FAMILIES OF LATTICE POLYTOPES OF MIXED DEGREE ONE

GABRIELE BALLETTI AND CHRISTOPHER BORGER

Abstract

It has been shown by Soprunov that the normalized mixed volume (minus one) of an n-tuple of n-dimensional lattice polytopes is a lower bound for the number of interior lattice points in the Minkowski sum of the polytopes. He defined n-tuples of mixed degree at most one to be exactly those for which this lower bound is attained with equality, and posed the problem of a classification of such tuples. We give a finiteness result regarding this problem in general dimension $n \geq 4$, showing that all but finitely many n-tuples of mixed degree at most one admit a common lattice projection onto the unimodular simplex Δ_{n-1}. Furthermore, we give a complete solution in dimension $n=3$. In the course of this we show that our finiteness result does not extend to dimension $n=3$, as we describe infinite families of triples of mixed degree one not admitting a common lattice projection onto the unimodular triangle Δ_{2}.

1. Introduction

1.1. Basic definitions. A lattice polytope $P \subset \mathbb{R}^{n}$ is a polytope $P \subset \mathbb{R}^{n}$ whose vertices are elements of the lattice $\mathbb{Z}^{n} \subset \mathbb{R}^{n}$. We call two lattice polytopes $P_{1}, P_{2} \subset \mathbb{R}^{n}$ equivalent if there exists an affine lattice-preserving transformation $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ satisfying $U\left(P_{1}\right)=P_{2}$. We say that two n-tuples $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ and $Q_{1}, \ldots, Q_{n} \subset \mathbb{R}^{n}$ are equivalent if there is a permutation $\sigma \in S_{n}$, an affine lattice-preserving transformation $U: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ and vectors $t_{1}, \ldots, t_{n} \in \mathbb{Z}^{n}$ such that $\left.\left.\left(P_{1}, \ldots, P_{n}\right)=\left(U\left(Q_{\sigma(1)}\right)+t_{1}\right), \ldots, U\left(Q_{\sigma(n)}\right)+t_{n}\right)\right)$. We denote by $\Delta_{n}=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \ldots, \mathbf{e}_{n}\right) \subset \mathbb{R}^{n}$ the standard unimodular simplex in \mathbb{R}^{n} and call an n-dimensional simplex unimodular if it is equivalent to Δ_{n}. We write the Minkowski sum of two lattice polytopes $P_{1}, P_{2} \subset \mathbb{R}^{n}$ as $P_{1}+P_{2}=$ $\left\{p_{1}+p_{2}: p_{1} \in P_{1}, p_{2} \in P_{2}\right\} \subset \mathbb{R}^{n}$ and denote the interior of a lattice polytope $P \subset \mathbb{R}^{n}$ by P°. If one has $P^{\circ} \cap \mathbb{Z}^{n}=\emptyset$, we call the lattice polytope $P \subset \mathbb{R}^{n}$ hollow.
1.2. Motivation. In order to give an explicit definition, let us define the (normalized) mixed volume of an n-tuple of polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ via the inclusion-exclusion formula given by $\operatorname{MV}\left(P_{1}, \ldots, P_{n}\right):=\sum_{\emptyset \neq I \subseteq\{1, \ldots, n\}}(-1)^{n-|I|} \operatorname{vol}_{n}\left(\sum_{i \in I} P_{i}\right)$, where vol $_{n}$ denotes the standard euclidean volume in \mathbb{R}^{n}. Note that there are various equivalent definitions for the mixed volume of an n-tuple of lattice polytopes or, more generally, for an n-tuple of convex bodies in \mathbb{R}^{n} (see e.g. [Sch14] or [EG15]) and that in our definition the mixed volume is normalized such that $\operatorname{MV}\left(\Delta_{n}, \ldots, \Delta_{n}\right)=1$. A central connection of the mixed volume to algebraic geometry is given by the famous Bernstein-Kouchnirenko-Khovanskii theorem ([Ber75]). Combining this theorem with a generalization of the Euler-Jacobi theorem due to Khovanskii ([Kho78]) in the context of sparse polynomial interpolation, Soprunov showed the following lower bound on the number of interior lattice points in the Minkowski sum of an n-tuple of n-dimensional lattice polytopes.

Theorem 1.1 ([Sop07, Nil17]). Let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ be n-dimensional lattice polytopes. Then the following inequality holds:

$$
\left|\left(P_{1}+\cdots+P_{n}\right)^{\circ} \cap \mathbb{Z}^{n}\right| \geq \operatorname{MV}\left(P_{1}, \ldots, P_{n}\right)-1
$$

Furthermore, equality holds if and only if the Minkowski sum of any choice of $n-1$ polytopes of the tuple P_{1}, \ldots, P_{n} is hollow.

[^0]The n-tuples for which equality holds in the above theorem have been called n-tuples of mixed degree at most one by Soprunov in $\left[\mathrm{BNR}^{+} 08\right]$, where a characterization of such tuples has been posed as a problem ([BNR ${ }^{+} 08$, Section 5, Problem 2]). This notion is motivated by a connection to the degree of a lattice polytope, which is an intensively studied invariant in Ehrhart Theory (see for example [BN07, DRP09, DRHNP11, BH18]). The degree $\operatorname{deg}(P)$ of an n-dimensional lattice polytope $P \subset \mathbb{R}^{n}$ is set to equal n if P has at least one interior lattice point, and otherwise is defined as the smallest integer $0 \leq d \leq n-1$ such that the dilated lattice polytope $(n-d) P$ is hollow. Another interpretation is given by the fact that $\operatorname{deg}(P)$ agrees with the degree of the socalled h^{*}-polynomial of P (see for example [BR15]). Now in the setting $P_{1}=\cdots=P_{n}=P \subset \mathbb{R}^{n}$, that is for an n-tuple consisting of n copies of the same lattice polytope P, the equality condition from Theorem 1.1 is satisfied if and only if the degree of P is at most one. It is a well-known fact that an n-dimensional lattice polytope has degree 0 if and only if it is equivalent to Δ_{n}. Also for lattice polytopes of degree one there exists the following complete description by BatyrevNill [BN07]. Given an n-dimensional lattice polytope $Q \subset \mathbb{R}^{n}$, we define the lattice pyramid $\mathcal{P}(Q)$ as the $(n+1)$-dimensional polytope

$$
\mathcal{P}(Q):=\operatorname{conv}\left(Q \times\{\mathbf{0}\} \cup\left\{\mathbf{e}_{n+1}\right\}\right) \subset \mathbb{R}^{n+1}
$$

The lattice pyramid construction preserves the degree (it actually preserves the h^{*}-polynomial). We say that an n-dimensional lattice polytope is an exceptional simplex if it is equivalent to the polytope obtained via $n-2$ iterations of the lattice pyramid construction over the polygon $2 \Delta_{2}$. We say that an n-dimensional lattice polytope P is a Lawrence prism if P is equivalent to a lattice polytope $\operatorname{conv}\left(\left\{\mathbf{0}, a_{0} \mathbf{e}_{n}, \mathbf{e}_{1}, \mathbf{e}_{1}+a_{1} \mathbf{e}_{n}, \ldots, \mathbf{e}_{n-1}, \mathbf{e}_{n-1}+a_{n-1} \mathbf{e}_{n}\right\}\right)$ for nonnegative integers $a_{0}, \ldots, a_{n-1} \in \mathbb{Z}_{\geq 0}$.

