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Abstract

Buch, Kresch, Shimozono, Tamvakis, and Yong defined Hecke insertion to formulate a com-
binatorial rule for the expansion of the stable Grothendieck polynomials G indexed by permu-
tations in the basis of stable Grothendieck polynomials G indexed by partitions. Patrias and
Pylyavskyy introduced a shifted analogue of Hecke insertion whose natural domain is the set of
maximal chains in a weak order on orbit closures of the orthogonal group acting on the complete
flag variety. We construct a generalization of shifted Hecke insertion for maximal chains in an
analogous weak order on orbit closures of the symplectic group. As an application, we identify
a combinatorial rule for the expansion of “orthogonal” and “symplectic” shifted analogues of
G, in Ikeda and Naruse’s basis of K-theoretic Schur P-functions.

1 Introduction

1.1 Hecke words

Let G4 denote the group of permutations of the positive integers P := {1,2,3,...} with finite
support. Define s; = (i,i + 1) € S for i € P so that & = (s1,52,53,...). In examples, we
write elements of &, in one-line notation and identify the word w7y - - - 7, with the permutation
m € G that has (i) = 7; for i <n and 7(i) =i for i > n.

Let Uy, denote the free Z-module with a basis given by the symbols U, for 7 € G,. Set
U; :== U, for i € P. The abelian group U, has a unique ring structure with

U,U; = {Umi it 7(i) <m(i+1) for m € G4 and i € P.

Ue if (i) > w(i+1)

This is the usual one-parameter Iwahori-Hecke algebra H, = Z[q]-span{T} : m € S} of & but
with ¢ = 0 and U, = —Tr; see [I8, Theorem 7.1]. We retain the following terminology from [4]:

Definition 1.1. A Hecke word for m € G is any word #1i2 - - - 4; such that Uy = U;, U, - - - Uj,.

Let H(7) be the set of Hecke words for m € &,. The reduced words for 7 are its Hecke words
of minimal length. Let R(m) denote the set of reduced words for 7 € So. If m = 321 € G, then

R(r) = {121,212} C {121,212,1121,1221,1211, 1212, 2212, 2112, 2122, 2121, ... } = H(n).

Let ¢(m) denote the length of a permutation 7 € S, given by the common length of every reduced
word in R(m) or, equivalently, by the number of pairs (i,7) € P x P with ¢ < j and «(i) > 7(j).
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We also write £(w) to denote the length of a word w, where we use the term word to mean a finite
sequence of positive integers.
Buch, Kresch, Shimozono, Tamvakis, and Yong proved the following in [4]:

Theorem 1.2 (See [4]). There is a bijection from Hecke words for m € G to pairs (P, Q) where
P is an increasing tableau whose row reading word is a Hecke word for m and @ is a standard
set-valued tableau with the same shape as P.

Here, an increasing tableau means an assignment of positive integers to the boxes of the Young
diagram of a partition such that rows and columns are strictly increasing. The row reading word
is formed by concatenating the rows of such a tableau, starting with the last row. A standard set-
valued tableau is defined in the same way as an increasing tableau, except that the values assigned
to each box are the disjoint blocks of a partition of {1,2,...,n} for some n, and a list of nonempty
finite sets S, 59, ... is strictly increasing if max(S;) < min(S;41) for all i.

The authors of [4] constructed a bijection called Hecke insertion to realize the preceding theo-
rem. Restricted to reduced words for permutations, Hecke insertion coincides with the Edelman-
Greene insertion algorithm, which is itself a generalization of the well-known Robinson-Schensted-
Knuth (RSK) insertion algorithm.

There are two natural “shifted” analogues of Hecke insertion, whose properties are the central
topic of this article. We provide an overview of these maps in the next two sections.

1.2 Orthogonal Hecke words

Let Joo = {2z € 6 : 22 = 1} denote the set of involutions in the symmetric group &. The
Z-module My, = Z-span{U, € U : z € T} is a right Us-module under the linear action
6 Moo X Uso = Moo with U, 6 Uy := U, -1U, U, for z € T, and 7 € 6.

Definition 1.3. An orthogonal Hecke word for z € Jo is any word i - - - 4; such that
U.=Ujy - Up,Uy Uiy - Uiy = (- (Ui, 8Uiy) 6 U3) 8-+ ) 8 Uj,.

Let G = GL,(C) be the general linear group of n X n invertible matrices and write B C G for
the subgroup of upper triangular matrices. The orthogonal group K = O, (C) acts with finitely
many orbits on the flag variety G/B. The closures of these K-orbits are in bijection with the set
of involutions J, := {z € J : 2(i) = i for i > n}. Orthogonal Hecke words (at least, those of
minimal length) for elements z € J, correspond to maximal chains in the weak order on K-orbit
closures defined in [35, §1.2] (see also [5l [31]).

Let Ho(z) be the set of orthogonal Hecke words for z € J,. To match the notation in [8] 9] [11]
we write R(z) for the set of words of minimal length in Ho(z) and refer to the elements of R(z) as
tnvolution words for z. The same sequences, read in reverse order, are called reduced S-expressions
in [I3] [17] and reduced I.-expressions in [15] 23]. For example, if z = 321 € J then

R(z) = {12,21} C {12,21,112,122,121,212,... } = Ho(2).

The following is an analogue of Theorem for orthogonal Hecke words. This statement is essen-
tially [29, Theorem 5.18], but to deduce our phrasing one also requires [7, Corollary 2.18].

Theorem 1.4 (See [7, 29]). There is a bijection from orthogonal Hecke words for z € J to pairs
(P,Q) where P is an increasing shifted tableau whose row reading word is an orthogonal Hecke
word for z and () is a standard shifted set-valued tableau with the same shape as P.



For relevant preliminaries on shifted tableaux, see Section Patrias and Pylyavskyy proved
this theorem by constructing another bijection, called shifted Hecke insertion in [7,,[11],29], between
words and pairs of shifted tableaux. We refer to this correspondence as orthogonal Hecke insertion
to distinguish it from our second shifted map.

1.3 Symplectic Hecke words

Our main results concern a new “symplectic” variant of orthogonal Hecke insertion. The domain
of this correspondence is the set of symplectic Hecke words defined as follows.

Let © : P — P be the permutation with ©(i) = i — (—1) for i € P, so that © is the infinite
product of cycles (1,2)(3,4)(5,6) - --. Define Foo = {77107 : 7 € & }. The elements of F, are the
fixed-point-free involutions of P that agree with © outside a finite set of inputs. Each permutation
in §o therefore has infinite support, so J,, and § are disjoint.

For each z € Foo, there exists an even integer n € 2P such that z(i) = O(i) for all ¢ > n.
Thus, one way to represent an element z € Fo, with a finite amount of data is to just list the
values 21z - - - z, where z; = z(i) and n is the even integer just mentioned. We identify this finite
sequence with the element of §o, that maps i +— 2; for i € [n] and i — i — (=1)* for i > n. An
arbitrary word z1z9 - - z, with even length n represents an element of §, in this way if and only
if {z1,22,..., 20} = {1,2,...,n} and whenever j = z; we have i = z; # j.

Let N be the free Z-module with basis {N, : 2 € F}. Results of Rains and Vazirani [30]
imply that My has a unique structure as a right U,,-module with multiplication satisfying

Ng,zs, if 2(i) < z(i +1)
N.U; = N. ifi+1#20)>2(i+1)#i forz€F andicP.
0 ifi+1l=20i)>z20i+1)=1

This follows specifically from [30, Theorems 4.6 and 7.1] with ¢ = 0; see also [24], §4.2].

Definition 1.5. A symplectic Hecke word for z € T is any word 4149 - - - 4; such that
N, = NoU;,U;, --- Uj,.

To explain this terminology, again let G = GL,,(C) and write B C G for the subgroup of upper
triangular matrices. When n is even, the set of orbits of the symplectic group K = Sp,,(C) acting
on G/B is naturally in bijection with the set of fixed-point-free involutions §,, := {z € Foo : 2(i) =
©(i) for i > n}. Symplectic Hecke words for elements of §, correspond to maximal chains in the
weak order on these K-orbit closures studied in [5, 3] 35].

Let Hsp(z) be the set of symplectic Hecke words for z € §o. The shortest elements of Hs,(2) are
the words 414z ... ¢ of minimal length with z = s;, - - - 54,5, 05;, 54, - - - 54,. Following the convention
of [8, 19, 12], we write Repg(2) for the set of such words, which we refer to as FPF-involution words
for z. These elements are a special case of Rains and Vazirani’s notion of reduced expressions for
quasi-parabolic sets [30, Definition 2.11]. If z = 4321 € F then

Repr(z) = {21,23} € {21,23,221,211,213,223,233,231,... } = Hsp(2).

Since NgU,; = 0 if i odd, every symplectic Hecke word begins with an even letter. The following
analogue of Theorem reappears in a more explicit form as Theorem [3.27



Theorem 1.6. There is a bijection from symplectic Hecke words for z € § to pairs (P, Q) where
P is an increasing shifted tableau whose row reading word is a symplectic Hecke word for z and @)
is a standard shifted set-valued tableau with the same shape as P.

To prove this theorem, we will construct another shifted analogue of Hecke insertion, which we
call symplectic Hecke insertion. Besides being a bijection, symplectic Hecke insertion is a length-
and descent-preserving map in an appropriate sense; see Theorem (.41

Although not all words are symplectic Hecke words, one can define orthogonal Hecke insertion as
a special case of symplectic Hecke insertion. Thus, Theorem [L.6lis a generalization of Theorem [[.4]
and our analysis of symplectic Hecke insertion lets us recover many known properties of orthogonal
Hecke insertion, along with some new ones, in Section

1.4 Stable Grothendieck polynomials

A primary application of Hecke insertion in [4] was to describe a rule for the expansion of the stable
Grothendieck polynomials G indexed by permutations m € G, in the basis of stable Grothendieck
polynomials G indexed by partitions A\. We briefly recall this rule.

A pair of words of the same length (w,i) is a compatible sequence if i = (i3 <ig < --- < 7p) is
a weakly increasing of positive integers with ¢; < ¢;41 whenever w; < wj;11. Let 8, 1, x9, 3, ...,
be commuting indeterminates. The stable Grothendieck polynomial of m € G, is the power series

Gr=Y Byl ¢ Z[B][[wr, 2, ... ]] (1.1)
(w.3)

where the sum is over compatible sequences (w,i) with w € H(n), and 2’ := x;,x;, - - - 2;,. For the
definition of G\ when ) is a partition, see Theorem

Theorem 1.7 (See [4, Theorem 1]). If 7 € G then G = 3, an NGy where the sum is
over all partitions A, and a,) is the finite number of increasing tableaux T' of shape A\ whose row
reading words are Hecke words for 7~ 1.

Remark 1.8. The power series denoted G in [2, [4] and [3] are the special cases of (1)) with
B8 = —1and B = 1, respectively. This poses no loss of generality, since as long as 8 # 0 one can
recover the generic form of G, from any specialization by a simple change of variables.

The elements of Jo, and § index two natural families of “shifted” stable Grothendieck poly-
nomials. For y € J and z € §o, write @(y) and @Fpp(z) for the common lengths of all words in
ﬁ(y) and 7A2|:p|:(z), respectively; see (B.1) for explicit formulas for these numbers. We define the
shifted stable Grothendieck polynomial of y € Joo and z € F to be the power series

GPO Z ﬁé ~Uy) and PSp = Z ﬁé —lrpr(2) 4 (1.2)

(w,7) (w,1)

where the sums are over compatible sequences with w € Ho(y) and w € Hsp(2), respectively.

Ikeda and Naruse [19] have defined a family of K -theoretic Schur P-functions GP) indexed by
strict partitions A. These functions represent Schubert classes in the K-theory of torus equivariant
coherent sheaves on the maximal orthogonal Grassmannian [19, Corollary 8.1]. As an application
of our results on symplectic Hecke insertion, we prove the following in Section



Theorem 1.9. Let y € J and z € §. Then GPyO = Z/\byAﬁw_é(y)GP)\ and GPZSp =

> czABW_EFPF(Z)GPA where the sums are over all strict partitions A, and b,y and c,) are the
finite numbers of increasing shifted tableaux 1" of shape A whose row reading words are orthogonal
Hecke words for y and symplectic Hecke words for z, respectively.

The power series GG are of interest as the stable limits of the Grothendieck polynomials &,
defined in [2I] to represent the classes of the structure sheaves of Schubert varieties in the K-
theory of the complete flag variety. The precise relationship is that G, = lim,_ oo ®1m«, where
1™ x 7 denotes the permutation with ¢ — ¢ for ¢ < m and i — m + w(i —m) for i > m. Wyser
and Yong [35] have introduced analogous K-theory representatives for the orbits of the symplectic
group acting on the complete flag variety. It is shown in [26] 27] that the stable limits of Wyser
and Yong’s polynomials coincide (up to a minor change of variables) with the symmetric functions
{GPZS P1.e5..; moreover, for each strict partition A, there exists a corresponding “Grassmannian”
involution z) € §~ such that GPZSAp = GP,.

Contrary to what one might expect, the symmetric functions {GP;) }yer., do not arise in the
same way by taking the stable limits of K-theory representatives for the orbits of the orthogonal
group acting on the complete flag variety. It is an open problem to find general formulas for
these K-theory representatives and their stable limits. At the same time, it also remains to find a
geometric interpretation of GPyO for y € Joo.

Here is a short outline of the rest of this article. Section[2] includes some preliminary results on
Hecke words and tableaux. Section [3] constructs the symplectic Hecke insertion algorithm and its
inverse. In Section [ we discuss three related maps. Section 4.1l formulates a semistandard version
of our insertion algorithm. In Section [£2] we explain how orthogonal Hecke insertion arises as a
special case of symplectic Hecke insertion. Section 3] provides a discussion of the simplified forms
of orthogonal and symplectic Hecke insertion obtained by restricting the domain of each map to
(FPF-)involution words. Section [B] finally, contains the proof of Theorem
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2 Preliminaries

We fix the following notation: let P = {1,2,3,...}, N={0,1,2,... }, and [n] ={i € P: ¢ < n} for
n € N. A word is finite sequence of positive integers. We write £(w) for the length of a word w, vw
for the concatenation of words v and w, and () for the unique empty word.

