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WEBS OF STARS OR HOW TO TRIANGULATE
FREE SUMS OF POINT CONFIGURATIONS

BENJAMIN ASSARF, MICHAEL JOSWIG, AND JULIAN PFEIFLE

ABSTRACT. The triangulations of point configurations which decom-
pose as a free sum are classified in terms of the triangulations of the
summands. The methods employ two new partially ordered sets associ-
ated with any triangulation of a point set with one marked point, the web
of stars and the stabbing poset. Triangulations of smooth Fano polytopes
are discussed as a case study.
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1. INTRODUCTION

The investigation of triangulations of point configurations and their secondary
fans is motivated by numerous applications in many areas of mathematics.
For an overview see the introductory chapter of the monograph [5] by De
Loera, Rambau and Santos. The secondary fan is a complete polyhedral fan
which encodes the set of all (regular) subdivisions of a fixed point configu-
ration, partially ordered by refinement. As secondary fans form a very rich
concept, general structural results are hard to obtain. There are rather few
infinite families of point configurations known for which the entire set of all
triangulations can be described in an explicit way; see [7] for a classification
which covers very many of the cases known up to now. The purpose of
the present paper is to examine the triangulations of point configurations
which decompose as a free sum, and we give a full classification in terms
of the triangulations of the summands. A case study on a configuration of
17 points in R® underlines that, for point configurations which decompose,
our methods significantly extend the range where explicit computations are
possible.

Let P C R? and Q C R€ be two finite point configurations containing the
origin in their respective interiors. Their (free) sum is the point set

(1.1) P2Q = (Px{0})U({0} xQ) C R¥*
and their (affine) join is
(1.2) PxQ = ({0} x Px{0})U ({1} x {0} x Q) C RIFdte

Starting from a triangulation of the sum, the join or the Cartesian product of
two point configurations, a natural question to ask is whether the triangulation
can be expressed or constructed using individual triangulations of P and Q.
In [5] there are several results on affine joins and Cartesian products, but
none for sums. A complete characterization for the affine joins is given by
[5, Theorem 4.2.7]. It turns out that every subdivision of an affine join
is determined by the subdivisions of the factors in a unique way. For the
product the situation is much more involved. Any two subdivisions of two
point sets give rise to a subdivision of the product point configuration [5,
Definition 4.2.13], but not every subdivision of the product arises in this way.

The free sum is dual to the product, and hence it is a very natural
construction to look at. We examine how an arbitrary triangulation Ap of P
and an arbitrary triangulation Ag of @ give rise to a triangulation of P ® Q.
However, in order to make the construction work additional data is required.
This leads us to define webs of stars in Ap and Ag. These are families of
star-shaped balls (containing the origin) in Ap and Ag, respectively, which
satisfy certain compatibility conditions, expressed in terms of visibility from
the origin. Our first main result (Theorem 4.9) says that each triangulation of
P & Q arises in this way. We found it surprisingly difficult to show, however,
that the resulting conditions on the summands always suffice to construct a
triangulation. This is our second main result (Theorem 5.7), and completes
our characterization.

One good reason for considering free sums (and their subdivisions) is that
interesting classes of polytopes are closed with respect to this construction.
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This includes the smooth Fano polytopes, which are (necessarily simplicial)
lattice polytopes with the origin as an interior lattice point such that the
vertices on each facet form a lattice basis. For each dimension there are only
finitely many smooth Fano polytopes, up to unimodular equivalence. They
are classified in dimensions up to nine; cf. [3], [9], [11], and [12]. Smooth
Fano polytopes play a role in algebraic geometry and mathematical physics.
Interestingly, many of these polytopes decompose as a free sum. There
is a more precise general statement conjectured [1, Conjecture 9], which
has partially been confirmed [2, Theorem 1]. In Section 6 we report on a
case study where we apply our methods to a six-dimensional smooth Fano
polytope with 16 vertices, which decomposes into a 2-dimensional and a
4-dimensional summand. With standard techniques (cf. [13] and [14]) it
seems to be out of reach to compute all its triangulations up to symmetry
on a standard desktop computer within several weeks. Yet, our approach
solves this problem on the same hardware within ten days.

Our paper is organized as follows. Section 2 starts out with investigating
two partially ordered sets which can be associated to any triangulation A of a
point set, in which one point is marked. Throughout the marked point will be
the origin. The first poset orders, with respect to inclusion, the triangulated
balls of maximal dimension which contain the origin (not necessarily as
a vertex), and which are strictly star-shaped with respect to the origin.
The second poset comprises the facets of the triangulation with the partial
ordering induced by visibility from the origin; this is the stabbing poset.

In Section 3 we start to investigate triangulations of sums of point con-
figurations. A key step is to analyze how a triangulation Apgg induces
triangulations on the two summands. Here we obtain a unified treatment
which simultaneously covers the case where the origin is a vertex of Apgg and
the case where it is not. Specifically, we show that the link map o — A(0),
which assigns to each simplex o € Apgg the cone over the origin of the link
of o in Apg(, satisfies several technical properties, the most important of
which is to preserve the order of the two aforementioned partial orders.

Section 4 generalizes the link map to webs of stars and sum-triangulations,
and culminates in Theorem 4.9, which says that every triangulation of the
free sum of two point configurations arises as a sum-triangulation.

Finally, Section 5 is dedicated to the proof of the converse direction, namely
that every pair of triangulations of the summands can be used to construct
a triangulation of the sum. However, the correspondence is not one-to-one,
meaning that different pairs of triangulations of the summands may produce
the same sum-triangulation.

In order to show the applicability and usefulness of our methods, in
Section 6 we analyze one specific point configuration in detail: the free sum
DP(2)®DP(4) of two del Pezzo polytopes, of dimensions two and four. This is
a smooth Fano polytope in dimension six with 16 vertices; including the origin
gives a total of 17 points. Using the triangulations of the summands as input
(obtained via TOPCOM [14]) we compute all triangulations of DP(2) & DP(4)
with polymake [6].

We close the paper with a conjecture about regular triangulations and an
appendix on an algorithmic detail.
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2. TOOLBOX

2.1. Simplices in direct sums. We start out with some relevant basic
facts about triangulations of a finite point set P C R%. An interior point
of P is a point in P which is contained in the interior of the convex hull
conv P. Clearly, the convex hull of P needs to be full-dimensional in order
to have any interior points. Now let ) C R be another configuration of
finitely many points. Throughout the paper, we will assume that the origin
0 (in R? and R®, respectively) is an interior point of both P and Q. This
entails that P linearly spans the entire space R?, and @ spans R€ likewise.
The origin in R4+ plays a special role in P @ @Q, since it is the only point in
the intersection (P x {0}) N ({0} x Q).

We denote triangulations of P, () and P © Q by Ap, Ag and Apgg,
respectively. As usual, a simplex o of a triangulation A is the convex hull
of its vertices, and its dimension is the dimension of their affine hull. We
write A=F for the set of all simplices of dimension k in A, and dA for the
boundary complex of A.

Consider a full-dimensional simplex o € A;g@e. Because the vertex set
of ¢ is affinely independent, it contains at most d + 1 points of P and at
most e + 1 points of Q. On the other hand, since o is a (d 4 e)-simplex, it
has exactly d + e + 1 vertices. Therefore, o contains at least d points of P
and at least e points of (), and we express o as 0 = conv(op,og) with

op = conv (Verto N (P x {0})) and
og = conv (Verta N ({0} x Q)) ,

where Vert o denotes the set of vertices of o.

(2.1)

Observation 2.1. If 0 ¢ Vert o, then exactly one of the simplices op, o is
full-dimensional, and the other has codimension 1 in the affine span of its
containing polytope. On the other hand, if 0 € Vert ¢ then both simplices
are full-dimensional.

We will be a bit imprecise with our notation. Often we will confuse P
with P x {0}, and op with its canonical projection to the linear subspace R¢.
Accordingly, instead of o = conv(op,0q) we will also write 0 = op @ 0.

