Embedding of Classical Polar Unitals in $\operatorname{PG}\left(2, q^{2}\right)$

Gábor Korchmáros* Alessandro Siciliano*
Tamás Szőnyi ${ }^{\dagger}$

Abstract

A unital, that is, a block-design $2-\left(q^{3}+1, q+1,1\right)$, is embedded in a projective plane Π of order q^{2} if its points and blocks are points and lines of Π. A unital embedded in $\operatorname{PG}\left(2, q^{2}\right)$ is Hermitian if its points and blocks are the absolute points and non-absolute lines of a unitary polarity of $\mathrm{PG}\left(2, q^{2}\right)$. A classical polar unital is a unital isomorphic, as a block-design, to a Hermitian unital. We prove that there exists only one embedding of the classical polar unital in $\operatorname{PG}\left(2, q^{2}\right)$, namely the Hermitian unital.

1 Introduction

In finite geometry, embedding of geometric structures into projective spaces has been a central question for many years which still presents numerous open problems. The most natural one asks about existence and uniqueness, that is, whether a block-design can be embedded in a given projective plane and, if this is the case, in how many different ways such an embedding can be

[^0]done. In this paper we deal with such a uniqueness problem for embedding of the Hermitian unital, as a block design, into a Desarguesian projective plane.

A unital is defined to be a set of $q^{3}+1$ points equipped with a family of subsets, each of size $q+1$, such that every pair of distinct points is contained in exactly one subset of the family. Such subsets are usually called blocks, so unitals are block-designs $2-\left(q^{3}+1, q+1,1\right)$. A unital is embedded in a projective plane Π of order q^{2}, if its points are points of Π and its blocks are lines of Π. Sufficient conditions for a unital to be embeddable in a projective plane are given in [8]. Computer aided searches suggest that there should be plenty of unitals, especially for small values of q, but those embeddable in a projective plane are quite rare, see $[1,3,11,9]$. In the Desarguesian projective plane $\mathrm{PG}\left(2, q^{2}\right)$, a unital arises from a unitary polarity in $\mathrm{PG}\left(2, q^{2}\right)$: the points of the unital are the absolute points, and the blocks are the non-absolute lines of the polarity. The name of "Hermitian unital" is commonly used for such a unital since its points are the points of the Hermitian curve defined over $\mathrm{GF}\left(q^{2}\right)$. A classical polar unital is a unital isomorphic, as a block-design, to a Hermitian unital. By definition, the classical polar unital can be embedded in $\mathrm{PG}\left(2, q^{2}\right)$ as the Hermitian unital. It has been conjectured for a long time that this is the unique embedding of the classical polar unital in $\operatorname{PG}\left(2, q^{2}\right)$ although no explicit reference seems to be available in the literature. Our goal is to prove this conjecture. Our notation and terminology are standard. The principal references on unitals are $[2,6]$.

2 Projections and Hermitian unital

Let \mathcal{H} be a Hermitian unital in the Desarguesian plane PG(2, $\left.q^{2}\right)$. Any nonabsolute line intersects \mathcal{H} in a Baer subline, that is a set of $q+1$ points isomorphic to $\operatorname{PG}(1, q)$. Take any two distinct non-absolute lines ℓ and ℓ^{\prime}. For any point Q outside both ℓ and ℓ^{\prime}, the projection of ℓ to ℓ^{\prime} from Q takes $\ell \cap \mathcal{H}$ to a Baer subline of ℓ^{\prime}. We say that Q is a full point with respect to the line pair $\left(\ell, \ell^{\prime}\right)$ if the projection from Q takes $\ell \cap \mathcal{H}$ to $\ell^{\prime} \cap \mathcal{H}$.

From now on, we assume that ℓ and ℓ^{\prime} meet in a point P of $\operatorname{PG}\left(2, q^{2}\right)$ not lying in \mathcal{H}. We denote the polar line of P with respect to the unitary polarity associated to \mathcal{H} by P^{\perp}. Then P^{\perp} is a non-absolute line. We will prove that if q is even then $P^{\perp} \cap \mathcal{H}$ contains a unique full point. This does not hold true for odd q. In fact, we will prove that for odd $q, P^{\perp} \cap \mathcal{H}$ contains
zero or two full points depending on the mutual position of ℓ and ℓ^{\prime}.
To work out our proofs we need some notation and known results regarding \mathcal{H} and the projective unitary group $\operatorname{PGU}(3, q)$ preserving \mathcal{H}.