2.1 Hecke words

A congruence is an equivalence relation ~ on words with the property that v ~ w implies avb ~ awb
for all words a and b. Define =g, to be the congruence generated by the usual Coxeter braid relations
for G; i.e., let =g, denote the strongest congruence with ij =g, ji and i(i+1)i =g, (i+1)i(i+1) for



all 4, j € P with |i — j| > 1. Write =g, for the strongest congruence with ij =g, ji and jkj =g, kjk
and i =g, ¢ for all ¢, j, k € P with |i — j| > 1. The following is well-known.

Theorem 2.1. If 7 € &, then R(w) is an equivalence class under =g, while H () is an equivalence
class =g,. A word is reduced if and only if its equivalence class under =g, contains no words with
equal adjacent letters.

There are versions of this theorem for orthogonal and symplectic Hecke words. Define =q
(respectively, =p) to be the transitive closure of =g, (respectively, =g,) and the relation with
W WoW3W4 * + * Wy, ~ Wl W3Wy - - - Wy, for all words with at least two letters. The following combines
[9, Theorems 6.4 and 6.10]; the first claim is also equivalent to [I5, Theorem 3.1]:

Theorem 2.2 (See [9]). If z € T, then R(z) is an equivalence class under =g while Ho(2) is
an equivalence class under =g. A word is an involution word for some z € J, if and only if its
equivalence class under =g contains no words with equal adjacent letters.

Theorems 2.1] and 2.2] imply that there are finite sets A(z) C B(z) C G with

R(z) = |_| R(m) and Ho(z) = |_| H(m). (2.1)

TEA(2) TeB(z)

For example, A(321) = {231,312} C {231,312,321} = B(321). Following [9], we refer to the
elements of A(z) as atoms for z and to the elements of B(z) as Hecke atoms.

Fix z € J, and suppose a1 < az < ag < ... are the integers a € P such that a < z(a).
Define b; = z(a;) for each i € P and let amin(2) = (aibrasbeagbs---)~! € &, where in the word
a1byasboasbs we omit b; whenever a; = b;. Write m; = (i) for m € S, and i € P. Let ~p be the
strongest equivalence relation on S, with 7=! ~5 0¢~! whenever there are integers a < b < ¢ and
an index 7 € P such that m;m; 11742 and 0;0;110:42 both belong to {cba,bca,cab} while 7; = o;
for all j ¢ {i,i+ 1,7+ 2}. The following is another consequence of [9, Theorems 6.4 and 6.10].

Theorem 2.3 (See [9]). If z € T then amin(z) € A(z) and B(z) = {w € Suo : amin(2) ~B w}.

Define =s, (respectively, =s,) to be the transitive closure of =g, (respectively, =g,) and the
relation with wjwews - - - wy, ~ wi(wg + 2)ws - - - w, whenever w; = wy + 1. Recall that 7A2|:p|:(z) is
the set of minimal length words in Hsp(z). A word is a symplectic Hecke word (respectively, an
FPF-involution word) if it is an element of Hsp(z) (respectively, Repr(z)) for some z € Foo.

Theorem 2.4. If z € F, then ﬁFpF(z) and Hsp(z) are equivalence classes under =g, and =s,,
respectively. A word is a symplectic Hecke word if and only if its equivalence class under =g,
contains no words that begin with an odd letter. A symplectic Hecke word is an FPF-involution
word if and only if its equivalence class under =g, contains no words with equal adjacent letters.

Proof. The claim that ﬁFpF(z) is an equivalence class under =g, for each z € § follows from [9,
Theorem 6.22]. Since N is a Uso-module and NoU;U;—1 = NoU;U;+1 whenever i € 2P is even,
Theorem [ZT] implies that each set Hsp(z) for z € § is preserved by =sg,.

The following argument is similar to the proof of [9, Theorem 6.18]. Define ~p_, to be the
strongest equivalence relation on G, with 77! ~ Bepr o~! whenever there are integers a < b <
¢ < d and an even index ¢ € 2N such that w17 om; 13714 and 0;110;490;130;+4 both belong to
{adbc, becad, bdac} while m; = o for all j ¢ {i+1,i+2,i+ 3,7+ 4}. In this case there is a word w



such that H(m) and H(o) each contain one of w(2i+1)(2¢) or w(2i—1)(24) or w(2i—1)(2i+1)(27),
so H(m~ ) UH(o™t) is a subset of an equivalence class under =s,,.

No symplectic Hecke word can begin with an odd letter or with (24)(2i + 1)(2i — 1)(2¢) for any
i € P, since NoUs;Uz;11Usi—1 = N, for z € Foo with 20 + 1 = 2(2i) > 2(2i + 1) = 2i. Suppose w
is a symplectic Hecke word for 2 € Foo. Then w € H(n~!) for some 7 € S, and the preceding
observations imply that mo;_1 < mo; for all ¢+ € P and that we never have mwo;_1m9;mo;11m2;12 = cdab
for numbers a < b < ¢ < d. Using these facts, it is an exercise to show that 7! ~ Bepe ot
for some 0 € G with 09,1 < 09; and 09;_1 < 09;41 for all ¢ € P. Now define y € F to be
the fixed-point-free involution with y(o9;—1) = o9; for all i € P. [9, Theorem 6.22] asserts that
H(o™h) C Hsp(y); since v =g, w for all v € H(o™1) and since Hsp(2) is preserved by =s,, we must
have y = z. We conclude that if a; < ag < ... are the elements of {a € P: a < z(a)} listed in order
and b; = z(a;), then every symplectic Hecke word for z is equivalent under =g, to every Hecke
word for the permutation Buin(z) := (aibiagby ---)7L.

Next, consider an equivalence class under =s, that is not equal to Hsp(z) for any z € Foo.
Suppose w is a word of minimal length in this class, so that w is not a symplectic Hecke word.
Let n be minimal such that the initial subword wyws - - - w, is not a symplectic Hecke word. Since
0 € Repr(0), we have n > 0. Our minimality assumptions imply that if 7 := Sy, Su, - - Sw,_; € Soo
then wyws - - - wy,_1 is an FPF-involution word for z := 77101 € Foo and 2(wy,) = wy,+ 1. Therefore
{m(wy), m(wny1)} = {2 — 1,24} for some i € P, and we have wyws - - - wy, =g, (20 — 1)wiwsg -+ - wy—1.
We conclude that a word is not a symplectic Hecke word if and only if it is equivalent under =g,
to a word that begins with an odd letter.

A similar argument shows that a symplectic Hecke word is an involution word if and only if its
equivalence class under =g, contains no words with equal adjacent letters. We omit the details. [

Theorems 2.1] and 241 imply that there are finite subsets Appfr(2) C Brpp(z) C G with

Repr(z) = || R(m)  and  Hsp(e)= || H(m) (2.2)

wEArpr(2) mEBppE(2)

for each z € Foo. For example, Appp(4321) = {3124,1342} C {3124,1342,3142} = Brpr(4321).
We again refer to elements of Appg(z) as atoms for z and to elements of Bepp(z) as Hecke atoms.
The notation “Brpr(z)” is used in [9, §6.2] to denote a slightly larger set. If ~p. .. and Bmin(2) are
defined as above, then the proof of Theorem [2.4] reduces to the following statement:

Theorem 2.5. If 2z € T then Bumin(2) € Arpr(2) and Brpr(2) = {w € G : Pmin(2) ~Bepr W}

2.2 Tableaux

Recall that P is the set of positive integers. Throughout, we use the term tableau to mean any map
from a finite subset of P x P to P. We refer to the domain of a tableau as its shape, and write () for
the unique tableau whose shape is the empty set.

A tableau has m rows (respectively, n columns) if its shape is contained in [m]| x P but not
[m — 1] x P (respectively, P x [n] but not P x [n — 1]). The ith row and jth column of a tableau T'
refer to the tableaux formed by restricting T to the subset of its domain in {i} x P and P x {j}.

Let T be a tableau with shape D. We write (i,j) € T to mean that (i,5) € D and define
Ti; := T(i,j) for (i,5) € T. A tableau T is increasing if T, < Ty, whenever (a,b),(z,y) € T
are distinct positions with @ < x and b < y. If (i,5) € T then the tableau formed by “removing



box (i,j) from T” is the restriction of T" to D — {(i,5)}. If (i,7) € T then the tableau formed by
“replacing the value of box (i,j) in T by ¢” is the map with domain D that has (i,j) — ¢ and
agrees with 7" on the subdomain D — {(4,4)}. If (i,7) ¢ T then the tableau formed by “adding ¢ to
box (i,7) in T” is the map with domain D U {(4,7)} that extends T" and has (7, j) — c.

Example 2.6. We draw tableaux in French notation, so that each row is placed on top of the
previous one. For example, the tableau 7= {(1,1) — 1,(1,2) — 2,(2,3) — 3,(3,2) — 4} is

.3 (2.3)
j

The following tableaux are increasing with shape {(1,1),(1,2),(1,3),(2,2)}:

4 5 4 8
213[4] [2[3[4] [213]5] [1]4]9]

(2.4)

Let T be a tableau. The row reading word (respectively, column reading word) of T is the finite
sequence votw(T") (respectively, col(1)) whose entries are the values T;; as (i,7) ranges over the
domain of T such that (—i,j) (respectively, (j, —i)) increases lexicographically. For example, the
row reading word of the tableau in (2.3]) is 4312, while the column reading word of that tableau
is 1423. The tableaux in (2.4]) have row reading words 4234, 5234, 4235, and 8149, and column
reading words 2434, 2534, 2435, and 1849, respectively.

Let < be the strict partial order on P x P that has (a,b) < (z,y) if and only if a < z and
b <y and (a,b) # (x,y). A tableau T is row-column-closed if whenever (a,b),(z,y) € T and
(a,b) < (z,y), it holds that (a,y) € T. The following picture illustrates this condition. If the two
boxes in the first diagram are in the domain of 7" then 1" must also contain the third box:

0 O
e :> e
L1 - [1-0
Finally, define Cozeter-Knuth equivalence to be the strongest congruence K with cab & acb and

bea X bac and aba S bab for all positive integers a,b,c € P with a < b < c.

Lemma 2.7. If T' is an increasing, row-column-closed tableau, then vorw(7') K col(T).

Proof. Form w by reading the last column of T"in reverse order. Form U from T' by removing the last
column. Then U is also row-column-closed, col(T") = col(U)w, and by induction toro(U) K col(U).
It is a manageable exercise to check that vow(T") K voro (U)w, so row(T) K col(T). O

The northeast (respectively, southwest) diagonal reading word of a tableau T is the finite se-
quence Ong(T) (respectively, dsw(7')) whose entries are the values Tj; as (i,j) ranges over the
domain of T" such that (j — 4,4) (respectively, (j — i, —i)) increases lexicographically. Equivalently,
the northeast (respectively, southwest) diagonal reading word is formed by reading the entries of
each diagonal from left to right (respectively, top to bottom), starting with the first diagonal. For
example, the tableau 7' in (Z3]) has one(T') = 4123 and dsw(7') = 4132. The tableaux in (24
have northeast diagonal reading words 2434, 2534, 2435, and 1849, and southwest diagonal reading
words 4234, 5234, 4235, and 8149, respectively.



A tableau T is row-diagonal-closed if whenever (a,b), (z,y) € T and (a,b) < (x,y) and A :=
(y—x) — (b—a) >0, it holds that (z,y — A) € T. The following picture illustrates this condition:

A tableau T is column-diagonal-closed if whenever (a,b), (z,y) € T and (a,b) < (x,y) and A :=
(b—a)— (y—x) >0, it holds that (a + A,b) € T. The following picture illustrates this condition:

NN -

S -~ -

- - - -
Lemma 2.8. If T is an increasing, row-diagonal-closed tableau, then tot(7") K osw(T).
Proof. Form w by reading the first diagonal (i.e., the diagonal containing all (i,j) € T for which
j — i is minimal) of T in reverse order. Form U from T by removing the first diagonal. Then
U is row-diagonal-closed, dsw(7T') = wdsw(U), and by induction voto(U) K osw(U). It is an easy
exercise to check that vow(T") X wrow(U), so roro(T) X osw(T). O

Lemma 2.9. If T is an increasing, column-diagonal-closed tableau, then col(7") K one(T).

Proof. Suppose T is an increasing, column-diagonal closed tableau, and write 7' for its transpose.
By the previous lemma tow (7T) X dsw(TT). Write w* for the word given by reversing w. Then u K
v if and only if u” X vF. The lemma follows since col(T)F = vor(TT) and ONe(T)F = dsw/(T1). O

A tableau T is shifted if for some strict partition A = (A; > Ay > --- > A; > 0), the domain of
T is the shifted Young diagram SDy :={(i,i+j—1) € [[| xP:1<j < N}

Corollary 2.10. If 7' is an increasing shifted tableau then vow(7') X col(T) K one(T) X osw(T).

Proof. Such a tableau is row-column-closed, row-diagonal-closed, and column-diagonal-closed. [

A set-valued tableau is a map from a finite subset of P x P to the set of nonempty, finite subsets of
the marked alphabet Ml = {1’ <1 <2 <2< 3 <3< ...}. Most of our conventions for referring
to tableaux extend to set-valued tableaux without any complication. However, with set-valued
tableaux, it is possible to add multiple entries to a given box.

A set-valued tableau T is increasing if max(Tp,) < min(7,,) whenever (a,b), (z,y) € T are
distinct positions with a < z and b < y. The length (or degree) of a set-valued tableau T is the
sum of the sizes of its entries; we denote this quantity by [T'| := 3 ; »er [Ti;].

A shifted set-valued tableau T is standard if T is increasing, no primed number belongs to
any box of T' on the main diagonal, and exactly one of i or i’ appears in some box of T for each
i € {1,2,...,|T|}. The entries of a standard set-valued tableaux T must be pairwise disjoint
and cannot contain ¢ or i’ for any integer ¢ ¢ {1,2,...,|T|}. The following are standard shifted
set-valued tableaux with length 6 and with shape SD) for A = (2,1):

o6 6 6 456

12 | 34 123 | 4'5 1 2345 1 123




A standard shifted set-valued tableau corresponds to a directed path starting at the empty
partition in what Patrias and Pylyavskyy call the Mdbius deformation of the shifted Young lattice
[29, §5.2]. The length of this walk is the length of the set-valued tableau.