Theorem 1.2 ([BN07, Theorem 2.5]). Let P be a lattice polytope. Then $\operatorname{deg}(P) \leq 1$ (i.e. $(n-1) P$ is hollow) if and only if P is is an exceptional simplex or a Lawrence prism.

The relation of tuples of mixed degree at most one to the degree of a lattice polytope raises the natural question whether there is a general concept of a mixed degree of an n-tuple of lattice polytopes in \mathbb{R}^{n} that generalizes both Soprunov's definition of tuples of mixed degree at most one and the degree of a single lattice polytope. A suggestion for such a mixed degree has recently been given by Nill [Nil17]. Let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ be an n-tuple of lattice polytopes. The mixed degree $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)$ is set to equal n if P_{i} has an interior lattice point for some $1 \leq i \leq n$. Otherwise $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)$ is the smallest integer $0 \leq d \leq n-1$ such that the Minkowski sum of any choice of $(n-d)$ polytopes of tuple P_{1}, \ldots, P_{n} is hollow. We refer the reader to [Nil17] for additional motivation for this definition.

In this language, Soprunov's problem asks for a characterization of n-tuples of lattice polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ satisfying $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right) \leq 1$. The case of $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)=0$ (as this is equivalent to $\operatorname{MV}\left(P_{1}, \ldots, P_{n}\right)=1$ by [Nil17, Theorem 2.2]) has already been solved by Cattani et al. in the context of investigating the codimension of so-called mixed discriminants.

Proposition $1.3\left(\left[\mathrm{CCD}^{+} 13\right.\right.$, Proposition 2.7$\left.]\right)$. Let P_{1}, \ldots, P_{n} be n-dimensional lattice polytopes. Then $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)=0$ if and only if the n-tuple P_{1}, \ldots, P_{n} is equivalent to the n-tuple $\Delta_{n}, \ldots, \Delta_{n}$.

We therefore often restrict to tuples with mixed degree equal to one in our approach towards solving Soprunov's problem.
1.3. Results. The contribution of this paper is to partially solve Soprunov's problem by presenting a finiteness result for dimension $n \geq 4$ and to give a complete characterization of triples of 3dimensional lattice polytopes of mixed degree one.

In order to describe a trivial class of n-tuples of mixed degree (at most) one, let us introduce the concept of lattice projections. By lattice projection, we denote a surjective affine-linear map
$\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ satisfying $\varphi\left(\mathbb{Z}^{n}\right)=\mathbb{Z}^{m}$. The kernel of such a projection is affinely generated by lattice points of \mathbb{Z}^{n} and we consider two projections to be equal if and only if they have the same kernel up to lattice translations.

The trivial class of n-tuples of mixed degree (at most) one is now given by the following example.
Example 1.4. Let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ be n-dimensional lattice polytopes and $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ a lattice projection satisfying $\varphi\left(P_{i}\right)=\Delta_{n-1}$ for all $1 \leq i \leq n$. Then P_{1}, \ldots, P_{n} has mixed degree at most one, as any Minkowski sum of $n-1$ polytopes of the tuple P_{1}, \ldots, P_{n} is projected onto the hollow polytope $(n-1) \Delta_{n-1} \subset \mathbb{R}^{n-1}$ by φ. An example of such a trivial tuple in dimension $n=3$ is shown in Figure 1.

$P_{1}+P_{2}$

P_{2}

$P_{1}+P_{3}$

P_{3}

$P_{2}+P_{3}$

$$
P_{1}+P_{2}+P_{3}
$$

Figure 1. A triple $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ having mixed degree one, where P_{1}, P_{2}, P_{3} all project onto Δ_{2} under the projection along the vertical axis.

One can view n-tuples from Example 1.4 as consisting of n lattice polytopes that all are Lawrence prisms and additionally satisfy that they extend into the same height-direction over the same unimodular $(n-1)$-dimensional simplex. Clearly we cannot expect this to be the only class of n-tuples of mixed degree one, as already the unmixed setting of Theorem 1.2 additionally yields n-tuples of copies of the same exceptional simplex as having mixed degree one. Unlike in the unmixed case there actually exist many more such non-trivial examples (see our classification result for $n=3$ in Theorem 1.6, one example is shown in Figure 2).

This raises the question whether there is any chance to make reasonable statements about n tuples of mixed degree one at all. Our main result is to provide a positive answer to this question by showing that, for any dimension n at least 4 , all but finitely many exceptions of n-tuples of mixed degree one are actually of the trivial type described in Example 1.4.

Theorem 1.5. Fix $n \geq 4$ and let $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ be n-dimensional lattice polytopes with $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)=1$. Then, up to equivalence, the n-tuple P_{1}, \ldots, P_{n} either belongs to a finite list of exceptions or there is a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ such that $\varphi\left(P_{i}\right)=\Delta_{n-1}$ for all $1 \leq i \leq n$.

Figure 2. A triple $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ having mixed degree one for which no lattice projection exists commonly mapping P_{1}, P_{2}, P_{3} onto translates of Δ_{2} (see (d) of Corollary 4.8).

We refer the reader to Section 3 for the proof of Theorem 1.5.
Theorem 1.5 is not true for dimension $n \in\{2,3\}$. This fact is straightforward to see for $n=2$, as pairs of lattice polygons $P_{1}, P_{2} \subset \mathbb{R}^{2}$ are of mixed degree (at most) one if and only if both P_{1} and P_{2} are hollow. Fixing P_{1} to be any hollow polygon and letting P_{2} range through all polygons that are equivalent to a fixed hollow polygon will clearly yield infinitely many non-equivalent pairs of mixed degree one without there being a projection commonly mapping both polytopes onto the segment Δ_{1}.

For $n=3$, however, we find that only a very specific class of triples of mixed degree one contains an infinite number of exceptions and we can explicitly describe a finite number of 1 parameter families covering this class. This is part of the following classification result, which essentially gives a complete answer to Soprunov's problem for dimension $n=3$. Note that we say that a k-tuple of n-dimensional lattice polytopes P_{1}, \ldots, P_{k} admits a common lattice projection onto translates of an $(n-1)$-dimensional lattice polytope Q if there exists a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ satisfying $\varphi\left(P_{i}\right)=Q+t_{i}$ for all $1 \leq i \leq k$ and some $t_{i} \in \mathbb{Z}^{n-1}$.

