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Abstract

A matching M in a multigraph G = (V, E) is said to be uniquely restricted if
M is the only perfect matching in the subgraph of G induced by V(M) (i.e., the
set of vertices saturated by M). For any fixed vertex xg in G, there is a bijection
from the set of spanning trees of G to the set of uniquely restricted matchings of
size |[V| — 1 in S(G) — zp, where S(G) is the bipartite graph obtained from G by
subdividing each edge in G. Thus the notion “uniquely restricted matchings of a
bipartite graph H saturating all vertices in a partite set X” can be viewed as an
extension of “spanning trees in a connected graph”. Motivated by this observation,
we extend the notion “G-parking functions” of a connected multigraph to “B-parking
functions” f: X — {—1,0,1,2,---} of a bipartite graph H with a bipartition (X,Y)
and find a bijection v from the set of uniquely restricted matchings of H to the set of
B-parking functions of H. We also show that for any uniquely restricted matching M
in H with |[M| = |X|, if f = (M), then }___ f() is exactly the number of elements
y € Y — V(M) which are not externally B-active with respect to M in H, where the
new notion “externally B-active members with respect to M in H” is an extension of
“externally active edges with respect to a spanning tree in a connected multigraph”.
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1 Introduction

The notion of a parking function was introduced by Konheim and Weiss [11] in 1966.
Suppose that there are n drivers labeled 1,2,---,n and n parking spaces arranged in
a line numbered 1,2,---,n. Assume that these n drivers enter the parking area in the
order 1,2,---,n and driver 7 parks at space j, where j is the minimum number with

f(i) < 7 < n such that space j is unoccupied by the previous drivers and f(i) is the
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initial parking preference of driver 7. If all drivers can park successfully by this rule, then
(f(1), f(2), -+, f(n)) is called a parking function of length n. Mathematically, a function
f : N, — N,, where N,, = {1,2,---,n}, is called a parking function if the inequality
{1 <i<mn: f(i) <k} >k holds for each integer k : 1 < k < n. For example, for n = 2,
(F(1), £2)) = (L1), (F(1), £(2)) = (1,2) and (f(1), f(2)) = (2,1) are parking functions,
but (f(1), f(2)) = (2,2) is not. It can be shown easily that f : N,, — N, is a parking
function if and only if there is a permutation 7y, mo, - - -, m, of N,, such that f(7;) < j holds
for all j = 1,2,---,n. Konheim and Weiss [I1] proved that that the number of parking
functions of length n is equal to (n+1)"~!, which is equal to the number of spanning trees
of the complete graph K,1 ([1, B]).

The parking function and its various extensions have been studied by many researchers
[4, 5, [7, 0, 02} 13| (14} 18] 16} 07, 18, 19} 20, 21} 22 23| 24} 25| 26} 27, 30]. One of the
extensions, due to Postnikov and Shapiro [18], was from parking functions to G-parking

functions for connected multigraphs without loops.

Before talking about G-parking functions, let’s first introduce the notations of graphs used

in this article. Unless stated otherwise, we always assume that

(i) G = (V,E) is a connected multigraph without loops, where V' = {xg,z1, -+, 2, }
and F = {y1,y2," -, Ym}- For any non-empty subsets V' of V and E’ of E, let G[V']
and G[F’] be the subgraphs of G induced by V’ and E’ respectively;

(i) H is asimple and bipartite graph with a bipartition (X,Y"), where X = {1,292, -, 2}
and Y = {y1,92, -, ym}; and

(i) Hg g, is the special bipartite graph S(G) — zo with a bipartition (X,Y’), where zg
is a fixed vertex in G, S(G) is obtained from G by subdividing each edge in G,
X =V —{z¢} and Y = E. An example of H¢ 4, is shown in Figure [II

Both graphs G and H have fixed weight functions which are used for comparing edges in
G or elements of Y in H. The weight function for G is an injective mapping w : £ — Ny,
where Ny is the set of non-negative integers, while the weight function for H is an injective
mapping w : Y — Ny. Thus the weight function w of G is also the weight function of
H¢ 4,- The mapping w is injective in order to distinguish w(y;) and w(y2) for any distinct

elements y; and ys.

For any subsets V; and V5 of V', let E(V7, V) denote the set of those edges in G joining a
vertex in V; and a vertex in Va. In particular, let Eq(u, Vo) = Eg({u}, V2) for any u € V.
So dg(u) = |Eg(u, V)| is the degree of vertex u in G. A function f : V — {zo} — Ny is
called a G-parking function with respect to zg if for any non-empty subset V' C V —{z¢},



there exists u € V' with |Eg(u, V—=V")| > f(u). Let GP(G, x() denote the set of G-parking

functions of G with respect to zg.

By Corollary 2.6l which was due to Dhar [6], a function f : V — {9} — Ny belongs to
GP(G, zp) if and only if there is an ordering @, , Tr,, - - -, Zx, of vertices in V — {z¢} such
that |Eg(xr;, V — V;)| > f(zx,;) holds for all i = 1,2,---,n, where V; = {z,, :i < j <n}.
Hence a function f : N,, — N, is a parking function of length n if and only if f — 1 €
GP(Kp+1,0), where V(Kp4+1) ={0,1,2,---,n}.

The most interesting property on G-parking functions is the existence of bijections from
the set of spanning trees of G, denoted by T(G), to GP(G,xy). Several such bijections

have been obtained (see [5] for example).
In this paper, we focus on presenting a new extension of G-parking functions.

A matching M of a graph G is said to be uniquely restricted (UR) if M is the only perfect
matching in G[V (M)], where V(M) is the set of vertices saturated by edges in M. Clearly,
a matching M of G is a UR-matching if and only if |E(C)| > 2|E(C) N M| holds for every
cycle C in G, where E(C) is the set of edges on C. The notion of UR-matchings was first
introduced by Golumbic, Hirst, and Lewenstein [§], originally motivated by the problem
of determining a lower bound on the rank of a matrix having a specified zero/non-zero
pattern. They [8] showed that the problem of finding a UR-matching with the maximum
cardinality in an input graph is known to be NP-complete even for the special cases of

split graphs and bipartite graphs.

For any T € T(G) with E(T) = {y,, : i = 1,2,---,n}, let My denote the matching
{Zr,yr, 11 =1,2,---,n} of Hgy,, where z, is the end of edge y,, in G such that y,, is
contained in the unique path of 7" connecting x¢ and zr,. An example of 7" and My is
shown in Figure[Il Proposition 2:4] shows that the mapping A defined by A\(T") = My is a
bijection from 7 (G) to the set of UR-matchings of size n (= [V| —1) in Hg 4.

T3 Y3 L1 Ys Ya Y3 Y2 h!
Ya U1
2 U5 o z3 2 T
(a) G (b) Graph Hg 4,

Figure 1: E(T) = {y1,y3,y4} and M7 = {x1y1, 3Yy3, T2ys}

The above observation shows that the notion “a spanning tree of a connected multigraph”
can be viewed as a special case of the notion “a UR-matching of size |X| in a bipartite

graph H”. Motivated by this relation, we extend the notion of G-parking functions of



connected multigraphs to that of B-parking functions of bipartite graphs.

Let UM(H) be the set of UR-matchings of H. For any S C X, let U Mg(H) be the set
of those members M of UM(H) with V(M) N X = S. In particular, UM x (H) is the set
of those members M of U M(H) with X C V(M). Thus UM(H) can be partitioned into
subsets UM g(H) for all subsets S of X.

A mapping f: X — {—=1} UNy is called a B-parking function of H at X if for any non-
empty subset S of X (), where X(s>0) = {z € X : f(z) > 0}, there exists 2’ € S such
that 2’ has at least f(z')+1 neighbors of degree 1 (i.e., leaves) in the subgraph of H induced
by U,ecg Nulz], where Ny () is the set of neighbors of 2 in H and Ny[z] = {2} U Ny(z).
Let BP(H) be the family of B-parking functions of H at X. For any S C X, let BPg(H)
be the set of those members f € BP(H) with X(y>¢) = 5. In particular, BPx(H) is
the set of those members f € BP(H) with f(z) > 0 for all x € X. Thus BP(H) is also
partitioned into subsets BPg(H) for all subsets S C X.

In Section 2 we give some basic properties on members in UM x(H) and members in
BPx(H). Proposition 23] shows that UM x (H) = 0 if and only if BPx(H) = (. Propo-
sition [2.4] shows that the members in 7 (G) correspond to members in UM x (Hg ,) and
Proposition 25l shows that GP(G,z9) = BPx(Hg x,)-

In Section B we design an algorithm, called Algorithm A, for any input (H,Y”), where
Y’ CY. Whenever UM x(H[X UY"]) # (), running this algorithm outputs a permutation
1, M, -+, Ty of 1,2+ n, an n-permutation 71,---,7, of 1,2,---,m and subsets D(x,)
of Y =Y’ for i = 1,2,---,n. In this case, the mapping f : X — Ny defined by f(z,,) =
|D(zy,)| for i = 1,2,---,n is a member in BPx(H). This result yields a mapping ¥y
from UM x(H) to BPx(H). The outputs m;, 7; and D(z,) for i = 1,2,---,n of running

Algorithm A provide information for interpreting members in BP x (H).