3 Symplectic Hecke insertion

3.1 Forward transitions

Consider the following class of “almost shifted” tableaux:

Definition 3.1. A shifted insertion state is a tableau that is either (a) increasing, shifted, and
nonempty or (b) formed by adding to an increasing shifted tableau with m — 2 rows and n — 2
columns an extra box (4,j) contained in either {m} x [n — 1] or [m — 1] x {n}.

A shifted insertion state is terminal in case (a). The position (i,j) in case (b) is the state’s
outer boz. A non-terminal insertion state is initial if its outer box is in the first row.

Example 3.2. The following are all shifted insertion states:

.. |23.. |23. |23.. |23.. |23.

The first and third states are initial, while the second is terminal.

To define symplectic Hecke insertion, we will give the set of shifted insertion states the structure
of a weighted directed graph whose edges are labelled by pairs of positive integers. We call this the
forward transition graph. Terminal insertion states are local sinks in this graph, while every other
state has a unique outgoing edge. Edges between shifted insertion states belong to three families,
which we now describe.

Let U be a non-terminal shifted insertion state that has m — 2 rows and n — 2 columns when its
outer box is removed. Assume the outer box of U is (i,n). Suppose Uy, is maximal in its row and
j € P is minimal with ¢ < j and (7, 5) ¢ U. The unique outgoing edge from U is then as follows:

(R1) If moving the outer box of U to position (i,j) yields an increasing shifted tableau V', then

there is an edge U M V.

(R2) If moving the outer box of U to position (i,j) does not yield an increasing shifted tableau,

then there is an edge U M) V where V is formed from U by removing the outer box (i,n).

Next, suppose there exists a minimal index z € P with (i,z) € U and U;, < U;;. Define T to be
the tableau formed from U by replacing the value in box (i,2) by U;, and then removing the outer
box (i,m). For the moment, assume i < z.

(R3) Suppose the tableau 7T is not increasing. If i +1 < x or row i + 1 of U is nonempty, then

there is an edge U B9, v where V is formed from U by moving box (i,n) to (i + 1,n) and

10



(R4) If the tableau T is increasing, then there is an edge U

changing its value to U;,, as in this picture:

U=9 .12[@3
[*[x[3]x] -

-

(i,2)

< |k

*

-2

4

51 -

E

*|3

% | -

-

=V as

T =

| *

-2

k| -
51-

E

3
3

*

k| -

Here and in the next two cases, the circled entry indicates the location of box (i, x).

(i,2)

adding an outer box in row ¢ + 1 with value Uy, as in the following picture:

-

——= V where V is formed from T by

U=\ a5 3 " -[2[35] =Voas T=9 o305
L[« [2]%] - - L[ x[2]%] - - [ *]2]%] -

(D1) If Uiy < Uip < Ujji41 (so that © =i+ 1) and row i + 1 of U is empty, but the tableau T is

6,141 . .
not increasing, then there is an edge U M V where V is formed from U by moving box

(i,m) to (m,7+ 1) and changing its value to U; ;+1, as in the following picture:
. .
-12|4]5]-

[+ [3]*] -

(4,341)

U= =V as T =

.2@5.
[k [*[3]*] - -

LWl -

[*]*

In the next three cases, assume z = i so that (i,4) € U and U, < Uj;.

(D2) If the entries U;, and U;; have the same parity but the tableau T is not increasing, then there

is an edge U ﬂ) V where V is formed from U by moving box (i,n) to (m,i+1) and changing

its value to Uj;, as in the following picture:

U=

(i,9)

=V as

T —

(D3)

477 -
[*[4]x]-

.T6T71 -
[x]4]x]-

-[6]7] - [4]

[#[4]*] -

If the entries U;, and Uy have the same parity and the tableau T is increasing, then there is

an edge U ﬂ) V where V is formed from T by adding an outer box in column i + 1 with
value Uy, as in the following picture:

U =

| -

E

-

(i,9)

7

[ *

*k .

=V as

T —

7

E

- 14
3

*k .

If the entries U;, and Uj; have different parities, then there is an edge U ﬂ V where V is

the tableau formed from U by moving box (i,n) to (m,i+1) and changing its value to U;; +1,
as in the following picture:

(D4)

[5]-
U= '
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For the last family of edges, continue to suppose U is a non-terminal shifted insertion state that
has m — 2 rows and n — 2 columns when its outer box is removed, but now assume that this outer
box is (m, j). If Up,; is maximal in its column and ¢ € [P is minimal with (¢, j) ¢ U, then the unique
outgoing edge from U is as follows:

(C1) If moving the outer box of U to position (i,j) yields an increasing shifted tableau V', then

there is an edge U M) V.

(C2) If moving the outer box of U to position (i,j) does not yield an increasing shifted tableau,
then there is an edge U M) V where V is formed from U by removing the outer box (m, j).

Finally, suppose there exists a minimal index x € P with (z,j) € U and U,,; < Uy;. For this case,

define T' to be the tableau formed from U by replacing the value in box (z,j) by U, and then

removing the outer box (m, j).

(C3) If the tableau T is not increasing, then there is an edge U ), V where V is formed from U
by moving box (m, j) to (m,j + 1) and changing its value to Uy, as in the following picture:

. z,j . .
U= [476) - - — . T4T61- - =V a T=
3

[+ [3]*] - BIE

.[474]7 -
3

Here and in the next case, the circled entry indicates the location of box (z, j).

(C4) If the tableau T is increasing, then there is an edge U x—])> V where V is formed from T by
adding an outer box in column j + 1 with value U,;, as in the following picture:

U= [2T6T+] - [d *_—VaST— [d

5
[ [*[4]*] - [ [*[4]*] - [*]*

o
*

This completes our definition of the forward transition graph.

We refer to edges of types (R1)-(R4), (D1)-(D4), and (C1)-(C4), respectively, as row transitions,
diagonal transitions, and column transitions between shifted insertion states. When the position
labeling an edge is unimportant, we simply write that U — V is forward transition.

A unique path leads from any shifted insertion state to a terminal state in the forward transition
graph. If a shifted insertion state with its outer box removed has m — 2 rows and n — 2 columns,
then this path consists of at most max{m,n} — 1 edges, so the following is well-defined:

Definition 3.3. Suppose T is an increasing shifted tableau and a € P. Write T'@® a for the (initial)
shifted insertion state formed by adding a to the second unoccupied box in the first row of T'. If
the maximal directed path from T @ a to a terminal state in the forward transition graph is

Toa="U, (11,41) U, (i2,42) U, (i3,g3),  (wgo), U, (3.1)

then we define T' & a to be the increasing shifted tableau U; and call the sequence of positions
(i1,41), (i2,52), - - -, (i, j1) the bumping path of inserting a into 7.

12



. . S . . . .
We refer to the operation transforming (7',a) to T 2 g as symplectic Hecke insertion. With
slight abuse of notation, we sometimes refer to (i1,71), (i2,72),- - -, (i;,4;) as the “bumping path of

S . . S
T <2 a7 and to the sequence of tableaux (B1) as the “insertion path of T L

Example 3.4. We have

?Sp . (6] 4 Sp o 4
A5 T 2 pEE ™ pEE T T EEE

since the corresponding insertion paths in the forward transition graph are

.Ie6l- - . D3> .Ie6l- - . 4 .Ie6l- - . 1 Ie6l- - - (°
|45.. [2]5]- - - [214]- - - [2]4]5] - -

- ap ) Ley ) ey ) o
41. - . R3 .4.. D4 41, . 2 4
[2]3]5] - [2] [2]3]5] - - [2]3]5] [2]3]5]

3.2 Symplectic K-Knuth equivalence

Recall the definition of & from before Lemma 27l Define K -Knuth equivalence to be the strongest

congruence é with cab )é acb and bca é bac and aba g bab and a é aa for all positive integers
a,b,c e P witha <b<ec.

We have symplectic analogues of these relations. Say that two words are connected by a
symplectic Cozeter-Knuth move if one word is obtained from the other in one of these ways:

e By interchanging the first two letters when these have the same parity.

e If the first two letters are a(a — 1) for some a > 2, by changing these letters to a(a + 1).

. S . S . . S .
Write 2 (respectively, %p) for the strongest equivalence relation that has v 2w (respectively,

S
v X w) whenever v and w are words that are connected by a symplectic Coxeter-Knuth move,

K
or that satisfy v K w (respectively, v &~ w). We call these relations symplectic Cozeter-Knuth

K
equivalence and symplectic K-Knuth equivalence. For example, 21 ~ 211 2 9231 X 213.
The object of this section is to prove that if T is an increasing shifted tableau and a € P is

e . . S S
a positive integer such that vow(7)a is a symplectic Hecke word, then toto(T")a 2 o (T &2 a).
This will require several lemmas involving the following technical condition:

Definition 3.5. Let T be a shifted insertion state with outer box (7, 7). Assume T with its outer
box removed has m — 2 rows and n — 2 columns, and set T}, := oo for all positions (z,y) ¢ T.

When j = n, we say that T is weakly admissible if the following conditions hold:
e Either ¢ = 1 or there exists a column x > ¢ with T;_q , < T}, < T},.

o If T;_1; = Tj, then (i,i) € T.

13



When ¢ = m, we say that T is weakly admissible if the following condition holds:
e Either T),; = Tj_1 ; or there exists a row x < j with T, ;_1 < Thp,; < Tj.
Finally, we also say that any terminal shifted insertion state is weakly admissible.

Example 3.6. All of the shifted insertion states in Example B.2] are weakly admissible. The
following states are not weakly admissible:

[ -[3] [5] - [3] T5]. . T5]. . Tl
[2[3]6] - - [214] - - 273] - - [3]4]- - 213]- - 23]

Any initial insertion state is weakly admissible. A weakly admissible insertion state cannot have
its outer box in the first column. This property naturally lends itself to inductive arguments.

Proposition 3.7. If U — V is an edge in the forward transition graph then V is weakly admissible.
Proof. This is easy to check directly from the definition of the forward transition graph. O
Our first two lemmas relate symplectic K-Knuth equivalence to row and column transitions.

Lemma 3.8. Suppose U — V is a row transition between weakly admissible shifted insertion
K
states. Then tow(U) ~ vow (V). If vow(U) is reduced then toro (U) K voro (V).

Proof. If U — V is of type (R1) then tow(U) = vow(V), and if U — V is of type (R4) then it is

easy to check that voto(U) K toro (V).
Suppose the outer box of U occurs in the first row and this row has the form

cl| e ...cp . b

where ¢; < cg < --- < c¢pandp > 0. If U = V is of type (R2), then we must have ¢, = b, so

voro(U) is not reduced and vor (U) < voro(V). If U — V is of type (R3), then ¢; = b < ¢j4q for a
unique index i € [p — 1], in which case toro(U) K voro (V).
Next suppose the outer box of U is in row k£ > 1 and rows k& — 1 and k of U have the form

Cl C2 o e CZ ...Cp . . . b

aO a/]. a2 .. a/Z ... ap .. aq

where 0 <p<ganday<a; <---<agandec; <cp<---<c¢pand a; <¢; foralliep. Ifp=0
then ¢ > 0 and a; # b since U is weakly admissible, in which case the edge U — V is necessarily
of type (R1).

Suppose U — V' is of type (R2) so that p > 0 and ¢, < b. Since U is weakly admissible, we must
have ap41 < b. If ¢, = b then vow(U) is not reduced and we again have toto(U) L voro(V). Assume
¢p < b. Then a,41 = b since otherwise moving b to the column adjacent to ¢, would produce an

increasing tableau. In this case toro(U) is not reduced since it contains the consecutive subword
bagpay - - - apb where ag < a1 < --- < ap < ¢, < b. We conclude that U — V cannot be of type (R2)

14



if vow(U) is a reduced word. To show that toro(U) £ voto (V) in this case, it suffices to check that

K
we have cpbapa - - - apb = cpapar - - - apb, or equivalently that

(p+1)(p+2)123--p(p+2) & (p+ 1)123- - p(p + 2) (3.2)

for any integer p > 2. Proving this is an instructive exercise; in brief, one should move p + 2 all
the way to the right, then apply a braid relation, then move p + 1 all the way to right, then apply
another braid relation, then use p + 1 as a witness to commute p and p + 2, then combine the two
final letters (which are both p + 2), and then finally move p + 1 back to the start of the word. We

K
conclude that vow(U) ~ vow (V).
Finally suppose U — V is of type (R3). Then p > 2 since there exists a minimal index i € [p—1]

with ¢; < b < ¢j41. If ¢; = b then we have voro(U) g vo (V') as before, so assume ¢; < b < ¢j41.
Since replacing ¢;+1 by b does not produce an increasing tableau, we must have b < a;41. Since
U is weakly admissible, b = a;41 so tot(U) is again not reduced as it contains the consecutive
subword bagay - - - a;b where ag < a1 < -+ < a; < ¢; < b. We conclude that if vow(U) is reduced

K
then voro(U) X voro (V). To show that o (U) ~ roro(V'), we must check that
K
cicg - cpbapay - - - ab = cipicica - - cpapay - - - agb. (3.3)

To prove this, let w = c¢j1oci43---¢,. We first observe that c;c;yjwbd g c;iCit1bw ,g CiCiCip1bw K
ciCir1c:bw X Ci+1CiCit1bw K Ci+1CiCit1wh K C;iCit1C;wh K ¢icir1we;b. The identity (3.2) implies that
cibapay - - - a;b = capay - - - a;b, and it is easy to check that c¢;c;41we; K CiCi+1CiW K Cit1CiCip1W =
Ci+1CiCiy1 -+ - Cp and c1Cco - - C_1Ci41C; K ¢it1c1¢1 - - - ¢i. Combining these equivalences gives (8.3)), so

voro(U) N voro (V') as desired. This completes the proof of the lemma. O

Lemma 3.9. Suppose U — V is a column transition between weakly admissible shifted insertion
states. Then col(U) L col(V'). If col(U) is reduced then col(U) X col(V).

