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Vertex-isoperimetric stability in the hypercube

Micha l Przykucki∗ Alexander Roberts†

October 17, 2019

Abstract

Harper’s Theorem states that, in a hypercube, among all sets of a given fixed size
the Hamming balls have minimal closed neighbourhoods. In this paper we prove a
stability-like result for Harper’s Theorem: if the closed neighbourhood of a set is close
to minimal in the hypercube, then the set must be very close to a Hamming ball around
some vertex.

1 Introduction

For all natural numbers n, we define the n-dimensional hypercube Qn = (V,E) where V =
{0, 1}n and uv ∈ E if the two vertices differ in exactly one co-ordinate. For a vertex u ∈ V
inductively we let Γ0(u) = {u}, Γ1(u) = Γ(u) = {v ∈ V (Qn) : uv ∈ E(Qn)}, and for
k ≥ 2 we have Γk(u) =

⋃

v∈Γk−1(u) Γ(v) \ Γk−2(u) (so Γk(u) is the set of vertices which have

shortest path length to u equal to k). For a subset of the vertices U ⊆ V , we also write
Γ(U) =

⋃

u∈U Γ(u), and we define the closed neighbourhood of U to be U ∪ Γ(U), the set of
vertices in U together with the neighbourhood of U . Note that according to our definition,
Γ(U) is not necessarily disjoint from U ; namely, every u ∈ U with at least one neighbour in
U , will be contained in Γ(U).

Let A,B ⊆ [n] = {1, 2, . . . , n} with |A| = |B| = r. We say that A <L B, i.e., that A
precedes B in the lexicographic (or lex ) ordering on the sets of size r, if and only if

minA△B = min((A ∪ B) \ (A ∩ B)) ∈ A.

Next, let <S be the ordering of subsets of [n] such that A <S B if |A| < |B| or if |A| = |B| and
A <L B. This is known as the simplicial ordering. Since with every vertex v = (v1, . . . , vn) ∈
V (Qn) we can naturally associate a set Zv = {i ∈ [n] : vi = 1}, the orderings <L and <S

induce orderings on V (Qn): for u, w ∈ V (Qn) we have u <L w if Zu <L Zw, and u <S w
if Zu <S Zw. The following well known result of Harper [12] (see also [2, §16]) shows that
initial segments of <S have minimal closed neighbourhoods.
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Theorem 1.1. For each ℓ ∈ N, let Sℓ be the first ℓ elements of V (Qn) according to <S. If
D ⊂ V (Qn) with |D| = ℓ, then

|Γ(D) ∪D| ≥ |Γ(Sℓ) ∪ Sℓ|.

When ℓ =
(

n
k

)

and
∑k−1

i=0

(

n
i

)

= o
((

n
k

))

, Sℓ closely resembles a k-th neighbourhood (the set
of vertices at distance k from a vertex). In this instance, by the well known LYM-inequality
(see Lemma 2.1 to come), the closed neighbourhood of Sℓ has size at least

|Γ(Sℓ) ∪ Sℓ| ≥
k
∑

i=0

(

n

i

)

+

(

ℓ−
∑k−1

i=0

(

n
i

)

)

(

n
k

)

(

n

k + 1

)

=

(

n

k + 1

)

+ O

(

1

k

(

n

k

))

.

Two questions arise. Firstly, must all sets of order
(

n
k

)

with minimal closed neighbourhood
closely resemble a k-th neighbourhood of a vertex? Secondly, what happens when a set
of size

(

n
k

)

has close to the minimal closed neighbourhood? In this paper we answer the
second question through a stability theorem when k is not too large; consequently, our
result also answers the first question in the positive. Note that in Theorem 1.2 we consider
neighbourhoods of sets of vertices rather than closed neighbourhoods, but since these differ
by at most

(

n
k

)

vertices this does not change the nature of our result.

Theorem 1.2. Let ρ and κ be positive real numbers. Then there exists n0 = n0(ρ, κ) ∈ N

and δ = δ(ρ, κ) > 0 such that the following holds: Let k : N → N and p : N → [ρ,∞)

be functions such that k(n) ≤ logn
3 log logn

, k(n)
p(n)

≤ κ, and p(n)k(n)3

n
≤ δ. Then for n ≥ n0, the

following holds: If A ⊆ V (Qn) with |A| =
(

n
k(n)

)

and |Γ(A)| ≤
(

n
k(n)+1

)

+
(

n
k(n)

)

p(n), then

there exists some w ∈ V (Qn) for which we have

|Γk(n)(w) ∩ A| ≥

(

n

k(n)

)

− C

(

n

k(n) − 1

)

p(n)k(n), (1.1)

where C = 24 + 33/ρ + 32κ.

Throughout the paper we use the notation f(n) = O(g(n)) to mean that there exists

some constant C > 0 such that | f(n)
g(n)

| ≤ C for all n, and f(n) = o(g(n)) to say that f(n)
g(n)

→ 0

as n → ∞. For the ease of notation, we shall often denote k = k(n) and p = p(n).
Let us briefly discuss the sharpness and some limitations of Theorem 1.2. Let A ⊆ V (Qn)

be a set of size |A| =
(

n
k(n)

)

satisfying |Γ(A)| ≤
(

n
k(n)+1

)

+
(

n
k(n)

)

p(n). Then let w ∈ V (Qn)

be a vertex of the hypercube maximising the value of |Γk(n)(w)∩A|. By (1.1) we know that
at most C

(

n
k(n)−1

)

p(n)k(n) vertices of A lie outside of Γk(n)(w). Can we match this bound?