In Section @l we show that the mapping ¥y from UMx(H) to BPx(H), defined by
Y (M) = f, is a bijection, where f is the mapping from X to Ny defined by f(z,,) =
|D(zy,)| foralli =1,2,---,n, and m; and D(z,) are outputs of running Algorithm A with
input (H,V(M)NY). Clearly, ¥y n(s) provides a bijection from UMg(H) to BPs(H)
for every S C X, where N[S] = |U,cg Nu[z]. Thus, there is a bijection from UM(H) to
BP(H). When H is the graph Hg ,, ¥u is a bijection ¢¢ from T(G) to GP(G,xg) for
any connected multigraph G, where zp € V(G).

In Section Bl we introduce the new notion “externally B-active members with respect to
M in H”, where M € UM x(H), defined in Page 23] which is an extension of “externally
active edges with respect to a spanning tree 7' in a connected multigraph” defined by
Tutte [28]. For any M € UMx(H), if f = ¢Yg(M), then f(xr,) is interpreted as the



number of those y € Ny (zr,) — (V(M)UUy; Nu(2x,)) which are not externally B-
active with respect to M in H, implying that > .y f(z;) is exactly the number of those
vertices y € Y — V(M) which are not externally B-active with respect to M in H. This
result implies that there exists a bijection ¢¢ from T (G) to GP(G, xg) such that for any
T e T(G),if f=da(T), then 3 cy @)z} f(2) is exactly the number of those edges in
E(G) — E(T) which are not externally active with respect to 7T'.

2 UR-matchings and B-parking functions

In this section, we characterize UR-matchings and B-parking functions of a bipartite graph
H. 1t is proved in Proposition 23] that UM x (H) = 0 if and only if BPx(H) = (). For the
special bipartite graph Hg ,,, Propositions 2.4] and show that 7(G) and GP(G, x¢)
correspond to UM x (Hg z,) and BP x(Hg z,) respectively.

2.1 UR-matchings in bipartite graphs

By the definition of UR-matchings, the following statements are obviously equivalent for

any matching M in a multigraph G:

(i) M is a UR-matching of G;
(ii) M is a UR-matching of the subgraph G[V (M)];
(iii) |E(C)| > 2|M N E(C)| holds for any cycle C' in G.

For UR-matchings in a bipartite graph, another equivalent statement is given by Golumbic,
Hirst and Hedetniemia [g].

Theorem 2.1 ([8]) M € UMx(H) if and only if M = {zry, : i = 1,2,---,n} for a
permutation Ty, o, -+, T, of 1,2, n and an n-permutation Ty, 7o, -, T of 1,2,---,m
With Txyr, € E(H) for all i =1,2,---,n but xr,y;, ¢ E(H) for all 1 <i<j<n.

Theorem 2.J] can be stated equivalently as follows.

Corollary 2.1 For any M C E(H) with |M| =n, M € UMx(H) if and only if V(M) N
Y ={y; :i=1,2,---,n} holds for some n-permutation 11,72, -,y of 1,2,---,m such

that y-, is a leaf in the subgraph H — U1§s<z’ Nyly-] for all i =1,2,---,n.



Corollary 1] implies a necessary condition for U M x(H) to be non-empty. Let L(H)

denote the set of leaves in H.
Corollary 2.2 IfUMx(H) # 0, then L(H;) Y # 0 for each component H; of H.

But Corollary [2.2]is not true for a non-bipartite graph which contains perfect UR-matchings.
An example from [§] is shown in Figure 2] where the graph is non-bipartite and has a per-

fect UR-matching {ej,e2,e3}. But it does not have any leaf.

NN

Figure 2: A non-bipartite graph with a perfect UR-matching {e1, o, e3}

Hall’s Theorem [I0] on bipartite graphs is an important result of characterizing bipartite
graphs with matchings saturating all vertices in one partite set. By Theorem 1] we can
get a characterization for U M x (H) to be non-empty in terms of the sizes of sets Ny (5),
where S C X.

Corollary 2.3 UMx(H) # 0 if and only if there exists a permutation 7y, ma, -, Ty of
1,2,---,n such that
[Ng(X1)| > [N (X2)| > -+ > [Ng(Xp)| >0,
where X; = {xy; 11 < j <n} and Ny(X;) = U,cx, Nu(w).
By Corollary 23] or Theorem 211, if UM x(H) # (), then H contains at least one leaf

y' €Y in H. We are now going to show that if UM x(H) # 0, then each leaf ¢y € Y of H
is contained in V(M) for some M € UM x(H).

Proposition 2.1 Assume that y' € Y is a leaf of H with Ny(y') = {2'}. Let X' =
X —{2'}, H =H —vy' and H" = H — {2/, y'}. The following statement hold:

(i) forany M € UMx(H), ify ¢ V(M), then M € UMx (H'); otherwise, M—{x'y'} €
UMx/(H");

(i) f UMx(H) # 0, then y' € V(M) for some M € UMx(H).

Proof. (i) follows from Theorem 2] directly.



(il) Assume that M € UM x(H) with y' ¢ V(M). By Theorem 2] there exist a permu-
tation 7y, 7o, -, m, of 1,2,---,n and an n-permutation 7,79, -+, 7, of 1,2,---,m such
that M = {zr,yr, :i=1,2,---,n} and oy, ¢ E(H) forall 1 <j <i <n.

Assume that y' = y, and 2/ = x,,. Then 7; # ¢ for all i = 1,2,---,n. Let v = ¢
and v; = 7; for all 4 with 1 < i < n and i # k. Then 7,79, -+, 7, is a permutation of
1,2,---,n and 1,72, -, 7 is an n-permutation of 1,2,---,m such that xr,y,, € E(H)
for all i = 1,2,---,n but x5y, ¢ E(H) for all 1 < j < i < n. By Theorem 2.1}
M = {2y, i =1,2,---,n} is a member in UM x (H) with y =y, = y,, € V(M').

Hence (ii) holds. O

2.2 B-parking functions

A characterization of B-parking functions is given below.

Proposition 2.2 For any mapping f : X — Ny, f € BPx(H) if and only if there is a
permutation 7y, T, -, T, of 1,2,---,n such that for each i =1,2,---,n, x, has at least

f(xr,) + 1 neighbors which are leaves in the subgraph of H induced by ;< <, N(2x,].

Proof. (=) Assume that f € BPx(H). By the definition of B-parking functions, there
exists a vertex z, € X such that |Ng(xr, ) NV L(H)| > f(z) + 1.

Assume that 7,7, -+, T, I8 a s-permutation of 1,2, ---,n, where 1 < s < n, such that for
alli =1,2,--- s, |[Ng(z,)NL(H[N[X;]])| > f(zx,)+1, where X; = X —{z,, : 1 <r <i}.
By the definition of B-parking functions again, there exists a vertex, denoted by ., ,, in
Xgt1 such that |[Ny(@q,,,) N L(H[N[Xs1]])| > f(zr,,) + 1. Repeating this process, a
permutation m, 7, -+, m, of N, can be obtained such that |Ng(z.,) N L(H[N[X;]])| >
f(zr,) +1forall i =1,2,--- ,n. Observe that X; is the set {xr, : ¢« <r < n}. Thus the

necessity holds.

(<) Now assume that m,ma, -, 7, is a permutation of 1,2,---,n such that for i =
1,2,---,n, [INg(xr,) N L(H[N[X;]])| > f(zr,) + 1 holds, where X; = {z,, : i <r < n}.
Let X’ be an arbitrary non-empty subset of X and s be the minimum integer in NN,, such
that z,, € X’. By assumption, x,, has at least f(z., )+ 1 neighbors which are leaves in
H[N[X;]]. Observe that X' C Xs = {x,, : s < r < n}, implying that for any y € Ny (z.),
if y € L(H[N[X]]), then y € L(H[N[X']]). Thus |Ng(z.,) N L(H[N[X']]) > f(xx,) + 1.
Hence f € BPx(H). O

By Proposition [2.2] one can prove the following characterization for members in BP x (H)

by acyclic orientations of H.



Corollary 2.4 For any f : X — Ny, f € BPx(H) if and only if there exists an acyclic
orientation D of H such that odp(y;) =1 holds for all j =1,2,---,m and f(x;) < idp(z;)
holds for all i = 1,2,---,n, where odp(y;) and idp(x;) are respectively the out-degree of
y; and the in-degree of x; in D.