Collecting all simplices of Apgg that lie in R? x {0} or {0} x R¢ yields
simplicial complexes on the vertex sets of P and () that do not necessarily
cover the respective convex hulls. In Section 3 we prove that these complexes
can be extended to proper triangulations. Hence there exist triangulations
Ap of P and Ag of @ such that every full-dimensional cell of P @ @ is the
sum of two cells of those two triangulations. We defer the obvious question
of how those cells are to be combined into a decomposition of P & () until
we describe our main construction, the sum-triangulation, in Definition 4.4.
From any two fixed triangulations of the summands, it can produce several
triangulations of the sum. Conversely, every triangulation of the sum of two
polytopes is a sum triangulation and can be produced from triangulations of
the summands, but not necessarily in a unique way (Construction 3.1).

2.2. Stars, links, and two new posets. Let A be a triangulation of a
point configuration in R? and o be a face in A.



WEBS OF STARS OR HOW TO TRIANGULATE FREE SUMS 5

Definition 2.2 (star/link/restriction). The (closed) star sta(o) of o is the
subcomplex of A consisting of all simplices containing o, and all their faces.
The link of o is the simplicial complex lka (o) := {7 € sta(o) | oN7T =0},

Consider a point z in the set covered by A, which, however, does not need
to be a vertex, and let ¢ be the minimal face containing it. We let

sta(x) = sta(o) and lka(z) = lka(o) .

For any closed set S C RY we call Alg := {0 € A | o C S} the restriction
of Ato S.

Traditionally, a set .S is called star shaped with respect to the point z € S
if for every y € S the line segment Ty is completely contained in S. We need
a slightly stricter version of this generalization of convexity.

Definition 2.3. A set S is strictly star shaped with respect to x € S if for
every y € S the line segment 7y is completely contained in relint(S) U {y}.

Thus, the point x must be contained in the relative interior of S, and the
line segment Ty is only allowed to intersect the boundary of S in y. Another
way of saying the same is that every ray starting at z can intersect 95 in at
most one point.

Lemma 2.4. Let A\ be a triangulation of a point configuration, and let x
be a point in its (relative) interior. Then sta(x) is strictly star shaped with
respect to x.

Proof. Because every simplex is convex, sta(x) is star shaped with respect
to x. The relative interior of the star is sta(z) \ lka (), and it is clear that
it contains x. Let F' be a maximal cell in the boundary of sta(z). Then F
is contained in lka (x), and it does not contain z. It follows that the vertices
of F and x form an affinely independent set, and thus the intersection of F'
and any line segment Ty for y € F is just the point y. (]

Observation 2.5. As a direct consequence of Lemma 2.4, the link of any
interior cell forms a triangulated sphere. Notice also that the link of any
boundary cell is a triangulated ball; cf. [8, Chapter 1].

Two partially ordered sets will play a crucial role in the rest of the paper.
The first poset is associated to any triangulation A of a point configuration
in R?, namely

subcomplexes of A that are k-dimensional
BZ(JI) = balls and strictly star shaped with respect p U {0},
to x

partially ordered by inclusion. For convenience, we abbreviate Ba := BZ(O).
The second partial order is defined on the simplices in A of the same
dimension. We say that o precedes T in the stabbing order, and write o < 7,
if the dimensions of o and 7 are equal and ¢ = 7 or (compare Figure 1)
e for every linear or affine hyperplane that separates o and 7 (not
necessarily strictly), o lies in the same closed half space as 0; and
e o and 7 are separated by at least one strictly affine hyperplane H.
The minimal elements in the <-ordering are the simplices in sta (0), as they
already contain the origin. Throughout, we write 0 < 7if 0 <7 and o # 7.
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(o)
o Hr —
%
0 Ar T
(a) If 0 =7, we can find a stab- (b) If o and 7 are not compara-
bing ray spanned by a point r on ble we can find a linear separat-
an affine separating hyperplane. ing hyperplane.

Ficurge 1. Ilustrating the partial order <. In (a) o
precedes 7, in (b) o and 7 are not comparable.

Lemma 2.6. For any two distinct, comparable simplices o < T in a trian-
gulation A in RY, there exists a ray from the origin that stabs first o and
then T, i.e., there exists an v € R\ {0} and 0 < X\ < u such that \r € o and
ur e T.

Proof. First we briefly discuss that if ¢ < 7 and both are stabbed by a
ray p through the origin, we may assume that two intersection points are
of the form A\r € o and pr € 7 with r € R\ {0} and 0 < A < u. To get
some intuition for this, consider the separating affine hyperplane H whose
existence is guaranteed by the definition of <, and choose r := pN H. Then
A < p is clear because o is contained in the same half-space of H as the
origin, by the definition of <, but is separated from 7 by H; see Figure la.
Furthermore, a ray with A < u exists even if the intersection o N 7 is just
one point or empty.

To formally prove the lemma, we assume that there exists no stabbing
ray p, and construct a linear hyperplane L that separates ¢ from 7, and that
can be perturbed to leave the origin on either side while still separating o
from 7. The existence of such an L then directly contradicts o < 7.

To construct L, we distinguish two cases. First, suppose that cN7 = . As
there exists no stabbing ray for o and 7, the two polyhedral cones induced by
those two cells, cone(o) := {Ax |z € 0, A > 0} and cone(7), intersect only in
the origin. Therefore, we can separate these cones by a linear hyperplane L,
which of course also separates ¢ and 7. It is clear that L can be perturbed
or moved slightly in the required way; see Figure 1b.

Finally, assume that o N7 # ), and note that aff(c N 7) is contained in
every hyperplane that separates ¢ and 7. If all such hyperplanes are linear,
we have our desired contradiction to ¢ < 7, so we may assume that there
exists a strictly affine separating hyperplane H, so that 0 ¢ H. Then we
conclude 0 ¢ aff(o N 7) because aff(c N 7) C H. Our assumption about the
non-existence of a stabbing ray p means that the cone over aff(o N 7) only
intersects o or 7 in ¢ N 7. Thus there exists a separating linear hyperplane L
with cN7 =0 NL = LN7 and codimaff(c N7) > 1. One can start
with any linear hyperplane containing aff (o N 7) and perturb it suitably to
obtain L. O
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Lemma 2.6 yields a necessary condition for distinct simplices to be <-
comparable. However, from an algorithmic point of view, the definition of
o < T is inconvenient, because one has to consider all separating hyperplanes.
For this reason, Figure 13 in the Appendix illustrates an algorithm for
deciding whether o < 7 or not.

3. LINKS IN TRIANGULATIONS OF FREE SUMS

Let Apgq be a triangulation of the free sum of two point configurations P
and Q). We use (2.1) to express each simplex 0 € Apgg as 0 = op @ 0g.
In case 0 C P, respectively o C @, we take og = (), respectively op = 0.
Observation 2.1 says what is known about the dimensions of op and og.
From now on, let 0 = op ® 0g and 7 = 7p @ 79 be two cells of Apgq.

3.1. The link map in a triangulation of a sum. Throughout the rest
of the paper, we abbreviate

(3.1) A(o) = Tkapgo(o) and

(3.2) A(o) == 0xA(o) = {dz |z € Alo), A€ [0,1]}

Here “x” is the join operation. Since 0 is a single point, the set A(o) is the
cone over the link A(o). We write “x” instead of “x” since, in contrast with

the general situation in (1.2) this cone has a natural realization in R9*¢, so
that we do not need to increase the dimension. For now, the link map

o A(o)

is defined for all simplices o0 € Apgg, but we will adjust this domain of
definition in a moment. -
The subsequent sections prove the following structural properties of A:

Domain: The triangulation Apgg induces (not necessarily unique) trian-
gulations Apiof P and Ag of @, and we take Ap U Ag as the domain of
definition of A (Construction 3.1).

Range: For a full-dimensional simplex o in the domain of A, the restriction
ApaQlj(y) is a strictly star-shaped ball (Proposition 3.3).

Preserves order: For d-dimensional op < 7p € Ap, we obtain
Alop) C A(rp) ;
the analogous claim holds for e-dimensional og < 79 € Ag (Proposition 3.4).
Complementarity: For d-dimensional op and e-dimensional 7o we have
op C A(TQ) —= 179 ¢ A(op) .
This is the content of Proposition 3.9.

3.2. The domain: constructing triangulations of the summands. As
a first step we define the simplicial complexes

Ap = {op |0 =0p@0og € Npag} and
AQ = {O'Q ’U:GPEBO'QEAP@Q} .
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7\~

\v, 0

Apaq Ap=Ap

o ---
o

> ®---
Q

FiGcure 2. Cozlstructing Ap and Ag from Apgg. The
star-shaped ball A(¢) in Apgg (left) is shaded. The dashed
cells form the filling of Ag (right).