Proof. Suppose that U with its outer box removed has m — 2 rows and n — 2 columns, and that
the outer box is (m, j). If there exists a row « with U, j_1 < U, < Uy; then the result follows by
transposing the proof of Lemma 3.8, we omit the details. Assume instead that Up,; = Uj_1;. If

(4,7) ¢ U then col(U) is not reduced and U — V is of type (C2), so col(U) L col(V). If (5,4) € U
then U — V is of type (C3), in which case col(U) X col(V). O

We need a more intricate lemma to handle diagonal transitions.

Lemma 3.10. Suppose U — V is a diagonal transition between weakly admissible shifted insertion
states. Assume (i,m) is the outer box of U, so that (i,7) € U.

S
(a) fU — V is of type (D1) and Uj;; = U; ;41 (mod 2), then toro(U) 2 col(V).

(b) If U — V is of type (D2), (D3), or (D4), all entries on the main diagonal of U have the same
parity, and either U;, = U;; (mod 2) or Uy, = U;; — 1, then vow(U) 2 col(V).
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S
In particular, if voro(U) is a symplectic Hecke word then tot(U) 2 col(V), and if voro(U) is a
symplectic Hecke word that is also a reduced word then toro(U) 2 col(V).
Proof. First assume that U — V is of type (D1) and Uy; = U; i1 (mod 2). Let ¢; = Ui, ca = Uj g1,

and b = U;,. Then ¢; < b < ¢y and row i + 1 of U is empty, so V is formed from U by removing
box (i,m) and adding c2 to an outer box in column ¢ + 1, as in the following picture:

C2
(,i+1)
U= =V.
cl c2 ... . ‘ b ‘ . cl c2 ...
* * * * * *

If i = 1 then we must have ¢; = b and it follows that vow(U) X vow (V). If i« > 1 then the last

K
paragraph of the proof of Lemma 3.8 implies that tow(U) ~ vow(V), and that if voro(U) is reduced
then toto (U) X vor (V).
The word voto(V') begins with cacica. Suppose ¢ and ¢y have the same parity. This must hold
if voro(U) is a symplectic Hecke word, since then ¢; and ¢y must both be even by Theorem 2.4l In
any case, toto(V) is then unreduced so voro(U) is also unreduced. Let T be the increasing shifted

S
tableau formed by removing the outer box of V. As tow(V) X vow (7)) and col(V) < col(T") and

voro(T) X col(T") by Corollary 210, we have toro(U) g voro(V) 2 voro (7') X col(T) N col(V). This
proves part (a).

For part (b), assume that U — V is of type (D2), (D3), or (D4) and that U has m — 2 rows.
Let a = Uj, and b; = Uj; for j € [m — 2|, so that a < b; and by < by < -+ < by—2. Suppose
bi,ba, ..., bm_s all have the same parity. Define U to be the tableau formed from U by doubling the
row and column indices of all boxes and then moving the outer box of U to position (2i —1,2i —1).
For example, writing b := b;, we might have

10
[} BT ANl BT
il T ][]

h
I

d
Il
ol Y
***‘

Let T be the increasing shifted tableau formed from U by omitting the outer box and the main

diagonal and then translating all boxes left one column. Clearly tow(U) = vow(U), and we have
one(T) K Osw(7T') by Corollary 2.T0L There are two cases to consider.

First suppose a = b; (mod 2) so that U — V is of type (D2) or (D3). If (i — 1,i) € U
then U;_1; < a, so the tableau U is increasing, row-diagonal-closed, and column-diagonal-closed.

Therefore tow(U) = tow(U) K osw(U) and col(U) K one(U) by Lemmas 28 and 29, and it

is easy to see that col(V) K col(U). To show that vow(U) 2 col(V), it suffices to check that
DNE(U) 2P DSW(U). Let 6 = by ---b;_1ab; - - - by,_o be the word formed by reading the main diagonal
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of U and let & be its reverse, so that dng(U) = 6 - One(T) and dsw(U) = & - dsw(T). Since

one(T) K Osw(7), it is enough to show that ¢ 22 §. This is straightforward since § is strictly
increasing with all letters of the same parity.

Next suppose a = b; — 1 so that U — V is of type (D4). Define V to be the tableau formed
from U by moving box (2i — 1,2i — 1) to (2i 4+ 1,2i + 1) and adding 2 to its value. For example, if
U is as in our earlier picture ([B.4) where b =0b; and a = a+ 2 = b+ 1, then we would have

Non
o
T

<
I

Observe that tow(U) = voro(U) and col(V) = col(V). Both U and V are increasing, row-diagonal-
closed, and column-diagonal-closed, so Lemmas Z8 and 23 imply that toro(U) K osw(U) and

col(V) X one(V). To show that voro(U) 2 col(V), it suffices to check that dng(V) :Svp osw(U). Let
O ="by-- bl(bz + 1)bi+1 b and & = byy_o--- bl(bl — 1)bi_1 -+ by, so that DNE(V) =4- DNE(T)

and dsw(U) = ¢ - 0sw(T). It is enough to show that § 2§ since one(T) K sw(T'), and this is

again straightforward. In either case toto(U) 2 col(V), which proves part (b).
To prove the last assertion, assume that toto(U) is a symplectic Hecke word. We have already

seen that if U — V is of type (D1), then to(U) cannot be reduced but tow (U) 2 col(V). Assume
that U — V is of type (D2), (D3), or (D4). In view of part (b), it is enough to show that the
entries on main diagonal of U are all even and that either U, is even or U;, = U; — 1. Define
a = Ui, and b; = Uj; for j € [m — 2], so that a < b; and by < by < -+ < bp—9. Since every
letter preceding b; in vow(U) is at least b; + 2, and since every letter preceding a is at least b,
Theorem 2.4] implies that b;, b;y1,...,by,_o are all even and that if a is odd then a = b; — 1. If i > 1
then b;_1 < U;—1; < a since U is weakly admissible, so it follows similarly that by, bo,...,b;—2 are
also even. The last thing to check is that b; 1 is even when ¢ > 1. If b;_; < a — 1 then this follows
as before, and if b;_; = a — 1 then we must have U;_;; = a, in which case toto(U) has the form
va(a — 1)aw for some words v and w, where the smallest letter of v is at least a + 1. Such a word
has voto(U) =g, (@ — 1)va(a — 1)w so Theorem 24 implies that b;_; = a — 1 is also even. O

We arrive at the main theorem of this section.

Theorem 3.11. Suppose T is an increasing shifted tableau and a € P is such that vow(7T)a is a
symplectic Hecke word. The following properties then hold:

S
(a) The tableau T & oais increasing and shifted with toro (7' il a) 2 vow(7T)a.
(b) If vow(7T')a is an FPF-involution word then toto(T & a) % voro(T)a.

Proof. Let T®a=Uy —>Uy —--->U =T & a be the insertion path of T ﬁ a. The initial
state T'® a is weakly admissible, so each U; is weakly admissible by Proposition 3.7l The terminal

S .. . . . .
state T <2 a is increasing and shifted by construction. Lemmas B.8, 3.9, and B0 imply that
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S

tor(T)a = to(T & a) 2 col(T & a) and that tow(T)a 2 col(T < a) if o (T)a is an FPF-
involution word. Since col(T & a) voro (T & a) by Corollary 2.10] the theorem follows. O

3.3 Inverse transitions

From any word w = wy - - - wy, one may form a tableau (--- ((0 & wy) & wa) LA -) il Wh.

If w is a symplectic Hecke word, then only certain states arise when performing this sequence of
insertions. The results in this section will show that the following technical conditions precisely
characterize such insertion states.

Definition 3.12. Let T be a shifted insertion state with outer box (i, j). Assume 7" with box (i, j)
removed has m — 2 rows and n — 2 columns. When j = n, we say that T' is admissible if:

e T is weakly admissible.
e The row reading word of T is a symplectic Hecke word.
When i = m, we say that T is admissible if:
e T is weakly admissible.
e The column reading word of T is a symplectic Hecke word.
o If T},,; = T;_1; then (j,j) ¢ T or T,; is odd, and if T,,; = T j_1 then = > 1.

In addition, we say that a terminal shifted insertion state is admissible if its row (equivalently,
column) reading word is a symplectic Hecke word.

The following propositions identify two important consequences of this definition.

Proposition 3.13. Suppose T is an admissible shifted insertion state. Assume that 71" has r rows
with its outer box removed (if one exists). The diagonal entries T;; for i € [r] are then all even.

Proof. If T has no outer box, then T is an increasing shifted tableau and vow(7") is a symplectic
Hecke word. In this case, it is easy to see that vow(7T") is equivalent under =g, to a word beginning
with Tj; for each 7 € [r]. All of these entries must be even by Theorem 2.4

Assume T has an outer box. If this box is in the last column, then the result follows by
the argument in the last paragraph of the proof of Lemma BI0l Let m = r + 2 and suppose
instead that the outer box is (m,j) for some column j. Since T is weakly admissible and since
removing the outer box leaves an increasing tableau, it follows that col(T") is equivalent under =g,
to a word beginning with Tj; for each i € [r] — {j}. Each of these numbers must be even by
Theorem 2.4l Assume (j,j) € T so that Tp,,; < Tj;. If Tp,; < Tj; — 1 then the argument above
shows that T}; is even. Assume a := T},,; = Tj; — 1. Since T is weakly admissible, this holds only
if T},; = Tj—14, but then col(T") has the form va(a + 1)aw where every letter in v is at most a — 1,
so col(T) =g, v(a+1)va(a+ 1)w and it follows by Theorem 24l that Tj; = a + 1 is again even. [

Suppose T is a shifted insertion state that occupies m — 2 rows with its outer box removed. Set
word(7) := col(T) if the outer box of T is in column m, and set tword(7') := vow(T) otherwise.

Proposition 3.14. Suppose U — V is a forward transition between shifted insertion states. As-

S
sume U is admissible. Then toord(U) X word(V') and V' is admissible.
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Proof. Proposition B.7] implies that V is weakly admissible. In view of Proposition B.I3] it follows

from Lemmas 3.8 [3.9] and B.10] that word(U) 2 word(V). This is enough to conclude that if V' is
terminal then V' is admissible. Assume V' is not terminal and that U and V with their outer boxes
removed have m — 2 rows and n — 2 columns. It remains to check the minor technical conditions
in Definition

Suppose U — V is a row transition and the outer box of V is (i,n). The only way we can have
Vin = Vi1, is if U — V is of type (R3), in which case (i,i) € V, so V is admissible.

Suppose next that U — V is a diagonal transition and the outer box of V' is (m, j), so that the
outer box of U is (j — 1,n). Since a transition of type (D2) would require us to have j — 1 > 2,
we must have V,; # V1 j_1. The only way we can have V,,; = V;_1; is if U — V is of type (D1)

r (D4), and in the first case (j,j) ¢ V, while in the second V,,; = V;_1 j—1 + 1 must be odd. We
conclude that V is admissible.

Finally, if U — V is a column transition and the outer box of V' is (m, j), then there is no way
we can have V,,; = Vi ;_1 or V,,,; = V;_1 5, so V is again admissible. O

Suppose T is a shifted tableau. A position (i,j) € P x P is an outer corner of T if (i,j) ¢ T,
either i = j or (i,j —1) € T, and either i = 1 or (i —1,j) € T. A position (i,7) € P x P is an inner
corner of T if (i,7) € T but (i,7+1) ¢ T and (i +1,j) ¢ T. The inner (outer) corners are exactly
the positions that can be removed from (added to) 7" while retaining a shifted tableau.

Lemma 3.15. Suppose U M) V is a forward transition between shifted insertion states where U
is admissible and V' is terminal. Then U — V' is a row or column transition and (i, 7) is an inner
or outer corner of V. In addition, the following properties hold:

(a) If U — V is a row transition and (i, j) is an outer corner of V, then i < j.
(b) If U — V is a column transition and (7,5) is an inner corner of V, then ¢ < j.
(¢) If U — V is a column transition and (i, 7) is an outer corner of V, then i > 1.

Proof. The edge U — V cannot be a diagonal transition when V is terminal. Suppose U — V is a
row transition. Since V' is terminal, this transition is either of type (R1) or (R2). In the first case,
(7,7) is an inner corner of V' by definition, while in the second case, (i,j) must be an outer corner
of V since U is weakly admissible. The only way it can happen that U — V is of type (R2) and
i = j is if the value of the outer box of U is equal to U;_1; and (4,7) ¢ U, but then U would not
be admissible.

Suppose U — V is a column transition, necessarily of type (C1) or (C2). It follows as in the
previous paragraph that (i,7) is an inner corner if U — V' is of type (C1) and an outer corner of V'
if U — V is of type (C2). The only way it can happen that U — V is of type (C2) and ¢ =1 is if
the value in the outer box of U is Uy j_1, but then U would not be admissible. Similarly, the only
way it can happen that U — V is of type (C1) and i = j is if the outer box of U is the largest value
in its column and all preceding columns, but then U would not even be weakly admissible. O

By Proposition B4l the family of admissible shifted insertion states spans a subgraph of the
forward transition graph. We introduce a second directed graph on these states, which we call the
inverse transition graph. We indicate that an edge goes from a state V' to U in this new graph by
writing V' ~» U, and refer to such edges as inverse transitions. It will turn out that the inverse
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transition graph is exactly the graph obtained by reversing all edges between admissible states in
the forward transition graph. This will not be obvious from the definitions, however.

For the duration of this section, let V' be an admissible shifted insertion state. If V' is initial
then it has no outgoing edges in the inverse transition graph. When V' is not initial, we define the
possible edges V' ~» U in the inverse transition graph by a series of cases corresponding to the row,
diagonal, and column transitions in the forward transition graph.

First suppose V is a terminal state, i.e., an increasing shifted tableau such that toro (V) is a
symplectic Hecke word. In the inverse transition graph, V has no incoming edges but multiple
outgoing edges, of the following types:

(iR1) For each inner corner (i,7) of V, there is an edge V ~» U where U is formed from V by
moving box (4,j) to an outer position in row . It is clear that U is also admissible and that
U M) V is a row transition of type (R1).

(iR2) For each outer corner (i,j) of V with ¢ < j, there is an edge V ~» U where U is formed from

V by adding an outer box in row ¢ whose value is whichever of V;_ ; or V; ;_1 is defined and
larger, as in the following picture where box (i, ) is circled:

V:{-**2@- . }M{-**2-~@}:U.
[ [*[x]x]6] - k[ *][*][x]6]- -

. K
In this case U 2% V is a row transition of type (R2), so we have tow(U) = vow (V) by

Lemma B.8] It follows that U is also admissible.