Let f be a mapping from X to Ny. For any X' C X and 2/ € X, let f|xs be the restriction
of f to the set X' and let f(,/ 1) be the mapping defined by frs1y(2") = f(2') — 1 and
fary (@) = f(z) for all 2 € X — {2'}. By Proposition 221 we have the following result.

Corollary 2.5 Assume thaty' € YNL(H) and Ng(y') = {2'}. For any mapping f from
X to Ny, the following statements hold:

(i) if f(z) =0 for all x € X, then BPx(H) # 0 if and only if f € BPx(H);
(i) fary1) € BPx(H — ') if and only if f € BPx(H) and f(z') > 1;

(iil) if f(z') =0, then flx_qzy € BPx_oy(H — ') if and only if f € BPx(H).

By applying Propositions 2.1] and 2.2] Theorem 2.1] and Corollary 2.5l it can be shown
that UM x (H) # 0 if and only if BPx(H) # 0.

Proposition 2.3 The following statements are equivalent:

(i) LIH)NY # 0 and for eachy € LLH)NY, y € V(M) for some M € UMx(H);

(i) UMx(H) # 0;

(iii) there exist a permutation my,wa, -+, 7y 0of 1,2, -+, n and an n-permutation 7y, Ta, -+, Tp
of 1,2,---,m such that M = {xryr, : i = 1,2,---,n} and Ty, ¢ E(H) for all
1<j<i<n;

(iv) f € BPx(H), where f is the mapping defined by f(x) =0 for all x € X;

(v) BPx(H) # 0.

Proof.  Observe that (i) < (ii), (ii) < (iii), (iii)) < (iv) and (iv) < (v) follow from
Proposition 2] (ii), Theorem 21 Proposition and Corollary (i) respectively. O



2.3 UMx(Hg.,) and BPx(Hg x,)

We focus on the special bipartite graph Hq 4, in this subsection. Note that Hg ., has a
bipartition (X,Y), where X = V — {z0} and Y = E. Each vertex of Y is of degree 1
or 2 in Heg g, As G is connected, L(Hy) NY # () for each component Hy of Hg 5,. Also
note that y; and y; are parallel edges in G if and only if y; and y; have the same set of

neighbors in Hg ;. An example of Hg 4, is shown in Figure [3l

In this subsection, we will show that there is a bijection from 7(G) to UM x(Hg z,) and
gP(G,wQ) = B'P)((HG@O) holds.

Lemma 2.1 If Gy is a disconnected multigraph, then UM x(Hg, o) = 0.

Proof.  Assume that Gy is disconnected. Then some component of Hg, », does not have
leaves. By Corollary 22l UM x (Hgy z) = 0. 0O

By Lemma 1] we need only to consider connected multigraphs. Let T € T(G). Without
loss of generality, assume that F(T) = {y; : 1 < i < n}. Recall that Mp denotes the
matching {z.,y; 1 i =1,2,--- ,n} of Hg 4, where z, is the end of edge y; in G such that
y; is contained in the unique path in T" from xg to z,. By the definition of M7, My is

characterized by the following lemma.

Lemma 2.2 My ={z, vy, :i=1,2,---,n} if and only if 1,72, -+, ™, is a permutation
of 1,2,---,n such that each y., is an edge in Ep(V;,V —V;) incident with x.,, where
Vi=A{zo} U{zs : 1 <j<i} fori=1,2,---,n.

T3 Y3 T Ys Y4 Y3 Y2 Y1
T2 U5 X0 x3 €2 x
(a) G (b) Graph Hg 4,

Figure 3: Graphs G and Hg 4,

Proposition 2.4 The mapping A : T(G) - UMx(Hg q,) defined by N(T) = My is a

bijection.

Proof.  Clearly, if T and T» are distinct members in 7 (G), then My, # Mp,. Thus, it

suffices to prove the following statements:



(i) For any T' € T(G), My € UM x(Hg z,);
(ii) Forany T € T(G), Mr is the only member in UM x (Hg z,) with V (M7)NY = E(T);

(iii) For any M € UM x(H¢ z,), V(M) NY = E(T) holds for some T € T(G).

(i) Let T' € T(G). By Lemma 22 My = {zr,y, : i =1,2,---,n}, where m,ma, -, m,
is some permutation of 1,2,---,n such that y,, is an edge in Ep(V;,V — V;) with z,, as
one end and V; = {zo} U {zy, : 1 < j < i} for all for i =1,2,---,n. Thus y,, is a leaf in
Hewo — Ui<jci NHg .y (yr,) for all i = 1,2, n. As My C E(Hg,g,), by Corollary 2.1]
Mr e UMx (Hg z,). Thus (i) holds.

(ii) For any T' € T(G), by definition, Hp,, is exactly the subgraph Hg ,,[X U E(T)].
Since Hr g, = S(T') — x¢ has no cycles, Hg4,[X U E(T')] has no cycles, implying that
H¢ 20X U E(T)] cannot have two distinct perfect matchings. As each member M €
UMx(H) with V(M) NX = E(T) is a perfect matching of Hg ,,[X U E(T')], (ii) holds.

(iii) Let M € UMx(Hgy,) and Y/ = V(M) NY. By Corollary 21} there is an n-
permutation 71,79, -+, 7, of 1,2,--+ m such that for all i = 1,2,---,n, y,, € Y and y,, is
incident with a unique vertex x,, in the subgraph Hg 5, — U1§j<i NHGw0 (yr,), implying
that y,, € Eq(Vi,V —V;) with z,, as one end, where V; = {xo} U {2, : 1 <j <i}. Thus,
G[Y'] is a tree. Hence (iii) holds. 0

Proposition 24l shows that the notion of UR-matchings in bipartite graphs is an extension

of that of spanning trees in connected multigraphs.

Proposition 2.5 For any mapping f : X — Ny, f € GP(G,x9) if and only if f €
BPx(Hg z,)-

Proof.  Consider the following statements:

(i) f e gP(G,x);
(ii) for any non-empty subset V'’ of X, there exists x; € V' with |Eg(x;, V—=V")| > f(x;);

(ili) for any non-empty subset V' of X, there exists z; € V' such that z; has at least f(z;)
neighbors which are leaves in the subgraph of Hg s, induced by UxiEV’ N He g (x4);

(iV) fe BPX(HG,mO)-

(i) < (ii) and (ili) < (iv) follow from the definitions of GP(G,zo) and BPx(Hg z,)
respectively. (ii) < (iii) follows from the fact that y € Eq(z;,V — V') if and only if y is
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a vertex in Hg ., adjacent to z; and is also a leaf in the subgraph of Hg ;, induced by
U, ey NV[zi]. Hence the result holds. O

A characterization on G-parking functions follows directly from Proposition[2.2land Propo-
sition It was first obtained by Dhar [6].

Corollary 2.6 (Dhar [6]) For any f : V — {zo} — Ny, f € GP(G,x0) if and only if
there is a permutation mi, 7, -, m, of 1,2,--- . n such that |Eg(xy,,V — V)| > f(zx,)
holds for each i =1,2,---,n, where V; = {x, i < j <n}.

Applying the notion of acyclic orientations of G, Corollary can be equivalently stated

as follows.

Corollary 2.7 For any f:V —{xo} — No, f € GP(G,x¢) if and only if there exists an
acyclic orientation D of G with xo as its unique source such that f(x;) < idp(z;) holds

foralli=1,2,--- n, where idp(x;) is the in-degree of x; in D.

3 An algorithm

In this section, we design an algorithm, called Algorithm A, mainly for the purpose of
producing a member f in BPx(H) for any Y/ CY with UM x (H[X UY"]) # ), as stated
in Proposition By this result, we are able to define a mapping ¥ i from UM x(H) to
BP x(H) which is shown to be a bijection in Theorem [Tl The outputs of this algorithm
are also applied in Section [ to interpret the member f € BPx(H) which corresponds to
any given M € UM x (H) under the mapping 1.

3.1 Algorithm A

The weight function w : Y — Ng of H is needed for running Algorithm A. In order to
distinguish members in Y, we assume that w is injective and so w(y1) # w(y2) holds for
any two different members y1,y2 € Y. The input for Algorithm A below is an order pair
(H,Y"), where Y/ C Y.

Algorithm A (H,Y’):

Al: Input H with a bipartition (X,Y’) and a subset Y’ of Y;

A2: Set i:=1,1:=X, D(x):=0 and F(z) := Ng(z) for all z € X
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A3: Set

Ly:={yc UF(QZ‘) :yis aleaf in Hy},
xzel

where Hj is the subgraph of H induced by I U (Uxel F(:E)) If L; = (), then output

the message “the input does not yield a desired output” and stop;

A4: If L; # (), determine the member ¢y’ in L; with w(y') < w(y) for all y € Ly — {y'}
and the unique member 2’ € Ny (v/);

A5: Ify/ ¢ Y/, then set F(2') := F(2') —{y'}, D(2') := D(2') U{y'} and go back to Step
A3;

A6: If y € Y/, determine the unique number m; € {1,2,---,n} and the unique number

7 € {1,2,---,m} such that z,, = 2’ and y,, = ¢/;
AT: Set I:=1—{a'}. It |I| >0, set i := i+ 1 and go back to Step A3;

A8: Output 7, 7 and D(zy,) for all i =1,2,---,n and stop.