Up to a change of the homogeneous coordinate system $\left(X_{1}, X_{2}, X_{3}\right)$ in $\mathrm{PG}\left(2, q^{2}\right)$, the points of \mathcal{H} are those satisfying the equation

$$
\begin{equation*}
X_{1}^{q+1}+X_{2}^{q+1}+X_{3}^{q+1}=0 \tag{1}
\end{equation*}
$$

Since the unitary group $\operatorname{PGU}(3, q)$ preserving \mathcal{H} acts transitively on the points of $\operatorname{PG}\left(2, q^{2}\right)$ not lying in \mathcal{H}, we may assume $P=(0,1,0)$. Then P^{\perp} has equation $X_{2}=0$. Also, since the stabilizer of P in $\operatorname{PGU}(3, q)$ acts transitively on the non-absolute lines through P, ℓ may be assumed to be the line of equation $X_{3}=0$.

In the affine plane $\mathrm{AG}\left(2, q^{2}\right)$ arising from $\mathrm{PG}\left(2, q^{2}\right)$ with respect to the line $X_{3}=0$, we use the coordinates (X, Y) where $X=X_{1} / X_{3}$ and $Y=X_{2} / X_{3}$. Then the points of \mathcal{H} in $\mathrm{AG}\left(2, q^{2}\right)$ have affine coordinates (X, Y) that satisfy the equation

$$
X^{q+1}+Y^{q+1}+1=0
$$

whereas the points of \mathcal{H} at infinity are the $q+1$ points $M=(1, m, 0)$ with $m^{q+1}+1=0$. In this setting the line ℓ^{\prime} is a vertical line and hence it has equation $X-c=0$ where $c^{q+1}+1 \neq 0$ as ℓ^{\prime} is a non-absolute line. In the following, we will use ℓ_{c} to denote the line with equation $X-c=0$.

Fix a point Q of \mathcal{H} lying on P^{\perp}. Then $Q=Q(a, 0)$ with $a^{q+1}+1=0$. Take a point $M=(1, m, 0)$ at infinity lying in \mathcal{H}, and project it to ℓ_{c} from Q. If the point $T=(c, t)$ is the result of the projection then $t=(c-a) m$. Therefore, T lies on \mathcal{H} if and only if $c a^{q}+a c^{q}+2=0$.

2.1 The case q odd

Let q be an odd prime power. As $a^{q}=-a^{-1}, c a^{q}+a c^{q}+2=0$ can also be written in the form

$$
\begin{equation*}
a^{2} c^{q}+2 a-c=0 . \tag{2}
\end{equation*}
$$

By abuse of notation, let $\sqrt{1+c^{q+1}}$ and $-\sqrt{1+c^{q+1}}$ denote the roots of the equation $Z^{2}=1+c^{q+1}$. Then the solutions of (2) are

$$
\begin{equation*}
a_{1,2}=\frac{-1 \pm \sqrt{1+c^{q+1}}}{c^{q}} . \tag{3}
\end{equation*}
$$

Here, $\sqrt{1+c^{q+1}} \in \mathrm{GF}(q)$ if and only if $1+c^{q+1}$ is a (non-zero) square element in $\mathrm{GF}(q)$. Actually, this case cannot occur. In fact, (2) together with $\sqrt{1+c^{q+1}} \in \mathrm{GF}(q)$ yield $c^{q} a+1= \pm \sqrt{1+c^{q+1}}$ whence

$$
\left(c^{q} a+1\right)^{q+1}=\left(\sqrt{1+c^{q+1}}\right)^{q+1}=\left(\sqrt{1+c^{q+1}}\right)^{2}=1+c^{q+1} .
$$

Expanding the left hand side and using $a^{q+1}=-1$ we obtain $c a^{q}+c^{q} a=$ $2 c^{q+1}$, whence $-c+c^{q} a^{2}-2 a c^{q+1}=0$. Subtracting (2) gives either $1+c^{q+1}=0$, or $a=0$. The former case cannot occur by the choice of ℓ_{c}. In the latter case, $Q=(0,0)$ but the origin does not lie in \mathcal{H}.

