)q+1 — ( /1 + Cq+1)2 =14+ Cq+1.

Expanding the left hand side and using a?™ = —1 we obtain ca? + cla =
2¢1% whence —c+c?a? —2ac?™! = (. Subtracting (2) gives either 1+c¢?t! = 0,
or a = 0. The former case cannot occur by the choice of /.. In the latter
case, = (0,0) but the origin does not lie in H.

Therefore, v/1 + ctt! € GF(¢*) \ GF(q). Hence V1 + ¢! = ju, with
u € GF(q) where GF(¢?) is considered as the quadratic extension of GF(q)
by adjunction of a root i of the polynomial X? — s with a fixed non-square

element s € GF(q). From i? = —i, we get (v/1 + ¢4t1)9 = —y/1 4 ¢4*1. Hence

g+l _ q _ _ (V1+cdF1-1)(VI4eatI41) 1

aq = a1a1 = ca+1

This shows that @1 = (ay,0) lies in H. Similarly, Q2 = (ag,0) € H.
Since a; and as do not depend on the choice of M, both points ), and
Q2 are full points with respect to the line pair (¢, ¢.). The projection ¢ with
center ()1 which maps ¢ to {. takes the point M = (1,m,0) to the point
T" = (¢,m(c — ay)), and the projection ¢’ with center ()2 mapping ¢, to ¢
takes the point T = (c,t) to the point M’ = (1,m’,0) with m' = t(c — ap) L.
Therefore, the product ¢ = ¢’ o ¢ is the automorphism of the line ¢ with
equation
m’ =dm, (4)

where d = % = —1;\/—7 V}IZZE We show that 9! is the identity auto-

morphism of £. From (4), ¥+ takes the point M = (1,7m,0) to the point
M(1,m,0), where m = d9"'m with

1
gotl — (_1=y/TEert AR G TV, v A S A BV e in)
144/14cat+1 144/ 14cat+1 14+4/14catl ) °

Since v/1 + ct1 " = —/T + ¢4*71 this yields d?t! = 1.

Now we count the automorphisms 1) when ¢ ranges over GF(¢?).

We show that each u € GF(q)* produces such an automorphism. Observe
that (iu)? = su® is a non-square element in GF(q). As the norm function
x — 97 from GF(¢?)* in GF(q)* is surjective, GF(¢*) contains a nonzero



element ¢ such that su? = 1 + ¢!, Therefore, either iu = /1 + c2tL, or
iu = —v'1+ ¢4+, With this notation, either

m = —i;—%m (5)
or
m' = —1%m, (6)

Any two different choices of u in (5) produce two different automorphisms
of £. In fact, if u,v € GF(q)*, and

1w . 1-w
1+iu 1+iv?

then u = v. Similarly, for (6) different values of u define different automorph-
isms. Furthermore, replacing u by —u in (6) gives (5).

Therefore, we have produced as many as ¢ — 1 pairwise distinct nontrivial
automorphisms v,,. A further nontrivial automorphism of ¢ preserving /NH is
1o of equation m’ = —m which is the restriction on £ of the linear collineation
(X1, Xo, X3) — (X1, — X5, X3) belonging to PGU(3, ¢). In fact, ¢y occurs for
u =0 1in (5). Furthermore, 1)y is an involution, and hence its ¢ + 1-st power
is the identity. All these automorphisms together with the identity ¢, form
a set of ¢ + 1 automorphisms of ¢ which preserve £ NH. To show that they
form a group ¥, replace u with 1/(sv) in (5). Then (5) reads

m' = . (7)
and the claim follows from the fact that the product of two such maps takes

m to
1—iv 1—iw _ 1=z
T+ 1+iw Y = T4z

m,

with
vt+w
1+svw*

Z =

On the other hand, the cyclic automorphism group of ¢ consisting of
all maps of equation m’ = hm with h € GF(¢?)* fixes P = (0,1,0) and
R = (1,0,0). Therefore its subgroup ¥ is also cyclic, and leaves ¢ N H

invariant acting on it regularly.