Running Algorithm A has two possible outcomes. Let o(H,Y”’) = 0 if running Algorithm
A with inputs (H,Y"’) stops with the message “the input does not yield a desired output”,
and let o(H,Y"’) = 1 otherwise. In the case o(H,Y’) = 1, running Algorithm A outputs
numbers m;, 7; and a subset D(z,) of Y =Y’ for i = 1,2,---,n, where 7,7, -+, 7, is
a permutation of 1,2, ---,n and 7,72, -, 7, is an n-permutation of 1,2,---,m. In this
case, m;, ; and D(x,) are rigorously written as m;(H,Y"), 7;(H,Y’) and D(H,Y’, z,).

1=1|i=2|1=3|:i1=4
ﬁi(Hl,Yi) 4 3 2 1
Ti(Hl,Yi) 5) 6 1 2
D(Hl,Yl,l’m) @ @ (Z) (Z)

Table 1: wi(Hlvyi)v Ti(Hlvyi) and D(H17Y17$Wi)v where Yl = {y17y27y57y6}

Let’s consider some examples. Let H; and H, be bipartite graphs given in Figure @
with w(y;) = i. It is not difficult to verify that o(Hs,,Y’) = 0 for all subsets Y’ of

{y17 Y2,Y3,Y4, ?JS} For graph H17 we have U(H17 Y/) =0 lf Y/ - {y17 Y2,Y3, y4} But
U(Hlaifi) =1 for i = 1727 where Yl = {y17y27y57y6} and Y2 = {y37y47y57y6}7 and the
outputs are shown in Tables [Tl and Bl respectively.

3.2 When does the case “o(H,Y’) =1” happen

In this subsection, we shall know when the case “o(H,Y’) = 1”7 happens, and how the

outputs m;, 7; and D(z,) are determined when it happens.

12



1=1]|i=2|1= 1=

ﬁi(Hl,Yé) 4 3 1 2

Ti(Hl,Yé) ) 6 4 3
D(Hy,Y2,zx,) | 0 0 {v2} | {w}

Table 2: Wi(Hl,Yé)7 Ti(Hlayé) and D(H17Y27:E7ri)7 where Y2 = {y37y47y57y6}
Ye Ys Ya Y3 Y2 1 Ys Ya Y3 Y2 Y1
X4 €3 €2 X X4 €3 €2 X1
(a) Hy (b) Hy

Figure 4: Bipartite graphs H; and H»

If LLH)NY = 0, then o(H,Y’) = 0 clearly. If L(H) NY # (), we have the following

observations from Algorithm A.

Lemma 3.1 Assume that L(H) NY # (0 and y' is the member in L(H) N'Y such that
w(y') is the minimum. LetY' CY,Y"=Y'—{y'}, H =H —y and H' = H — {2, ¢},
where &' is the only member in Ny (y'). The following observations follow from Algorithm
A:

(i) ify' ¢ Y', then o(H,Y') =0c(H",Y"), and o(H,Y"') = o(H",Y") otherwise;

(i) ify ¢ Y and o(H,Y') =1, then m;(H,Y') = mi(H',Y') and 7;(H,Y") = 7;(H',Y")
for alli =1,2,---,n, and D(H,Y',2') = D(H",)Y',2') U {y'} and D(H,Y' z) =
D(H',Y' x) for all x € X — {2'}.

(ii) if v € Y and o(H,Y') = 1, then m = m(H,Y') and 7 = 7 (H,Y’) such that
yr, =Y and xr, =2, and m;(H,Y") = mi_1(H",Y") and 7,(H,Y') = 7,1 (H",Y")
foralli=2,3,---,n, and D(H,Y',2") =0 and D(H,Y',2) = D(H",Y",x) for all
reX —{2'}.

Lemma Bl implies that when o(H,Y") = 1, the outputs 7; and 7; are independent of the
vertices in Y — Y’, but each set D(z,,) is a subset of Y —Y’. Now we are going to show
that when o(H,Y’) = 1, the outputs of running Algorithm A can be determined by the

following result.

Proposition 3.1 Let Y/ C Y with o(H,Y') = 1. Then m;,7; and D(xy,) for i =

1,2,---,n can be determined by the following statements:
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(i) fori=1,2,---,n, 5,y € E(H) and y., is the member in Y' N L(H;) with the min-
imum weight w(ys,), where H; denotes the subgraph of H induced by ;< <, N(x,];

(i) fori=1,2,---,n, D(x,,) is the set of those y € (Y —Y') N N(zy,) N L(Hs) such
that w(y) < w(yr,) holds for some s with s < i.

Proof.  (i). By Lemma B1] (i), m; and 7; for i = 1,2,---,n are determined by running
Algorithm A with input (H[X UY'],Y”).

It can be proved by induction on |X|. The result is obvious when | X| = 1.

Now assume that |X| > 2. By Lemma Bl 7y is determined by the fact that y,, is the
member in Y/ N L(H;) with the minimum weight w(y,,) and m; is determined by the
fact that zr, is the only member in Ny, (y-). By the inductive hypothesis, m; and 7;
for i = 2,--- n are determined by running Algorithm A with the input (H',Y" — {y~ }),
where H' = H[(X UY") — {%z,,yr, }]. Thus (i) holds.

(i) By Lemma B U;<;<, D(2r,) consists of those y € (Y —Y') N L(H;) with w(y) <
w(yy,) for some s:1 < s < n. Furthermore, if y € (Y —Y’) N L(H;) with w(y) < w(y-,)
for some s: 1 < s <mn, then y € D(z,), where z,, is the only member in Ny _(y). Clearly

i > s and x, is the only vertex in the set {z,; : s <j < n} which is adjacent to y.
Hence (ii) holds. O

By Theorem 2Tl and Proposition Bl we have the following corollary.

Corollary 3.1 Let Y' CY with o(H,Y') = 1. Then

(i) {&n,yr, i =1,2,---,n} is a member in UM x (H);
(i) =, yr, ¢ E(H) for all j with j > i;
(iii) o yr;,yr; € L(H,;), where r < min{i, j}, then w(yr) < w(y.,;) if and only if i < j,

where H, is the subgraph of H induced by U, <<, N[wx,].

When o(H,Y") =1, let My y+ denote the subset {@r,yr, 11 =1,2,---,n} of E(H). It will
be shown in Corollary B2l that for any 7' € T(G), if Y’ = E(T) and H is the graph Hg 4,
then MH,Y’ = MT.

By Corollary Bl (i), My y € UMx(H). Thus o(H,Y’) = 1 implies that V(M)NY C Y’
holds for some M € UM x(H). Now we show that its converse statement also holds.
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Proposition 3.2 Assume that Y CY. Then o(H,Y') =1 if and only if V(M)NY C Y’
holds for some M € UM x(H).

Proof. By Corollary 3] (i), the necessity holds. It suffices to prove the sufficiency.

When |X| = |Y| = 1, it is clear that the sufficiency holds. Assume that the sufficiency
holds when 2 < |X| + |Y| < r. Now consider the case that |X|+ |Y| = r and assume that
there exists M € UM x(H) with V(M)NY CY".

AsUMx (H) # 0, by Theorem 21l L(H)NY # 0. Let ' be the member in L(H)NY such
that w(y') is the minimum. If ¢’ ¢ Y’, then M € UM x(H') with V(M)N(Y —{y'}) C Y/,
where H' = H — v/, and by the inductive hypothesis, o(H’,Y’) =1 holds. If y € Y’, then
M — {2y} e UMx(H"), where H' = H — {2/, y'} and 2’ is the only member in Ny (v'),
and by the inductive hypothesis, o(H”,Y"”) = 1 holds, where Y” = Y’ — {¢/}. In both
cases, Lemma [BJ] implies that o(H,Y") = 1.

Hence the sufficiency holds. O

3.3 A member of BPx(H) when o(H,Y’) =1

When o(H,Y’) = 1, aspecial member of BP x (H) can be determined by the sets D(H,Y”, z)’s.

Proposition 3.3 ForanyY’' CY witho(H,Y') =1, the function f : X — Ny determined
by f(x) = |D(H,Y' z)| for all x € X is a member in BPx(H).

Proof.  We prove it by induction on | X |+ |Y'|. The result is obvious when | X| = |Y| =1
by Proposition Assume that the result holds when 2 < |X| + |Y| < r. Now consider
the case that | X| + Y| =r.