Therefore, $\sqrt{1+c^{q+1}} \in \mathrm{GF}\left(q^{2}\right) \backslash \mathrm{GF}(q)$. Hence $\sqrt{1+c^{q+1}}=i u$, with $u \in \operatorname{GF}(q)$ where $\operatorname{GF}\left(q^{2}\right)$ is considered as the quadratic extension of $\operatorname{GF}(q)$ by adjunction of a root i of the polynomial $X^{2}-s$ with a fixed non-square element $s \in \operatorname{GF}(q)$. From $i^{q}=-i$, we get $\left(\sqrt{1+c^{q+1}}\right)^{q}=-\sqrt{1+c^{q+1}}$. Hence

$$
a_{1}^{q+1}=a_{1}^{q} a_{1}=-\frac{\left(\sqrt{1+c^{q+1}}-1\right)\left(\sqrt{1+c^{q+1}}+1\right)}{c^{q+1}}=-1 .
$$

This shows that $Q_{1}=\left(a_{1}, 0\right)$ lies in \mathcal{H}. Similarly, $Q_{2}=\left(a_{2}, 0\right) \in \mathcal{H}$.
Since a_{1} and a_{2} do not depend on the choice of M, both points Q_{1} and Q_{2} are full points with respect to the line pair $\left(\ell, \ell_{c}\right)$. The projection φ with center Q_{1} which maps ℓ to ℓ_{c} takes the point $M=(1, m, 0)$ to the point $T^{\prime}=\left(c, m\left(c-a_{1}\right)\right)$, and the projection φ^{\prime} with center Q_{2} mapping ℓ_{c} to ℓ takes the point $T=(c, t)$ to the point $M^{\prime}=\left(1, m^{\prime}, 0\right)$ with $m^{\prime}=t\left(c-a_{2}\right)^{-1}$. Therefore, the product $\psi=\varphi^{\prime} \circ \varphi$ is the automorphism of the line ℓ with equation

$$
\begin{equation*}
m^{\prime}=d m \tag{4}
\end{equation*}
$$

where $d=\frac{c-a_{1}}{c-a_{2}}=-\frac{1-\sqrt{1+c^{q+1}}}{1+\sqrt{1+c^{q+1}}}$. We show that ψ^{q+1} is the identity automorphism of ℓ. From (4), ψ^{q+1} takes the point $M=(1, m, 0)$ to the point $\bar{M}(1, \bar{m}, 0)$, where $\bar{m}=d^{q+1} m$ with

$$
d^{q+1}=\left(-\frac{1-\sqrt{1++^{q+1}}}{1+\sqrt{1+c^{q+1}}}\right)^{q+1}=\left(-\frac{1-\sqrt{1+c^{q+1}}}{1+\sqrt{1+c^{q+1}}}\right)^{q}\left(-\frac{1-\sqrt{1+c^{q+1}}}{1+\sqrt{1+c^{q+1}}}\right) .
$$

Since $\sqrt{1+c^{q+1}}{ }^{q}=-\sqrt{1+c^{q+1}}$ this yields $d^{q+1}=1$.
Now we count the automorphisms ψ when c ranges over $\operatorname{GF}\left(q^{2}\right)$.
We show that each $u \in \mathrm{GF}(q)^{*}$ produces such an automorphism. Observe that $(i u)^{2}=s u^{2}$ is a non-square element in $\operatorname{GF}(q)$. As the norm function $x \mapsto x^{q+1}$ from $\operatorname{GF}\left(q^{2}\right)^{*}$ in $\mathrm{GF}(q)^{*}$ is surjective, $\mathrm{GF}\left(q^{2}\right)$ contains a nonzero
element c such that $s u^{2}=1+c^{q+1}$. Therefore, either $i u=\sqrt{1+c^{q+1}}$, or $i u=-\sqrt{1+c^{q+1}}$. With this notation, either

$$
\begin{equation*}
m^{\prime}=-\frac{1-i u}{1+i u} m \tag{5}
\end{equation*}
$$

or

$$
\begin{equation*}
m^{\prime}=-\frac{1+i u}{1-i u} m \tag{6}
\end{equation*}
$$

Any two different choices of u in (5) produce two different automorphisms of ℓ. In fact, if $u, v \in \operatorname{GF}(q)^{*}$, and

$$
-\frac{1-i u}{1+i u}=-\frac{1-i v}{1+i v}
$$

then $u=v$. Similarly, for (6) different values of u define different automorphisms. Furthermore, replacing u by $-u$ in (6) gives (5).