(iC1) For each inner corner (7, j) of V with i < j, there is an edge V ~ U where U is formed from
V' by moving box (7, ) to an outer position in column j. It is clear that U is admissible and

that U ), V is a column transition of type (C1).

(iC2) For each outer corner (i,7) of V with ¢ > 1, there is an edge V ~» U where U is formed from
V by adding an outer box in column j whose value is whichever of V;_ ; or V; ;_1 is defined
and larger, as in the following picture:

..

V= +T5O ~» [%TE =U.

*

In this case U 2 V is a column transition of type (C2), so we have col(U) £ col(V') by
Lemma 3.9l Since i > 1, it follows that U is also admissible.
(4.9) (4.9)

To distinguish between these edges, we write V' ~> U and V/ ~ U to indicate the inverse transitions
tot co

of type (iR1)-(iR2) and (iC1)-(iC2), respectively, corresponding to an inner or outer corner (i, )
of the terminal state V.

From this point on, we assume that the admissible state V' is neither terminal nor initial. All
such states will have a unique outgoing edge in the inverse transition graph. Suppose V with its
outer box removed has m — 2 rows and n — 2 columns.
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First assume that the outer box of V' is (i,n) where ¢ > 1. Since V is weakly admissible, there
exists a maximal x > ¢ with V;_; , < Vj;,, and it must hold that V;,, < Vi; and V;;, < Vi_1 z41. The
unique inverse transition starting at V' then has one of the following types:

(iR3)

(iR4)

If Vi_1 o = Vip, then there is an edge V ~» U where U is formed from V' by moving box (i, n)
to (i—1,n) and changing its value to be whichever of V;_j ;1 or Vj_g ; is defined and larger,
as in the following picture where box (i — 1, ) is circled:

V= [2@5]- - ~ -[2]4]5] - [3] =U.
L[ *[3]*] - - L[ *[3]x] - -

Here and in the next case, the circled entry indicates the location of box (i — 1,z). Since V

) i—1, . .-
is admissible, we must have (i,i) € V, so U G712, v s a row transition of type (R3). It

follows from Lemma [3.8] that U is also admissible.

If Vi1z < Vin, then there is an edge V ~ U where U is formed from V by moving box
(t—1,z) to (i — 1,n) and then box (i,n) to (i — 1,z), as in the following picture:

«|-[4] 0

* * -
V= 23]5 2[4[5] - [3] =U
[ [x]2]x]- - [ x][2]%]- -

In this case U m) V is a row transition of type (R4), so it follows by Lemma 3.8 that U

is also admissible.

Next, assume the outer box of V' is (m,j) and V;j_; j_1 < Vj,;. Since V is weakly admissible, we
must have V,,,; < V;_1 ;. The unique edge V ~ U is then of one of the following types:

(iD1)

(iD2)

Suppose Vj_1 j—1 < Vinj = Vj_1; and V,; is even, so that (j,j) ¢ V. There is then an edge
V ~ U where U is formed from V by moving box (m,j) to (j — 1,n) and changing its value
to whichever of V;_1 ;_1 or Vj_o ; is defined and larger, as in the following picture:

..

[*[*[3]- - [*]*

COf W[ -

‘_17 j . . . .
Since U u) V is a diagonal transition of type (D1) and Uj_1 j—1 = Vj_1j—1 and Uj_q; =

Vj_1,; are both even (by Proposition B.I3]), Lemma B.I0(a) implies that U is also admissible.

Suppose V;_1 ;1 = Vi, so that j > 2 since V is admissible. If V;_5 ;_1 is even, then there is
an edge V ~» U where U is formed from V by moving box (m,j) to (j — 1,n) and changing
its value to Vj_o ;_1, as in the following picture:

..
V= .[4151. - ~ -[4]5] - [2] =U

N
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(iD3)

(iD4)

(iIC3a)

. . . . j—1,7—1 . . .
In this case, since Vj_1 j_; is even by Proposition B.13, U u V' is a diagonal transition

of type (D2), so it follows from Lemma[3.I0(b) and Proposition BI3]that U is also admissible.

If Vi_1j—1 < Vpj <Vj_1,; and V,,; is even, then there is an edge V ~ U where U is formed
from V' by moving box (5 — 1,7 — 1) to (j — 1,n) and then box (m,j) to (j — 1,5 — 1), e.g.:

..
V= .[2T51. - ~ -[4]5] - [2] =U

. . . . j—1,7—1 . . .
In this case, since Vj_1 j_; is even by Proposition B.13, U u V' is a diagonal transition

of type (D3), so it follows from Lemma[3.I0(b) and Proposition BI3]that U is also admissible.

If Vi_1,-1 < Vij and Vip; is odd, then there is an edge V' ~» U where U is formed from V'
by moving box (m,j) to (j — 1,n) and changing its value to V;_1 ;—1 — 1, as in this picture:

..
V= 2151 - ~ [2]5] - [1] =U

In this case, Vj_1 -1 is even by Proposition B.I3l By Theorem 2.4l we must have V;,; =

Vj_1,j—1 + 1 since col(V') is a symplectic Hecke word. Therefore U m V is a diagonal

transition of type (D4), so Lemma B.I0(b) and Proposition B.I3] imply that U is admissible.

Suppose Vj_1 j—1 = Vpj, so that j > 2 since V is admissible. If V;_5 ;_1 is odd, then there is
an edge V ~ U where U is formed from V by moving box (m,j) to (m,j — 1) and changing
its value to Vj_o ;_1, as in the following picture:

V=Y @m0 o (T8

[ ]3] *] [*[3]*]*]

i—1,j—1 ) " .
In this case U u V is a column transition of type (C3), so Lemma implies that

col(U) K col(V'). Although Uy, j—1 = Uj—2 ;-1 and (j — 1,5 — 1) € U, the number Uy, j_ is
odd, so U is also admissible.

Finally, assume the outer box of V' is (m,j) and V;,,; < Vj_1 j—1. Since V is weakly admissible,
there exists a maximal row x < j — 1 with V, ;1 < Vj,;;, and it must hold that V;,,; < V,; and
Vinj < Vzt1,j—1. The unique inverse transition V' ~» U is then of one of the following types:

(iC3b)

Suppose V, j_1 = Vp,;, so that z > 1 since V is admissible. There is then an edge V ~ U
where U is formed from V' by moving box (m,j) to (m,j — 1) and changing its value to be
whichever of V,_1 ;1 or V. j_o is defined and larger, as in the following picture:

V=9 .pmra- (> 13- (Y

[ [ [ 1] *] [ [ 1] %] *]
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The circled entry indicates the location of box (x,j —1). In this case U M) V is a column

transition of type (C3), so it follows from Lemma B.9] that U is also admissible.

(iC4) If V, j—1 < Viy; then there is an edge V ~» U where U is formed from V by moving box
(x,j—1) to (m,j — 1) and then box (m, j) to (z,7 — 1), as in the following picture:

V=91 2@5- ("~ eraE]- (Y

[ [ 2] ] %] [ [ 2] ] %]

The circled entry indicates the location of box (x,j —1). In this case U M) V is a column

transition of type (C4), so it follows from Lemma B.9] that U is also admissible.

This completes our definition of the inverse transition graph.

Example 3.16. The four paths in the inverse transition graph starting at B ;l Z are
475 (2,3) C e - SR
|234 tot 4 iR4 4. - ’
[2]3]4]- - [2]3]5] - [4]
415 (}\,;1) .o
[2[3]4] vow -|4]5]- - ’
[2]3]4] - [4]
..
475 %”) SRR . SRR - C
|234 col 4. . . D4 .4.. iR3 41, . . ’
[2][3]4]- - [12][3]4]- - [2]3]4] - [2]
..
475 (33) .o - Coe - Co
[12[3]4] o -|1415]- - iD1 -[4]5] - [4] ( ir3 -1415]- -
[2][3]4]- - [2][3]4]- - [2]3]4] - [3]

Theorem 3.17. Let U and V be admissible insertion states. Then U(ﬁ) V is a forward transition
27-]

if and only if V ~» U is an inverse transition. If V' is terminal, then U —% V is a row (respectively,

column) transition if and only if V' (i’im) U (respectively, V' (}\%) U) is an inverse transition.
to co

Proof. We have already seen that if V' ~» U is an inverse transition then U — V is a forward
(6,9) (4,9) (4,9)
UorV =5

U is an inverse transition, then U Sy
is either a row or column transition, respectlvely To show the converse of these statements, suppose
U — V is a forward transition.

First assume V is not terminal. The edge V' ~ U is then of type (iR3), (iR4), (iD1), (iD2),
(iD3), (iD4), (iC3a), (iC3b), or (iC4). In each of these cases the required analysis is straightforward.
In detail, suppose V is as in case (iR3). Adopt the notation from that definition. Then U must

transition. Likewise, if V' is terminal and V' ~>
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have outer box (i — 1,n) and all entries of U except the outer box must be the same as in V. In
this case, we must have Vi1 ,-1 < U;_1,, and (when i > 2) V;_o, < U;_1,, since U is weakly
admissible. These inequalities cannot both be strict, so U is the unique state with V ~» U.

A similar argument shows that V' ~» U is an inverse transition if V' is as in case (iC3b), or if V/
is as in case (iC3a) and U — V' is a column transition. If V' is as in case (iC3a) and U — V is not
a column transition then U — V must be a diagonal transition, but this is impossible since (in our
notation when defining the inverse transition graph) U;_s;_1 = Vj_2 ;1 is odd (by hypothesis)
and Uj_1j—1 = Vj_1,—1 is even (by Proposition B.I3]) and the value in the outer box of U cannot
be less than Uj_5 j_1 (since U is weakly admissible).

If V is as in case (iR4) or (iC4), then there is only one insertion state U, admissible or not, such
that U — V is a forward transition. We are left to examine cases (iD1)-(iD4). Cases (iD1) and
(iD3) are dual to case (iD4). In all three cases, U — V cannot be a row or column transition since
U is weakly admissible, and the parity constraints on the main diagonal and outer box of V imply
that there exists a unique diagonal transition U — V. Therefore U must be the admissible state
for which V' ~» U is an inverse transition. Finally, if V' is as in case (iD2), then there are exactly
two weakly admissible states U such U — V is a forward transition. One of these is the state
described in case (iD2). The other is formed by moving the outer box of V' to position (m,j — 1)
and changing its value to Vj_2 j_1. Although U — V is a valid column transition in this case, the
state U is not admissible since Uy, j—1 = Uj_2j—1 is even and (j —1,j —1) € U. Hence, once again,
U must be the unique state for which V ~» U is an inverse transition.

Finally suppose V is terminal and U M V' is a row transition, so that the outer box of U has
the form (¢,m). If (¢,7) is an inner corner of V' then obviously U — V is of type (R1) and U is the
state described in case (iR1). If (i, j) is an outer corner of V, then i < j by LemmaBI0land U — V
is of type (R2). In this case, we must have U; ;1 < Uy, and (when ¢ > 1) U;_1 , < Uy, since U is
weakly admissible, but these inequalities cannot both be strict, so U is the state described in case

(iR2). We conclude that V' (@‘L) U is an inverse transition. The argument to show that V' (@;) U is
to co

)

an inverse transition when U is admissible and U —= V is a column transition is similar. O

3.4 Insertion tableaux and recording tableaux

We may now define the insertion and recording tableaux of symplectic Hecke insertion.
Definition 3.18. For a word w = wiws - - - wy, let

PSp(w):(“‘((@ﬁwl)&u@)&...)ﬁwn_

We call Ps,(w) the insertion tableau of w under symplectic Hecke insertion.

By construction, Ps,(w) is an increasing shifted tableau with at most £(w) boxes. The definition
of Psy(w) makes sense for any word but the intended domain is the set of symplectic Hecke words.

Example 3.19. We compute some examples of insertion tableaux Psp(w):
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Pop(62) Pop(46) = [4]6] Pop(67) = [6]7];

(6]
Psp(6224) =t Ps,(4626) Psy(6752)

416
315

416 617
3147 415]

As usual, the last bor in column j (respectively, row i) of a set-valued tableau T refers to the
position (7, j) where 7 € P is maximal (respectively, j € P is maximal) with (i,j) € T.

Pep(622453) = 5

Pep(462634) = 5

Pep(675245) = 5

Definition 3.20. For a symplectic Hecke word w = wiws - - - wy,, we inductively define a set-valued
tableau Qsp(w). Let Qsp(P) = () and assume n > 0. Let (i,7) be the label of the last transition in

the insertion path of Psy(wy - wp—1 <— wy,. Form Qsp(w) from Qsp(wy - - - wy—1) as follows:

(a) If the last transition is of type (R1) then add n to box (i, ).

)

(
(b) If the last transition is of type (C1) then add n’ to box (4, j).
(c) If the last transition is of type (R2) then add n to the last box in column j — 1.
(

(d) If the last transition is of type (C2) then add n’ to the last box in row i — 1.

We call Qsp(w) the recording tableau of w under symplectic Hecke insertion.

Lemma [3.T5] ensures that Qs,(w) is well-defined for any symplectic Hecke word w. By construc-
tion, Qsp(w) is a standard shifted set-valued tableau of length |Qsp(w)| = £(w).

Example 3.21. The symplectic Hecke words w of length 4 with Ps,(w) = are 2243, 2433,

[2]3
2443, 2423, 4423, 4233, 4243, and 4223. Their recording tableaux are
4 34 T 4
Qsp(2243) =  Qsp(2433) = , Qsp(2443) = . Qsp(2423) = T
12| 3 1] 2 1 (23 1 (23
4] 34 4] 4
Qsp(4423) = —,  Qsp(4233) = —, Qsp(4243) = —),  Qsp(4223) = .-
12 | 3 112 1 1(2°3 1 (23

We also refer to the operation w — (Psp(w), Qsp(w)) as symplectic Hecke insertion. Before
analyzing this map, we note two obvious corollaries of Theorem [B.1T}

S
Corollary 3.22. If w is a symplectic Hecke word then w 2 ot (Psp(w)).

Corollary 3.23. If w is an FPF-involution word then w 2 ot (Psp(w)).