Theorem 1.6. Let $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ be a triple of 3-dimensional lattice polytopes that satisfies $\operatorname{md}\left(P_{1}, P_{2}, P_{3}\right)=1$. Then either there is a lattice projection $\varphi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ such that $\varphi\left(P_{i}\right)=\Delta_{2}$ for all $1 \leq i \leq 3$, or one of the following holds.
(i) There is no pair in P_{1}, P_{2}, P_{3} admitting a common lattice projection onto translates of Δ_{2} and P_{1}, P_{2}, P_{3} is equivalent to one out of 29 possible triples.
(ii) There is exactly one pair in P_{1}, P_{2}, P_{3} admitting a common lattice projection onto translates of Δ_{2} and P_{1}, P_{2}, P_{3} is equivalent to one out of 141 possible triples.
(iii) There are exactly two pairs in P_{1}, P_{2}, P_{3} admitting a common lattice projection onto translates of Δ_{2} and P_{1}, P_{2}, P_{3} is equivalent to one out of 82 possible triples.
(iv) All pairs in P_{1}, P_{2}, P_{3} admit a common lattice projection onto translates of Δ_{2} and
(a) the kernels of the projections cannot be shifted into a common hyperplane and the triple P_{1}, P_{2}, P_{3} is equivalent to one out of 27 possible triples.
(b) the kernels of the projections can be shifted into a common hyperplane and P_{1}, P_{2}, P_{3} belongs, up to equivalence, to one out of finitely many infinite 1-parameter families of triples.

We refer the reader to Section 4 for a proof of Theorem 1.6.
In the following example we present one of the 1-parameter families from Theorem 1.6 (iv). Let us denote $\square_{2}:=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.

Example 1.7. Let $P_{1}^{k}, P_{2}^{k}, P_{3} \subset \mathbb{R}^{3}$ be the triple given by

$$
\begin{aligned}
& P_{1}^{k}:=\operatorname{conv}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, 2 \mathbf{e}_{2}, k \mathbf{e}_{2}+\mathbf{e}_{3}\right), \\
& P_{2}^{k}:=\operatorname{conv}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, 2 \mathbf{e}_{1}, k \mathbf{e}_{1}+\mathbf{e}_{3}\right), \\
& P_{3}:=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{3}\right),
\end{aligned}
$$

for some $k \in \mathbb{Z}_{\geq 0}$. Then $\operatorname{md}\left(P_{1}^{k}, P_{2}^{k}, P_{3}\right)=1$ and, while all pairs in $P_{1}^{k}, P_{2}^{k}, P_{3}$ admit a common lattice projection onto translates of Δ_{2}, there is no lattice projection commonly mapping the whole triple $P_{1}^{k}, P_{2}^{k}, P_{3}$ onto translates of Δ_{2}. Note that P_{1}^{k}, P_{2}^{k} and P_{3} as single lattice polytopes are all equivalent to $\mathcal{P}\left(\square_{2}\right)$ for all $k \in \mathbb{Z}_{\geq 0}$ (see Figure 3).

Figure 3. Top view of the infinite family from Example 1.7. The arrow labeled $\varphi_{1,2}$ shows the direction of the common projection of P_{1}^{k} and P_{2}^{k} onto translates of Δ_{2}. The common projections of P_{3} and P_{1}^{k} as well as P_{3} and P_{2}^{k} are given by the projection along the second and the first coordinate respectively.

All computations have been carried out using Magma [BCP97] and the code can be found at https://github.com/gabrieleballetti/mixed_degree_one.

Acknowledgements. We thank Benjamin Nill for providing the initial idea for the project and giving helpful advice and comments throughout the progress. Furthermore we thank Ivan Soprunov for valuable feedback on an intermediate version of the paper.

We also thank Akiyoshi Tsuchiya and Takayuki Hibi for the opportunity to work together on the project during the Summer School and Workshop on Lattice Polytopes in Osaka 2019. This article can be seen as a vast generalization of our first investigation on the 3-dimensional case that appeared in the note "Families of 3-dimensional polytopes of mixed degree one" in the proceedings of that conference ([HT19]).

The first author was partially supported by the Vetenskapsrådet grant NT:2014-3991. The second author is funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 314838170, GRK 2297 MathCoRe.

2. CAYLEY SUMS AND PROJECTIONS

While there is a well-known way of determining whether two lattice polytopes are equivalent by comparing their normal forms (see e.g. [KS98]), the task of checking two tuples for equivalence seems a priori more complicated. However, we will show that in our setting the construction of the

Cayley sum of a tuple allows us to reduce the problem of checking equivalence of tuples to checking equivalence of two higher-dimensional lattice polytopes. The Cayley sum (or Cayley polytope) construction occurs in various contexts in the literature, for example in the construction of mixed subdivisions of Minkowski sums ([DLRS10]), in the study of A-discriminants ([FI16, GKZ94]) and in structural results on lattice polytopes of high dimension and small degree ([DRHNP11, DRP09]).

Let us recall the definition and some basic properties of the Cayley sum of a tuple of lattice polytopes.

Definition 2.1. Let $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{n}$ be lattice polytopes. We define the Cayley sum $P_{1} * \cdots * P_{k}$ as

$$
P_{1} * \cdots * P_{k}:=\operatorname{conv}\left(\left(P_{1} \times\{\mathbf{0}\}\right) \cup\left(P_{2} \times\left\{\mathbf{e}_{1}\right\}\right) \cup \cdots \cup\left(P_{k} \times\left\{\mathbf{e}_{k-1}\right\}\right)\right) \subset \mathbb{R}^{n+k-1}
$$

We call a Cayley sum $P_{1} * \cdots * P_{k}$ proper if $P_{i} \neq \emptyset$ for all $1 \leq i \leq k$. In this case one has $\operatorname{dim}\left(P_{1} * \cdots * P_{k}\right)=\operatorname{dim}\left(P_{1}+\cdots+P_{k}\right)+k-1$.

Proposition 2.2 ([BN08, Proposition 2.3]). Let $P \subset \mathbb{R}^{n}$ be a lattice polytope. Then the following are equivalent.
(i) There exists a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k-1}$ with $\varphi(P)=\Delta_{k-1}$,
(ii) there exist lattice polytopes $P_{1}, \ldots, P_{k} \subset \mathbb{R}^{n-k+1}$ such that $P \cong P_{1} * \cdots * P_{k}$.

In particular if $k=n, P$ is the Cayley sum of n segments.
Remark 2.3. Let $P=P_{1} * \cdots * P_{k}$. Then all faces of P are of the form $F=F_{1} * \cdots * F_{k}$ for (possibly empty) faces $F_{i} \subseteq P_{i}$. One has $\operatorname{dim}(F)=\operatorname{dim}\left(F_{1}+\cdots+F_{k}\right)+l-1$ where l is the number of F_{i} that satisfy $F_{i} \neq \emptyset$. In particular, each of the P_{i} corresponds to a face of P which we will denote by \hat{P}_{i}. Furthermore \hat{P}_{i}^{c}, by which we denote the convex hull of all vertices of P that are not contained in \hat{P}_{i}, is always a proper face of P.