2.2 The case ¢ even

Let ¢ = 2° > 4. From a?™" + 1 = 0 and t = (a + ¢)m, we have a = \/%.
Therefore, T' € H if and only if a = \/Czq This shows that a is independent
of the choice of M on ¢. Thus, @ is a full point for the line pair (¢,¢.). It is
easily seen that () is also a full point for the pair (¢, /).

Take two distinct non-absolute lines /., and (., through P with ¢; # 0 #
C9, and let

(e, e2) = (1 + c‘{“) +c(1+ ch).

A straightforward computation shows that Q = (a,0) with a?™ +1 =0 is
the full point for the line pair (¢.,,¢.,) if and only if

7<Clvc2)
7(01762)(1. (8)

Furthermore, the projection with center () which maps ¢, to /.,, takes the
point M = (¢1,m) to the point T' = (co, m(a + c2)/(a + ¢1)).

Take an element s € GF(q) with absolute trace 1, and look at GF(¢?) as
the quadratic extension of GF(q) arising from the (irreducible) polynomial
X%+ X + 5 = 0. Let 7 be one of the roots of this polynomial. Then the
other root is 79, and hence i? = 1 +i. Furthermore, any element o of GF(¢?)
is uniquely written as = + iy with x,y € GF(q), giving a? = x + y + iy and
adtl = 22 4 2y + sy

Lemma 2.1. For any given ¢, € GF(¢?)*, with It # 1, there exists only

one further c; € GF(¢?)*, with ¢I™ # 1 such that
Yer, ) = (L4 ™) + a1+ M) =0. 9)

In particular, ¢ = cit, for some t € GF(q)*.

Proof. Let ¢; = a1 + iy, and ¢y = 29 + iyp. Then, I = 22 4+ 219, + sy? and
c%“ = I3 + Toys + SY3.
Since

(148t = 2a(1 + af + @yyn + sy7) + iy (1 + 2] + 211 + sy7)
and

c1(14 5 = 21 (14 23 + mayn + 5y3) + i1 (1 + 23 + 22y2 + sy3),
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equation (9) holds if and only if

To(1 4 2F 4+ 2191 + sy7) + 21 (1 + 23 + 20y + sy5) = 0
ya(1+ 2 + 21y + sy7) + yi(1+ 25 + ways + sy3) = 0.

If z; = 0 then ¢; = iy; with sy? # 1, and from the above equations,
x9 = 0 and y is a root of the polynomial in £

sn&” + (L+ syi)é + y1. (10)

Since y; is also a root of (10), y; and ys are the two roots and the assertion
is proven in this case. If y; = 0, a similar argument can be used to prove the
assertion.

Therefore x1 # 0 # y; may be assumed. From

nao(l+ad + o+ syd) Tl 4@t tsy) = 00
212 (14 23 + 21y + syd) + 2 (1 + 23 4 22yp + s3) = 0

we infer y,zo = 19, that is, ys = Y1222, " Replacing y, by yize2 " in the
first equation of (11) shows that x5 is a root of the polynomial in £

(2] + yiwy + sy1)ay ' 4 (1 + a7 + zy + sy7)€ + a1 = 0. (12)

Since z; is another root of (12), z; and x5 are the roots, and the assertion
is proven. O

For the rest of this section, let

a; = 2 1= 1,2
¢

Project ¢ to ., from Q1(aq,0), then project ., to ¢, from @ = (a,0), and
finally project /., to . The result is the automorphism %), ., of the line ¢,
viewed as PG(1, ¢%), defined by the equation

77001762((17 m, O)) - (1’ d(clv 62)m’ O)

where
(a+c2)(ar + )

(a+c)(ag + o)

d(Cl, 62) =



Using the definition of a, a,, as, a straightforward computation gives d(c;, c3)?
as a rational function of ¢; and cy:

c1cd(1+ cleg)
cAea(1+ c1cd)’

d(Cl, 02)2 =

whence
c1c5(1 + cfes)

d = .
(c1,2) clea(1+ e1ed)

This also shows that d(cy, ¢y) is of the form a?/a = 97! for some o € GF(¢?).
Hence d97! = 1.