Construction 3.1. Let ¢ be the unique cell of Apgg which contains the
origin in its relative interior. We consider two cases. If ( is a vertex, then
Ap and AQ cover P and @, respectively. In this case we can take Ap = Ap
and Ag = AQ.

Otherwise, we have dim¢ > 1. We decompose ¢ = (p @ (g into its P-
and its @-part. Now the origin either lies in relint (p or in relint (g. By
symmetry we may assume that the origin lies in the P-part. It follows that
the same holds for all cells of Apgg containing (. These are precisely the
cells containing the origin. We conclude that Ap covers all of P, and we let
Ap = Ap.

Since (¢ is the unique minimal cell containing 0 it follows that (p = ¢
and (g = (. What is left to define is Ag. As ¢ has positive dimension the
subcomplex AQ does not cover @Q: there is no cell in AQ containing 0. Yet
the star A(() of 0 in Apgq is strictly star-shaped with respect to 0. It follows
that ]\(C) N Q is also strictly star-shaped, and this is precisely the region
which is not covered by AQ. From Observation 2.5 we know that A(() is a
triangulated (e—1)-sphere which forms a subcomplex of AQ. Now we add
cones of all cells in A(¢) with apex 0 to obtain the desired triangulation Ag
of ), and this contains AQ as a proper subcomplex. The added cones form
the filling of Ag; cf. Figure 2 for a sketch.

We extend the link map A to simplices in the filling by setting A(1) =
sta,(0) for every 7 € Ag \ AQ if the origin lies in the P-part, and making
the definition with P and @ interchanged if the origin lies in the Q-part.
The domain of definition of the link map is then Ap U Aqg.

In the above construction the special role of the cell { leads to an asymmetry
between Ap and Ag. However, we can also rewrite the triangulations of the
summands as follows:

(3.3) Ap = {UﬁRd ‘O’EAP@Q}, Ng = {UﬁRe ‘O‘EAP@Q}.

It will turn out to be useful to have both descriptions. Notice that if ( € Apgg
contains the origin in its relative interior and Ap is a subcomplex of Apg,
then 0 is necessarily a vertex of Ag.
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3.3. Images of the link map are strictly star shaped balls. As before
we consider the triangulation Apgg of P ® @ given, from which we obtain
Ap and Ag by Construction 3.2 or (3.3). For each simplex in a summand
we need to examine its link in the free sum.

The following lemma, which is a version of Pasch’s theorem, is a basic tool
for the rest of this paper.

Lemma 3.2. For linearly independent x,y € R and all X\, n > 1, the line
segment between x and uy crosses the line segment between y and Ax.

Proof. tx + (1 —t)py = sy + (1 — s)Az for t = ’\;‘;j) and s = (1 —t)p. O
Proposition 3.3. Let Apag C Ré*e, Ap c R? and Ag C R be as above.
Then the image A(o) of any full-dimensional simplex o € Ap U Ag under
the link map is a strictly star-shaped ball with respect to the origin.

Proof. If o € Ag lies in the filling, its image A(o) = sta,(0) is a strictly
star-shaped ball by Construction 3.1.

Otherwise, we assume without loss of generality that ¢ = op € Ap has
dimension d, and that d, e > 2. To show that each ray that emanates from the
origin meets the (e — 1)-dimensional triangulated sphere A(op) C {0} x R®
at most once, we assume to the contrary that the ray p C R® meets A(op)
at least twice, say in points x, Ax with A > 1. These points may be assumed
to lie in distinct faces of A(op), say x € 71 and Az € 7o: If they lie in the
same face 7, the ray p passes through the relative interior of 7 and may be
extended until it hits 97 in two distinct points, and these points are contained
in distinct faces, adjacent to 7, of the triangulated sphere A(op).

The final step now uses two points y, uy € op with u > 1, whose existence
is guaranteed because ¢ has full dimension d. We have thus found two distinct
cells op @ 71, op @ 12 of the triangulation Apgq, with x, uy € op @ 7 and
Ax,y € op@Te, whose relative interiors intersect by Lemma 3.2, see Figure 3a.
This contradiction concludes the proof. O

I
| &

ur
ap
1y r
y i
z
L TH® —egH —
T1 — e Ty — 0 Az z
0 S (b) The simplices ¢’ = conv(op, o))
(a) The point z lies in the relative and 7' = conv(7p,7(,) intersect non-
interior of both op @ 71 and op @ 5. trivially in their relative interiors.

Ficurge 3. [Illustration of the proofs of Proposition 3.3,
shown in (a), and Proposition 3.4, shown in (b).
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3.4. The link map is order preserving.

Proposition 3.4. Consider cells 0 = op ®og and 7 = 7p ® 19 in A;g;ée.

Ifdimop = dim7p = d and op = 7p, then /_\(Up> C Z_\(Tp). The analogous
statement holds if dimog = dim g = e.

Proof. If cp = 7p there is nothing to show. So we assume that op < 7p,
whence 0 ¢ 7p. Then Lemma 2.6 yields 7 € R? x {0} which lies in op and
1 > 1 such that ur € 7p. We also know that both A(op) and A(7p) are
e-dimensional. ~ ~ ~

Suppose that there exists a point z € A(op) \ A(7p). The cone A(7p)
is full-dimensional in {0} x R® and strictly star-shaped with respect to 0
by Proposition 3.3. So we obtain A in the open interval (0,1) such that
Az € A(7p). Thus, we have found a cell 75, € A(7p) with Az € 75, and a cell
o € Aop) with = € og; see Figure 3b.

If 0 ¢ op then, as in the proof of Proposition 3.3, we use Lemma 3.2
to show that the cells o' = op ® 0y and 7' = 7p @ 7(, have a non-proper
intersection; they are in fact cells because oy € A(op) and 75, € A(7p).
As we can find an affine hyperplane which separates op and 7p, we know
that r ¢ 7p. Lemma 3.2 applied to r, ur, Az, x then yields a non-proper
intersection between ¢’ and 7’.

It remains to consider the case 0 € op. Then the line segment from the
origin to x lies entirely in ¢’, but only a part of it lies in 7/, because neither 0
nor x are contained in 7. We conclude that ¢’ and 7" do not intersect in a
common face, and this final contradiction concludes our proof. O

3.5. Complementarity of the link map. To establish this, we need to
compare the cone A with the star of the origin in Apgg. Note that by
Equation (2.1), the simplices op and og need not be disjoint, but if their
intersection op N o is non-empty it consists of just the origin.

Lemma 3.5. Let 0 = op @ 0q be a full-dimensional cell in stapq,(0).

(1) If op Nog # O then that intersection contains the origin only, and 0
is a verter of o, op and 0.

(2) If op Nog = 0 then 0 is not a vertex of o, and either 0 € op or
0e 0Q-

Proof. Suppose that op and og intersect non-trivially. Then the intersec-
tion can only contain the origin as that is the only point which the linear
subspaces R? and R® have in common. Since op and og both are faces of
the triangulation Apgg they need to intersect properly. It follows that 0 is
a vertex of both op and og. Hence it is also a vertex of o.

Now let cpNog = 0. Then op and o¢ span mutually skew affine subspaces
of R%*¢ and o is an affinely isomorphic image of the affine join of op and 0Q-
Yet op and 0@ are also contained in linear subspaces, R? and R¢, which are
complementary. This implies that op or og must contain the origin. They
cannot both contain 0 since their intersection is empty. If 0 were a vertex
of o it would need to be a vertex of both op and og. O

In the case (2) of Lemma 3.5 we have 0 € Jo, as op and o are faces of o.



WEBS OF STARS OR HOW TO TRIANGULATE FREE SUMS 11

Proposition 3.6. If 0 € op holds for one full-dimensional cell o in the
star of the origin, then 0 € Tp for every full-dimensional cell T € stap,,(0).
Moreover, dim7p = d. The analogous statements hold if 0 € 0.