Let us now formulate the lemma which allows us to determine equivalence of certain n-dimensional tuples by comparing the normal forms of their Cayley sums.

Lemma 2.4. Let P_{1}, \ldots, P_{k} and Q_{1}, \ldots, Q_{k} be k-tuples of n-dimensional lattice polytopes in \mathbb{R}^{n}. Assume that there is no lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k-1}$ mapping P_{1}, \ldots, P_{k} onto translates of Δ_{k-1}. Then the k-tuples P_{1}, \ldots, P_{k} and Q_{1}, \ldots, Q_{k} are equivalent if and only if their Cayley sums $P_{1} * \cdots * P_{k}$ and $Q_{1} * \cdots * Q_{k}$ are equivalent.

Proof. The fact that Cayley sums of equivalent k-tuples of lattice polytopes are equivalent is a straightforward consequence of the definition. Suppose now that the k-tuple P_{1}, \ldots, P_{k} does not admit a common projection onto translates of Δ_{k-1} and suppose that $P_{1} * \cdots * P_{k}$ and $Q_{1} * \cdots * Q_{k}$ are equivalent. Let $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ be the images of $\hat{P}_{1}, \ldots, \hat{P}_{k}$ under the lattice-preserving transformation yielding the equivalence, respectively. We will first show that, up to renumbering, $P_{i}^{\prime}=\hat{Q}_{i}$ for all $1 \leq i \leq k$. Suppose without loss of generality $P_{1}^{\prime} \neq \hat{Q}_{i}$ for all $1 \leq i \leq k$. Note that P_{1}^{\prime} cannot properly contain any \hat{Q}_{i} (by Remark 2.3 any face of $Q_{1} * \cdots * Q_{k}$ that properly contains a \hat{Q}_{i} is of dimension greater or equal to $n+1$). This also implies that P_{1}^{\prime} cannot be disjoint to some \hat{Q}_{i} due to the following. If P_{1}^{\prime} was disjoint to, say, \hat{Q}_{1}, its complement $\left(P_{1}^{\prime}\right)^{c}$ would contain \hat{Q}_{1}. As however P_{1}^{\prime} does not contain any \hat{Q}_{i}, the complement $\left(P_{1}^{\prime}\right)^{c}$ contains at least one point of \hat{Q}_{i} for each $1 \leq i \leq k$. Therefore, if we pick points p_{2}, \ldots, p_{k} in $\hat{Q}_{2} \backslash P_{1}^{\prime}, \ldots, \hat{Q}_{k} \backslash P_{1}^{\prime}$ respectively, we have $\operatorname{dim}\left(\hat{P}_{1}^{c}\right)=\operatorname{dim}\left(\left(P_{1}^{\prime}\right)^{c}\right) \geq \operatorname{dim}\left(\hat{Q}_{1} *\left\{p_{2}\right\} * \cdots *\left\{p_{k}\right\}\right)=n+k-1$, which is a contradiction to \hat{P}_{1}^{c} being a proper face of the Cayley sum $P_{1} * \cdots * P_{k}$ (see Remark 2.3).

As P_{1}^{\prime} was chosen arbitrarily this argumentation implies that all P_{i}^{\prime} have non-empty intersection with all \hat{Q}_{j}. Therefore the natural projection of $Q_{1} * \cdots * Q_{k}$ onto Δ_{k-1} remains surjective when restricted to the affine hull of P_{i}^{\prime} for each $1 \leq i \leq k$. As the affine hulls of $P_{1}^{\prime}, \ldots, P_{k}^{\prime}$ are by construction pairwise parallel n-dimensional affine subspaces of \mathbb{R}^{n+k-1} the natural projection yields a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{k-1}$ mapping P_{i} onto a translate of Δ_{k-1} for each $1 \leq i \leq k$. This contradicts our assumption.

This shows that, if P_{1}, \ldots, P_{k} do not have a common projection onto translates of Δ_{k-1}, any affine lattice-preserving transformation $U: \mathbb{R}^{n+k-1} \rightarrow \mathbb{R}^{n+k-1}$ mapping $P_{1} * \cdots * P_{k}$ to $Q_{1} * \cdots * Q_{k}$ yields (up to renumbering) a bijection mapping the face \hat{P}_{i} to the face \hat{Q}_{i}. We may without loss of generality assume that U preserves the origin. Restricting U to a map from the affine hull of P_{1} to the affine hull of Q_{1} we obtain a linear lattice-preserving transformation $L: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$. It is straightforward to verify that restricting U to the affine hull of any other P_{i} results in a map $x \mapsto L(x)+t_{i}$ from $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for some $t_{i} \in \mathbb{Z}^{n}$.

3. Proof of the main theorem

From Proposition 2.2 we can easily deduce the following lemma. We call a facet F of a lattice polytope $P \subset \mathbb{R}^{n}$ unimodular if F is a unimodular simplex inside the affine lattice defined as the intersection of the affine hull of F with \mathbb{Z}^{n}.

Lemma 3.1. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional lattice polytope and $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ a lattice projection that projects P onto Δ_{n-1}. Then $\operatorname{ker} \varphi=\mathbb{R} e$ where e is a vector parallel to an edge between vertices v_{1}, v_{2}, where $v_{1} \in F_{1}$ and $v_{2} \in F_{2}$ for two different unimodular facets $F_{1} \neq F_{2}$ of P.

We now study n-dimensional polytopes projecting onto Δ_{n-1} along multiple directions. Recall that we denote by $\mathcal{P}^{n-2}\left(\square_{2}\right)$ the $(n-2)$-fold lattice pyramid formed over the square $\square_{2}=$ $\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}\right) \subset \mathbb{R}^{2}$.

Lemma 3.2. Let $P \subset \mathbb{R}^{n}$ be an n-dimensional lattice polytope such that there are different lattice projections $\varphi_{1}, \varphi_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ that map P onto Δ_{n-1}. Then P is equivalent either to the unimodular simplex Δ_{n} or to $\mathcal{P}^{n-2}\left(\square_{2}\right)$. If there exists another projection $\varphi_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ mapping P onto Δ_{n-1}, then P is necessarily equivalent to Δ_{n}.