For example, the desired size of |Γ(A)| (up to some lower order terms) could be obtained by
building A as a disjoint union of

(

n
k(n)

)

−
(

n
k(n)−1

)

p(n) vertices in Γk(n)(w), together with the

(k(n)−1)th neighbourhoods of p(n) other vertices in the cube. This example shows that our
bound on |A \ Γk(n)(w)| is sharp up to an O(k(n)) multiplicative term. We believe that at
least for k(n) not too large, the O(k(n)) is an artefact of our proof. However, it is possible
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that for k(n) large (possibly larger than the assumptions of our theorem allow) this extra
factor in (1.1) is necessary.

In Theorem 1.2 we assume that the set A we consider satisfies |A| =
(

n
k

)

. However, by the
fact that the size of Γ(A) cannot decrease when we remove elements from A, we can obtain a
similar result for sets of size slightly larger than

(

n
k

)

, for example, of size |A| =
∑k

i=0

(

n
i

)

when
k is not too large. We do this by taking a subset B ⊂ A of size )

(

n
k

)

, applying Theorem 1.2

to B, and then observing that |Γk(n)(w) ∩A| ≥ |Γk(n)(w) ∩B| ≥
(

n
k(n)

)

− C
(

n
k(n)−1

)

p(n)k(n).

We believe that with very similar methods, results concerning sets of size α
(

n
k

)

might also
be derived. However, we anticipate the technical details would be rather tedious.

The strongly related edge-boundary version of the isoperimetric problem (see, e.g., Harper
[11], Bernstein [1], and Hart [13]) has been considered in the stability context by Ellis [6],
Ellis, Keller and Lifshitz [7], Friedgut [10], and others.

There are many other fundamental stability-type results in graph theory: for example,
the Erdős-Simonovits Stability Theorem [8] states that an H-free graph that is close to
maximum in size must in fact be close to a Turán graph. The famous Erdős-Ko-Rado
Theorem [9] concerning the maximum size of intersecting set systems has been extended
using stability results by, among others, Dinur and Friedgut [5], Bollobás, Narayanan and
Raigorodskii [3], and Devlin and Kahn [4].

The stability versions of extremal results can often be applied even more widely that
the statements they extend; indeed, the motivation for this work came from the authors’
forthcoming paper with Alex Scott [18] on the shotgun reconstruction in the hypercube.

The paper is organised as follows. In Section 2 we prove some preparatory lemmas
including a tightening of the Local LYM Lemma, and in Section 3 we prove Theorem 1.2.

We also remark that Peter Keevash and Eoin Long have independently been working
on a similar problem [15]. They use very different techniques and their results give weaker
bounds for the set-sizes we consider but work for general sized sets and also for much larger
sets (i.e., for k ≫ logn

3 log logn
, although with p = O(1/k)).

2 Preliminaries

Given 0 ≤ r ≤ n, let [n](r) be the family of all r-element subsets of [n], also called a
layer. Along with the lex ordering <L, another important ordering in finite set theory is the
colexicographic, or colex, ordering <C of layers [n](r). For A,B ∈ [n](r) we have A <C B if
A 6= B and

maxA△B = max((A ∪ B) \ (A ∩ B)) ∈ B.

An important fact connecting the orderings <L and <C on [n](r) is that if F is the initial
segment of <L on [n](r) then F c = {[n] \ A : A ∈ F} is isomorphic to the initial segment
of colex on [n](n−r) (more precisely, it is the initial segment of colex on [n](n−r) using the
“reversed alphabet” where n < n−1 < . . . < 1). Indeed, if |A| = |B| = r and A <L B then by
definition we have min((A∪B)\(A∩B)) ∈ A, which implies that min((Ac∪Bc)\(Ac∩Bc)) ∈
Bc. Treating the alphabet as “reversed” we see that indeed Ac <C Bc.
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Let us now fix some more notation that will be used throughout this paper. For F ⊆ [n](r)

we write
∂(F) = {A ∈ [n](r−1) : ∃B ∈ F , A ⊆ B}

for the shadow of F , and similarly

∂+(F) = {A ∈ [n](r+1) : ∃B ∈ F , B ⊆ A}

for the upper shadow of F .
It will be useful to be able to bound from below the size of the neighbourhood of a subset

of [n](r) by some function of the size of the subset itself. A good starting point for this is the
local LYM-inequality [17, Ex. 13.31(b)].

Lemma 2.1. Let A ⊆ [n](r), then
|∂(A)|
(

n
r−1

) ≥
|A|
(

n
r

) , (2.1)

and
|∂+(A)|
(

n
r+1

) ≥
|A|
(

n
r

) . (2.2)

Theorem 1.1 and Lemma 2.1 give us the following corollary.

Corollary 2.2. Let k ∈ N and let B ⊆ V (Qn) with |B| ≤
(

n
k

)

. Then

|Γ(B)| ≥ |B|
n

k + 1
− 2

(

n

k

)

.

Proof. We have

|Γ(B)| ≥ |B ∪ Γ(B)| − |B| ≥ |B ∪ Γ(B)| −

(

n

k

)

.

Let ℓ = |B|. By Theorem 1.1 we can bound further to obtain

|B ∪ Γ(B)| ≥ |Γ(Sℓ) ∪ Sℓ| ≥ |Γ(Sℓ)| ≥
k+1
∑

i=1

|Γ(Sℓ) ∩ [n](i)| ≥
k
∑

i=0

|∂+(Sℓ ∩ [n](i))|.

Applying (2.2) we then have

k
∑

i=0

|∂+(Sℓ ∩ [n](i))| ≥
k
∑

i=0

|Sℓ ∩ [n](i)|
n− i

i + 1
≥ |B|

n− k

k + 1
≥ |B|

n

k + 1
−

(

n

k

)

,

completing the proof.