Therefore, we have produced as many as $q-1$ pairwise distinct nontrivial automorphisms ψ_{u}. A further nontrivial automorphism of ℓ preserving $\ell \cap \mathcal{H}$ is ψ_{0} of equation $m^{\prime}=-m$ which is the restriction on ℓ of the linear collineation $\left(X_{1}, X_{2}, X_{3}\right) \mapsto\left(X_{1},-X_{2}, X_{3}\right)$ belonging to $\operatorname{PGU}(3, q)$. In fact, ψ_{0} occurs for $u=0$ in (5). Furthermore, ψ_{0} is an involution, and hence its $q+1$-st power is the identity. All these automorphisms together with the identity ψ_{∞} form a set of $q+1$ automorphisms of ℓ which preserve $\ell \cap \mathcal{H}$. To show that they form a group Ψ, replace u with $1 /(s v)$ in (5). Then (5) reads

$$
\begin{equation*}
m^{\prime}=\frac{1-i v}{1+i v} m \tag{7}
\end{equation*}
$$

and the claim follows from the fact that the product of two such maps takes m to

$$
\frac{1-i v}{1+i v} \frac{1-i w}{1+i w} m=\frac{1-i z}{1+i z} m,
$$

with

$$
z=\frac{v+w}{1+s v w} .
$$

On the other hand, the cyclic automorphism group of ℓ consisting of all maps of equation $m^{\prime}=h m$ with $h \in G F\left(q^{2}\right)^{*}$ fixes $P=(0,1,0)$ and $R=(1,0,0)$. Therefore its subgroup Ψ is also cyclic, and leaves $\ell \cap \mathcal{H}$ invariant acting on it regularly.

2.2 The case q even

Let $q=2^{e} \geq 4$. From $a^{q+1}+1=0$ and $t=(a+c) m$, we have $a=\sqrt{\frac{c}{c^{q}}}$. Therefore, $T \in \mathcal{H}$ if and only if $a=\sqrt{\frac{c}{c^{q}}}$. This shows that a is independent of the choice of M on ℓ. Thus, Q is a full point for the line pair $\left(\ell, \ell_{c}\right)$. It is easily seen that Q is also a full point for the pair $\left(\ell_{c}, \ell\right)$.

Take two distinct non-absolute lines $\ell_{c_{1}}$ and $\ell_{c_{2}}$ through P with $c_{1} \neq 0 \neq$ c_{2}, and let

$$
\gamma\left(c_{1}, c_{2}\right)=c_{2}\left(1+c_{1}^{q+1}\right)+c_{1}\left(1+c_{2}^{q+1}\right) .
$$

A straightforward computation shows that $Q=(a, 0)$ with $a^{q+1}+1=0$ is the full point for the line pair $\left(\ell_{c_{1}}, \ell_{c_{2}}\right)$ if and only if

$$
\begin{equation*}
a=\sqrt{\frac{\gamma\left(c_{1}, c_{2}\right)}{\gamma\left(c_{1}, c_{2}\right)^{q}}} \tag{8}
\end{equation*}
$$

Furthermore, the projection with center Q which maps $\ell_{c_{1}}$ to $\ell_{c_{2}}$, takes the point $M=\left(c_{1}, m\right)$ to the point $T=\left(c_{2}, m\left(a+c_{2}\right) /\left(a+c_{1}\right)\right)$.

Take an element $s \in \operatorname{GF}(q)$ with absolute trace 1 , and look at $\operatorname{GF}\left(q^{2}\right)$ as the quadratic extension of $\mathrm{GF}(q)$ arising from the (irreducible) polynomial $X^{2}+X+s=0$. Let i be one of the roots of this polynomial. Then the other root is i^{q}, and hence $i^{q}=1+i$. Furthermore, any element α of $\operatorname{GF}\left(q^{2}\right)$ is uniquely written as $x+i y$ with $x, y \in \mathrm{GF}(q)$, giving $\alpha^{q}=x+y+i y$ and $\alpha^{q+1}=x^{2}+x y+s y^{2}$.
Lemma 2.1. For any given $c_{1} \in \operatorname{GF}\left(q^{2}\right)^{*}$, with $c_{1}^{q+1} \neq 1$, there exists only one further $c_{2} \in \operatorname{GF}\left(q^{2}\right)^{*}$, with $c_{2}^{q+1} \neq 1$ such that

$$
\begin{equation*}
\gamma\left(c_{1}, c_{2}\right)=c_{2}\left(1+c_{1}^{q+1}\right)+c_{1}\left(1+c_{2}^{q+1}\right)=0 \tag{9}
\end{equation*}
$$

In particular, $c_{2}=c_{1} t$, for some $t \in \mathrm{GF}(q)^{*}$.
Proof. Let $c_{1}=x_{1}+i y_{1}$ and $c_{2}=x_{2}+i y_{2}$. Then, $c_{1}^{q+1}=x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}$ and $c_{2}^{q+1}=x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}$.