Proof. As P has one projection onto Δ_{n-1}, by Proposition 2.2 we may assume that P is of the form $P=I_{1} * \cdots * I_{n}$ for n segments $I_{i}=\left[0, a_{i}\right]$ with $a_{i} \in \mathbb{Z}_{\geq 0}$. Two facets of P are given by $\Delta_{n-1} \times\{0\}$ and $\left\{a_{1}\right\} * \cdots *\left\{a_{n}\right\}$. All other facets of P are of a form we denote by F_{k} for $1 \leq k \leq n$, which is the Cayley sum of all I_{i} excluding I_{k}. As there exists another lattice projection φ_{2} mapping P onto Δ_{n-1}, by Lemma 3.1 the facet F_{k} has to be unimodular for some $1 \leq k \leq n$. Assume without loss of generality that F_{1} is unimodular and $a_{2}=1$ and $a_{3}=\cdots=a_{n}=0$. Furthermore, a_{1} cannot be greater than one as otherwise P would have an edge of lattice length at least 2 . Therefore any projection which is not along this edge direction could not be projecting P onto Δ_{n-1}. If $a_{1}=0$, then P is equivalent to Δ_{n}, otherwise $a_{1}=1$ and P is equivalent to $\mathcal{P}^{n-2}\left(\square_{2}\right)$. One easily verifies that $\mathcal{P}^{n-2}\left(\square_{2}\right)$ does not have more than two different projections onto Δ_{n-1}.

Lemma 3.3. Let $S_{1}, S_{2} \subset \mathbb{R}^{n}$ be two unimodular n-dimensional simplices, $u_{1}, u_{2} \in \mathbb{Z}^{n}$ be linearly independent edge directions for S_{1} and S_{2} respectively, and $C_{1}, C_{2} \subset \mathbb{R}^{n}$ be the infinite prisms $S_{1}+\mathbb{R} u_{1}$ and $S_{2}+\mathbb{R} u_{2}$ respectively. Given $z \in \mathbb{Z}^{n}$, denote by P_{z} the intersection $\operatorname{conv}\left(C_{1} \cap\left(C_{2}+\right.\right.$ $z) \cap \mathbb{Z}^{n}$). Let $v, w \in \mathbb{Z}^{n}$ such that P_{v} and P_{w} are both n-dimensional. Then P_{v} and P_{w} are the same lattice polytope up to translation.

Proof. By Lemma 3.2 we know that, if there exists $v \in \mathbb{Z}^{n}$ such that P_{v} is n-dimensional, then P_{v} is equivalent either to Δ_{n} or to $\mathcal{P}^{n-2}\left(\square_{2}\right)$ having two edges parallel to the directions u_{1} and u_{2}. In either of the two cases, we can assume P_{v} to be exactly Δ_{n} or $\mathcal{P}^{n-2}\left(\square_{2}\right)$.

If $P_{v}=\mathcal{P}^{n-2}\left(\square_{2}\right)$ then, up to reordering and changes of signs, $u_{1}=\mathbf{e}_{1}$ and $u_{2}=\mathbf{e}_{2}$. In particular, $C_{1}=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)+\mathbb{R} \mathbf{e}_{1}$ and $C_{2}+v=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right)+\mathbb{R} \mathbf{e}_{2}$. One easily verifies that $C_{1} \cap\left(C_{2}+w\right)$ is full-dimensional if and only if $w-v \in \mathbb{Z} \mathbf{e}_{1}+\mathbb{Z} \mathbf{e}_{2}$. In all these cases $C_{1} \cap\left(C_{2}+w\right)$ is a translation of P_{v}.

On the other hand, if $P_{v}=\Delta_{n}$, then there is another case distinction. If u_{1} and u_{2} are parallel to adjacent edges of D_{n}, then we can assume $u_{1}=\mathbf{e}_{1}$ and $u_{2}=\mathbf{e}_{2}$. But in this case C_{1} and $C_{2}+v$
must intersect in $\mathcal{P}^{n-2}\left(\square_{2}\right)$ instead of in Δ_{n}, hence we have a contradiction. Therefore u_{1} and u_{2} are parallel to non-adjacent edges of Δ_{n} and we can assume $u_{1}=\mathbf{e}_{1}$ and $u_{2}=\mathbf{e}_{2}-\mathbf{e}_{3}$. In particular, $C_{1}=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right)+\mathbb{R} \mathbf{e}_{1}$ and $C_{2}+v=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right)+\mathbb{R}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)$. Again, one easily verifies that $C_{1} \cap\left(C_{2}+w\right)$ is full-dimensional if and only if $w-v \in \mathbb{Z} \mathbf{e}_{1}+\mathbb{Z}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)$. In all these cases $C_{1} \cap\left(C_{2}+w\right)$ is a translation of Δ_{n}.
Lemma 3.4. Let $P \subset \mathbb{R}^{n}$ be a unimodular n-simplex and $\varphi_{1}, \varphi_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be two different lattice projections such that, for each $1 \leq i \leq 2$, the images $\varphi_{i}(P)$ and $\varphi_{i}\left(\Delta_{n}\right)$ are translates of Δ_{n-1}. Then, up to translation and coordinate permutation, P is contained in $\mathcal{P}^{n-2}\left(\square_{2}\right)$. If there exists another projection $\varphi_{3}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ mapping P and Δ_{n} onto translates of Δ_{n-1}, then P is necessarily a translate of Δ_{n}.

Proof. By Lemma 3.1, φ_{1} and φ_{2} are projections along the directions u_{1} and u_{2} of two edges of Δ_{n}. If u_{1} and u_{2} are the directions of two adjacent edges of Δ_{n}, we can suppose that $u_{1}=\mathbf{e}_{1}$ and $u_{2}=\mathbf{e}_{2}$. Then P is contained in the intersection $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$ where $C_{1}:=\Delta_{n}+\mathbb{R} \mathbf{e}_{1}$ and $C_{2}:=\Delta_{n}+\mathbb{R e}_{2}$, for some $z_{1}, z_{2} \in \mathbb{Z}^{n}$. By Lemma 3.3, P is, up to translation, contained in $C_{1} \cap C_{2}=\mathcal{P}^{n-2}\left(\square_{2}\right)$. If u_{1} and u_{2} are the directions of two non-adjacent edges of Δ_{n} then we can suppose that $u_{1}=\mathbf{e}_{1}$ and $u_{2}=\mathbf{e}_{2}-\mathbf{e}_{3}$. Then P is contained in the intersection $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$ where $C_{1}:=\Delta_{n}+\mathbb{R} \mathbf{e}_{1}$ and $C_{2}:=\Delta_{n}+\mathbb{R}\left(\mathbf{e}_{2}-\mathbf{e}_{3}\right)$, for some $z_{1}, z_{2} \in \mathbb{Z}^{n}$. By Lemma 3.3, P is, up to translation, contained in $C_{1} \cap C_{2}=\Delta_{n}$, therefore P is a translate of $\Delta_{n} \subset \mathcal{P}^{n-2}\left(\square_{2}\right)$. This proves the first part of the statement.