Unfortunately the well-known inequality (2.2) is not quite strong enough for our purpose,
and so we will need the following result.
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Lemma 2.3. Let m, r, i ∈ N. If F ⊆ [n](r) has order

|F| ∈

[(

n

r

)

−

(

n− i + 1

r

)

+ 1,

(

n

r

)

−

(

n− i

r

)]

, (2.3)

then

|∂+(F)| ≥ |F|

(

n
r+1

)

−
(

n−i
r+1

)

(

n
r

)

−
(

n−i
r

) . (2.4)

We do not claim that Lemma 2.3 is unknown, but we have been unable to find a reference
and so we provide a proof here. The proof uses the following celebrated result of Kruskal
and Katona [14, 16].

Theorem 2.4. Let F ⊆ [n](r) and let A be the first |F| elements of [n](r) according to <C.
Then |∂(F)| ≥ |∂(A)|.

For the ease of reading, for 0 ≤ m ≤ n we shall use the standard notation [m,n] =
{m,m + 1, . . . , n}.

Proof of Lemma 2.3. Let m, r, i ∈ N and suppose F ⊆ [n](r) satisfies (2.3). It is easy to see
that ∂+(F) = (∂(F c))c, and so it suffices to estimate |∂(F c)|. By Theorem 2.4, the size of
the shadow of F c is at least the size of the shadow of the initial segment of size |F| in the
<C order on [n](n−r).

So suppose that H ⊂ [n](n−r) is an initial segment of <C order of size as in (2.3). We
first want to claim that

|H| =
i−2
∑

j=0

(

n− j − 1

r − 1

)

+ s,

where 1 ≤ s ≤
(

n−i
r−1

)

. Indeed, observe that the first
(

n
r

)

−
(

n−i
r

)

elements in the <L order

on [n](r) are the sets that are not fully contained in [i + 1, n]. These can be listed as the
(

n−1
r−1

)

sets that contain 1, followed by the
(

n−2
r−1

)

sets that contain 2 but do not contain 1,

etc., followed finally by the
(

n−i
r−1

)

sets A such that A ∩ [i] = {i}. A similar argument holds
for the lower bound in (2.3), which proves our claim.

For j = 0, . . . , i− 2, let

Hj =
{

A ∪ [n + 1 − j, n] : A ∈ [n− j − 1](n−r−j)
}

,

so that |Hj| =
(

n−j−1
n−r−j

)

=
(

n−j−1
r−1

)

. Then H, being the initial segment of the <C order on

[n](n−r), can be expressed as the disjoint union H =
⋃i−2

j=0Hj ∪ S, where

S ⊂
{

A ∪ [n + 2 − i, n] : A ∈ [n− i](n−r−(i−1))
}

has size s. We may then write the shadow of H as the disjoint union

∂H =

i−2
⋃

j=0

(∂Hj \ (∂H0 ∪ . . . ∪ ∂Hj−1)) ∪ (∂S \ (∂H0 ∪ . . . ∪ ∂Hi−2)) .
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For each j, ∂Hj \(∂H0∪ . . .∪∂Hj−1) contains exactly the sets of the form A∪ [n+1−j, n]
where A ∈ [n−j−1](n−r−j−1). Writing S = {A∪[n+2−i, n] : A ∈ A} (so A ⊆ [n−i](n−r−(i−1))

has |A| = s) we similarly see that

∂S \ (∂H0 ∪ . . . ∪ ∂Hi−2) = {A ∪ [n + 2 − i, n] : A ∈ ∂A}.

Hence ∂H is the disjoint union and consequently

|∂H| =
i−2
⋃

j=0

|{A ∪ [n + 1 − j, n] : A ∈ [n− j − 1](n−r−j−1)}|

∪ |{A ∪ [n + 2 − i, n] : A ∈ ∂A}|

=

i−2
∑

j=0

(

n− j − 1

n− r − j − 1

)

+ |∂A|.

Observing that (n− j − 1) − (n− r − j − 1) = r and applying (2.1), we see

|∂H| ≥
i−2
∑

j=0

(

n− j − 1

r

)

+
n− r − (i− 1)

r
|A|

=

i−2
∑

j=0

n− r − j

r

(

n− j − 1

r − 1

)

+
n− r − (i− 1)

r
s.

If we divide the above expression by |H|, we can think of this lower bound as a “weighted
average”, with the weights of the elements of Hj equal to n−r−j

r
, and the weights of the

elements of S equal to n−r−(i−1)
r

. This last weight is the smallest, hence increasing s only
decreases this average. Therefore we get

|∂H|

|H|
≥

∑i−1
j=0

n−r−j
r

(

n−j−1
r−1

)

∑i−1
j=0

(

n−j−1
r−1

)

=

∑i−1
j=0

(

n−j−1
r

)

∑i−1
j=0

(

n−j−1
r−1

) (2.5)

=

(

n
r+1

)

−
(

n−i
r+1

)

(

n
r

)

−
(

n−i
r

) ,

completing the proof of the lemma.

Corollary 2.5. The sequence
( n
r+1)−(n−i

r+1)
(n
r)−(n−i

r )
in (2.4) is non-increasing in i.