It follows that if v and w are symplectic Hecke words (respectively, FPF-involution words) with
Psp(v) = Psp(w), then v 2 w (respectively, v 2 w). Two symplectic Hecke words v and w can
have v 2 w and Psp(v) # Psp(w), however. For example, we have 265213 2 265231 but

67
315(7]

6
3[617]

Psp(265213) =

and Ps,(265231) = B

. . . S . . .
This pathology does not seem to arise for the relation 2 restricted to FPF-involution words:
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Conjecture 3.24. If v and w are FPF-involution words with v 22 w then Psp(v) = Psp(w).
Remark (Note added in proof). Hiroshima has given a proof of this result in [14].

Fix z € §o. We describe how to invert the operation w — (Psp(w), Qsp(w)) for w € Hsp(2).
Let P be an increasing shifted tableau, let ) be a standard set-valued tableau with the same shape
as P, and let w be a word such that voro(P)w € Hsp(2). Suppose @ has length n > 0. Then @
contains exactly one of n or n’, and this number must appear in an inner corner (i,j). Define V;
to be the unique admissible shifted insertion state such that:

o if {n} = Q;; then P (}\’g V1 is an inverse transition;
to

o if {n'} = Q;; (so that i < j) then P (}\’%) V1 is an inverse transition;
co

. J+1 . . . . .
o if {n} C Q;; then P (g3 V1 is an inverse transition, where 7 is the row of the unique outer
toto

corner of ) in column j + 1;
o if {n'} C Qj; (so that i < j) then P (it}is)
co

of the unique outer corner of @) in row ¢ + 1.

V1 is an inverse transition, where s is the column

Now let P ~ V] ~» V5 ~s -+ ~» V; be the maximal directed path in the inverse transition graph
containing P ~» V7. The last state Vj is initial, so has the form P @ a for a shifted tableau P and an
integer a € P. Set w = aw, form ) from @ by removing whichever of n or n’ appears, and define

uninsert(P, Q,w) := (P, Q, ). (3.5)

The set-valued tableau Q is standard with length n — 1 and the same shape as P. Theorem 317
. s . .

implies that P = P 2 a, so tow(P) 2 voto(P)a by Theorem B.I1] and tow (P)w € Hsp(z). Thus,

(P, Q,w) has the same properties as (P, Q,w), so we can iterate the operation uninsert.

Definition 3.25. Let z € §o. Given an increasing shifted tableau P with vow(P) € Hsp(2) and
a standard set-valued tableau ) with the same shape, define wsp(P, Q) to be the word such that

uninsert o uninsert o - - - o uninsert(P, Q,0) = (0,0, ws, (P, Q)). (3.6)

|Q] times

Example 3.26. The word wsy(P, Q) has length |Q], so wsy(P, Q) = when P =Q = 0. If

4 4
P = and Q=
213 1 123/

then wsp (P, Q) = 4223 since applying uninsert four times has the effect of mapping

(PO (|2 | 4] | 1[23) 3) ([2[4] [1]2] 23) = ([4] [1]. 228) = (0,0,4223).

A marked tableau is a set-valued tableau whose entries are singletons, or equivalently a map
from a finite subset of P x P to the marked alphabet M= {1' <1<2 <2< ...}.
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Theorem 3.27. Let z € §o. Then w — (Psy(w), Qsp(w)) and (P, Q) — wsy(P, Q) are inverse
bijections between the set of symplectic Hecke words (respectively, FPF-involution words) for z of
length n € N and the set of pairs (P,Q) where P is an increasing shifted tableau with vow(P) €
Hsp(2) (respectively, tow(P) € Repe(z)) and Q is a standard shifted set-valued (respectively,
marked) tableau with length |Q] = n and the same shape as P.

Proof. Let P be an increasing shifted tableau, let @) be a standard set-valued tableau with the
same shape as P, and let w = wyws - - - wy, be a word with vow(P)w € Hsp(z). Suppose m > 0 and
|Q| =n —1>0. We may assume by induction that (P, Q) = (Psp(v), Qsp(v)) for some symplectic

Hecke word v. Define P := P &2 wy = Psp(vwy) and form @Q from @ according to the rules in
Definition so that @ = Qsp(vwi). Then set W := wows - - - wy, and define

insert(P,Q,w) := (P,Q,0). (3.7)

. . . S
The set-valued tableau () is standard with the same shape as P. Since totw(P)w X vor(P)uiw =

tow (P)w by Theorem B.1T] it holds that voro(P)w € Hsp(z). We can therefore iterate the operation
insert, and it is easy to see that if w € Hsp(2) then

insert o insert o - - - o insert((), }, w) = (Psp(w), Qsp(w), D). (3.8)

£(w) times

Let 7™ be the set of triples (P, Q,w) where P is an increasing shifted tableau, @ is a standard
set-valued tableau of length n with the same shape as P, and w is a word of length m such that
to(P)w € Hsp(z). The formulas (BF) and B7) give well-defined maps insert : 7"t — 7™,
and uninsert : 7,7 — 7, for all m,n € N. In view of 3.6) and (3.8), it suffices to show that
these maps are inverse bijections. The hard work needed to check this claim has already been done,
however: what needs to be shown is equivalent to Theorem [B.17]

~ S
Finally, observe that if w € Repr(2) then we must have ¢(w) = |Psy(w)| since w 2 ot (Psy(w)),
s0 Qsp(w) is a marked tableau. Conversely, if w € Hsp(2) but voro(Psy(w)) € Repr(z) and Qsp(w)
is a marked tableau then |Qsp(w)| = |Psp(w)| so w € Repr(z) since £(w) = |Qsp(w)]. O

In the following corollary, we say that a shifted tableau has shape A if its domain is the shifted
Young diagram SDy = {(i,i+j—1) e PxP:1<j < \}

Corollary 3.28. Fix n € 2P and let zpa.x = n--- 321 € Fo be the fixed-point-free involution with
Zmax(i) =n +1—i for i < n and zmax(i) = ¢ — (1) for ¢ > n. The map w — Qsp(w) is then
a length-preserving bijection from symplectic Hecke words for zpayx to standard shifted set-valued
tableaux of shape A = (n—2,n—4,...,6,4,2). Consequently, the size of 7A€|:p|:(zmax) is the number
of standard shifted marked tableaux of this shape.

One can compute |Repr (zmax)| using well-known hook length formulas; see [8, Theorem 1.4].

Proof. Consider the shifted tableau 7" whose first row is 234---(n — 1), whose second row is
456 - - - (n — 1), whose third row is 678 --- (n — 1), and so forth, and whose last row is (n —2)(n —1).
It is easy to check that vow(T) € 7A2|:p|:(zmax). It follows from Theorem 4] that every symplectic
Hecke word for zpax has at least (n —2) + (n —4) + - - - + 2 letters, each of which is at most n — 1.
Since T is the only increasing shifted tableau with (n —2) 4 (n —4) + - - - + 2 boxes, with entries in

{1,2,...,n— 1}, and with no odd entries on the main diagonal, we conclude that 7" is the insertion
tableau of every symplectic Hecke word for zpyay, so the result follows from Theorem [3.27] O
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Example 3.29. If n = 8 and w = 426175342132 then w € ﬁFpF(zmaX) and

6|7 8 |11/
(Psp(w), Qsp(w)) = 415067 , 6719 (12
21314567 1234|510/

A result of Sagan [32] describes a fast algorithm for sampling standard shifted marked tableaux
of a given shape uniformly at random. Combining this with the preceding corollary gives an
algorithm for generating FPF-involution words for n---321 € §o uniformly at random.

There is a fascinating literature on the properties of random reduced words for n --- 321 € G,
called random sorting networks by Angel, Holroyd, Romik, and Virdg in [I]. The bijections in this
article would make it possible to conduct a similar study of random (FPF-)involution words.

4 Variations

4.1 Semistandard insertion

Suppose T is an increasing shifted tableau and a € P. Let (i1,71), (i2,J2), ..., (i,7;) be the

bumping path resulting from inserting a into 7" to form T & a, as described in Definition
The next result shows that this sequence contains at most two diagonal positions, which must be
consecutive. We refer to the positions up to and including the first diagonal position as row-bumped
positions, and to any subsequent positions as column-bumped positions. If (i, j) is a row-bumped
position then i, = ¢, while if (i, j;) is a column-bumped position then j; = ¢. If t € [l — 1] is the
index of the last row-bumped position then (i, j;) = (¢,t) and j41 =t + 1.

Proposition 4.1. Maintain the setup of the previous paragraph. Suppose ¢ € [I] is the index of
the bumping path’s last row-bumped position. The following properties then hold:

(a) Onehas j; > jo > - >j >tandif t <l then t+ 1> i1 > dpypo >+ >0
(b) If vow(T')a is an FPF-involution word and ¢ < [, then i; < t + 1.

(c) If (i,7) is column-bumped and (i, j') is row-bumped then we do not have i <4 and j < j'.
In other words, no column-bumped position is weakly southwest of any row-bumped position.

(d) All positions in the bumping path are distinct.
Proof. Suppose U M Vv M W are successive edges in the maximal directed path leading from
T @ a to a terminal shifted insertion state. Then (4, ) and (i, j’) are consecutive positions in the
bumping path.

Suppose (i,7) and (i, j') are both row-bumped. If U — V is a diagonal transition of type (D1),
then ¢ +1 = j =4’ = j'. Otherwise, U — V must be a row transition and V' — W must be a row
transition or a diagonal transition of type (D2), (D3), or (D4), soi < j and i +1 =4 < j'. In this
case the value in the outer box of V' is equal to U;;, which is strictly less than U;11; = Vi1 if
(i+1,5) eV, soj <j.

Next, suppose (4, ) is row-bumped and (7', j) is column-bumped. Then U — V is a diagonal
transition of type (D2), (D3), or (D4) and V' — W is a column transition, so i = j = ¢ and
i'<j=j+1=t+1.
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Finally, suppose (i, j) and (¢, j') are both column-bumped. Then U — V and V — W are both
column transitions, so j = j + 1. The value in the outer box of V' is then equal to U;;, which is
strictly less than U; j41 = Vi jy1 if (¢, + 1) € V, so ¢ <. This completes the proof of part (a).

Suppose the insertion path BI]) of T' X uisToa= Uy (), U, (2og2) - Gugi) U;. To
prove part (b), assume tow(7")a is a symplectic Hecke word and ¢ < I. We will show that if iy = t+1
then vow(7)a is not an FPF-involution word. Suppose rows t and ¢ + 1 of U; are

wl w2 “ e wm

UO ’Ul '1}2 ... ’Um ... ’Un

for some numbers vy < v] < - < v, and wy < we < - -+ < Wy, With v; < w; for @ € [m]. Write wy

for the value in the outer box of U;, which will be in column ¢ + 1 since U;_1 — U; is a diagonal

transition of type (D2), (D3), or (D4). We must have wy < v, and the only way we can have

t+1 =441 = ig4o = -+ = d; is if v; = w;—; for all ¢ € [m + 1]. But in this case the last edge
.- S

U;—1 — U; would be a column transition of type (C2), so T’ 22 4 would have the same number of

boxes as T'. Since vow(7T')a 2 voro (T’ &) by Theorem [3.11], it would follow that vow(7")a is not an
FPF-involution word. This completes the proof of part (b).

We turn to part (¢). For each r € [I], let a, be the value in the outer box of U,_1, let b, be the
value in box (i, j,) of Uy, and let ¢, be the value in box (i, j,) of U,_1. For example, if U,_1 — U,
is a row transition and r < [, then these numbers would correspond to the following picture:

. * * . . o . * * < |@py1
(7’ 2] ) T+
U1 = B = U,.

* e | x| - | ap x | b, | %

If r € [l — 1] then either a, = b, < ¢, = ap41 Or @ < by = ¢ = apg1 OF ap < by = ¢ = apgq — 1,
with the last case occurring only if the forward transition U,_; — U, is of type (D4). Therefore
ar < b, < ¢ < apy1 and at least one inequality is strict for each r € [l — 1].

We now argue by contradiction. Let r, s € [I] be indices with r < ¢ < s. Suppose s is minimal
such that is; <14, and js < j,. Since i = jy =t and jiy1 =t + 1, we cannot have r =t <t+1=s,
sor+1 < sand b, < cs. Part (a) and the minimality of s imply that cs is the value in box (is, js)
of each of the states U, Uy41, ..., Us—1. This is impossible, however, since U, with its outer box
removed is an increasing tableau. We conclude from this contradiction that i, < is or j,. < 7s,
which is equivalent to part (c).

Since i, = r and js = s for all r;s € [[] with r <t < s, the only way that repeated positions
can occur in the bumping path is if some column-bumped position coincides with a row-bumped
position. This is impossible by part (c), so part (d) holds. O

Proposition 4.2. Suppose T is an increasing shifted tableau and a,b € P are integers with a < b
such that vow(7T')ab is a symplectic Hecke word. Let U =T S qand V = U < b, Refer to the
. S S . .
bumping paths of T’ 22 g and U <2 b as the first and second bumping paths, respectively. Then:
(a) Suppose the ith element of the first path is row-bumped and the second path has length

at least 7. Then the ith elements of both paths are row-bumped and in row ¢, and the ith
element of the first path is weakly left of the ith element of the second path.
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(b) If the last position (r1,c;) in the first path is row-bumped, then the last position (r2,cz) in
the second path is also row-bumped with r; > ro and ¢; < co.

(c) Suppose the ith element of the second path is column-bumped. The first path then has length
at least 4, the ith elements of both paths are column-bumped and in column 4, and the ith
element of the first path is weakly below the ith element of the second path.

(d) If the last position (r2,72) in the second path is column-bumped, then the last position (r1,71)
in the first path is also column-bumped with r1 < r9 and ¢; > co.

Moreover, if toro(7)ab is an FPF-involution word, then parts (a) and (c) hold with “weakly”
replaced by “strictly” and the inequalities in parts (b) and (d) are strict.

Proof. Let T®a=Uy —->U; —» --- 2 U=Uand Udb=Vy - Vi, —» -+ = V,, =V be the

insertion paths of T & a and U & b, so that the ith elements of the first and second bumping
paths are the labels of the edges U;_1 — U; and V;_; — V;. By Proposition B.14], all of the states
U; and V; are admissible.