Since

$$
c_{2}\left(1+c_{1}^{q+1}\right)=x_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)+i y_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)
$$

and

$$
c_{1}\left(1+c_{2}^{q+1}\right)=x_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right)+i y_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right)
$$

equation (9) holds if and only if

$$
\left\{\begin{aligned}
x_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)+x_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right) & =0 \\
y_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)+y_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right) & =0 .
\end{aligned}\right.
$$

If $x_{1}=0$ then $c_{1}=i y_{1}$ with $s y_{1}^{2} \neq 1$, and from the above equations, $x_{2}=0$ and y_{2} is a root of the polynomial in ξ

$$
\begin{equation*}
s y_{1} \xi^{2}+\left(1+s y_{1}^{2}\right) \xi+y_{1} \tag{10}
\end{equation*}
$$

Since y_{1} is also a root of (10), y_{1} and y_{2} are the two roots and the assertion is proven in this case. If $y_{1}=0$, a similar argument can be used to prove the assertion.

Therefore $x_{1} \neq 0 \neq y_{1}$ may be assumed. From

$$
\left\{\begin{array}{l}
y_{1} x_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)+y_{1} x_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right)=0 \tag{11}\\
x_{1} y_{2}\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right)+x_{1} y_{1}\left(1+x_{2}^{2}+x_{2} y_{2}+s y_{2}^{2}\right)=0
\end{array}\right.
$$

we infer $y_{1} x_{2}=x_{1} y_{2}$, that is, $y_{2}=y_{1} x_{2} x_{1}^{-1}$. Replacing y_{2} by $y_{1} x_{2} x_{1}^{-1}$ in the first equation of (11) shows that x_{2} is a root of the polynomial in ξ

$$
\begin{equation*}
\left(x_{1}^{2}+y_{1} x_{1}+s y_{1}^{2}\right) x_{1}^{-1} \xi^{2}+\left(1+x_{1}^{2}+x_{1} y_{1}+s y_{1}^{2}\right) \xi+x_{1}=0 . \tag{12}
\end{equation*}
$$

Since x_{1} is another root of (12), x_{1} and x_{2} are the roots, and the assertion is proven.

For the rest of this section, let

$$
a_{i}=\sqrt{\frac{c_{i}}{c_{i}^{q}}}, \quad i=1,2
$$

Project ℓ to $\ell_{c_{1}}$ from $Q_{1}\left(a_{1}, 0\right)$, then project $\ell_{c_{1}}$ to $\ell_{c_{2}}$ from $Q=(a, 0)$, and finally project $\ell_{c_{2}}$ to ℓ. The result is the automorphism $\psi_{c_{1}, c_{2}}$ of the line ℓ, viewed as $\operatorname{PG}\left(1, q^{2}\right)$, defined by the equation

$$
\psi_{c_{1}, c_{2}}((1, m, 0))=\left(1, d\left(c_{1}, c_{2}\right) m, 0\right)
$$

where

$$
d\left(c_{1}, c_{2}\right)=\frac{\left(a+c_{2}\right)\left(a_{1}+c_{1}\right)}{\left(a+c_{1}\right)\left(a_{2}+c_{2}\right)}
$$

Using the definition of a, a_{1}, a_{2}, a straightforward computation gives $d\left(c_{1}, c_{2}\right)^{2}$ as a rational function of c_{1} and c_{2} :

$$
d\left(c_{1}, c_{2}\right)^{2}=\frac{c_{1} c_{2}^{q}\left(1+c_{1}^{q} c_{2}\right)}{c_{1}^{q} c_{2}\left(1+c_{1} c_{2}^{q}\right)},
$$

whence

$$
d\left(c_{1}, c_{2}\right)=\sqrt{\frac{c_{1} c_{2}^{q}\left(1+c_{1}^{q} c_{2}\right)}{c_{1}^{q} c_{2}\left(1+c_{1} c_{2}^{q}\right)}}
$$

This also shows that $d\left(c_{1}, c_{2}\right)$ is of the form $\alpha^{q} / \alpha=\alpha^{q-1}$ for some $\alpha \in \operatorname{GF}\left(q^{2}\right)$. Hence $d^{q+1}=1$.