Proof. If i ≥ n− r + 1 then
(

n−i
r+1

)

=
(

n−i
r

)

= 0 and the sequence stabilises. For i ≤ n− r, by
(2.5) we have

(

n
r+1

)

−
(

n−i
r+1

)

(

n
r

)

−
(

n−i
r

) =

∑i−1
j=0

n−r−j
r

(

n−j−1
r−1

)

∑i−1
j=0

(

n−j−1
r−1

) .
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If we move from i to i + 1 on the left-hand side, in the weighted average on the right-hand
side we obtain another term

(

n−i−1
r−1

)

with weight n−r−i
r

; this weight is smaller than all the
preceding weights and so the average decreases.

The next lemma somewhat cleans up the multiplicative factor in Lemma 2.3.

Lemma 2.6. Suppose α, c ∈ (0, 1) are such that
(

n
r

)

−
(

αn
r

)

= c
(

n
r

)

. Then

(

n
r+1

)

−
(

αn
r+1

)

(

n
r

)

−
(

αn
r

) ≥
n− r

r + 1

(

1 +
1 − c

r

)

.

Proof. Suppose that
(

αn
r

)

= (1 − c)
(

n
r

)

. Then

(1 − c) =

r−1
∏

i=0

αn− i

n− i

=

r−1
∏

i=0

(

α− (1 − α)
i

n− i

)

≥
r−1
∏

i=0

(

α− (1 − α)
r

n− r

)

=

(

αn− r

n− r

)r

.

Hence we have that αn−r
n−r

≤ (1 − c)1/r. Thus

(

αn

r + 1

)

=
αn− r

r + 1
(1 − c)

(

n

r

)

= (1 − c)
αn− r

n− r

n− r

r + 1

(

n

r

)

≤ (1 − c)1+1/r

(

n

r + 1

)

.

We therefore have
(

n
r+1

)

−
(

αn
r+1

)

(

n
r

)

−
(

αn
r

) ≥

(

1 − (1 − c)1+1/r
) (

n
r+1

)

c
(

n
r

)

=
n− r

r + 1

c + (1 − c)
(

1 − (1 − c)1/r
)

c

=
n− r

r + 1

(

1 +
1 − c

c

(

1 − (1 − c)1/r
)

)

.
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A generalisation of Bernoulli’s inequality says that if x ≥ −1 and t ∈ [0, 1], then we have
(1 + x)t ≤ 1 + tx. Applying this to the above formula with x = −c and t = 1/r we obtain

(

n
r+1

)

−
(

αn
r+1

)

(

n
r

)

−
(

αn
r

) ≥
n− r

r + 1

(

1 +
1 − c

c
·
c

r

)

=
n− r

r + 1

(

1 +
1 − c

r

)

.

In the proof of Theorem 1.2 we first delete sets of vertices with too many unique neigh-
bours. The next lemma will allow us to impose that after this deletion, we get larger and
larger layers around vertices in our set.

Lemma 2.7. Let k = o(logn). For sufficiently large n the following holds. Let J be a subset
of the hypercube such that for all S ⊆ J ,

|Γ(S) \ Γ(J \ S)| ≤ |S|
n

k + 1

(

1 +
1

8k

)

. (2.6)

Then for any vertex v and j ≤ 2k, if |J ∩ Γj(v)| ∈ [1, 1
2

(

n
k

)

], then

|J ∩ Γj+2(v)| ≥
n

64k3
|J ∩ Γj(v)|.

Proof. Without loss of generality, throughout this proof we assume that v = (0, . . . , 0), so
Zv = ∅ and for all j we have Γj(v) = [n](j). Let k = o(log n) and let J be a subset of the
vertex set of the hypercube such that (2.6) holds for all S ⊆ J . The first and most significant
step in the proof will be to find a good lower bound on the ratio |∂+(J ∩Γj(v))|/|J ∩Γj(v)|,
arguing according to three different cases. After this bound is obtained, the lemma will
follow quite easily.

Assume that we have j ≤ 2k with |J ∩ Γj(v)| ∈ [1, 1
2

(

n
k

)

]. If j ≤ k − 1, then we may
appeal to (2.2) to see that for sufficiently large n,

|∂+(J ∩ Γj(v))|

|J ∩ Γj(v)|
≥

n− j

j + 1

≥
n

k
− 1

=
n

k + 1

(

1 +
1

k
−

k + 1

n

)

≥
n

k + 1

(

1 +
1

4k

)

.

Now suppose that j ≥ k. By Theorem 2.4 and the relation between the orders <C and
<L, |∂+(J ∩ Γj(v))| is minimised when J ∩ Γj(v) is the initial segment of size |J ∩ Γj(v)| in
the <L order on [n](j).

First suppose that |J ∩Γj(v)| ≤
(

n−(j+i)
k−i

)

for some i ≥ 1. Then all elements of the initial

segment of length |J ∩ Γj(v)| in the <L order on [n](j) contain the set [j − k + i]. So remove

8



[j − k + i] from all sets in J ∩ Γj(v) and instead work in [j − k + i + 1, n]. We now have
an initial segment of size |J ∩ Γj(v)| in the <L order in [j − k + i + 1, n](k−i) and so, for
sufficiently large n, (2.2), together with the fact that j ≤ 2k and i ≥ 1, give

|∂+(J ∩ Γj(v))| ≥ |J ∩ Γj(v)|
n− j

k − i + 1

≥ |J ∩ Γj(v)|
n

k + 1

(

1 +
1

4k

)

.