Aso(H,Y') =1, L(H)NY # (). Let ¥/ be the member in L(H)NY such that w(y’) is the

minimum. Let 2’ be the only member in Ny (y/).

First consider the case that ¥’ ¢ Y’. By the inductive hypothesis, the function g : X — Ny
defined by g(z) = |[D(H',Y’, z)| for all z € X is a member in BPx (H'), where H' = H—y/.
By Corollary 2.5(ii), the function f : X — Ny defined by f(2’) = g(2’)+1 and f(z) = g(x)
for all x € X — {2/} is a member in BPx(H). By Lemma B1Ii), f(z) = |D(H,Y’, z)| for
all x € X. Thus the result holds in this case.

Now consider the case that v/ € Y. Then o(H",Y") = o(H,Y’) = 1 by Lemma B (ii),
where Y =Y’ — {y/} and H” = H — {2’,y'}. By the inductive hypothesis, the function
g: X —{2'} = Ny defined by g(z) = |D(H",Y" x)| for all x € X — {2’} is a member
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in BPx:/(H"), where X’ = X — {2’}. By Corollary 25(iii), the function f : X — Ny
defined by f(z') = 0 and f(z) = g(z) for all zx € X — {2/} is a member in BPx(H). By
Lemma [BLii), f(z) = |D(H,Y’,z)| for all z € X. Thus the result also holds in this case.

Hence the result holds. O

3.4 Outputs of running Algorithm A for H¢,,

In the next two subsections, we will consider the special bipartite graph Hg 4.

Note that the weight function w : E — Ny for edges of G is also the weight func-
tion for members of Y in Hg ,,, which is used in running Algorithm A with input
(HGg g, Y'), where Y CY = E. If 0(Hg,,Y') = 1, simply write m; = mi(Hg 2, Y'),
7 = Ti(HG 20, Y') and D(z) = D(Hg g, Y, 27) for i = 1,2, n.

The next result follows from Propositions B and

Proposition 3.4 0(Hgz,,Y') =1 if and only if G[Y'] is a connected and spanning sub-
graph of G. Furthermore, if 0(Hg ,,Y') =1, then, fori=1,2,--- n,

(1) yr, is the edge in Y'NEq(V;, V=V;) with w(y,,) < w(y') for ally’ € Y'NEq(V;,V-V;)
and x,; is the vertex in V —V; incident with y,,, where V; = {xo} U{ay, 1 1 < s <i};
(ii) D(zr,) is the set of those edgesy € Y =Y incident with x,, such thaty € Eq(Vs,V —

Vs) and w(y) < w(y.,) hold for some s < i.

By Lemma and Proposition B4 (i), for any T' € T(G), we have the following relation
on My and My, v, where Y = E(T).

Corollary 3.2 For any T € T(G), My = My, v = {Tr,yr, 1 =1,2,---,n}, where
Y' = E(T).

For example, let G = (V, E) be the graph shown in Figure [l (a) and Y’ be a subset of E
with G[Y'] shown in Figure [ (b), where each number beside an edge e is its weight w(e).
As G[Y'] is a spanning tree of G, Proposition B4l implies that o(Hg 4,,Y") = 1.

By Proposition B4l (i), y,, -, yr are the following edges respectively:

LT3, L3T4, LAL2, T2T5, T2T1, L3TL6,

16



xo €5
5 A 8
T4 7 9 Ty 7 T2
(a) G (b) GIY']

Figure 5: G and a spanning tree G[Y’]
and Ty, -, Ty, are the vertices x3,z4,x2, 25,21, z6 respectively. By applying Proposi-
tion 34 (ii), we have
D(z3) = D(xz4) = D(z2) = D(x5) = 0, D(x1) = {x3x1}, D(xg) = {x4x6, T2x6, T176 } -
The next result considers the special case that Y/ = E(T) for a given T € T(G). It will
be applied for proving Theorem (.11

Let P;; denote the unique path in 7' connecting vertices z,; and ;.

Proposition 3.5 Let T € T(G) andY' = E(T'). Then
(i) fori=1,2,---,n, G[E;] is a tree with vertezx set {x,, : 0 < s <i}, where E; = {y,, :
1 <s<i} and mg = 0;
(ii) fori=1,2,---,n, ys is incident with x, and is an edge on the path Py ;;
(ili) if xx, is a vertex on the path Py ;, then i < j holds;

(iv) for any integers 1 < i,j < n, if max{b(yr,),b(y-;)} < min{i,j}, then w(y-) < w(y,)
if and only if i < j, where b(yT].) is the number s such that x, is the end of y,; in
G different from ;.

Proof. (i) follows from Proposition 3.4 (i).
(ii) and (iii) follow directly from result (i).

(iv). Let r = max{b(y,),b(y-;)}. As r < min{i, j}, both y; and y, are members in the
set YN Eq(Vy,V — V) for all k with » < k < min{i, j}, where Vi = {2, : k <t < n}.
By Proposition B.41 (i), w(y,,) < w(y.,) if and only if y, is selected before y;,, i.e., i < j.
Thus (iv) holds. O
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3.5 The minimum spanning tree

The minimum spanning tree of G with respect to w is the spanning tree Ty of G such
that w(Tp) < w(T) holds for all T' € T(G) — {Tv}, where w(T) = 3 .c gy w(e). In this
subsection, we show that the minimum spanning tree of G is determined by the outputs
yr,’s of running Algorithm A with input (Hgg,, £(G)). But this property cannot be
extended to all bipartite graphs.

Prim’s algorithm [19] is a well-known algorithm of determining the minimum spanning
tree of a connected multigraph. The way of choosing edges of the minimum spanning tree
in G by Prim’s algorithm (see [2|29]) is actually the same as the way of determining edges
Yrys**» Yr, Dy Proposition B4l (i). Thus the next result follows from Proposition B4 (i)

and Prim’s algorithm.

Corollary 3.3 For any Y' C E, if G[Y'] is connected and spanning, then E(Tp) =
{Yryy s yr, } for the minimum spanning tree Ty of G[Y”].

For any Y” C FE with Y’ C Y”, when do G[Y'] and G[Y"”] have the same the minimum

spanning tree?

Theorem 3.1 Let Ty be the minimum spanning tree of G[Y']. For anyY" C E with Y’ C
Y, Ty is the minimum spanning tree of G[Y"| if and only if (Ulgign D(:Em.)> NY” =0.

Proof. It suffices to show that the two statements below hold:

(a) if (Ulgz‘gn D(xm.)) NY"” =, then T} is the minimum spanning tree of G[Y"];
(b) if <U1§i§n D(:Em.)> NY"” # (0, then Ty is not the minimum spanning tree of G[Y"].

Assume that <U1§i§n D(a:m)) NY"” = . By Proposition Bl (i), U;<;<, D(zx,) is the
set of those edges y € Y — Y’ such that y € Eq(Vs, V — V;) and w(y) < w(y;,) hold for
some s with 1 < s < n, where Vi = {x,, : s <t < n}. As (Ulgign D(a:m)) NnNY” =10,
by Proposition 8.4 (i), y, is the edge in Egpyn)(Vi,V — Vi) such that w(y,) < w(y) holds
for all edges y € Egy»(Vi,V —V;) = {yr} for each i = 1,2,---,n. By Prim’s algorithm,
E(Ty) = {y,, : i = 1,2,---,n} is the edge set of the minimum spanning tree of G[Y"].
Hence (a) holds.

Now consider the case that (Ulgz‘gn D(xm.)) NY"” # (. By Corollary B3] the edge set
of the minimum spanning tree Ty of G[Y'] is {Yr,,Yry, ", Yr, }- By Prim’s algorithm,

the edges of Ty can be chosen in the order y, ,yr,,---,yr,. By the assumption, there
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exists yo € <U1gi§nD($m)> NY". By Proposition B4 (i), yo € Egyy»(Vs, V — Vi) and
w(yp) < w(yr,) hold for some s with 1 < s < n. By Prim’s algorithm again, yq is
chosen as an edge of the minimum spanning tree of G[Y”] at the step after all edges in

{yr, : 1 <t < s} are selected, implying that Tj is not the minimum spanning tree of
G[Y"].

Hence (b) also holds. O

For any M € UMx(H), let w(M) = Zer(M)me(y)' A member My in UM x(H) is
called a minimum memberin UM x (H) if w(My) < w(M) holds for all M € UM x(H). By
Corollary B3] {#r,yr, : i = 1,2,---,n} is the unique minimum member of UM x (H¢ 4,)-

However, this result does not hold all bipartite graphs H. An example is shown in Figure[Gl

Let Hy be the bipartite graph shown in Figure [ where any vertex with an order pair
(yi, w;) beside is vertex y; with w(y;) = w;. Running Algorithm A with input (Hy, Yp),
where Yy = {y1,92,y3,ya}, outputs m; = 7; =i for i = 1,2,3. But My = {x;y; : i = 1,2,3}
is not the minimum member of UM x (Hy), as My = {zoy2, x3ys3, z1ys} € UM x(Hy) and

w(My) = w(y2) +w(ys) + w(ys) < w(yr) +w(ye) +w(ys) = w(Mo).