Suppose i € [m] and the ith element of the first bumping path is row-bumped. All preceding
elements of the first bumping path are then also row-bumped. Since a < b, it is straightforward to
check that for each j € [i], the value in the outer box of U;_; is at most the value in the outer box
of V;_1, that the jth position in the second bumping path is row-bumped, and that this position
appears in row j weakly to the right of the jth position in the first bumping path. This proves
part (a).

Suppose the last position in the first bumping path is row-bumped. If m <[ then it follows from
part (a) and Proposition [4.1] that the last position in the second bumping path is also row-bumped
and occurs in a column weakly to the right of the column containing the last position in the first
bumping path. If I < m then | = m since part (a) implies that the Ith position in the second
bumping path is in the same row as and weakly to the right of the last position in the first bumping
path, which is on the boundary of U. In either case the rows of the last positions in the first and
second paths are [ and m, respectively, and we have m <. This proves part (b).

Suppose next that the ith element of the second bumping path is column-bumped. The last
position in the second bumping path is then also column-bumped. By part (b), the last position
in the first bumping path must therefore be column-bumped as well. Let r € [I] and s € [m] be the
indices of the last row-bumped positions in the first and second bumping paths. The rth position
in the first path is then (r,7) and the sth position in the second path is (s, s). Part (a) implies
that » < s and obviously s < i. The last position in the first bumping path is in column [ and
weakly below row r by Proposition [l Since this position is on the boundary of U, we must have
s < l. From these considerations, it is straightforward to check that the value in the outer box of
Uj_1 is weakly less than the value in the outer box of V;_; for each j € [i] N [I] and that the jth
position in the second bumping path is in the jthe column and weakly above the jth position in
the first bumping path for each j € [i] N [I] — [s]. Since the last position of the first bumping is on
the boundary of U, it follows that i < [, so this proves part (c).

Suppose finally that the last position in the second path is column-bumped. It follows from
part (c) that m <[ and that the mth position in the first bumping path is in a row weakly below
the last position in the second bumping path. By Proposition Il the last position in the first
bumping path is weakly below the mth position and also column-bumped. Thus the columns of
the last positions in the first and second paths are [ and m, respectively. This proves part (d).
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For the last assertion, note that if toto(7")ab is an FPF-involution word, then a < b and no

forward transitions in the insertion paths of 7' S qor U S b are of type (R2), (D1), or (C2);
moreover, transitions of type (R3), (D2), and (C3) only occur when a box adjacent to the bumped
position is equal to the value in the outer box of the previous state. Given these observations, only
minor changes to the preceding arguments are needed to deduce strict versions of parts (a), (b),
(c), and (d). We omit these details. O

The descent set of a word w = wyws - - - wy, is Des(w) = {i € [n — 1] : w; > w;11}. The descent
set of a standard shifted set-valued tableau 7" with length |T'| = n is

i appears in T and (i + 1) appears in T, or
Des(T) =< i € [n—1] : i appears in T and ¢ + 1 appears in 7" in a row above i, or

i’ appears in T and (i + 1)’ appears in 7" in a column right of i’

Observe that i € [n — 1] is not a descent of a standard set-valued tableau T if and only if i and
i+ 1 both appear in T, or 7 and i + 1 both appear in T' with i + 1 weakly southeast of ¢ (in French
notation), or ¢’ and (i + 1)’ both appear in T' with (i + 1)’ weakly northwest of .

Example 4.3. If w = 426175342132 is the word from Example and T' = Qsp(w) then
Des(w) = Des(T) ={1,3,5,6,8,9,11}.

If U is the “doubled” tableau formed from 7" by moving all primed entries in a given box (z,y) € T
to the transposed position (y, ), then i € [n —1] is a descent if and only if the row of U containing
i is strictly below the row of U containing i + 1.

Theorem 4.4. If w is a symplectic Hecke word then Des(w) = Des(Qsp(w)).

Proof. Let w be a symplectic Hecke word of length n. Both descent sets are empty if n € {0,1}
so assume n > 2. Noting that the last position in any bumping path under symplectic Hecke
insertion must be an inner or outer corner, it is straightforward to deduce from parts (b) and (d) of
Proposition d.2] that if i € [n — 1] is not a descent of w then i is not a descent of Qsp(w). Therefore
Des(Qsp(w)) C Des(w). We will show that this containment is equality using a counting argument
and induction.

Fix m € 2P. Let W, be the set of symplectic Hecke words of length n with all letters less
than m. Let W, Wg, and W;I be the sets of words w € W,, with w,_1 > wyp, w,_1 = w,, and
Wp—1 < Wy, respectively. The maps wyws - - - wy, — (Mm—wy)(Mm—ws) - - - (Mm—w,) and wyws - - - wy, —
wiws - - wy_1 are bijections W, — W and WO — W,,_1, so [W,| = 2|W, | + [Wp-1|.

Now let &), be the set of pairs (P, Q) where P is an increasing shifted tableau whose row reading
word is a symplectic Hecke word with all letters less than m and @ is a standard set-valued tableau
of length n with the same shape as P. Let X, be the set of pairs (P, Q) € X, with n —1 € Des(Q).
Let X0 be the set of pairs (P, Q) € X, such that @) contains either n — 1 and n in the same box or
(n —1)" and n’ in the same box. Finally define X} = X,, — X, — X0. Removing n and n’ from Q
gives a bijection XY — X,,_1, and altering @ as follows gives a bijection X, — X,}:

e If n’ is in the same row as n — 1 or (n — 1)’ but not the same box, remove the prime from n.

e If n — 1 is in the same column as n or n’ but not the same box, add a prime to n — 1.
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e In all other cases when n — 1 € Des(Q), interchange n — 1 with n and (n — 1)" with n’.

We conclude that |X,| = 2|X | + [Xn—_1]-

Theorem B.27 implies that w — (Psp(w), Qsp(w)) is a bijection W, — &, so [W,,| = | A}, | for all
n € N and therefore |W, | = |X,,|. Since Des(Qsp(w)) C Des(w), the map w — (Psp(w), Qsp(w))
must restrict to a bijection W, — X", so we have n—1 € Des(Qsp(w)) if and only if n—1 € Des(w)
for w € W,,. As we may assume by induction that Des(Qsp(w)) N [n — 2] = Des(w) N [n — 2], we
conclude that Des(w) = Des(Qsp(w)) for all symplectic Hecke words w. O

Theorem [4.4] allows us to formulate a semistandard version of symplectic Hecke insertion. A
weak set-valued tableau is a map from a finite subset of P x P to the set of finite, nonempty multi-
subsets of the marked alphabet M = {1’ <1 < 2/ < 2 <3 <3 < ...}. All conventions for
set-valued tableaux extend to weak set-valued tableaux without difficulty.

A weak set-valued tableau is shifted if its domain is the shifted Young diagram of a strict
partition. A shifted weak set-valued tableau T is semistandard if the following conditions hold:

o If (a,b), (x,y) € T have (a,b) # (z,y) and a < x and b <y, then max(Tgp) < min(Tyy).
e No primed number belongs to any box of 7" on the main diagonal.

e Each unprimed number appears in at most one box in each column of 7.

e Each primed number appears in at most one box in each row of T.

A semistandard shifted set-valued tableau is a semistandard shifted weak set-valued tableau whose
entries are sets. A semistandard shifted marked tableau is a semistandard shifted set-valued tableau
whose entries are all singleton sets. For example, the shifted weak set-valued tableaux

5 |66 516
U= and V= (4.1)
12]122|3¢ 21 2|6

are both semistandard, and V is a shifted marked tableau. The weight of a weak set-valued tableau
T is the map wt(7T') : P — N whose value at i € P is the number of times ¢ or ¢’ appears in T. It
is convenient to represent as wt(7") as a weak composition; for example, if U and V are as in (4.1])
then wt(U) = (1,3,1,0,1,3) and wt(V) = (0,2,0,0, 1, 2).

Let w = wyws - - - wy, be a word of length m. Define a weakly increasing factorization of w to be a
weakly increasing sequence of positive integers i = (i1 < ip < -+ < iyy,) With 45 < ;41 if j € Des(w).
The weight of such a factorization is the map p : P — N with wt(a) = [{j € [m] : i; = a}| for
a € P. The data of a weakly increasing factorization of w is equivalent to a decomposition of w
into a countable sequence of weakly increasing subwords w = w'w?w? - - - .

When w is a symplectic Hecke word of length m and i = (i1 < 9 < -+ < ip,) is a weakly
increasing factorization of w, we define Qsp(w, ) to be the shifted weak set-valued tableau formed
from Qsp(w) by replacing j by i; and j' by i for each j € [m]. E.g., if w = 426175342132 as in
Example and i = 122334556889, so that (w,7) +» (4)(26)(17)(5)(34)(2)()(13)(2), then

518
Qsp(w, i) = 41569
122338
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We now have the following refinement of Theorem

Theorem 4.5. Let z € F. The correspondence (w,i) — (Psp(w), @sp(w, 7)) is a bijection from
weakly increasing factorizations of symplectic Hecke words (respectively, FPF-involution words)
for z to pairs (P, Q) where P is an increasing shifted tableau with tow(P) € Hsp(2) (respectively,
tow(P) € Repe(z)) and Q is a semistandard shifted weak set-valued (respectively, marked) tableau
with the same shape as P. Moreover, (w,i) — Qsp(w, ) is a weight-preserving map.

Proof. Suppose i = (i <ig < --- <ip,) is a weakly increasing factorization of a symplectic Hecke
word w = wiwsy -+ wy, € Hsp(z). The shifted weak set-valued tableau Qsp(w,%) has the same
weight as i by construction. To check that Qsp(w,i) is semistandard, fix h € {i1,42,...,in} and
suppose j € N and b € P are such that h = ¢, if and only if t € {j + 1,7+ 2,...,7 + b}, so that
Des(Qsp(w)) N{j+ 1,5 +2,...,j+b—1} = &. Theorem 4 implies that there exists an integer
0 < a < b such that the primed numbers (j + 1), (j +2)’,...,(j + a)’ all appear in Qsp(w) and
the unprimed numbers j +a + 1,5 +a+2,...,5 + b all appear in Qsp(w); moreover, none of the
primed numbers can appear in different boxes in the same row of Qs,(w) and none of the unprimed
numbers can appear in different boxes in the same column. We conclude that Qsp(w, ) is weakly
increasing in the required sense. Since this weak set-valued tableau obviously contains no primed
numbers on the main diagonal, Qsp(w, ) is semistandard.

Suppose @ is a semistandard shifted weak set-valued tableau. Following [7, §3.2], define the
standardization of @ to be the standard shifted set-valued tableau st(Q) formed from @ by the
following procedure. Start by replacing all 1s appearing in @), read from left to right, by 1,2, ..., 1.
(Note that no 1’s appear in @.) Then replace all 2's appearing in @, read bottom to top, by
the primed numbers (i + 1), (¢ +2), ... (i + j)/, Then replace all 2s appearing @, read left to
right, by ¢ +j+ 1,1+ 5+ 2, ..., i+ 7+ k. Then replace all 3's appearing in Q, read bottom
to top, by the primed numbers (i +j +k+ 1), (i+j5+k+2), ..., (i+j+k+1), and so on,
continuing this substitution process for the numbers 3,4’,4,... n/, n. If st(Q) has length m, then
define 9 = (z?2 < zg < <L z;%) to be the weakly increasing sequence of positive integers with
’L]Q = a if a or @’ appears in @ and changes to j or 7’ in st(Q).

Now suppose (w,i) is a weakly increasing factorization of a symplectic Hecke word. Using
Theorem 4] it is easy to see that every semistandard shifted weak set-valued tableau whose
standardization is Qsp(w) arises as Qsp(w,) for some choice of factorization i. It follows from
Theorem that the map described in the theorem is surjective. Similarly, it is straightforward
to deduce that we recover (w,i) from (P,Q) = (Psp(w),Qsp(w,)) as w = wsp(P,st(Q)) and
i =i?. We conclude that the given map is also injective. The “marked” version of the theorem for
FPF-involution words follows by the same argument. O

4.2 Orthogonal Hecke insertion

Given a word w = wjws - - - Wy, define 2[w] to be the word (2w;)(2ws) - - - (2wy,). When T is an
increasing tableau, write 2[T] for the tableau formed by doubling every entry of 7. When T has
all even entries, define %[T] by halving every entry analogously. For example,

6] 3]
2[3412] = 6824  and %[|248|}:|124|.

If T has all even entries and a € 2P then T' ﬁ a has all even entries, so the following is well-defined:
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Definition 4.6. Given an increasing shifted tableau 7" and a € P, let T’ L= % [2[T] il 2a] .

We refer to the operation transforming (7,a) to T & 4 as orthogonal Hecke insertion. We

could also define T < a exactly as we defined T’ il a, without any doubling of letters, by slightly
modifying the forward transition graph from Section Bl All that is needed is to remove the parity
condition from transition (D3) and omit transition (D4).

Any word with all even letters is a symplectic Hecke word, so the following is also well-defined.

Definition 4.7. For any word w, define Po(w) = % [Ps, (2[w])] and Qo(w) = Qsp (2[w]).

We call Pp(w) the insertion tableau and Qo(w) the recording tableau of w under orthogonal

Hecke insertion. If w = wjws - - - wy, then Po(w) = (--- ((0 L w1) L wa) ) L w,.

Example 4.8. If w = 451132 then

3 5
Po(w) = and  Qo(w) = o
1121415 1|2 1346

Proposition 4.9. The correspondence w — (Po(w),Qo(w)) is the shifted Hecke insertion algo-
rithm introduced by Patrias and Pylyavskyy in [29] §5.3].

Proof. This is clear from comparing the rules (S1)-(S4) defining shifted Hecke insertion in [29] §5.3]
with the forward transitions (R1)-(R4), (D1)-(D4), and (C1)-(C4) described in Section Bl O

The insertion and recording tableaux Po(w), Qo(w) are denoted Ps(w), Qgs(w) in [29, §5.3],

Psk(w), Qsk(w) in [7, §2], and Psy(w), Qsm(w) in [11, §5].
Proposition lets us recover several facts about shifted Hecke insertion from what we have

already shown about symplectic Hecke insertion. Write 2 (respectively, g) for the strongest equiv-
alence relation that has v < w (respectively, v g w) whenever v and w are words such that w is
obtained from v by swapping its first two letters, or that satisfy v K w (respectively, v £ w). The
relation A is called weak K -Knuth equivalence in [3], 11}, 7).