Finally let us consider the case when |J ∩Γj(v)| >
(

n−(j+1)
k−1

)

. Since k = o(log n), we have

|J ∩ Γj(v)| ≤ 1
2

(

n
k

)

≤ 3
5

(

n−j+k
k

)

for sufficiently large n. Therefore we see that all elements

of the initial segment of length |J ∩ Γj(v)| in the <L order on [n](j) contain the set [j − k].
Hence remove [j − k] from all sets and instead work in [j − k + 1, n]. For convenience, we
relabel our ground set so that we work with the initial segment of <L order in [m](k) where
m = n− j + k instead. For n (and so also m) large enough we have

(

m

k

)

−

(

m(1
3
)1/k

k

)

≥

(

m

k

)

−
mk

3k!
≥

3

5

(

m

k

)

=
3

5

(

n− j + k

k

)

≥ |J ∩ Γj(v)|.

By Corollary 2.5, we can apply Lemma 2.3 with F = J ∩ Γj(v), n = m, n − i = m(1
3
)1/k,

and r = k, to get

|∂+(J ∩ Γj(v))| ≥ |J ∩ Γj(v)|

(

m
k+1

)

−
(m( 1

3
)1/k

k+1

)

(

m
k

)

−
(m( 1

3
)1/k

k

)

. (2.7)

(We note that m(1
3
)1/k should be an integer to apply Lemma 2.3. This can be fixed by

considering the ceiling of m(1
3
)1/k, but for ease of reading we refrain from doing this.) Now

since k grows sufficiently slowly, for n sufficiently large we have

(

m(1
3
)1/k

k

)

=
m(1

3
)1/k(m(1

3
)1/k − 1) . . . (m(1

3
)1/k − k + 1)

k!

=

(

m

k

) k−1
∏

i=0

m(1
3
)1/k − i

m− i

≥

(

m

k

)

(

(

1
3

)1/k
− k−1

m

1 − k−1
m

)k

≥
1

4

(

m

k

)

.

So for n large enough we have
(

m
k

)

−
(

m( 1
3
)1/k

k

)

≤ 3
4

(

m
k

)

and we can apply Lemma 2.6 to
(2.7) to find

|∂+(J ∩ Γj(v))| ≥ |J ∩ Γj(v)|
m− k

k + 1

(

1 +
1 − 3

4

k

)

≥ |J ∩ Γj(v)|
n

k + 1

(

1 +
1

4k

)

.
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In all cases, we see that

|∂+(J ∩ Γj(v))| ≥ |J ∩ Γj(v)|
n

k + 1

(

1 +
1

4k

)

. (2.8)

Since j ≤ 2k, each vertex in Γj+2(v) is adjacent to at most 2(k + 1) vertices in ∂+(J ∩
Γj(v)). Together with (2.8), this gives

|Γ(J ∩ Γj(v)) \ Γ(J \ Γj(v))| ≥ |∂+(J ∩ Γj(v))| − (2k + 2)|J ∩ Γj+2(v)|

≥ |J ∩ Γj(v)|
n

k + 1

(

1 +
1

4k

)

− (2k + 2)|J ∩ Γj+2(v)|.

On the other hand, by (2.6),

|Γ(J ∩ Γj(v)) \ Γ(J \ Γj(v))| ≤ |J ∩ Γj(v)|
n

k + 1

(

1 +
1

8k

)

.

Together these inequalities give

(2k + 2)|J ∩ Γj+2(v)| ≥ |J ∩ Γj(v)|
n

(k + 1)8k
,

and so |J ∩ Γj+2(v)| ≥ n
16k(k+1)2

|J ∩ Γj(v)| ≥ n
64k3

|J ∩ Γj(v)|.

3 Proof of Theorem 1.2

In this section we prove Theorem 1.2. The nature of the proof is much like that of the
Erdős-Simonovits stability arguments [8]. Starting with a set A with close to minimal neigh-
bourhood size, we first delete sets of vertices which contribute too many unique neighbours
(neighbours unseen by the rest of A). We then build up, layer by layer, a rough structure
around a vertex of A. If A has many vertices in the j-th neighbourhood of a vertex v, then
there must be many vertices of A in Γj+2(v) (else A∩Γj(v) has too many unique neighbours).
This will mean that for each vertex v ∈ A, there is some j(v) such that almost all of A is
contained in Γ2j(v)(v), and we then show that j(v) = k for almost all v ∈ A. This means that
we can find two vertices u, v ∈ A at distance 2k from one another with j(u) = j(v) = k. A
pigeonhole argument then reveals a vertex w between u and v for which A is almost entirely
contained in Γk(w).

Proof of Theorem 1.2. Let κ, ρ > 0 and let k : N → N and p : N → [ρ,∞) be functions with
k ≤ logn

3 log logn
, k ≤ κp, and pk3/n ≤ δ for some δ > 0 small to be defined later. Suppose

A ⊆ V (Qn) with |A| =
(

n
k

)

and |Γ(A)| ≤
(

n
k+1

)

+
(

n
k

)

p. For ease of reading, we now state the
following two claims here which we will prove later.

Claim 3.1. There exists B ⊆ A with |B| ≥
(

n
k

)

− D
(

n
k−1

)

pk, where D = 16 + 32/ρ, such
that for all S ⊆ B we have

|Γ(S) \ Γ(B \ S)| ≤ |S|
n

(k + 1)

(

1 +
1

8k

)

.
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Claim 3.2. Let B ⊆ A be a set which satisfies Claim 3.1. Suppose that there is a vertex
u ∈ V (Qn) and an integer ℓ ∈ [k, 2k] such that |B ∩ Γℓ(u)| ≥ 65k3

n

(

n
k

)

. Then

|B ∩ Γℓ(u)| ≥

(

n

k

)

− C

(

n

k − 1

)

pk,

where C = 24 + 33/ρ + 32κ.

Using Claims 3.1 and 3.2, we now start by proving the following claim.