Lemma 2.2. Let a, 3 € GF(¢%)* with a+ a9 #£ 0 # B+ B9 Then there
exists 0 € GF(q*)* such that
o+ adtl ’ @+5q+1 - § + gatl’

Proof. If 6 = a + ib, then % has the form %, for some ¢ € GF(q).

Let a = x + iy and = u + iv, with z,y,u,v € GF(q). Then,

(@f4 ™) (B1+ 1) = (z+y+2®+zy + sy®)(u+ v+ u? + uww + sv?) + svy
+i[(z + 2? + 2y + sy®)v + (u + u? + uwv + sv?)y + yv]

and

(a+ ™) (B+ B = (v+ 2% + 2y + sy?)(u + u? + uv + sv?) + svy
+i[(x 4+ 22 + 2y + sy*)v + (u+ u? + wv + sv?)y + yol.

By setting b = (z + 22 + 2y + sy*)v + (u + u® + vv + sv?)y + yv and
c=(z+ 2%+ zy + sy*)(u + u® + uv + sv?) + svy, the result follows. O

In the group PGL(2,¢?) of all automorphisms of ¢, the maps v, ,, with
AT £ 1 £ A y(er, ) # 0 form an abelian subgroup ¥ and the order of
each automorphism in ¥ divides ¢ + 1.

According to Lemma 2.1, a good choice for ¢, o is ¢; = s and ¢y = is7 L.
In this case, clca(1+cicd) = i? and d(cy, c2) = 1771 Hence ¢, ,((1,m,0)) =
(1,297'm,0). Since 777! is a primitive (¢ + 1)-st root of unity, ¥ contains a
cyclic subgroup of order ¢ + 1. Since W leaves H N ¢ invariant, this shows
that U acts on ‘H N ¢ regularly, and ¥ is a cyclic group of order ¢ + 1.

8



3 Embedding of the polar classical unital in
PG(2,¢°)

Let U be a classical polar unital isomorphic, as a design, to a Hermitian unital
of PG(2,¢*). Assume that U is embedded in PG(2, ¢?). Since the arguments
used in Section 2 only involve points, secants and their incidences of the
Hermitian unital viewed as a block design, all assertions stated there for a
Hermitian unital remains true for U4. We stress that the cyclic group ¥ of
order g+ 1 is obtained using projections which are restrictions of projections
of PG(2,¢*) on the Hermitian unital. This together with the results proven
in Section 2 show that there is a cyclic automorphism group C,.; of the
line ¢ which preserves ¢ NU. We are not claiming that C,4; extends to a
collineation group of PG(2,¢?). We only use the facts that C,.; consists of
automorphisms leaving ¢ N invariant and that Cy; acts on it regularly. By
Dickson’s classification of all subgroups of PGL(2, ¢%), see [13] or [7, Theorem
A.8], PGL(2,4¢%) has a unique conjugacy class of cyclic subgroups of order
q+1. Since PGL(2,¢?) is the automorphism group of £, we have that C,,; is
conjugate to the subgroup ¥ consisting of all maps m’ = wm where w?™! = 1.
In other words, we can change the projective frame so that ¢ N U becomes
a (nontrivial) 3-orbit. Since each nontrivial ¥-orbit is a Baer subline of ¢,
so is £ NU. As the unitary group PGU(3, q) acts transitively on the blocks
of U, we get that each block is a Baer subline, giving that U/ is projectively
equivalent to a Hermitian unital in PG(2, ¢?), see [4, 10].
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