Proof. If the origin is a vertex in Apgq, the statement is trivial because
dimop = d and dimog = e for every o € sta,,,(0) by Observation 2.1.
Suppose there exist full-dimensional cells o and 7 in sta,,,(0) with
0€op,7g and 0 € 0g, 7p. Because 0 lies on the boundary of both o and 7,
there exist minimal faces o9 C op and 79 C 7g which contain the origin.
Because of Lemma 3.5 and the fact that 0 € Vert o and 0 € Vert 7, we know
that o9 # {0} and 79 # {0}. We have o9 N 79 = {0} as og and 7y lie in
orthogonal linear subspaces, and therefore ¢ and 7 do not intersect in a
common face. This is absurd since we started with a triangulation Apgg.
Suppose that the second assertion does not hold. Then 0 € op but
dimop = d—1. This implies that dimog = e, and A(og) C Apgg is a sphere
which contains the origin. This is a contradiction to Proposition 3.3. U

Corollary 3.7. All full-dimensional simplices 0 = op @ 0 € stape,(0)
satisfy 0 € op, or they all satisfy 0 € og. Both conditions are satisfied
simultaneously if and only if the origin occurs as a vertex of o.

The previous result says that the origin always lies in the “op-part” or
always in the “og-part”, independent of the choice of the cell 0. We say that
the origin lies in the P-part or in the Q-part of the triangulation, respectively.

Proposition 3.8. Let 0 = op@og and 7 = 7p D7 both be full-dimensional
cells in stapgo(0). If 0 € op, then 0 € 7p and A(op) = A(rp). The
analogous statements hold if 0 € og.

Proof. Assuming 0 € op, we can infer 0 € 7p from Proposition 3.6 and
Corollary 3.7. So it remains to show that A(ocp) = A(7p).

Remember that Apgqlz(,,) € B pso (0) according to Proposition 3.3.
Suppose that A(op) # A(7p). Then there exists a ray which intersects A(op)
and A(7p) in different points, say = and y = Az for A > 0. This gives rise
to two full-dimensional cells o', 7" € sta,,,(0), with x € ¢/ and y € 7".
These cells do not intersect in a common face, as the line segment between 0
and x is contained in ¢’ and the line segment between 0 and Az is contained
in 7/. The minimal faces which contain those line segments cannot intersect
properly, since only the shorter one of those line segments is contained in both
minimal faces. This contradiction refutes the assumption A(op) # A(7p),
and hence proves the claim. O

We now treat the remaining cells to finally show the complementarity
property of A.

Proposition 3.9. Let 0 = op®og and 7 = 7p ® 7 be cells in A;g&e such

that dimop = d, dim7g = e, and at least one of the two simplices o or T
does not contain the origin. Then

79 CA(op) <<= op < Al1g).
Proof. For each v € {op,7q}, we set
a(7) = Lpagl 5
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(a) Summand P (b) Summand @

FiGurRE 4. Illustrating the geometric situation of Proposi-
tion 3.9.

so that trivially 79 C A(op) if and only if 7¢ € a(op), and op C A(7q) if
and only if op € a(1g).

To reach a contradiction, suppose that 7g € a(op) and op € a(rg). We
choose some non-zero point x € relint(op). Then the ray spanned by z
intersects the boundary of a(7g) exactly once, since a(1g) is a strictly star
shaped ball. This intersection point can be written as Ax for precisely one
A > 1; see Figure 4a. Next we choose some maximal cell 7p € da(7g) that
contains Az, and some y € relint(rg) with py € 6¢ € da(op) for p > 1; see
Figure 4b.

Since 6¢ lies in the boundary of a(op), which is the link of op in Apgq,
we know that ¢ and thus also op © 7 is a cell. The latter contains x and
py. Since x lies in the relative interior of op, all proper convex combinations
te + (1 —t)py for t € (0,1) lie in the relative interior of that cell. The same
argument applies to y and Az in 7p ® 7¢.

Lemma 3.2 yields a point in the interior of those two cells, which violates
the intersection property of the triangulation Apgg; compare Figure 3b. A
similar argument, with op outside of A(7g) and 7¢ outside of A(op), works
for the remaining case op ¢ a(1g) and 79 € a(op). O

4. WEBS OF STARS AND SUM-TRIANGULATIONS

4.1. Webs of stars. This key concept is inspired by the properties of A
established in the previous section, and tells us how to combine the cells of
triangulations of the summands to construct triangulations of the free sum.

Definition 4.1 (web of stars). For any pair of triangulations Ap and Ag of
point configurations P C R% and Q C R€, a web of stars in Ag with respect
to Ap is an order preserving map

a: (AR =) = (Bag,C).
Two webs of stars « : Alﬁd — Bpg and 5 Age — Bap are compatible if
(4.1) o€ f(1) <= 7¢&alo) for every o € A5 and T € AV

Observation 4.2. By (4.1), for each web of stars « there exists at most one
compatible web of stars 8 in the reverse direction. Essentially, the process of
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going from « to 8 amounts to transposing and complementing the incidence
matrix corresponding to a.

Example 4.3. Consider the following two point configurations in R?:

pP= {(17 0)7 (07 1)7 (_17 1)7 (_170)7 (17 _1)7 (Oa 0)}7
Q = {(_17 _1)’ (07 _1)7 (17 _1)7 (_170)7 (07 0)7 (17 0)7 (_17 1)7 (07 1)7 (17 1)}

F'\,i B

FI1GURE 5. Two triangulations Ap and Ag and the strictly
star shaped ball associated to o

Figure 5 shows possible triangulations of P and @, as well as a simplex
o1 € Ap and its associated strictly star shaped ball. Two compatible webs
of stars for these triangulations are

a: AB” = Ba, B: AL = Ba,
o1 — <7'1,7'2,7'3>AQ 71— (02,03)Ap
o9 = (T2) g Ty
o3 > <7'2,7'3,7'4>AQ 73— (02) Ap

T4 = (01, 02) Ap

Here, e.g., 01 +— (71, T2, T3) A, indicates that a maps o7 to the subcomplex of
Ag induced by 71, 72 and 3. We observe that o and 3 satisfy the following:

e They send faces to strictly star shaped balls with respect to the origin.
Hence the name “web of stars”.

e They are order preserving. For instance, o9 =< 01 and a(o2) C (o).
On the other hand, o1 and o3 are not comparable, and neither are
their images.

e As for the compatibility condition, take the face 7 as an example. It
is contained in the image of each face under «, and this agrees with

B(12) = 0.
4.2. Sum triangulations. Now we can describe our main construction.

Definition 4.4 (sum-triangulation). A triangulation Apgqg of the free sum
P @ Q is called a P-sum-triangulation of Ap and Ag if there exists a
compatible pair of webs of stars « : AI:;d — Bag, and 1 AGE — Ba,, with
the following properties:

(1) The d-simplices in the star of 0 of P are sent to the entire star of 0
in Q:

a(op) = StAQ (0) for every op € sta, (O)Zd

This special role of P motivates the name “P-sum-triangulation”.
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(2) The set of all full-dimensional simplices in Apgq is obtained by sum-
ming each simplex op C P with all simplices in the boundary of its associated
star-shaped ball a(op), and (almost) vice versa. More precisely,

A}:;.g;Qe = U {op@og | 0g € 60[(013):6_1}
JPEAIZDd

U U {TP@TQ ’ TP Gaﬁ(TQ):d_l}.
TQGAEe
B(rq)#0

This union is not as asymmetric as it seems: Condition (1) and the fact that
« is an order preserving map imply that a(op) # () always holds.

If the roles of P and @ are switched we call Apgq a Q-sum-triangulation.
The triangulation Apgq is a sum-triangulation of Ap and Ag if it is a
P-sum-triangulation or a @-sum-triangulation.

Remark 4.5. If Apgg is a P-sum triangulation, then the compatibility and
the preservation of the order imply that §(rq) = () for each 7¢ € sta, (0)~°.

Example 4.6. Consider Example 4.3 again. The webs of stars « and 3
satisfy condition (1) of Definition 4.4, so they yield a P-sum-triangulation
Apgq via condition (2). Some 4-dimensional simplices in Apgg are the
convex hull of o9 and every facet of m, where o9 and 79 are embedded in the
appropriate linear subspaces of R%. The triangulation which arises in this
way has 24 facets and 11 vertices.

Example 4.7. Consider the point sets P = {—1,0,1,2} and Q = {—1,0,1}
in the real line R!. Every triangulation of P @ @Q is a sum-triangulation.
Figure 6 lists them all, together with the corresponding triangulations
Ap and Ag as well as the compatible webs of stars a and 8. From the
picture we see that (a), (b), (c) and (e) are P-sum-triangulations, whereas
(d) and (f) are @-sum-triangulations.