Claim 3.3. Let B ⊆ A be a set which satisfies Claim 3.1. For all v ∈ B, there exists a
j(v) ≤ k such that |Γ2j(v) ∩ B| ≥ |B| − C

(

n
k−1

)

pk.

Proof of Claim 3.3. Fix a vertex v ∈ B and let j be the least integer such that

|B ∩ Γ2(j+1)(v)| <
n

64k3
|B ∩ Γ2j(v)|.

If j ≤ k then, by Lemma 2.7, |B ∩ Γ2j(v)| must be at least 1
2

(

n
k

)

, which means that we must

have 2j ≥ k. Since for n large enough we have 1
2

(

n
k

)

≥ 65k3

n

(

n
k

)

, by Claim 3.2 we obtain
|B ∩ Γ2j(v)| ≥

(

n
k

)

− C
(

n
k−1

)

pk as desired.
Suppose now that j ≥ k + 1. Since v ∈ B, we have |B ∩ Γ0(v)| = |B ∩ {v}| = 1. Then,

by the choice of j, we obtain

|B ∩ Γ2(k+1)(v)| ≥
( n

64k3

)k+1

.

On the other hand,

|B ∩ Γ2(k+1)(v)| ≤ |B| ≤

(

n

k

)

.

Since k ≤ logn
3 log logn

, we have a contradiction for n sufficiently large, and so j ≤ k. This
completes the proof of Claim 3.3.

For j ≤ k, let H(j) = {v ∈ B : j(v) = j}. Fix j < k, and suppose that there are distinct
vertices u, w ∈ H(j) such that d(u, w) = 2j. Without loss of generality, we may assume that
Zu = ∅ and Zw = [2j]. Observe that

Γ2j(u) ∩ Γ2j(w) = {U ∪W : U ∈ [2j](j),W ∈ [2j + 1, n](j)}.

The size of this set is clearly
(

2j
j

)(

n−2j
j

)

. On the other hand

Γ2j(u) ∩ Γ2j(w) ⊇ Γ2j(u) ∩ Γ2j(w) ∩B

= B \
((

B \ Γ2j(w)
)

∪
(

B \ Γ2j(u)
))

.
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Recall that by the definition of j = j(u) = j(w) we have |B \ Γ2j(u)| ≤ C
(

n
k−1

)

pk and

|B \ Γ2j(w)| ≤ C
(

n
k−1

)

pk, therefore

|Γ2j(u) ∩ Γ2j(w)| ≥

(

n

k

)

− 2C

(

n

k − 1

)

pk

≥

(

n

k

)

(1 − 3Cδ) ≥
1

2

(

n

k

)

,

for δ sufficiently small. Putting these bounds together gives
(

2j
j

)(

n−2j
j

)

≥ 1
2

(

n
k

)

. But j < k
and so

(

2j

j

)(

n− 2j

j

)

≤ 4j

(

n

j

)

≤ 4k

(

n

k

)

k

n− k

<
1

2

(

n

k

)

.

for n sufficiently large, since k ≤ logn
3 log logn

. We have a contradiction and so no two vertices

from H(j) can be at distance 2j from each other.
Since for any v ∈ H(j) by definition we have |B \Γ2j(v)| ≤ C

(

n
k−1

)

pk, and no two vertices

from H(j) can be at distance 2j from each other, we obtain |H(j)| ≤ C
(

n
k−1

)

pk. Summing
over j < k gives

|H(k)| = |B| −
k−1
∑

j=0

|H(j)|

≥ |B| − C

(

n

k − 1

)

pk2.

Therefore for a vertex v ∈ H(k), since pk2 ≤ δ n
k
,

∣

∣Γ2k(v) ∩H(k)
∣

∣ ≥ |B ∩ Γ2k(v)| − |B \H(k)|

≥

(

n

k

)

− C

(

n

k − 1

)

pk − C

(

n

k − 1

)

pk2

≥

(

n

k

)

(1 − 3Cδ) ,

for n sufficiently large. This is positive for δ sufficiently small so that there must exist two
vertices in H(k) at distance 2k from each other. Let u, v ∈ V be such vertices and without
loss of generality, suppose that Zu = ∅ and Zv = [2k].

Any vertex in Γ2k(u) ∩ Γ2k(v) ∩ B must be of the form X ∪ Y , where X ∈ [2k](k) and
Y ∈ [2k + 1, n](k), and so any such vertex must be at distance k from some vertex in [2k](k).
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For w ∈ [2k](k), let f(w) = |{z ∈ Γ2k(u) ∩ Γ2k(v) ∩ B : d(w, z) = k}|. Then we have for
sufficiently large n and sufficiently small δ,

∑

w∈[2k](k)

f(w) = |Γ2k(u) ∩ Γ2k(v) ∩ B|

≥

(

n

k

)

− C

(

n

k − 1

)

pk

≥

(

n

k

)

(1 − 2Cδ) ≥
1

2

(

n

k

)

.

Hence by the pigeonhole principle, there exists a vertex w ∈ [2k](k) for which we have

|Γk(w) ∩ B| ≥
1

2

(

n
k

)

(

2k
k

) .

Recall that k ≤ logn
3 log logn

so that
(

2k
k

)

≤ 2n
65k3

and so |Γk(w) ∩ B| ≥ 65k3

n

(

n
k

)

for sufficiently

large n. By Claim 3.2 we have |Γk(w) ∩B| =
(

n
k

)

− C
(

n
k−1

)

pk, proving Theorem 1.2.

We now complete our argument by proving Claims 3.1 and 3.2.

Proof of Claim 3.1. Let us run the following algorithm.