(Y4,3)  (¥3,2) (y2,5) (y1,4)

T3 T2 T

Figure 6: A bipartite graph Hy

Problem 3.1 For any bipartite graph H with a bipartition (X,Y) and UMx(H) # 0,

determine the minimum member of UM x (H).

4 Bijection vy from UMx(H) to BPx(H)

For any M € UMx(H), let ¢ (M) = f, where f is the mapping f : X — Ny defined
by f(z;) = |D(H,Y NV (M), z;)| for each x; € X. By Propositions B.2] and B3| ¢y is a
mapping from UM x (H) to BPx(H). By its definition, an interpretation of ¢ is given
by Proposition B.Jl We are now going to show that ¢y is a bijection.

Theorem 4.1 The mapping g : UMx(H) — BPx(H) defined above is a bijection from
UMx(H) to BPx(H).
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Proof.  We first prove that 1y is injective by induction on | X|+|Y|. When |[X| = Y| =1,
the conclusion is obvious, as UM x(H) has at most one member. Assume that it holds
when |X|+ |Y| < k, where k£ > 3. Now consider the case that | X|+ |Y| = k.

Assume that UM x(H) # (. By Theorem Il Y N L(H) # (. Assume that 3y’ is the

member in Y N L(H) such that w(y’) is the minimum. Let 2/ be the only member in
Nu(y').

Let M; and My be distinct members in UMx(H) and Y; = V(M;)NY for ¢ = 1,2.
If Y1 = Y, then V(M) = V(M;), implying that M; = My by the definition of UR-
matchings. Thus Y # Y. Let fi(z) = |D(H,Y;,z)| for i = 1,2 and all z € X. We shall
show that f; # fs in the three cases below.

Case 1: y €Y, —Yoory €Yy, — Y.

Assume that ¢’ € Y] — Yo. By Lemma 31l D(H,Y1,2') = () while v/ € D(H,Ys,2’). Thus
fl(a;’) < fg((L'/).

Case 2: ¢/ ¢ Y] UYs.

In this case, M; € UMx(H') for i = 1,2, where H = H — y'. By the inductive
hypothesis, ¢y is an injective mapping from UM x(H') to BPx(H'), implying that
|D(H',Y1,z)| # |D(H',Ys,x)| for some z € X. By Lemma BIIi), for each i = 1,2,
D(H,Y;,2') = D(H',Y;,2") U{y'} and D(H,Y;,x) = D(H',Y;,x) for all x € X — {2/},
implying that |D(H,Y1,z)| # |D(H, Y2, z)| for some = € X, i.e., f1 # fa.

Case 3: iy € Y1 NYs.

By Lemma B1[ii), for ¢« = 1,2, D(H,Y;,2’) = 0 and D(H,Y;,z) = D(H",Y/,z) for
all x € X' = X — {2/}, where H" = H — {2/,y'} and Y/ = Y; — {¢/}. Note that
Y/ =Y NV(M]) for i = 1,2, where M} = M; — {z'y'}. As My # My, we have M| # M.
By the inductive hypothesis, |[D(H",Y{,z)| # |[D(H",Y;,z)| for some x € X', implying
that |D(H,Y1,x)| # |D(H,Ys,z)|. Thus, fi # fo in this case.

Therefore vz is injective.

It remains to prove that gy is surjective, i.e., the following statement “for any f €
BPx(H), there exists M € UM x (H) with ¢y (M) = f7 holds. We prove this statement
by induction on the value of [X|+ [Y| 4 > .y f(z), where f € BPx(H). Observe that
X+ Y[+ > ,ex f(z) > 2. When | X|+ Y|+, oy f(z) =2, we have [X| =[Y| =1
and f(x) = 0 for the only member z € X, implying that H = K and ¥y (M) = f holds,
where M = E(H).

Assume that the above statement holds for any bipartite graph H’ with a bipartition
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(X", Y') and any f' € BPx:(H') such that |X'| + Y| + 3 .y f'(z) < r, where r > 3.
Now we suppose that H is a bipartite graph with a bipartition (X,Y) and f € BPx(H)
such that | X|+ Y[+ >  cx f(z) =7,

As BPx(H) # (), by Proposition 23] we have UM x(H) # 0 and Y N L(H) # (. Assume
that ¢ is the member in Y N L(H) such that w(y’) is the minimum and 2’ is the only
member in Ny (y'). We shall prove in the two cases below that g (M) = f holds for some
MeUMx (H)

Case 1”: f(2/) = 0.

Let H" = H — {2/,y'} and g = f|x/, where X' = X — {2/}. By Corollary 2.5\iii),
g € BPx:(H"). By the inductive hypothesis, there exists M’ € UM x,(H") such that
Y (M') =g, ie., g(x) = |DH",V(M')NY,x)| for all z € X'. Tt is clear that M = M'U
{2'y'} e UM x(H). By Lemma B1[ii), D(H,Y',2’) =0 and D(H,Y’',z) = D(H",Y", x)
for all x € X — {2/}, where Y/ = V(M)NY and Y =Y" U {y'} = V(M)NY. Thus
f(z') = 0 = |D(H,Y",2')| and f(z) = g(z) = |D(H",Y",2)| = |D(H,Y',x)| for all
z € X — {2}, implying that ¢y (M) = f.

Case 2: f(2/) > 0.

Let H' = H —{y'} and g = f(,1}1). By Corollary 23\(ii), g € BPx(H'). By the inductive
hypothesis, there exists M € UM x (H') such that Y/ (M) = g, i.e., g(x) = |[D(H', Y, x)|
for all z € X, where Y/ = V(M) NY. By Lemma BIli), D(H,Y',2’) = D(H",)Y',2’") U
{y/} and D(H,Y',x) = D(H',Y',z) for all z € X — {2/}. Thus f(z') = g(a’) +1 =
|D(H',Y",2")|+ 1 =|D(H,Y',2")| and f(z) = g(x) = |D(H',Y',z)| = |D(H,Y’,x)| for
all z € X — {2/}, implying that ¢y (M) = f. ]

For any T' € T(G), define ¢¢(T) = ¥n,, (Mr). By Theorem ELI] Corollary and
Proposition 23], ¢¢ is a bijection from 7 (G) to GP(G, x¢). By Proposition B4 ¢ can
be interpreted by the following result, which first appeared in [5].

Corollary 4.1 LetT € T(G). Assume that vertices Tn,, Try, "+, Tx, and egdes Yz, Yrys -, Yr,
of G are determined by Proposition (i), where Y' = E(T). If f = ¢c(T), then, for
i=1,2,---,n, f(xg,) is the number of those edges y € E(G) — E(T) incident with xr,

and some 2, where 0 < j <4, with w(y') < max;<s<;w(yr,)-

For example, if G is the graph shown in Figure[dl (a) and T is the spanning tree in Figure
(b), then ¢g(T) is the mapping f € GP(G, z¢) given below:

fz2) = f(z3) = f(wa) = f(w5) =0, f(z1) = 1, f(we) = 3.
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5 Interpret B-parking functions

Theorem .l shows that the mapping ¢y : UM x(H) — BPx(H) defined by v (M) = f
is a bijection, where f(x) = |D(H,V (M) NY,x)| for all x € X. In this section, assume
that M € UMx(H) and Y/ = V(M) NY, unless otherwise stated. Also assume that
mi =mi(H,Y"), 7 = 7(H,Y') and D(xr,) = D(H,Y’, z,). In this section, we will give an
interpretation for f different from Proposition B] (ii).

In Subsection B.J} we define a unique path Py an(y) in H for each y € Y — Y’ with
respect to M. In Subsection [5.2] we introduce the concept “externally B-active members
with respect to M in H” by comparing w(y) with w(y’) for all those ¢y € Y which are
in the path Py (y). In Subsection 5.3, we show that (J,.x D(H,Y’,z) is exactly the
set of those members in Y — Y’ which are not externally B-active with respect to M in
H. In particular, D(H,Y’,x,) is the set of those members y in ((Y —Y’) N Ny (zr,)) —
Ussi Nu(2x,) which are not externally B-active with respect to M in H, where Y’ =
V(M)NY. Finally, in Subsection [5.4], we introduce a generating function Q(H;x,y, z) for
the members in UM (H) with three variables. Particularly, Q(Hq 4,;,y,0) is the Tutte
polynomial Tz (z,y).