A triangulation need not have a unique representation as a P- or (J-sum
triangulation. Consider Ap = ([—1,0],[0,1],[1,2]) and Ag = ([-1,0], [0, 1]).
Then the triangulation in (a) of P & @ arises as a P-sum triangulation via
the web of stars

a([-1,0]) = Aq B([-1,0]) =0
a([0,1]) = Aq B([0,1]) =0
o([1,2]) = Ag,
or as a (Q-sum triangulation via the web of stars
a([-1,0]) =0 B([-1,0)) = sta, (0)
a([0,1]) =0 5([0,1]) = sta, (0)
a([1,2]) = Ag.

Example 4.8. The point configuration P & ) from the previous example
can be seen as a bipyramid over P. More generally, suppose that one of the
summands — say () — consists of the vertices of a simplex together with the
origin as an interior point. Then the poset B, (0) just consists of the empty
set ) and the complete triangulation Ag. In this case, for fixed Ap and
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Ap = <[_1’0]7 [07 1]) [1’2]>
Aqg = ([-1,0],10,1])
a([=1,0]) = Aq  B([-1,0]) =
a(0,1))=2Lq  B(0,1]) =
a([1,2)) = Ag
(a)

Ap = <[_17 1]7 [172]>

AQ <[_170]»[071]>
a([_l’ 1]) = AQ B([_LOD =
o([L,2)) =Aq  B([0,1]) =

Ap = <[_172]>
AQ = <[_170]7 [071]>

a([_172]) = AQ ﬁ([_LOD =

()

FIGURE 6.

/B([O’ 1]) =

0
0

Ap ={[-1,0],[0,2])
AQ = <[_130]7 [07 1]>
a([-1,0)) =Aq  B([-1,0)) =0
a<[0>2]) = AQ B([07 1]) =
(b)

All triangulations of the sum P & @ where
the summands are P = {—1,0,1,2} and Q = {-1,0,1},
with a representation as a sum-triangulation. (a), (b), (c)
and (e) are P-sum-triangulations, whereas (d) and (f) are
Q-sum-triangulations.

15



16 BENJAMIN ASSARF, MICHAEL JOSWIG, AND JULIAN PFEIFLE

Ag there exists only one pair of compatible web of stars that produces a
P-sum-triangulation, and only one pair that produces a QQ-sum-triangulation.
For the P-sum-triangulation it is

(Vo € Ap) a(o) =Lg (VT e Ag) B(1) =10,
while the @-sum-triangulation corresponds to the web of stars
(Vo €sta,(0)) a(o)=10 (V7 € Ag) B(1) = sta,(0)

(Vo €sta,(0)) a(o) =Ag.

4.3. Every triangulation of the free sum is a sum triangulation.
We now come to the most important result in this section. In Section 3.2
we showed that any triangulation Apgg induces (not necessarily unique)
triangulations Ap and Ag of P and ). Now we will construct the associated
webs of stars « : Afgd — Bp, and - Aae — Ba,p that turn Apgg into a
sum-triangulation.

As the definition of a sum-triangulation Definition 4.4 is inspired by the
results we showed in Section 3, we obtain the following result. Recall that
the distinction between the P- and the Q-part of a free sum triangulation is
the topic of Corollary 3.7.

Theorem 4.9. Let Apgg be any triangulation of P® Q such that the origin
lies in the P-part. Further, let Ap and Ag be the triangulations obtained
by Construction 3.1. Then the maps defined by

Oz(Up) = AP@Q’[\(UP) )

(4.2) Blog) = 0 if 0 € Vert o,
AP@Q|]\(0Q) else

form a compatible pair of webs of stars. In particular, Apgq is the P-sum-

triangulation with respect to o and 3.

Clearly, if the origin lies in the Q-part, in the above the roles of P and @
are interchanged, and we have a @-triangulation of the free sum.

Proof. There are three things to show: The maps «, § are

e well-defined, i.e., their images are strictly star-shaped balls (Proposi-
tion 3.3);

e order preserving (Proposition 3.4);

e and compatible (the case distinction for 8 together with Proposi-
tion 3.9).

O

5. EVERY SUM-TRIANGULATION TRIANGULATES THE FREE SUM

From any two triangulations Ap and Ag of our point configurations P
and @), we wish to construct sum-triangulations of P & Q. In our description
we will end up with a P-sum-triangulation. To obtain a Q-sum triangulation
the roles of P and @ need to be interchanged.

Before we start we need to discuss an issue concerning our notation. So far
we considered the situation where we already have a triangulation of the free
sum. In this case, via the definition (2.1), each simplex in the triangulation



WEBS OF STARS OR HOW TO TRIANGULATE FREE SUMS 17

of the free sum gives rise to one simplex in each summand. In Section 3.2 it
was shown that this yields triangulations of both summands. If we want to
revert this procedure it is clear, however, that not each simplex in Ap can
be matched with any other simplex in Ag in order to arrive at a simplex
of sum triangulation. For instance, in Figure 6a the 1-simplex [1,2] in Ap
cannot be paired with the 1-simplex [0,1] in Ag. Nonetheless, in order to
avoid more cumbersome notation, in this section we write op, og to denote
some simplices in Ap and A, respectively, and we also write o := op @ 0¢
for their direct sum, even though a priori there is no free sum triangulation
with a “common” pre-image o from which op, og could have descended via
(2.1).

Throughout this section we pick a web of stars a : A5 — Ba, that satis-
fies the condition (1) of Definition 4.4. The map 8 : A5® — Ba,, constructed
from « via Observation 4.2 automatically satisfies the compatibility condition
with respect to a. We assume that [ is itself a web of stars. To have a
concise name for this situation we say that the web of stars « is proper.

The following example shows that proper webs of stars always exist.

Example 5.1. For any triangulations Ap, Ag, we can choose

a(op) = stay(0)
0 if 0
Blog) = {AP LISZQ Fred

for op € Ap and 0g € Ag. To see that o and 3 are compatible webs
of stars, first note that st AQ(O) is a strictly star shaped ball with respect
to 0 by Lemma 2.4. The same holds for the entire complex Ap, because
UAp = conv P is convex and therefore strictly star shaped with respect to
the interior point 0. Moreover, « is order-preserving because it is constant,
and f is order-preserving because the full dimensional simplices in sta, (0)
are =<-minimal, and are mapped to the smallest element () € Bag- The
compatibility condition is immediate.

Given triangulations Ap, Ag of the summands, from our pair of compatible
webs of stars a : Ap? — Bng, B A — Bap we triangulate the direct sum
P & @ by combining each maximal simplex in one of the summands with all
maximal simplices in the boundary of the corresponding star-shaped ball:

T=T(Ap,Aga) = |J {or@og | og € (9a(or) ™'}
UPEA]:)d
TQEAEG
B(rq)#0

Recall that condition (1) of Definition 4.4 requires that a(op) = sta,(0) for
every op € sta,(0)™¢ By construction each cell in T is a (d + e)-simplex.
Our goal is to prove that the simplices in 7 are the maximal cells of a
triangulation of P & Q). This requires to show first that any two simplices
meet in a common face (which may be empty), and second that they cover
the convex hull of the free sum.
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5.1. Any two cells in 7 meet in a common face. It suffices to show
that every pair of distinct maximal cells 0 :== op @ og and 7 :=Tp D7 in T
can be weakly separated by a hyperplane J that satisfies

cNJd = ocnNnrt = JNr1 .

It follows that o and 7 do not intersect in their relative interiors, but in a
common (maybe trivial) face with supporting hyperplane J.

We will assemble J from a hyperplane Jp C RY that separates op from 7p,
and a hyperplane Jg C R® that separates o from 7. The bare existence of
such separating hyperplanes is obvious since Ap and A are triangulations,
but the crucial step is that the existence of the webs of stars «, 8 ensures
that they can be chosen in a compatible way:

Lemma 5.2. Let op ® 0g and 7p ® 17 be two cells in T =T (Ap, Ag, ).
If op # 7p and oq # 1¢, there exist a hyperplane

Jp = {zeR? | alzx =b} CcR?
that separates op from Tp, and a hyperplane
Jo = {yeR® | fy=0b} CRC
with the same right-hand side that separates og from 7q, such that

7 = {(ey) e R | (@77 ("5) — b} c R

separates o from T, i.e., op lies in the same half-space of Jp as the origin
in RY if and only if oq lies in the same half-space of Jg as the origin in R®.