For the second part of the statement we note that φ_{3} must also be a projection along the direction u_{3} of an edge of Δ_{n}. The only case we need to check is when the edges parallel to u_{1}, u_{2} and u_{3} form a triangle in Δ_{n}. Indeed, if this is not the case either two of these edges are non-adjacent and P must be a translate of Δ_{n} as above, or u_{1}, u_{2} and u_{3} share a vertex. In the latter case we may assume $u_{i}=\mathbf{e}_{i}$ for $1 \leq i \leq 3$. As deduced above from Lemma 3.3, this in particular yields that P is contained in the intersection of a translation of the square pyramid conv $\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{3}, \ldots, \mathbf{e}_{n}\right)$ with the flipped square pyramid $\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{3}, \mathbf{e}_{2}, \mathbf{e}_{4}, \ldots, \mathbf{e}_{n}\right)$. This implies that P is a translate of Δ_{n}. Let us therefore assume that $u_{1}=\mathbf{e}_{1}, u_{2}=\mathbf{e}_{2}$ and $u_{3}=\mathbf{e}_{1}-\mathbf{e}_{2}$. In this case P is a translate of one of the four n-dimensional subpolytopes of $\mathcal{P}^{n-2}\left(\square_{2}\right)$. It is easy to verify that Δ_{n} is the only one of them that is projected by φ_{3} onto a translate of $\varphi_{3}\left(\Delta_{n}\right)$.

Definition 3.5. Let $P_{1}, \ldots, P_{n-1} \subset \mathbb{R}^{n}$ be n-dimensional polytopes with the Minkowski sum $P_{1}+\cdots+P_{n-1}$ being hollow. We call the ($n-1$)-tuple P_{1}, \ldots, P_{n-1} exceptional, if there exists no projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ such that $\varphi\left(P_{1}+\cdots+P_{n-1}\right) \subset \mathbb{R}^{n-1}$ is a hollow polytope.
Remark 3.6. By [NZ11, Theorem 1.2] there exist only finitely many n-dimensional lattice polytopes not admitting a lattice projection onto a hollow $(n-1)$-dimensional lattice polytope, up to equivalence. So in particular, up to equivalence, there exist only finitely many exceptional ($n-1$)-tuples of n-dimensional lattice polytopes.

Furthermore, by Proposition 1.3, for any non-exceptional ($n-1$)-tuple P_{1}, \ldots, P_{n-1} of n dimensional lattice polytopes there exists a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ mapping all P_{i} onto translates of Δ_{n-1}.
Proof of Theorem 1.5. Let $n \geq 4$. Given $1 \leq k \leq n$, denote by I_{k} the set $\{1, \ldots, n\} \backslash\{k\}$, and by $[P]_{k}$ the $(n-1)$-tuple given by all P_{i} for $i \in I_{k}$. Denote furthermore by $P_{I_{k}}$ the Minkowski sum $\sum_{i \in I_{k}} P_{i}$ of the polytopes in $[P]_{k}$. Since $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)=1$, the Minkowski sum $P_{I_{k}}$ is hollow for any $1 \leq k \leq n$. Recall that, if $[P]_{k}$ is not exceptional, then by Remark 3.6 there exists a projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ mapping all polytopes in $[P]_{k}$ onto translates of Δ_{n-1}. We treat cases separately, depending on the number of exceptional $(n-1)$-subtuples of the tuple P_{1}, \ldots, P_{n}.
(0) If P_{1}, \ldots, P_{n} has no exceptional $(n-1)$-subtuples then either there exists a projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ mapping P_{1}, \ldots, P_{n} onto translates of Δ_{n-1} (and in this case there is nothing to prove), or each of the P_{i} admits $n-1$ pairwise different projections onto Δ_{n-1}.

Indeed if two of these projections were the same, then we would be in the previous case. Suppose there exist $n-1$ pairwise different projections. As $n \geq 4$, Lemma 3.2 yields that each of the P_{i} is a unimodular n-dimensional simplex. Without loss of generality we assume $P_{1}=\Delta_{n}$. Given $2 \leq i \leq n$, there exist $n-2$ pairwise different projections mapping P_{1} and P_{i} onto translates of Δ_{n-1}. If $n \geq 5$, by Lemma 3.4, we can immediately deduce that, up to translations, $P_{1}=P_{2}=\ldots=P_{n}=\Delta_{n}$. If $n=4$, Lemma 3.4 only ensures that P_{2}, \ldots, P_{n} are, up to translation and coordinate permutation, contained in $\mathcal{P}^{n-2}\left(\square_{2}\right)$. This yields finitely many cases and checking them computationally we find among them only 4 -tuples admitting a common projection onto Δ_{3}.
(1) P_{1}, \ldots, P_{n} has exactly one exceptional ($n-1$)-subtuple, which we can assume to be $[P]_{n}$. As $[P]_{n}$ is an exceptional $(n-1)$-tuple, the Minkowski sum $P_{I_{n}}$ belongs to a finite list of hollow n-dimensional polytopes. This means that there are, up to equivalence, finitely many exceptional tuples to choose $[P]_{n}$ from. We now show, that given $[P]_{n}$ there are finitely many possible choices for P_{n} that lead to the n-tuple P_{1}, \ldots, P_{n} having exactly $[P]_{n}$ as an exceptional $(n-1)$-subtuple, which shows the finiteness of this case.

Let therefore $\varphi_{1}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a lattice projection mapping the lattice polytopes in $[P]_{2}$ to translates of Δ_{n-1}. Similarly, let $\varphi_{2}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a lattice projection mapping the lattice polytopes in $[P]_{1}$ to translates of Δ_{n-1}. The existence of such projections follows from the fact that $[P]_{2}$ and $[P]_{1}$ are non-exceptional. We remark that there exist finitely many such projections. Let C_{i} be the infinite prism $P_{i}+\operatorname{ker} \varphi_{i}$, for $1 \leq i \leq 2$. Then we know that any possible choice of P_{n} is contained in $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$ for some $z_{1}, z_{2} \in \mathbb{Z}^{n}$. By Lemma 3.3, for any choices of lattice points $z_{1}, z_{2}, z_{1}^{\prime}, z_{2}^{\prime} \in \mathbb{Z}^{n}$ such that $\operatorname{dim}\left(\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right) \cap \mathbb{Z}^{n}\right)=\operatorname{dim}\left(\left(C_{1}+z_{1}^{\prime}\right) \cap\left(C_{2}+z_{2}^{\prime}\right) \cap \mathbb{Z}^{n}\right)=n$ we find that $\left(C_{1}+z_{1}^{\prime}\right) \cap\left(C_{2}+z_{2}^{\prime}\right)$ is a translate of $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$. Therefore, up to translations, all possible choices for P_{n} are contained in $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$ for fixed $z_{1}, z_{2} \in \mathbb{Z}^{n}$. Note that the intersection $\left(C_{1}+z_{1}\right) \cap\left(C_{2}+z_{2}\right)$ is either equivalent to Δ_{n} or $\mathcal{P}^{n-2}\left(\square_{2}\right)$ by Lemma 3.2, where the choice of the equivalence class depends entirely on $[P]_{n}$. This implies that P_{n} must be one element of a finite list of lattice polytopes fully determined by $[P]_{n}$.
$(2+)$ If P_{1}, \ldots, P_{n} has two or more exceptional ($n-1$)-subtuples, then we can suppose that $[P]_{n}$ and $[P]_{n-1}$ are exceptional. In particular, there exists an upper bound depending only on n for the volume of the Minkowski sums $P_{I_{n}}$ and $P_{I_{n-1}}$ and therefore (since $n>2$) for the volume of $P_{1}+P_{i}$ for any $2 \leq i \leq n$. Recall that, by [LZ91, Theorem 2], there are, up to equivalence, only finitely many lattice polytopes of any fixed volume $K \in \mathbb{Z}_{\geq 0}$. Therefore, as in particular the volume of P_{1} is bounded, there exist only finitely many choices for P_{1} up to equivalence. Furthermore, fixing P_{1} determines, up to translation, finitely many possibilities for each P_{i} with $2 \leq i \leq n$ due to the volume bound on $P_{1}+P_{i}$. This yields that there are only finitely many n-tuples P_{1}, \ldots, P_{n} in this case, up to equivalence.