5.1 The path Py )(y) for each y € Y — Y’

By the definition of 7; and 7; for i = 1,2,--- ,n, we have Y/ = {y,, : i = 1,2,---,n} and
M = Mgy =A{xxys :i=1,2,---,n}. For any vertex y € Y and any integer j > 1, let
nj(y) = 01if j > dy(y), and let nj(y) be the j’th largest integer s such that z,, € N(y)
otherwise. In other words, n > ni(y) > na(y) > -+ > ng, ) (y) > n;(y) = 0 for all

j>du(y) and N(y) = {xr, : s € {n1(y), - nay ) (y) -

Clearly n(y;,) =i for all i = 1,2,---,n by Corollary Bl (i) and (ii). By Proposition B1],
D(H,Y  zz,) C{y: Y =Y, ni(y) = i}.

For any y € Y —Y’, let Py ar)(y) be the following maximal M-alternating path in H with

y as one end:

Baan(y) : y2m;, Yry, - Ty, Y,
where j1 = n1(y), ji = ng(yTjFl) > 0 for all i = 2,3,---,t and na(y) < jt, as shown in
Figure [ Thus j1 > j2 > .-+ > ji > na(y). By the maximality of Py ) (y), na(y) >
n2(yr;,) > 0. Clearly that the path Py ) (y) is unique for each y.

For example, if H is the bipartite graph shown in Figure [§ with w(y;) = ¢ for all ¢ and
M={xy; :i=1,2,---5} e UMx(H), then Y ={y; : i =1,2,--- 5}, m; =7, = i
for i =1,2,---,5. Note that yg is the only vertex in Y — Y'. As ni(yg) = 5, na(ys) = 4,
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Yy Yr; 1 Yr; 2 Yr; t

NRRN

Tjq Tjo Lrj,

Figure 7: P(H,M) (y) YTy Yry, o Ty, Yy,

n2(ys) = 3 and na(ys) = 2 = na(ye), the path Py ar)(ye) is

Piry(Ys) © Y6T5Y574YaT3Y3-

Y6 Ys Ya Y3 Y2 Y1

T5 T4 €3 €2 €1

Figure 8: Py ary(Y6) © yersysraysrsys and na(ys) = na(ys) = 2

5.2 Externally B-active elements with respect to M

For any y € Y —Y', y is the only vertex in the path Pz s (y) belonging to Y — Y.
We say y is externally B-active with respect to M in H if w(y) > w(ys,; ) holds for all
r=1,2,---,t, where {y,, :r=1,2,---,t} =Y NV (Pya(y)) Let Acz(H, M) denote
the set of those members in Y — Y which are externally B-active with respect to M in
H, and let NA.,(H,M) = (Y —=Y') — Ac.(H,M). Thus NA.,(H, M) is the set of those

members in Y — Y’ which are not externally B-active with respect to M in H.

Recall that the weight function w of G is a fixed injective mapping from E to Ny. In-
troduced by Tutte [28], for a given T' € T(G), an edge y in E(G) — E(T) is said to be
externally active with respect to T if w(y) > w(y") holds for all edges 3’ in the unique cycle
of the subgraph G[E(T") U {y}], and an edge y € E(T) is said to be internally active with
respect to T if w(y) > w(y’) holds for every edge v € E(G) — E(T) with the property
that (E(T) — {y}) U{y'} = E(T") holds for some T’ € T(G). For the definition of these

b 9

two concepts, the condition “w(y) > w(y')” can be replaced by “w(y) < w(y')”, as the
condition is changed when w(e) is replaced by K — w(e) for each edge e in G, where K
is a number in Ny such that K —w(e) > 0 for all e € E. Tutte [28] expressed the Tutte

polynomial T (x, ) as the summation of z/#(T)yea(T)

over all spanning trees T" of GG, where
ea(T) and ia(T') are respectively the number of externally active edges and the number of

internally active edges with respect to 7.
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In the following, we prove that the concept “externally active with respect to T is ex-
tended to the one “externally B-active with respect to M”, where M € UM x (H).

Theorem 5.1 Let T € T(G). For anyy € E(G) — E(T), y is externally active respect to
T in G if and only if y € Acx(Hea 2y, MT).

Proof. Let Y’ = E(T) and let H simply denote Hg g, in the proof. Thus o(H,Y’) =1,
and 7;’s and 7;’s are determined by Proposition B.4i) and have the properties in Propo-
sition

Write zr, = @, if x7, is a vertex on the path Fy; and zr; 2 Ty, otherwise. By Proposi-
tion (iii), Claim 1 follows directly.

Claim 1: z,, < Ty, implies that ¢ < j.

Thus 2, = @z, if and only if ¢ < j and P;; is part of /% ;. In the following, we first

compare i and j in the case that xr, A zr; and x5, A xr,. Define Winaz (P ;) as follows:

N it BE(P ) =10
Winaz(F,5) = { max{w(e) : e € E(P;;)}, otherwise.

@ @ @
X0 e ‘TWT e xﬂs Z'ﬂj

Figure 9: zn, =X @z, Tr, X @y, but E(P;) N E(P, ;) =

Claim 2: If v, =X Zr;, Tx, = 2, and E(P,;)NE(P,;) =0, then wpaz(Pri) < Wmaz(Prj)
implies that ¢ < j.

Assume that wpaz(Pri) < Wmae(Pr;). We shall prove Claim 2 by induction on the the
value of p(i,7) = |E(P;)| + |E(P.;)|. By Proposition (iv) and the definition of
Winaz (P j), Claim 2 holds when |E(P,;)| <1 and |E(P, ;)| < 1.

Assume that Claim 2 holds when p(i,j) < K, where K > 3. Now consider the case that
p(i,j) = K.

Let k be the least possible integer such that y,, is an edge on the path P, ; with w(y,,) >
Winaz (Pr.i). AS Winag(Pri) < Wmaz(Prj), such k exists. By Claim 1, r < k < j. If k < j,
then p(i,k) < K and by the inductive hypothesis, Wmaz(Pri) < w(Yr,) = Wmax(Pr k)
implies that ¢ < k, and so ¢ < j holds. Thus it suffices to consider the case that k = j,
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i.e., Wnae(Pri) < w(Yr,), but Wimae(Pri) > w(yr) for all edges yr, on the path P, ; with
t+# 7.

Let s = b(yr;) and ¢ = b(yr,), as shown in Figure [l where b(y.,) is defined in Propo-
sition B.5l(iv) (i.e., b(yr,) is the number s such that x,, is the end of y,, in G different
from x;). By Claim 1, ¢ < i and s < j. As p(q,j) < K, by the inductive hypothesis,
W(Yr;) > Wiaz(Pri) > Wiaz(Prq) implies that j > q. As Wmae(Pri) > Winae(Prs), We
have i > s by the inductive hypothesis. Since b(y,;) = s < i and b(y,,) = ¢ < j, the
inequality w(yr;) > Wmaz(Pri) > w(yy,) implies that j > i by Proposition (iv).

Hence Claim 2 holds.

Now let y be any edge in E(G) — E(T). Assume that zr, and 2, are the two ends of y,
where j; > 4, and the unique cycle C in the graph obtained from T by adding y consists of
edge y and two edge-disjoint paths P.; and P, ;,, where x; = 2, and z, = T, - Thus
r <1 < j1 with the possibility that ¢ = r.

Let Ty Ty " Ty, be the longest possible subpath of P, ; between T, and Tr;, such

that i < j;, as shown in Figure By Claim 1, we have
J1>J2> > e >0 > b(yry, ), (5.1)

where i = b(y,,,) if and only if i = r and b(yy;,) =r.

@
) T

Tr, ... T, Ty

T

Figure 10: b(y,;,) <i <ji <--- <j2 <j1

As jl >0 b(yTjt)7 by Claim 27 wma:c(Pr,k) < wma:(:(Pr,i) < wma:(:(Pr,jt)a where k = b(yrjt)7
implying that

max{Wmaz (Pri) Wmaz (Pr.j,)} = max{w(yTjS) is=1,2,--t}.
Thus the following claim holds.

Claim 3: y is externally active with respect to 7" in G if and only if w(y) > w(y,,_ ) holds
forall s =1,2,---,t.

On the other hand, by (&.I) and the fact that ni(y) = ji, n2(yr,, ) = b(yr,,) = Jsy1 for
s=1,2,---,t—1and na(y) = b(y) =i > k = b(ys;,) = n2(yr, ), the path Par,.(y) in He 4,
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with respect to My is exactly the following one:
PMT(y) : ywﬂjly‘rjl T xﬂjty‘rjt-
Thus, by definition, the following claim also holds.
Claim 4: y € A¢;(Hg zy, M) if and only if w(y) > w(y.,, ) holds for all s =1,2,---¢.

By Claims 3 and 4, the result holds. O

5.3 Interpret B-parking function f = ¢y(M)
By the definition of the path Py 1) (y), the following lemma follows.

Lemma 5.1 For anyy €Y —Y', y is adjacent to x, on the path Py (y) if and only
ify € Nu(vr,) — Uk<i§n Ni(zx,).