S
If v and w are words, then v R w if and only if 2[v] 2 2[w], and v 2 wif and only if 2[v] 2 2[w].
The next three results are immediate from Theorem [B.11] and Corollaries [3.22] and [3.231

Corollary 4.10. Let T be an increasing shifted tableau and a € P.
(a) The tableau T & ais increasing and shifted and voto(T L a) 2 voro(T)a.
(b) If vow(T')a is an involution word then ror (T ﬁ) 2 voro(T)a.

Corollary 4.11 ([7, Corollary 2.18]). If w is any word then w 2 voro (Po(w)).

Corollary 4.12. If w is an involution word then w 2 vo (Po(w)).

Thus, if v and w are any words (respectively, involution words) with Po(v) = Po(w), then

(0]
v =~ w (respectively, v 2 w). The converse of this property does not hold in general (see [7, Remark
2.19]), but computations support the following, which also appears as [11, Conjecture 5.24]:
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Conjecture 4.13. If v and w are involution words with v 2 w then Po(v) = Po(w).
Remark (Note added in proof). A proof of this result now appears in [25].

Since Des(w) = Des(2[w]) for any word w, the following is clear from Theorem [£.4
Corollary 4.14 ([7, Proposition 2.24]). If w is any word then Des(w) = Des(Qo(w)).

It follows from Theorem 2.4l and Corollary that if w is a symplectic Hecke word, then the
insertion tableau Psp(w) has all even entries if and only if w has all even letters. The next result
therefore follows from Theorem and Corollary E.111

Corollary 4.15 ([29, Theorem 5.18]). Let z € Jo. Then w — (Po(w), Qo(w)) is a bijection from
the set of orthogonal Hecke words (respectively, involution words) for z of length n € N to the
set of pairs (P, @) in which P is an increasing shifted tableau with vow(P) € Ho(z) (respectively,
tow(P) € R(z)) and Q is a standard shifted set-valued (respectively, marked) tableau of length n
with the same shape as P.

Finally, there is a semistandard version of the preceding corollary. If i = (i3 <o < -+ < ip,)
is a weakly increasing factorization of a word w = wiws - - - wyy,, then 7 is also a weakly increasing
factorization of 2[w] and we define Qo(w,i) = Qsp(2[w], 7). For example, if w = 451132 as in
Example .8 and ¢ = 113335, so that (w,) corresponds to (45)()(113)()(2), then

3
101 (335 |

QO(w7 Z) =

Given Corollaries f.14] and .15, the following result has the same proof as Theorem

Corollary 4.16. Let z € Jo. The correspondence (w,i) — (Po(w),Qo(w,i)) is a bijection
from weakly increasing factorizations of orthogonal Hecke words (respectively, involution words)
for z to pairs (P, Q) where P is an increasing shifted tableau with toto(P) € Ho(z) (respectively,
tow(P) € R(z)) and Q is a semistandard shifted weak set-valued (respectively, marked) tableau
with the same shape as P. Moreover, (w,7) — Qo(w,7) is a weight-preserving map.

4.3 Involution Coxeter-Knuth insertion

Restricted to (FPF-)involution words, symplectic and orthogonal Hecke insertion reduce to less com-
plicated algorithms, which refer to as (FPF-)involution Cozxeter-Knuth insertion. Propositions 17|
and describe these bumping procedures, which are shifted analogues of Edelman-Greene in-
sertion [6] and “reduced word” generalizations of Sagan- Worley insertion 33, [34].

Proposition 4.17 (FPF-involution Coxeter-Knuth insertion). Let a be a positive integer. Suppose
L is a row or column of an increasing tableau. One inserts a into L as follows:

Find the first entry b of L with a < b. If no such entry exists then add a to the end of L and
say that no entry is bumped, but refer to the added box as the bumped position. Otherwise:

e If a = b then leave L unchanged but say that a4+ 1 is bumped from the position directly
following the position of b.
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e If L is a row (rather than a column) and b is the first entry of L and a # b (mod 2),
then leave L unchanged but say that a 4+ 2 is bumped from the position of b.

e In all other cases replace b by a in L and say that b is bumped.
Now suppose T is an increasing shifted tableau such that toro(7)a is an FPF-involution word.
1. Start by inserting a into the first row of T" according to the rules above.

2. If no entry is bumped then the process terminates. Otherwise, an entry is bumped from some
position of T'. If this position is on the diagonal or if a position bumped in an earlier step
was on the diagonal, then we continue by inserting the bumped entry into the next column;
otherwise, we continue by inserting the bumped entry into the next row.

3. Repeat step 2 until we insert into a row or column and no entry is bumped.

The resulting tableau is T <2 @ and the sequence of bumped positions is the corresponding bumping
path from Definition 3.3

Using Theorem 2.4] and Lemmas B.8, B9, and BI0] it is straightforward but fairly tedious to
deduce that the output of this algorithm coincides with Definition when toto(7")a is an FPF-
involution word. We leave these details to the reader.

Example 4.18. We compute Ps,(w) and Qsp(w) for the FPF-involution word w = 42312:

- - |2;l - |2§4| - |2§Z = I542312)
3] 3] 3]5
— — |1 9! — |1 o 4/| — |1 Ay = QSP(42312)

The bumping path of Ps,(4231) <% 2 is (1,2), (2,2), (2,3).

Proposition 4.19 (Involution Coxeter-Knuth insertion). Let a be a positive integer. Suppose L
is a row or column of an increasing tableau. One inserts a into L as follows:

Find the first entry b of L with a < b. If no such entry exists then add a to the end of L and
say that no entry is bumped. Otherwise:

e If a = b then leave L unchanged but say that a 4+ 1 is bumped from the position of b.
e If a # b then replace b by a in L and say that b is bumped.

Now suppose T is an increasing shifted tableau such that tor(7)a is an involution word.
1. Start by inserting a into the first row of T" according to the rules above.

2. If no entry is bumped then the process terminates. Otherwise, an entry is bumped from some
position of T'. If this position is on the diagonal or if a position bumped in an earlier step
was on the diagonal, then we continue by inserting the bumped entry into the next column;
otherwise, we continue by inserting the bumped entry into the next row.
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3. Repeat step 2 until we insert into a row or column and no entry is bumped.
The resulting tableau is T’ & 4 from Definition
We omit the proof of the proposition, which is straightforward from the results in Section

Remark 4.20. It would be natural to define the bumping path of T & 4 to be the bumping path

of 2[T] 22 2. However, this sequence does not coincide with the sequence of bumped positions in
Proposition .19] although the two paths are closely related.

Example 4.21. We compute Po(w) and Qo(w) for the involution word 42321:

4] 4 4
— — 203|234 [1[23[4] = Po(42321)

; 3] 3 3 _
_> — O T OEE  OpEE - Qous)

5 Stable Grothendieck polynomials

Recall the definition of the stable Grothendieck polynomial G for m € So from (LI). Let Sym be
the free Z-module of arbitrary (formal) linear combinations of the Schur functions sy. This module
is a subring of Z[f][[z1, z2,...]], and one has G, € Sym for all 7 € &, [4} §2].

Definition 5.1. Given a partition A with £ parts, let G\ := G, where ) € G is the permutation
with m) (i) =i 4+ Ag1—; for i € [k] and mx(i) < ma(i + 1) for i # k.

For a (weak) set-valued tableau T, define 7 = i jer HeeTij x| where |e| = [¢/| = e for e € P.

If U and V are as in @I) then 2V = 23732523 and 2V = 232522, Given a partition ), define

SetSSYT(A) to be the family of set-valued tableaux T' with domain Dy := {(7,7) e PxP: j < \;},
whose entries are subsets of P, that are semistandard in the sense that if (a,b),(x,y) € T are
distinct with a < 2 and b < y, then max(Ty;) < min(7;,) with equality only if a = =.

Theorem 5.2 (Buch [2, Theorem 3.1]). If A is a partition then G\ = > pesessyr()) BITI=g T,

For m € &, define 7* € G, by conjugating 7 by n - - - 321 where n € N is minimal with 7 (i) = ¢
for all i > n; the map wywg -+ - w; = (n—wi)(n—wz) -+ (n—w) is then a bijection H(m) — H (7).
Define w : Sym — Sym to be the Z[f]-linear involution with w (D, cxsy) = >, casyr for all
coefficients ¢y € Z[f], where AT is the usual partition transpose.

Lemma 5.3. If 7 € 6 then w(Gr) = G, (1_9”%, 1_%@,...) = G~ (ﬁ, By ) .

Proof. For n € P and S C [n — 1], the associated fundamental quasi-symmetric function is the
power series Lg, = > Xj T, - 2;, where the sum is over all weakly increasing sequences of
positive integers 7; < ip < -+ <, with ¢ <441 whenever j € S. Let QSym denote the Z-module
generated by these functions. It is well-known that w extends the linear map QSym — QSym with
Lsn = Lip—1\s,n 22, §3.6]. Since G is a symmetric linear combination of fundamental quasi-

symmetric functions, w(Gr) = > (w,3) BHUw)=4) 2t where the sum is over pairs of words in which w =
wiws - --w; € H(r™') and i = (iy < iy < --- < 4;) is such that ij < ij41 whenever w; < wjyq. This

is equal to G -1 (1_33—611,1, 1_9”—621,2, . ) and, by similar reasoning, also to G (1_93%, 1_93%, . O
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Lemma 5.4. If \ is a partition then w(Gy) = Gyr (1 B by - > .

Proof. This is equivalent to [20, Proposition 9.22] after observing that the functions K, and J, in
[20] satisfy Ky (Bx1,Bxa,...) = BNGy and J\(Bz1, faa,...) = BNG,r (1 B 1 xgm > O

Recall that /(y) and /gpp(z) denote the common lengths of all words in R(y) and Repr(2).
Formulas for these numbers appear in [11, §2.3] and [12], §2.3]. For each z € §, there is a minimal
n € 2N such that z(i) = i — (—1)" for all i > n; define Z € J, to be the involution with i — z(4)
for i € [n] that fixes all i > n. If y = Z has & cycles of length two, then

Uy) =2 and  depr(z) = LU= (5.1)

We turn to the shifted stable Grothendieck polynomials GPyO and GPZS P defined by (L2). These
functions can be expressed in terms of the sets B(y) and Bepg(z) from (2.1)) and (2.2)):

Proposition 5.5. If y € T, and z € §,, then
Z 5f(ﬂ)—5(y)gﬂ and GPZSP — Z ﬁé —lrpr (2

TeB(y) mEBrpr(2)

This formulation shows that these power series belong to §ym. Let A be a strict partition of
n € N. Write SetSMT()) for the set of semistandard shifted set-valued tableaux of shape A, i.e.,
with domain SDy := {(i,i+j—1) e PxP:1 < j < \;}. Ikeda and Naruse introduce the following
“K-theoretic Schur P-functions” in [19]:

Definition 5.6 (See [19, Theorem 9.1]). The K-theoretic Schur P-function indexed by a strict
partition A is GP\ = ZTGSCtSSMT(A) BITI=NzT e Sym.,
Lemma 5.7. If \ is a strict partition then w(GPy) = GPy (1 B Ty > .

Proof. Tt is an easy exercise from [16] Definition 10.1 and Corollary 10.10] to show that the lemma
holds whenever A = (n) is a partition with a single part. The general identity follows since w is a
(continuous) ring homomorphism and [28, Theorem 5.4] implies GPy € Z[3][[GP,) : n € P]]. O

We can now prove Theorem from the introduction.

Proof of Theorem[L9. For a strict partition A, let WeakSetSSMT(\) be the set of semistandard

weak set-valued tableaux of shape ), as in Section @1l We have SNGP, (1 B 1 xgm > =

2 T eWeakSet SSMT()) BTz by [7, Proposition 3.5] (after making the substitution z; — —Bx;).

On the other hand, BEFPF(Z)W(GPZSP) = 2 (w) Bzt where the sum is over pairs (w,i) such

that w = wiwy---w; € Hsp(z) and i = (i1 < dp < -+ < 4p) is a weakly increasing sequence

of positive integers with i; < ;11 whenever w; > w;y;. By Theorem 3] this sum is exactly
T T . . . .

Y oA Car ZTeWeakSetSSMT( N BITI2T . Combining these observations with Lemma [5.7] we have

w(GPSP) = Z@M—EFPF(,Z)%GPA (1_96—5:01 . ) _ Zczww—&pp(z)w(gpk).
A A
Now simply reapply w. The formula for GPZ? follows in the same way via Corollary O
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The operation 6., — &, given by m — 7" preserves J,. For z € §, define z* € F by
conjugating z by n - - - 321 where n € 2N is minimal such that z(i) = i — (—1)* for all integers i > n;
the map wiwy - - wy — (0 —w1)(n —ws) -+ (n — wy) is then a bijection Hsp(2) = Hsp(2*).

Corollary 5.8. If y € J, and 2z € Fo and GPO GPQ and GP2P = GPSP.

Proof. Since GPZ? and GPSP are linear combinations of GPy’s and since B(y*) ={n* :m € B(y)}
and Brpg(2*) = {n* : m € Bepr(z)}, this follows by combining Lemmas [5.3] and (.71 O

The homogeneous symmetric functions Fy and FZFPF obtained by setting 8 = 0 in GPyO and

GP2P are the (FPF)-involution Stanley symmetric functions studied in [8 10, 11l 12]. Setting
8 =0in GPAZ alternz}tively, yields the well-known Schur P-function P). Theorem with 8 =0
implies that F} and F, ZF PF are Schur-P-positive in the following sense:

Corollary 5.9 (See [11l Corollary 1.12] and [12, Theorem 1.1]). Let y € J and z € Foo. Then
Fy =5\ byxPy and FFPF — >, ¢z where the sums are over strict partitions A of {(y) and p of

EFPF( ), and the positive integers b,y and c,, are defined as in Theorem [[.9l

Our interpretation of the coefficients in the Schur P-expansion of FZF PF in this result is new.

Finally, setting 8 = 0 in Lemma [5.7 and Corollary [5.8] gives the following;:

Corollary 5.10. If y € J and z € § and Fy = w(F )= F and FFPF = (EFFPF) = [FPF,
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