Initialization Set i = 0, B0 = A;

while ∃S ⊆ Bi such that |Γ(S) \ Γ(Bi \ S)| > |S| n
(k+1)

(

1 + 1
8k

)

do

pick such an S;
set i = i + 1;
set Li = S;
set Bi = Bi−1 \ S;

end

Suppose that the algorithm terminates when i = m. Suppose that the algorithm termi-
nates when i = m. Since the sets L1, . . . , Lm, Bm partition A, for any w ∈ Γ(A) we either
have w ∈ Γ(Bm), or w /∈ Γ(Bm) and there is some maximum i such that w ∈ Γ(Li). This
gives

|Γ(A)| =
m
∑

i=1

|Γ(Li) \ Γ(Bi−1 \ Li)| + |Γ(Bm)|.

Recall that for each i < m we have |Γ(Li) \ Γ(Bi−1 \ Li)| > |Li|
n

k+1
(1 + 1

8k
), and so

|Γ(A)| ≥ |A \Bm|
n

k + 1

(

1 +
1

8k

)

+ |Γ(Bm)|.
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Corollary 2.2 gives |Γ(Bm)| ≥ |Bm|
n

k+1
− 2
(

n
k

)

. Therefore

|Γ(A)| ≥ |A \Bm|
n

k + 1
+ |A \Bm|

n

8k(k + 1)
+ |Bm|

n

k + 1
− 2

(

n

k

)

= |A|
n

k + 1
+ |A \Bm|

n

8k(k + 1)
− 2

(

n

k

)

=
n!

k!(n− k)!

n

k + 1
+ |A \Bm|

n

8k(k + 1)
− 2

(

n

k

)

≥

(

n

k + 1

)

+ |A \Bm|
n

8k(k + 1)
− 2

(

n

k

)

.

Since by assumption |Γ(A)| ≤
(

n
k+1

)

+
(

n
k

)

p and p ≥ ρ, we obtain

|A \Bm| ≤

((

n

k

)

p + 2

(

n

k

))

8k(k + 1)

n

≤

(

1 +
2

ρ

)(

n

k

)

8pk(k + 1)

n

≤

(

16 +
32

ρ

)(

n

k

)

pk2

n− k + 1

= D

(

n

k − 1

)

pk.

Setting B = Bm we obtain the desired result.

Proof of Claim 3.2. Let B be the set given by Claim 3.1 (so |B| ≥
(

n
k

)

− D
(

n
k−1

)

pk). Let

v ∈ V (Qn) be such that for some ℓ ∈ [k, 2k] we have |B ∩ Γℓ(v)| ≥ 65k3

n

(

n
k

)

. (Without
loss of generality we again assume that v = (0, . . . , 0), so that Zv = ∅.) If we also have
|B ∩ Γℓ(v)| ≤ 1

2

(

n
k

)

then by Lemma 2.7 we have

|B ∩ Γℓ+2(v)| ≥
n

64k3

65k3

n

(

n

k

)

>

(

n

k

)

which contradicts the fact that |B| ≤
(

n
k

)

. Therefore we may assume that |B∩Γℓ(v)| ≥ 1
2

(

n
k

)

and so |A ∩ Γℓ(v)| ≥ 1
2

(

n
k

)

and |A \ Γℓ(v)| ≤ 1
2

(

n
k

)

. Recall that k ≥ 1 and p ≥ ρ. Since

pk + 2 ≤ pk(1 + 2/ρ) < Cpk,

if |A ∩ Γℓ(v)| ≥
(

n
k

)

−
(

n
k−1

)

(pk + 2) then we are done. Hence, throughout the proof, we

assume |A \ Γℓ(v)| ≥
(

n
k−1

)

(pk + 2).
We can bound the size of the neighbourhood of A from below as follows: We count the

neighbours of A∩Γℓ(v) in Γℓ+1(v) (ignoring the neighbours in Γℓ−1(v)), and then we add the
neighbours of A \ Γℓ(v) that are not in Γℓ+1(v). The latter quantity can again be bounded
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from below by using the fact that any vertex u in A \ Γℓ(v) has either ℓ + 2 neighbours in
Γℓ+1(v) (if u ∈ Γℓ+2(v)), or otherwise no such neighbours at all. Therefore we have

|Γ(A)| ≥ |Γ(A ∩ Γℓ(v)) ∩ Γℓ+1(v)| + |Γ(A \ Γℓ(v))| − |A \ Γℓ(v)|(ℓ + 2). (3.1)

As we remarked at the beginning of the proof, we may assume |A \ Γℓ(v)| ≥
(

n
k−1

)

(pk +

2). By Theorem 1.1, |Γ(A \ Γℓ(v))| is at least as large as the upper shadow of the first
|A \ Γℓ(v)| −

∑k−1
i=0

(

n
i

)

elements of [n](k) according to the <L order. Write

c

(

n

k

)

= |A \ Γℓ(v)| −
k−1
∑

i=0

(

n

i

)

, (3.2)

and observe that by the assumption that |A \ Γℓ(v)| ≤ 1
2

(

n
k

)

we have c ≤ 1/2.
Let α ∈ (0, 1) be such that

c

(

n

k

)

=

(

n

k

)

−

(

αn

k

)

.