Lemma 2.2. Let $\alpha, \beta \in G F\left(q^{2}\right)^{*}$ with $\alpha+\alpha^{q+1} \neq 0 \neq \beta+\beta^{q+1}$. Then there exists $\delta \in \operatorname{GF}\left(q^{2}\right)^{*}$ such that

$$
\frac{\alpha^{q}+\alpha^{q+1}}{\alpha+\alpha^{q+1}} \cdot \frac{\beta^{q}+\beta^{q+1}}{\beta+\beta^{q+1}}=\frac{\delta^{q}+\delta^{q+1}}{\delta+\delta^{q+1}}
$$

Proof. If $\delta=a+i b$, then $\frac{\delta^{q}+\delta^{q+1}}{\delta+\delta^{q+1}}$ has the form $\frac{c+b+i b}{c+i b}$, for some $c \in \operatorname{GF}(q)$.
Let $\alpha=x+i y$ and $\beta=u+i v$, with $x, y, u, v \in \operatorname{GF}(q)$. Then,

$$
\begin{aligned}
\left(\alpha^{q}+\alpha^{q+1}\right)\left(\beta^{q}+\beta^{q+1}\right)= & \left(x+y+x^{2}+x y+s y^{2}\right)\left(u+v+u^{2}+u v+s v^{2}\right)+s v y \\
& +i\left[\left(x+x^{2}+x y+s y^{2}\right) v+\left(u+u^{2}+u v+s v^{2}\right) y+y v\right]
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\alpha+\alpha^{q+1}\right)\left(\beta+\beta^{q+1}\right)= & \left(x+x^{2}+x y+s y^{2}\right)\left(u+u^{2}+u v+s v^{2}\right)+s v y \\
& +i\left[\left(x+x^{2}+x y+s y^{2}\right) v+\left(u+u^{2}+u v+s v^{2}\right) y+y v\right] .
\end{aligned}
$$

By setting $b=\left(x+x^{2}+x y+s y^{2}\right) v+\left(u+u^{2}+u v+s v^{2}\right) y+y v$ and $c=\left(x+x^{2}+x y+s y^{2}\right)\left(u+u^{2}+u v+s v^{2}\right)+s v y$, the result follows.

In the group PGL $\left(2, q^{2}\right)$ of all automorphisms of ℓ, the maps $\psi_{c_{1}, c_{2}}$, with $c_{1}^{q+1} \neq 1 \neq c_{2}^{q+1}, \gamma\left(c_{1}, c_{2}\right) \neq 0$ form an abelian subgroup Ψ and the order of each automorphism in Ψ divides $q+1$.

According to Lemma 2.1, a good choice for c_{1}, c_{2} is $c_{1}=s$ and $c_{2}=i s^{-1}$. In this case, $c_{1}^{q} c_{2}\left(1+c_{1} c_{2}^{q}\right)=i^{2}$ and $d\left(c_{1}, c_{2}\right)=i^{q-1}$. Hence $\psi_{c_{1}, c_{2}}((1, m, 0))=$ $\left(1, i^{q-1} m, 0\right)$. Since i^{q-1} is a primitive $(q+1)$-st root of unity, Ψ contains a cyclic subgroup of order $q+1$. Since Ψ leaves $\mathcal{H} \cap \ell$ invariant, this shows that Ψ acts on $\mathcal{H} \cap \ell$ regularly, and Ψ is a cyclic group of order $q+1$.