Note, that the assumption $n>3$ is only used in case (0) of the previous proof.
The unmixed result of Theorem 1.2 also gives an explicit description of lattice polytopes of degree one that are not Lawrence prisms, in fact, up to equivalence and the lattice pyramid construction, there exists only one such exception over all dimensions. Such an explicit description of the list of exceptions from the statement of Theorem 1.5 is not known in dimension $n \geq 4$.

Question 3.7. For dimension $n \geq 4$, what are the n-tuples of n-dimensional lattice polytopes $P_{1}, \ldots, P_{n} \subset \mathbb{R}^{n}$ with $\operatorname{md}\left(P_{1}, \ldots, P_{n}\right)=1$ that are not of the trivial type described in Example 1.4? Is there a finite description over all dimensions as there is in the unmixed case?

In [Nil17] the mixed degree is actually treated in a more general way, also being defined for m tuples of n-dimensional lattice polytopes, with $m \neq n$. In particular, an m-tuple of lattice polytopes
$P_{1}, \ldots, P_{m} \subset \mathbb{R}^{n}$ satisfies $\operatorname{md}\left(P_{1}, \ldots, P_{m}\right) \leq 1$ if and only if $m \geq n-1$ and the Minkowski sum of each $(n-1)$-subtuple is hollow. For $m=n-1$ we obtain an analogous result to Theorem 1.5 (even for $n \in\{2,3\}$) immediately from [NZ11, Theorem 1.2]. We remark that Theorem 1.5 also inductively extends to the case of $m>n$ as follows.

Remark 3.8. Fix $n \geq 4$ and let $P_{1}, \ldots, P_{n+k} \subset \mathbb{R}^{n}$ be n-dimensional lattice polytopes with $\operatorname{md}\left(P_{1}, \ldots, P_{n+k}\right)=1$. Then, up to equivalence, the $(n+k)$-tuple P_{1}, \ldots, P_{n+k} either belongs to a finite list of exceptions or there is a lattice projection $\varphi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ such that $\varphi\left(P_{i}\right)=\Delta_{n-1}$ for all $1 \leq i \leq n+k$.

One can see this with an induction argument on k, where the base case is given by Theorem 1.5. Indeed, let $P_{1}, \ldots, P_{n+k+1} \subset \mathbb{R}^{n}$ be an $(n+k+1)$-tuple of n-dimensional lattice polytopes with $\operatorname{md}\left(P_{1}, \ldots, P_{n+k+1}\right)=1$. One easily verifies that this implies that any $(n+k)$-subtuple of P_{1}, \ldots, P_{n+k+1} has mixed degree at most 1. Analogously to the proof of Theorem 1.5 one can distinguish three cases depending on how many $(n+k)$-subtuples of P_{1}, \ldots, P_{n+k+1} do not admit a common lattice projection onto translates of Δ_{n-1}, and use the induction hypothesis.

4. The 3-dimensional case

This section is devoted to the proof of Theorem 1.6, giving a classification of triples of n dimensional lattice polytopes $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ of mixed degree one. Note that from the proof of Theorem 1.5 it follows that the number of such triples is finite, if we assume at least one of the subpairs of P_{1}, P_{2}, P_{3} to be exceptional. Here we first classify, up to equivalence, these finitely many triples. In Proposition 4.7 we show that there are non-trivial infinite 1-parameter families of triples.

As an intermediate step towards the classification of triples of lattice polytopes of mixed degree one with at least one exceptional subpair we calculate all (equivalence classes of) exceptional pairs of 3 -dimensional lattice polytopes. In order to do that we consider the list of maximal hollow 3-dimensional lattice polytopes classified by Averkov-Wagner-Weismantel [AWW11] (see also [AKW17]), and compute all subpolytopes of the maximal hollow lattice polytopes that have lattice width greater than one.

Proposition 4.1 ([AWW11, Corollary 1]). Let $P \subset \mathbb{R}^{3}$ be a hollow 3-dimensional lattice polytope of width at least two. Then, up to equivalence, P is contained either in the unbounded polyhedron $2 \Delta_{2} \times \mathbb{R}$ or in one of 12 maximal hollow lattice polytopes.

As we are interested in obtaining a list of exceptional pairs $P, Q \subset \mathbb{R}^{3}$ we use an implementation in Magma in order to compute the decompositions of all subpolytopes of the 12 maximal hollow polytopes into Minkowski sums of two 3-dimensional lattice polytopes. Afterwards we determine those pairs that actually do not admit a common projection onto translates of Δ_{2} and then determine equivalent pairs using Lemma 2.4.

Corollary 4.2. There are, up to equivalence, 32 pairs of 3-dimensional lattice polytopes whose Minkowski sum is hollow and that do not admit a common projection onto translates of Δ_{2}.

We use this classification in order to compute all triples of lattice polytopes $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ of mixed degree one with at least two exceptional subpairs as follows.

Assume that P_{1}, P_{2} and P_{1}, P_{3} are exceptional pairs. Then there exist two pairs A, B and C, D out of the 32 of Corollary 4.2 such that A, B is equivalent to P_{1}, P_{2} and C, D is equivalent to P_{1}, P_{3}. We can suppose that P_{1} is equal to A and equivalent to C. Thus there exists an affine latticepreserving transformation φ mapping C to $A=P_{1}$ such that the triple P_{1}, P_{2}, P_{3} is equivalent to the triple $A, B, \varphi(D)$.

This justifies the following algorithm to construct all the triples P_{1}, P_{2}, P_{3} containing at least two exceptional subpairs: we iterate over all the pairs of ordered pairs A, B and C, D of Corollary 4.2, and, whenever there exists an affine lattice-preserving transformation φ mapping C to A, check
if the triple $A, B, \varphi(\psi(D))$ has mixed degree one, where ψ ranges among all the possible affine automorphisms of C (and therefore $\varphi \circ \psi$ ranges among all affine lattice-preserving transformations sending C to A). Equivalent triples can be removed using the criterion following from Lemma 2.4. An implementation in Magma yields the following result proving parts (i)-(ii) of Theorem 1.6.