Proof. We distinguish several cases.

(1) If op and 7p are not <-comparable and 0 € aff(ocp N7p), there exists a
linear hyperplane Jp separating them. On the other hand, Lemma 5.3 below
yields a linear hyperplane Jg separating o¢g from 7¢g, and we can form J by
perhaps adjusting the direction of one of the normal vectors a, c.

(2) If op and 7p are not <-comparable but 0 ¢ aff(op N 7p), we first
fix some hyperplane Jg C R that separates og from 7, whose existence
follows from the fact that Ag is a triangulation. We now keep track of which
half-space of Jg contains the origin in R, or if 0 € Jg. Back in R?, by the
incomparability of op and 7p we can find some linear or affine hyperplane Jp
that separates them; and by perturbing it we can even make op, 7p and
0 € R? exhibit the same behavior with respect to Jp as 0g, 7¢ and 0 € R®
have with respect to Jg. Further scaling the equation of Jp to obtain the
same right-hand side b as the equation for Jg then yields J.

(3) If op and 7p are <-comparable but og and 7g are not, we can repeat
the arguments of (1) and (2) with the roles of P and @ interchanged.

(4) This leaves us with the case that both op and 7p as well as 0¢g and 7
are comparable. From Lemma 5.4 below it follows that either op < 7p and
og 2 7Q, or op = Tp and 0@ = Tg; we may assume the first case. But then
the definition of =< gives us the required orientations of Jp and Jg.

O

We now establish the two results we used in the previous proof, before
showing the intersection property in Proposition 5.5.
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Lemma 5.3. Let 0 = op ® og and 7 = 7p ® 17 be cells of T. If 0 €
aff(op N 7p), there exists a linear hyperplane Jg separating og from 1¢.

Proof. There are two cases to consider: The cells ¢ and 7 belong to the same
component in (5.1), say the first one, or they lie in different components.
If they lie in the same component, let op and 7p be d-dimensional cells
in Ap,and og € da(op), 7g € da(Tp) be (e—1)-dimensional cells in Ag. We
first show that a(op) = a(7p), by supposing to the contrary that there exists
a cell v € a(op) \ a(7p), say. By the compatibility of the webs of stars «
and (3, the conditions v € «a(op), respectively v ¢ a(7p), are equivalent
to op ¢ (B(v), respectively 7p € B(7), so we conclude the existence of an
e-dimensional cell v € Ag such that () contains exactly one of op, Tp
(see Figure 7). But then §(v) cannot be strictly star-shaped, because either

FIGURE 7. If the origin lies in the affine span of op N 7p,
but a(op) # a(7p), then there exists a cell v € Ag such that
B(7) is not strictly star-shaped.

0 € 98(y) (if op N7p = {0}), or aff(cp N 7p) contains 0 along with two
distinct points of op N 7p; therefore a(op) = a(rp). Thus, og and ¢ are
(e — 1)-dimensional cells on the boundary of the same strictly star-shaped
ball, so we conclude the existence of a linear hyperplane separating them.

The case where o and 7 belong to different components in (5.1) cannot
in fact arise. To see this, suppose that op is a d-dimensional cell in Ap, 7¢
an e-dimensional cell in Ag, and 7p a (d — 1)-dimensional cell in 05(7q).
Now suppose that moreover 0 € aff(cp N7p). Then either 0 € 05(7q) (if
opN7p ={0}), or aff(cp N 7p) contains 0 along with two distinct points of
opN7p C 0B(7qQ), so that either way 3(7q) is not strictly convex. O

The second result we still need to establish is the following:

Lemma 5.4. Let op ® 0@ and 7p © 7 be two cells in T. If op < Tp, then
either og = 17 holds or og and T are not comparable.

As usual the roles of P and () may be interchanged.

Proof. Suppose that op < 7p and og > 7g. If 0 and 7 are in the first
component of (5.1), so that dimop = dim7p = d, then a(op) C a(7p) since
« is order preserving. But because we assume og > 7, Lemma 2.6 gives a
ray r € R® with Ar € 7g and pr € og for some p > X > 0. As a(op) and
a(7p) are strictly star shaped and 7 € da(7p), we know that pr & 7o. We
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arrive at pr € 0x a(7p), but ur € g € da(op) C a(op), which contradicts
a(op) € a(rp). The same argument works if dimog = dim g = e.

Now suppose that o and 7 lie in different components in (5.1), so that
dimop = d and dim7g = e. As a(op) is strictly star shaped and o is a
cell in a(op), it is clear that 0 x 0 C 0 x a(op). From Lemma 2.6 and our
assumption that og > 7 we get a stabbing ray that hits 7 first. Therefore,
7 has a non-empty intersection with 0 x 0g. Because a(op) is a strictly
star shaped simplicial complex, this implies 79 € a(op). With the same
argument we get op € (1), contradicting the compatibility of a and 8. O

We now have all the ingredients together to prove the intersection property
of 7. The idea is to use the two separating hyperplanes from Lemma 5.2 and
the fact that everything is oriented properly, to construct a “big” hyperplane
which separates o,7 € T.

Proposition 5.5. Any two cells in T intersect in a common face.

Proof. Let 0 = op © 0g and 7 = 7p ® 7 be two simplices in 7.

If 0 = 7 there is nothing to show.

If op # 7p and 0¢ # 7g, Lemma 5.2 yields H = {z € R? | a7z = b} and
G={reR® | cT'r=b} with0#acR? 0#ceR and b € R such that

op C{reR? | Tz <b}, 7p C{zeR? | oz > b},

(52) e T e T
o C{yeR® | cfy<b}, 7QC{yeR® | cy>0}.

If op = 7p, we choose a = 0. Since og # 7@ we can find a separating
hyperplane induced by the equation ¢’y = b for some ¢ # 0. Without loss of
generality we can assume that og C {y € R® | ¢!y < b} as we can change
the sign of ¢ and b.

If og = 17 we choose ¢ = 0 and find a separating hyperplane induced by
the equation a2 = b for some a # 0. Again, without loss of generality we
can assume that op C {z € R? | oz < b} as we can change the sign of a
and b.

In all cases, we have found — not necessarily unique — a, ¢ and b that make
Equation (5.2) valid.

Next, we perturb and scale a and ¢ such that
(5.3) opNH=0pNtmp=HN1p, o09NG=09gN19=GN1Q.

Note that a = 0 if and only if op = 7p, and ¢ = 0 if and only if og = 70,
and that our assumption o # 7 rules out the case a = ¢ = 0. We may also
assume that b > 0, otherwise we switch the roles of ¢ and 7. However, we
do not assume that the intersections op N 7p and og N 7g are non-empty. If
one of the intersections is empty, we perturb, scale, and translate H or G
such that Equation (5.3) is valid.

Because (a®,c?) # 0, the set

J:={z e R | (a, )z =0}

is a hyperplane in R%¢. We claim that J separates ¢ from 7 € T, and
that cNJ =0 N7 =JN7. From the definition of ¢ it is clear that every
point s € o can be written as a convex combination of points in op and o,
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while the definition of J implies that (a”,c’)s < b for all s € o, and that
(a,c")t > b for every t € 7.

If the two intersections op N 7p and og N 7 are empty, then we get
(a”,c")s < b for all s € o, and that (a’,c’)t > b for every t € 7. Thus, J
strictly separates o and 7.

Suppose there is a point = € (¢ N7) \ J. Since x is in both ¢ and 7 it can
be written both as a convex combination of vertices of op and o¢, and as a
convex combination of vertices of 7p and 7,

T = Z AU = Z Ly W.

vEVert o weVert T
In order for x ¢ J to hold, there must exist at least one vertex v in op
or in og with A, > 0, and (a’,0)v < bif v € op x {0}, or (0, )v < b if
v € {0} x og. In both cases, together with (a”,cT)z < band ¥, A, =1
this yields (a”,c?)z < b. Hence = ¢ 7 by Equation (5.2), which contradicts
reonT.

On the other hand, for a point = € o N J that satisfies Equation (5.3), a
similar argument shows that every vertex v € ¢ with A, > 0 must satisfy
(aT,0)v =bif v € op x {0}, or (0,cF)v =bif v € {0} x 0g and therefore
has to be in 7. O

5.2. The cells in 7 cover the free sum.
Proposition 5.6. We have ,c7 0 = conv(P & Q).

Proof. We will show that every facet F' of any full-dimensional simplex
o =o0p®ogin T is also covered by another simplex in 7, unless F' C 7.
Without loss of generality we may assume that dimop = d, and that F' =
conv(Vert o \ {z}). We distinguish whether the vertex x we removed is a
vertex of op or of og.