Theorem 5.2 For anyy € Y =Y and 1 < k < n, y € D(H,Y', z,,) if and only if
y € Ng(zz,) — Uk<z’§n Np(zr,) and y € NAey(H, M).

Proof. Fori=1,2,---,n,let H; be the subgraph of H induced by Zigsgn Nlzz,]. From
Algorithm A, {J, .y D(H,Y", x) is a subset of Y —Y” and can be partitioned into n subsets

1,Dj, -+, D!, where D} is the set of those vertices y in H; having properties below:

(@) ye (Y =Y') = Ujcoei Dis

(b) y € L(H;);

(¢) w(y) < w(yr)-

Notice that D) is the set of those members y € Y — Y which are put into some set D(z’),
where 2/ is the only neighbor of y in H;, at Step A5 in Algorithm A after y,, , is confirmed

but before y;, is confirmed.

By Corollary 31}, if y, € L(H;), we have j > i and w(yr;) > w(yr,). Thus the following

claim holds:
Claim 1: If y,, € L(H;), then w(y) < w(ys,;) holds for all y € D;.

Now let y be a member in Y —Y’. Assume that ni(y) = j1 and the path P ) (y) is
yﬂjﬂjl yle e ,ﬁL'ﬂ-jtyTjt . By the definition of P(H,M) (y)7 js+1 = nz(yTjS) for s = 1’ 2’ . ’t —1
and ji > j2 > -+ > ji > na(y) > na(ysr, ).

(=) Assume that y € D(H,Y’, z,). By Proposition B (ii), y € Ny (xx,). Let i be the
minimum integer with 0 < i < k such that y € L(H;) and w(y) < w(yr,). Such i exists
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by Proposition B.] (ii). Thus y € D;. Clearly, k = n1(y) = ji and so z, (i.e., 25, ) is the
vertex on the path Py 57 (y) adjacent to y. It remains to show that y € N A, (H, M).

As y € L(H;), we have ¢ < i < ji, where ¢ = na(y). Note that j; > jo > -+ > j; >
no(y) = q > ng(yTjt). Thus js11 < @ < js holds for some s with 1 < s < ¢, where assume
that jiy1 = na(y) = ¢ when s = t. Then y,, € L(H;). By Claim 1, w(y) < w(y;, ). By
definition, y € NA.,(H, M).

Hence the necessity holds.

(<) Now assume that y € NA(H,M). Assume that j; = ni(y). We will show that
y € D(H,Y' 2, ).

On the contrary, suppose that y ¢ D(H,Y", x5, ). By PropositionB11(ii), y ¢ D(H,Y’, zr,)
for all s =1,2,---,n, implying that y ¢ D, for all i =1,2,--- n.

Asj1 =ni(y) and ¢ = na(y), y € L(H;) for all i with ¢ < i < j3. For each ¢ with ¢ < i < ji,
as y ¢ D}, we have w(y) > w(ys,) by property (c). Particularly, as ¢ < j; < --- < ji,
w(y) > w(ys,,) holds for all s = 1,2,---,¢, implying that y is externally B-active with
respect to M in H. Thus y ¢ NA¢,(H, M), a contradiction.

Hence the sufficiency holds. O

By Theorem and the definition of ¥ g, we have the following corollaries.

Corollary 5.1 Let M € UMx(H). If f = ¢Yu(M), then, f(zx,) is the size of the set
(Ng(zx,) "NNAL(H,M))—-U Ny (xg,) for alli=1,2,--- n.

i<s<n

Corollary 5.2 Let M € UMx(H). If f = Yu(M), then

Y f@) = INAe(H, M) < Y| - |X].
rzeX

Now we apply Theorem 5.1 to find another interpretation for G-parking functions of G.

Let T € T(G). Write xr, <7 @4, for all i,j with 0 < i < j < n. For any two vertices z’

and z in G, let Pp(2/,z) denote the unique path in 7" between 2’ and z.

Proposition 5.1 For any two different vertices ' and x in G, the following statements

are equivalent:

(i) o <rz;
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(1) wimazr (Pr(z”,2")) < Wpmae (Pr(2”,x)), where 2" is the vertex in both paths Pr(xo,x’)
and Pr(zg,x) with E(Pr(z”,2")) N E(Pr(2”,z)) = 0;

(iii) if y is an edge in E(G) — E(T) joining x and x', then x is the verter x,, with
Jj=n1(y), where mg = 75(HG o, E(T')) for s € {1,2,---,n};

(iv) if y is an edge in E(G) — E(T) joining x and z’, then x is the vertex in the path
P (y) adjacent to y, where Y' = E(T).

Proof.  Claims 1 and 2 in the proof of Theorem [B.I] imply that (i) < (i), while the
definition of the path Pz 5s)(y) implies that (iii) < (iv). Finally, by the definition of the
ordering <7 and the definition of ni(y), (i) < (iii) follows. O

Recall that the mapping ¢¢ : T(G) — GP(G, o) is defined by ¢¢(T) = Vg, (Mr),
where My = {z,y;, : i = 1,2,---,n} by Corollary By Corollary 511 and Propo-
sition [B.1, we get the following interpretation for ¢g which is different from the one in
Corollary 11

Corollary 5.3 Let T € T(G). If f = ¢q(T), then, for any x € V. — {xo}, f(x) is the
number of those edges y € E(G) — E(T) such that y is not externally active with respect

to T in G and y is incident with x and ', where x’ < x.
By Corollaries and .3 we have the following conclusion.

Corollary 5.4 Let T € T(G). If f = ¢a(T), then

ca(T) + Y flx) = |E(G)| - V(G| +1,

zeX

where ea(T) is the number of externally active edges with respect to T in G.

5.4 A generating function Q(H;zx,y, 2)

Let M € UMx(H). For any x,, € X, let R(zr,) denote the following unique path:

Trjy Yrjy Ty Yrjy 0 Ty Y

where j1 = q, ji+1 = na(yy, ) fori=1,2,--- s—landy, € L(H). Foranyy' € Y-V (M)
and 7 > 1, if t, = n,.(y') > 1, let Q,(y') be the path in H formed by combining edge 3/,
and path R(zr, ). In the case that 3y € L(H) (i.e., na(y’) < 1), assume that Qo(y’)
consists of vertex y’ only. Let &k = 0 if V(Q1(v')) NV (Q2(y')) N X = (), and let k be the
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largest integer with =, € V(Q1(v")) NV (Q2(y")) N X otherwise. Let Cx(y’) be the set
{yr, € V(QLY) U V(Q2(Y)) s u > kyyr, # 3/}

For example, if H is the graph in Figure R and M = {x;y; : i = 1,2,---,5}, then Q1(ys)
is the path yexsysx4ysx3ysroyar1yr and Q2(ye) is the path ygroysr1yi. Thus k = 2 and
Cu(ys) = {vs,y4,y3}. For the bipartite graph Hg 5, and M = My, where T € T(G),
CHe,,, (y') corresponds to the set of edges y # v’ in the unique cycle of G[E(T) U {y'}],
where y' € E(G) — E(T).

For any y; € V(M) NY, y; is said to be internally B-active with respect to M if w(y;) >
w(y') holds for each v/ € Y —V (M) with y; € C(y'). Let A;,,(H, M) be the set of internally

B-active members with respect to M in H.

Define a function Q(H;x,y, z) with three variable x,y, z as follows:

O(Hiz,y,2) =y X037 glesyeas() (5.2)
SCX MeUMs(H)

where dag(M) = [Apn (H[N[S]], M)| and eas(M) = [Ae,(H[N[S]], M)|.

If Q(H;1,1,2) =3 s c;z', then ¢; is the number of members M € UM (H) with |M| =
|X| — <. In particular, ¢g = [UMx(H)|.

IEQ(H;2,y,0) =2, 50 u; jx'y?, then u; ; is the number of members M € UM x (H) with
|Ain,(H,M)| =i and |Aep(H, M)| = j (ie., [INA(H,M)| =|Y|— | X]| - 7).

If Q(H;1,y,0) = > 5 djy?, then d; is the number of members M € UMx(H) with
|Aez(H, M)| = j, ie., [INAez(H,M)| = |Y| — |X| — j. By Corollary (.2} d; is the number
of members f in BPx (H) with ) .y f(z) = |Y|—|X|—j. By Corollary 5.4, if H = Hg 4,
then d; is the number of members f € GP(G,zo) with ) 5 f(z) = |[E(G)|—|V(G)|+1—j.

For any T' € T(G), an edge e € E(T) is internally active with respect to T' in G if and
only if e € A;(H, M7). Thus, Q(Hg z,; %,y,0) is the Tutte polynomial T (z,y).

Acknowledgment: The author wishes to thank the referees for their very helpful sug-

gestions.
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