3 Embedding of the polar classical unital in PG($2, q^{2}$)

Let \mathcal{U} be a classical polar unital isomorphic, as a design, to a Hermitian unital of $\operatorname{PG}\left(2, q^{2}\right)$. Assume that \mathcal{U} is embedded in $\operatorname{PG}\left(2, q^{2}\right)$. Since the arguments used in Section 2 only involve points, secants and their incidences of the Hermitian unital viewed as a block design, all assertions stated there for a Hermitian unital remains true for \mathcal{U}. We stress that the cyclic group Ψ of order $q+1$ is obtained using projections which are restrictions of projections of $P G\left(2, q^{2}\right)$ on the Hermitian unital. This together with the results proven in Section 2 show that there is a cyclic automorphism group C_{q+1} of the line ℓ which preserves $\ell \cap \mathcal{U}$. We are not claiming that C_{q+1} extends to a collineation group of $\mathrm{PG}\left(2, q^{2}\right)$. We only use the facts that C_{q+1} consists of automorphisms leaving $\ell \cap \mathcal{U}$ invariant and that C_{q+1} acts on it regularly. By Dickson's classification of all subgroups of $\operatorname{PGL}\left(2, q^{2}\right)$, see [13] or [7, Theorem A.8], $P G L\left(2, q^{2}\right)$ has a unique conjugacy class of cyclic subgroups of order $q+1$. Since $P G L\left(2, q^{2}\right)$ is the automorphism group of ℓ, we have that C_{q+1} is conjugate to the subgroup Σ consisting of all maps $m^{\prime}=w m$ where $w^{q+1}=1$. In other words, we can change the projective frame so that $\ell \cap \mathcal{U}$ becomes a (nontrivial) Σ-orbit. Since each nontrivial Σ-orbit is a Baer subline of ℓ, so is $\ell \cap \mathcal{U}$. As the unitary group $\operatorname{PGU}(3, q)$ acts transitively on the blocks of \mathcal{U}, we get that each block is a Baer subline, giving that \mathcal{U} is projectively equivalent to a Hermitian unital in $\operatorname{PG}\left(2, q^{2}\right)$, see [4, 10].

Acknowledgments

The authors would like to thank the referees for their accurate report.

References

[1] J. Bamberg, A. Betten, C.E. Praeger and A. Wassermann, Unitals in the Desarguesian projective plane of order 16, J. Statist. Plann. Inference 144, (2014) 110-122.
[2] S. Barwick and G.E Ebert, Unitals in projective planes, Springer Monographs in Mathematics. Springer, New York, 2008. xii+193 pp.
[3] A. Betten, D. Betten and V.D. Tonchev, Unitals and codes, Discrete Math., 267, (2003) 23-33.
[4] G. Faina and G. Korchmáros, A graphic characterization of Hermitian curves, Ann. Discrete Math., 18 (1983), 335-342, North-Holland, Amsterdam-New York, 1983.
[5] V. Krčadinac, A. Nakić and M.O. Pavčević, The Kramer-Mesner method with tactical decompositions: some new unitals on 65 points, J. Combin. Des. 19 (2011), 290-303.
[6] J. W. P. Hirschfeld, Projective geometries over finite fields, Second edition. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 1998.
[7] J.W.P. Hirschfeld, G. Korchmáros and F. Torres, Algebraic Curves over a Finite Field, Princeton Series in Applied Mathematics, Princeton, (2008).
[8] A.M.W. Hui and P.P.W. Wong, On embedding a unitary block design as a polar unital and an intrinsic characterization of the classical unital, J. Combin. Theory Ser. A 122, (2014) 39-52.
[9] G. Korchmáros, A. Sonnino and T. Szőnyi,
[10] C. Lefèvre-Percsy, Characterization of Hermitian curves, Arch. Math. (Basel) 39 (1982), 476-480.
[11] T. Penttila and G.F. Royle, Sets of type (m, n) in the affine and projective planes of order nine, Des. Codes Cryptogr. 6 (1995), 229-245.
[12] J.A. Thas, A combinatorial characterization of Hermitian curves, J. Algebraic Combin. 1 (1992), 97-102.
[13] R.C. Valentini and M.L. Madan, A Hauptsatz of L.E. Dickson and Artin-Schreier extensions, J. Reine Angew. Math. 318 (1980), 156177.

[^0]: *Gábor Korchmáros: gabor.korchmaros@unibas.it and Alessandro Siciliano: alessandro.siciliano@unibas.it Dipartimento di Matematica, Informatica ed Economia - Università degli Studi della Basilicata - Viale dell'Ateneo Lucano 10-85100 Potenza (Italy).
 †Tamás Szőnyi: szonyi@cs.elte.hu
 ELTE Eötvös Loránd University, Department of Computer Science and MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Pázmány Péter sétány 1/C - 1117 Budapest (Hungary)