Suppose = € Vertog. By the definition of 7 we know that o € da(op).
As the boundary complex of a(op) is a triangulated sphere, there exists a
neighboring simplex

dg = conv (Vertog \ {z} U{y}) € da(op)

of og in da(op) with respect to z. Thus, op @ ¢ is a simplex in 7, which
also covers the facet F'.

So let z € Vertop. The two cells f := conv(Vertop \ {z}) and og are
both codimension 1 faces in the triangulations Ap and Ag respectively.
Since F' ¢ 9T, at most one of the cells f,og can lie on dAp or 0Ag. We
distinguish several cases; see Figure 8 for an illustration of the basic setup.

(1) Suppose f € 0Ap, so that f € OT. The codimension 1 cell og is
contained in exactly two adjacent full-dimensional cells in Ag, and one of
these, say O, satisfies O ¢ a(op). By compatibility of a and /3, we conclude
that op € B(0O). This and the fact that f € 9T implies that f € 98(0).
Hence f & O is a full-dimensional cell of 7 which contains F' as a facet.

(2) If f ¢ 0Ap, we can find a neighboring simplex

7 =conv (Vertop \ {z} U{v}) € Ap

which shares the facet f with op. Depending on whether or not og € 0/,
we know that og is contained in at least one and at most two adjacent
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F1GurE 8. The basic setup in the proof of Proposition 5.6,
where x € op. The summand P is on the left and @ is on
the right. The cells 7 and O might exist or not, depending
on which part of f @ o is on the boundary.

full-dimensional cells of Ag. One of these (the inner cell I) is contained
in a(op) and must exist; the other one (the outer cell O) is not contained in
a(op) and might exist or not.
(a) Let us assume that O exists. By compatibility of a and /3, from
I € a(op) we conclude op ¢ 5(I), and from O ¢ a(op) that op € B(O).
There are three possible cases:
(i) If I ¢ a(7), compatibility yields 7 € 5(I). Since moreover op ¢
B(I), the facet f = op N7 must be part of 5(I). Hence, the simplex
fe@IeT contains F. See Figure 9.

FIGURE 9. Case 2(a)i.

(ii) If I, O € a(r1), compatibility and O € «(r) yield 7 ¢ 5(O). Since
moreover op € [(0), the facet f = op N7 must be part of 95(0).
Hence, the simplex f @ O € T contains F'. See Figure 10.

(iii) If I € a(7) and O & a(7), the shared facet o of I and O must
be part of both da(7) and da(op). Therefore, 7@ o is a simplex in T
and contains F'. See Figure 11.

(b) If O does not exist, we proceed as in 2(a)i and 2(a)iii. For the
latter case, we use that og € 9Ag and therefore da(r) and da(op) both
contain o).

O

We are finally ready to establish our second main result.



WEBS OF STARS OR HOW TO TRIANGULATE FREE SUMS 23

FIGURE 11. Case 2(a)iii

Theorem 5.7. Let Ap and Ag be triangulations of the point configurations
P and Q, respectively. Further, let o : A5 — Bng be a web of stars which
is proper. Then the (d+e)-simplices in T (Ap, Ag, ), as defined in (5.1),
generate a P-sum-triangulation of the free sum P & Q.

Proof. Proposition 5.5 shows that the T = T (Ap, Ag, ) generates a finite
simplicial complex. By Proposition 5.6 this simplicial complex covers the
entire convex hull of the points in P & Q. O

6. APPLICATION: FANO POLYTOPES

The theory of toric varieties is an area within algebraic geometry which is
specially amenable to combinatorial techniques; see [4]. This is due to the
fact that toric varieties can be described in terms of face fans (or, dually,
normal fans) of lattice polytopes, i.e., polytopes whose vertices have integral
coordinates. Of particular interest are the (smooth) Fano varieties. A full-
dimensional lattice polytope P is a smooth Fano polytope if it contains the
origin 0 as an interior point, and the vertex set of each facet forms a lattice
basis. In particular, smooth Fano polytopes are simplicial. Note that in the
literature smooth Fano polytopes are sometimes simple; in that case the
polytope P needs to be exchanged with its polar P*. In the sequel we will
identify a smooth Fano polytope P with its canonical point configuration
which consists of the vertices of P plus the origin. This is precisely the set
of lattice points in P.

If P and @ are the canonical point configurations of two smooth Fano
polytopes, say of dimensions d and e, then the free sum P& (@ is the canonical
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point configuration of a smooth Fano polytope of dimension d 4+ e. This is an
easy consequence of the fact that each facet of the sum is the affine join of
facets, one from each summand. Our results on sum triangulations allow to
combine the triangulations of the summands P and @ into a description of
all triangulations of the sum P @ Q. This is particularly interesting since it is
conjectured that many smooth Fano polytopes admit a non-trivial splitting
[1, Conjecture 9]; a partial solution has been obtained in [2, Theorem 1]. In
Table 1 we list the number of Fano polytopes (up to unimodular equivalence)
of dimension at most six split by their numbers of free summands. The
percentage of decomposable ones goes down with the dimension, but slowly.
The diagonal entries in Table 1, reporting one class each of d-dimensional
Fano polytopes which decompose into d summands, correspond to the cross
polytopes cross(d).

TABLE 1. The number of Fano d-polytopes (up to unimod-
ular equivalence) split by number of free summands

#summands
d total 1 2 3 4 5 6 decomposable
2 5 4 1 20%
3 18 13 4 1 28%
4 124 96 23 4 1 23%
5 866 690 148 23 4 1 20%
6 7622 6261 1165 168 23 4 1 18%

We will devote the rest of this section to studying the following example.

Example 6.1. The d-dimensional del Pezzo polytope DP(d) is defined as
the convex hull of the d-dimensional cross polytope and the two additional
points £1. That is, it has exactly 2d + 2 vertices, which read

+ey, feq, ..., Leq, £1 .

By construction the del Pezzo polytopes are centrally symmetric. The pseudo
del Pezzo polytope DP~(d) is the subpolytope of DP(d) which arises as the
convex hull of all its vertices except for 1. Both, DP(d) and DP~(d), are
smooth Fano polytopes, provided that d is even.

In the sequel we will primarily address the canonical point configuration
of the free sum DP(2) @ DP(4). This comprises 10 + 6 + 1 = 17 lattice
points in RS, We will also consider (the canonical point configuration of)
DP(2) @ DP™(4), which has only one point less.

Before we continue let us recall the state of the art in the enumeration
of triangulations of some point set P. The most successful general method
starts out with computing one triangulation, say A, of P, e.g., a placing
triangulation, obtained from the beneath-and-beyond convex hull algorithm.
The second step, which is much more demanding, is to apply a purely
combinatorial procedure to obtain all triangulations of P which are connected
to A by a sequence of local modifications known as (bistellar) flips. The
algorithm is described in [13] and implemented in TOPCOM [14]. In general, this
method will not enumerate all triangulations of P but rather only the regular



WEBS OF STARS OR HOW TO TRIANGULATE FREE SUMS 25

ones along with those connected to a regular triangulation by a sequence of
flips. Except for the naive, i.e., computationally intractable, approach by
combinatorial enumeration from all subsets of maximal simplices there is no
general method known which produces the entire set of all triangulations of
any given point configuration, including the non-regular ones.

It is important that TOPCOM’s flip algorithm can take symmetries into
account. The group of invertible linear maps which fixes a finite point
configuration also acts on the set of all its triangulations. TOPCOM can be
given a set of generators of a group as input in addition to the point set; it
then produces only one triangulation per orbit of the induced action. Our
example is highly symmetric: the group of linear symmetries of DP(4) has
order 240, while the group of linear symmetries of DP(2), which is a dihedral
group, has order 12. It follows that our point configuration DP(2) & DP(4) of
17 points in dimension six admits a group of order 12-240 = 2880, and it turns
out that this is also the entire group of linear symmetries. Yet, with standard
hardware of today, it seems to be next to impossible to determine the set
of triangulations of DP(2) @ DP(4), even just up to symmetry: After nine
days worth of CPU time our TOPCOM computation stopped since it reached
the imposed memory limit of 26 GB, without arriving at the result.!