Denoting by W the set of the first c
(

n
k

)

elements of [n](k) according to the <L order, by
Lemma 2.3 and Corollary 2.5 we have

|Γ(A \ Γℓ(v))| ≥ |∂+(W )| ≥ |W |

(

n
k+1

)

−
(

αn
k+1

)

(

n
k

)

−
(

αn
k

) = c

(

n

k

)

(

n
k+1

)

−
(

αn
k+1

)

(

n
k

)

−
(

αn
k

)

(As in Lemma 2.7 we refrain from ensuring things are integer valued for ease of reading.)
Recalling the relation between α and c, Lemma 2.6 gives

|Γ(A \ Γℓ(v))| ≥ c

(

n

k

)

n− k

k + 1

(

1 +
1 − c

k

)

. (3.3)

We clearly have
|Γ(A ∩ Γℓ(v)) ∩ Γℓ+1(v)| = |∂+(A ∩ Γℓ(v))|.

As we mentioned earlier, for a family A ⊆ [n](ℓ) we have ∂+A = (∂Ac)c, thus by Theorem 2.4
the size of the upper shadow of A is minimised when Ac is isomorphic to the initial segment
of colex <C on [n](n−ℓ), i.e., when A is isomorphic to the initial segment of lex <L on [n](ℓ).

Since p is bounded from below by ρ, we have

k ≤ pk/ρ < Cpk.

Thus, if |A∩Γℓ(v)| ≥
(

n
k

)

−
(

n
k−1

)

k then again the claim holds and there is nothing to prove.

Hence, we may assume that 1
2

(

n
k

)

≤ |A ∩ Γℓ(v)| ≤
(

n
k

)

−
(

n
k−1

)

k. Applying the Pascal’s rule
k times, we have

|A ∩ Γℓ(v)| ≤

(

n

k

)

−

(

n

k − 1

)

k

=

(

n− 1

k

)

+

(

n− 1

k − 1

)

−

(

n

k − 1

)

k

≤

(

n− 1

k

)

−

(

n

k − 1

)

(k − 1) ≤ . . . ≤

(

n− k

k

)

.
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Recall also that we have k ≤ ℓ ≤ 2k. This implies that
(

n−k
k

)

≤
(

n−(ℓ−k)
k

)

. Thus every set in

the initial segment of size |A ∩ Γℓ(v)| of <L on [n](ℓ) consists of the set [ℓ− k] union one of
the

(

n−(ℓ−k)
k

)

subsets of [ℓ− k + 1, n] of size k. Hence we can again imagine removing [ℓ− k]
from all sets in our segment and instead working in [ℓ − k + 1, n]. We now have an initial
segment of size |A ∩ Γℓ(v)| in the <L order in [ℓ− k + 1, n](k) which we denote by H. Then
(2.2), together with the fact that ℓ ≤ 2k, gives

|∂+(A ∩ Γℓ(v))| ≥ |∂+(H)|

≥ |A ∩ Γℓ(v)|
n− (ℓ− k) − k

k + 1

= |A ∩ Γℓ(v)|

(

n− k

k + 1
−

ℓ− k

k + 1

)

≥ |A ∩ Γℓ(v)|
n− k

k + 1
− |A ∩ Γℓ(v)|

≥ |A ∩ Γℓ(v)|
n− k

k + 1
−

(

n

k

)

. (3.4)

The facts that |A \ Γℓ(v)| ≤ 1
2

(

n
k

)

and ℓ ≤ 2k imply that

|A \ Γℓ(v)|(ℓ + 2) ≤
1

2

(

n

k

)

(2k + 2) ≤ 2k

(

n

k

)

. (3.5)

Hence we can rewrite (3.1) using (3.3), (3.4), and (3.5), to obtain

|Γ(A)| ≥ |A ∩ Γℓ(v)|
n− k

k + 1
−

(

n

k

)

+ c

(

n

k

)

n− k

k + 1

(

1 +
1 − c

k

)

− 2

(

n

k

)

k

=

(

|A ∩ Γℓ(v)| + c

(

n

k

))

n− k

k + 1
+

c(1 − c)

k

(

n

k

)

n− k

k + 1
− 3

(

n

k

)

k.

Since we defined c
(

n
k

)

= |A \ Γℓ(v)| −
∑k−1

i=0

(

n
i

)

, and also we have c ≤ 1/2, we obtain

|Γ(A)| ≥

(

|A| −
k−1
∑

i=0

(

n

i

)

)

n− k

k + 1
+

c

2k

(

n

k + 1

)

− 3

(

n

k

)

k

≥

(

n

k + 1

)

− k

(

n

k − 1

)

n− k

k + 1
+

c

2k

(

n

k + 1

)

− 3

(

n

k

)

k

≥

(

n

k + 1

)

+
c

2k

(

n

k + 1

)

− 4

(

n

k

)

k.

Since we assume |Γ(A)| ≤
(

n
k+1

)

+
(

n
k

)

p, and k ≤ κp, we must have

c ≤
2k
(

n
k+1

)

(

n

k

)

(p + 4k) ≤
2pk(k + 1)(1 + 4κ)

n− k
.
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By the definition of c in (3.2), we then have

|A \ Γℓ(v)| =
k−1
∑

i=0

(

n

i

)

+
2pk(k + 1)(1 + 4κ)

n− k

(

n

k

)

≤ k

(

n

k − 1

)

+
8pk2(1 + 4κ)

n− k + 1

(

n

k

)

= k

(

n

k − 1

)

+ 8pk(1 + 4κ)

(

n

k − 1

)

≤

(

n

k − 1

)

pk(8 + 32κ + 1/ρ).

and so |B \ Γℓ(v)| ≤ (8 + 32κ + 1/ρ)
(

n
k−1

)

pk. Since |B| ≥
(

n
k

)

−D
(

n
k−1

)

pk, we then have

|B ∩ Γℓ(v)| ≥

(

n

k

)

− (D + (8 + 32κ + 1/ρ))

(

n

k − 1

)

pk =

(

n

k

)

− C

(

n

k − 1

)

.
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