TABLE 2. Triangulations and homomorphisms encoding
compatible pairs of webs of stars for DP(2) @& DP(4). Smaller
point configurations are added for comparison

#triangulations time #homomorphisms time

DP(2) & DP(2) 204 (155 reg.)  2s 1157 8s
DP(2) & cross(4) 13 (13 reg.)  20s 16 11s
DP(2) DP~(4) 250594 (12846 reg.) 2.5h 1581647  27s
DP(2) ® DP(4) ? 1677949075  10d

Our techniques for triangulations of free sums are constructive, and we
made a proof-of-concept implementation in polymake [6], which takes the
triangulations of both summands as input. For our example, TOPCOM returns
seven triangulations of DP(2) and 128 triangulations of DP(4); where these
and all subsequent counts are up to symmetry. The time for this computation
is about one minute, of which almost everything is spent on the 4-dimensional
point configuration. Then, for each triangulation Ap of the hexagon DP(2),
our code computes the stabbing order among the triangles. This takes almost
no time. Slightly more costly, with about 20 minutes, is the computation of
the web of star poset of a triangulation Ag of DP(4). The final step is to
compute all admissible homomorphisms from the stabbing poset of Ap into
the web of sphere poset of Ag, again up to symmetry. This took us 10 days.
The total number of triangulations of DP(2) @ DP(4) seems to be huge (we
feel pretty safe in guessing that it exceeds 100 million). Hence, for lack of

LNote added in proof. After this paper was submitted, Lars Kastner used the new
parallelized implementation mptopcom (https://polymake.org/doku.php/mptopcom) to
find the number of regular triangulations of DP(2) @ DP(4) to be 144110. The total
number of triangulations remains unknown.
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memory, we refrained from explicitly constructing the triangulations. Since
one triangulation can be obtained from more than one homomorphism, we
arrive at an overcount this way.

Interestingly, to compute the same for the subpolytope DP(2) @ DP~(4),
with only one vertex less, is fairly easy. Phrased differently, the smooth Fano
polytope DP(2) @ DP(4) is an example for which standard techniques fail by
a small margin only. It is this realm where our specialized approach seems
to be most useful.

Moreover, we believe that the data shown underestimates the potential
of our methods for computing triangulations of smooth Fano polytopes.
One reason is that very many polytopes which are listed as indecomposable
in Table 1 are (possibly iterated) skew bipyramids over lower-dimensional
smooth Fano polytopes; see [1, Lemma 3]. We expect that webs of stars and
stabbing orders can be applied to their triangulations, too. However, this
is beyond our scope here. Moreover, as far as timings are concerned, our
proof-of-concept implementation in polymake leaves room for improvements.
For instance, not even straightforward parallelization is employed.

7. FOR FURTHER RESEARCH

7.1. More than two summands. Until now we only considered the free
sum of two summands. But since @ is associative, we can generalize our
results to the free sum of finitely many polytopes

PPOPROPRG 0P =(-(PAPOR)OR) o &P .

By a repeated application of our characterization the triangulations of the
summands P; up to Py contain enough information to describe every trian-
gulation of the multiple sum.

7.2. Subfree sum. In [10] McMullen introduced the subfree sum, which
generalizes the free sum by allowing the origin to lie on the boundary of the
participating polytopes. The results in this paper should largely translate
to the subfree sum, but there are some pitfalls. For example, combining a
simplex op in Ap with the boundary of the web of stars a(op) can yield
non-proper intersections. One should only combine op with some faces on
the boundary; using only those cells which “face away” from the origin should
yield a correct choice.

But more subtle changes are needed to generalize our results. We suspect
that, with some effort, the concepts introduced here can be extended to the
case when the origin is not contained in the summands, and to arbitrary
subdivisions.

7.3. Regularity. A triangulation is regular (or coherent) if it is induced be
a height function. For applications in algebraic geometry such triangulations
are the most interesting ones. Therefore, it is of major interest to characterize
those triangulations of a free sum which are regular.

Conjecture 7.1 (regularity). A sum-triangulation Apgg of P @ @ de-
termined by Ap, Ag and compatible webs of stars o : A;d — Ba, and
B AG° — Bap is regular if and only if the triangulations of the summands
are regular and the images of o and (3 are totally ordered. In other words:
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for every pair of cells op, 7p € Ap, one of the conditions a(op) C a(7p) or
a(op) 2 a(rp) must hold.

Notice that the conjecture deduces a geometric property from a purely
combinatorial condition. In fact, what the conjecture implicitly states is
that the free sum is geometrically restrictive enough to warrant this, the
reason being that the summands are embedded in mutually orthogonal linear
subspaces. To give an intuition as for why the images of a and 8 should be
totally ordered, consider the following example.

F1GurE 12. The non-regular sum triangulation from Ex-
ample 7.2.

Example 7.2. Let P and @) be the same point configuration
P=Q={-2,-1,0,1,2},
with the same triangulation
Ap =Ng = ([-2,-1],[-1,0],[0,1], [1,2]).

Furthermore we define two compatible webs of stars via

a: Ap' = Ba, B: A5 = Ba,
(=2, =1] = ([=1,0], [0, 1], [1, 2]) a (=2, 1] = ([=2, =1}, [= 1,0, [0, 1])ap
[=1,0] = ([=1,01, 0, 1])aq [-1,0]—0
[0,1] = ([=1,01, [0, 1])aq [0,1] =0
[1,2] = ([=2, =1], [=1,0], [0, 1)) a, [1,2] = ([=1,00, [0, 1], [1,2)) s,

Clearly they do not meet the condition in Conjecture 7.1, because «([—2, —1])
and «([1,2]) are not C-comparable. The corresponding sum-triangulation
Apgg (cf. Figure 12) is not regular.

In a more complex situation in higher dimension we might get some-
thing similar. Maybe one needs to intersect the simplicial complex with an
appropriate lower dimensional subspace to prove non-regularity.



28 BENJAMIN ASSARF, MICHAEL JOSWIG, AND JULIAN PFEIFLE

oc=<T77
0er?
ves no
o AT 0Oec?
ves no
o=<T! Ocaff(cnT)?
ves no
oAT! conec N7 =107
ves no
oc#471! rerelint(conec NT)
dim(conv(0,7)No) ?

cA1! conv(0,r)No={r}? o<1
oAT! o<l

F1GUurRE 13. Decision diagram to decide whether or not ¢ < 7.

APPENDIX A. DECIDING COMPARABILITY
IN THE STABBING ORDER

The flowchart in Figure 13 gives an algorithm to determine whether o < 7
holds for two simplices in a simplicial complex. We prove its correctness step
by step:

(1) Cells containing the origin are <-minimal, as they always lie in the
same half space as the origin.

(2) If 0 € o N7, then o £ T since every separating hyperplane is linear.

(3) If 0 € aff(c N 7), then again every separating hyperplane is linear,
since it must contain the affine hull of the intersection, and so o £ .

(4) If coneo N7 = () there exists no stabbing ray, as the set of all rays
that stab both o and 7 is cone o N cone 7. But the existence of such a ray is
a necessary condition according to Lemma 2.6, and therefore o 4 7.

(5) Let r € relint(coneo N 7). The dimension of the intersection of o and
the line segment Or can either be —1, 0 or 1.
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(a) If dim0r N o = —1, the intersection is empty. But the ray spanned

by r must intersect o, and Or N o = () implies that A\r € o for some \ > 1.

Every separating hyperplane must separate r from Ar, implying that 7 lies

on the same half space as the origin, and therefore o does not precede 7.

(b) If dim0r No = 1, there exists A\ < 1 with A\r € 0. As every
separating hyperplane must separate r from Ar we get that o always lies
in the same half space as the origin. And since 0 ¢ aff(c N 7) we also find

at least one non-linear hyperplane separating o and 7; hence o < 7.

(¢) IfOr No = {z} and r # x, then x = Ar for some \ < 1, and the

same argument as above yields that o < 7.

(6) For the last step assume that r = z. Then r € 9o and o N7 = {r},
and we can find a linear supporting hyperplane of o which separates ¢ and 7.
Small perturbations of that hyperplane produce a separating hyperplane
with 7 in the same half space as the origin, and hence o 4 7.
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