Proposition 4.3. There are, up to equivalence, 170 triples of 3-dimensional lattice polytopes of mixed degree one having two or three exceptional subpairs. In the first case there are 29 triples, in the latter there are 141.

We now discuss the case of triples of lattice polytopes of mixed degree one having exactly one exceptional subpair. Specifically, $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ is a triple of 3 -dimensional lattice polytopes with $\operatorname{md}\left(P_{1}, P_{2}, P_{3}\right)=1$ and (without loss of generality) there are two different lattice projections $\varphi_{2}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $\varphi_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ where φ_{k} maps P_{i} and P_{j} to translates of Δ_{2} whenever $i, j \neq k$. In particular P_{1} is a lattice polytope with two different lattice projections onto Δ_{2} (and therefore by Lemma 3.2 is equivalent either to Δ_{3} or to $\left.\mathcal{P}\left(\square_{2}\right)\right)$ and P_{2}, P_{3} is an exceptional pair. Note that P_{1} must be contained in both the infinite prisms $C_{2}:=P_{3}+\operatorname{ker} \varphi_{2}+u$ and $C_{3}:=P_{2}+\operatorname{ker} \varphi_{3}+v$, for some translation vectors $u, v \in \mathbb{Z}^{3}$.

In order to classify all such triples we use the fact that we may choose P_{2}, P_{3} from the list of 32 exceptional pairs of Corollary 4.2. Given an exceptional pair P_{2}, P_{3}, we iterate over all the possible pairs of lattice projections φ_{3}, φ_{2}, such that $\varphi_{3}\left(P_{2}\right)$ and $\varphi_{2}\left(P_{3}\right)$ are unimodular triangles. Each such choice determines two infinite prisms $C_{3}:=P_{2}+\operatorname{ker} \varphi_{3}$ and $C_{2}:=P_{3}+\operatorname{ker} \varphi_{2}$. We know that any lattice polytope $P_{1} \subset \mathbb{R}^{3}$, such that $\varphi_{3}\left(P_{1}\right)$ and $\varphi_{2}\left(P_{1}\right)$ are translates of $\varphi_{3}\left(P_{2}\right)$ and $\varphi_{2}\left(P_{3}\right)$ respectively, is contained in both the infinite prisms $C_{2}:=P_{3}+\operatorname{ker} \varphi_{2}+u$ and $C_{3}:=P_{2}+\operatorname{ker} \varphi_{3}+v$, for some translation vectors $u, v \in \mathbb{Z}^{3}$. Up to translation of P_{1} we may assume $u=\mathbf{0}$. By Lemma 3.3 it suffices to find one choice of $v \in \mathbb{Z}^{3}$ such that C_{2} and C_{3} intersect in a full-dimensional lattice polytope, in order to determine the inclusion-maximal choice for P_{1} up to translation. Furthermore, there are only finitely many choices for $v \in \mathbb{Z}^{3}$ to check for the existence of a full-dimensional intersection of C_{2} and C_{3} as we may suppose P_{2} and P_{3} to have a common vertex. This is due to the fact that, if C_{2} and C_{3} intersect in a full-dimensional lattice polytope, then one may translate P_{2} along $\operatorname{ker} \varphi_{3}$ and P_{3} along $\operatorname{ker} \varphi_{2}$ without changing the infinite prisms. It therefore suffices to restrict to translation vectors v that map a vertex of P_{2} to a vertex of P_{3}. Thus we can determine, up to equivalence, all inclusion-maximal P_{1} as above, form triples for all subpolytopes of P_{1} and remove equivalent triples using Lemma 2.4. An implementation in Magma yields the following result proving part (iii) of Theorem 1.6.

Proposition 4.4. There are, up to equivalence, 82 triples of 3-dimensional lattice polytopes of mixed degree one having exactly one exceptional subpair.

In the remaining part of this section we are going to deal with non-trivial triples not having any exceptional subpair in order to prove part (iv) of Theorem 1.6.

Lemma 4.5. Let $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{n}$ be lattice polytopes, and $\varphi_{1}, \varphi_{2}, \varphi_{3}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be lattice projections such that, for all $1 \leq i, j, k \leq 3$, the images $\varphi_{k}\left(P_{i}\right)$ and $\varphi_{k}\left(P_{j}\right)$ are translates of Δ_{2} if and only if $i, j \neq k$. Let $v_{i} \in \mathbb{Z}^{3}$ be the projection direction of φ_{i} for $1 \leq i \leq 3$. Then v_{i} and v_{j} are part of a lattice basis of \mathbb{Z}^{3}, for all $1 \leq i, j \leq 3$. Moreover, if v_{1}, v_{2}, v_{3} linearly span \mathbb{R}^{3}, then they form a lattice basis of \mathbb{Z}^{3}.

Proof. For $1 \leq k \leq 3$ let C_{k} be the infinite $\operatorname{prism} \varphi_{k}\left(P_{i}\right)+\mathbb{R} v_{k}$, for some $i \neq k$. Note that, up to translation, this does not depend on the choice of i as both P_{i} and P_{j} are contained in different translates of C_{k}, whenever $i, j \neq k$. We now fix any of the infinite prisms, say C_{1}. For simplicity we suppose $C_{1}=\left(\{0\} \times \Delta_{2}\right)+\mathbb{R} \mathbf{e}_{1}$ and $P_{2}, P_{3} \subset C_{1}$. In this way we avoid dealing with translations. Note that v_{2} is parallel to an edge of P_{3}, and v_{3} is parallel to an edge of P_{2}. Since both edges are contained in C_{1}, they project along \mathbf{e}_{1} either to the same side of the triangle $\varphi_{1}\left(P_{2}\right)=\varphi_{1}\left(P_{3}\right)=\Delta_{2}$, or to two adjacent sides. In the second case \mathbf{e}_{1}, v_{2} and v_{3} linearly span \mathbb{R}^{3}
and it is easy to verify that they form a lattice basis of \mathbb{Z}^{3}. In the first case \mathbf{e}_{1}, v_{2} and v_{3} span a plane, and from Lemma 3.2 it follows that any two of them are part of a lattice basis of \mathbb{Z}^{3}.

Proposition 4.6. There are, up to equivalence, 27 triples of 3-dimensional lattice polytopes $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ satisfying the hypotheses of Lemma 4.5 for projection directions $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{3}$ that linearly span \mathbb{R}^{3}. All of them are, up to equivalence, contained in one of the following three inclusion-maximal triples of mixed degree one:

- the maximal triple given by the following three reflections of $\mathcal{P}\left(\square_{2}\right)$
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}, \mathbf{e}_{3}, \mathbf{e}_{2}+\mathbf{e}_{3}, \mathbf{e}_{1}\right)$,
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{3}, \mathbf{e}_{2}\right)$,
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{3}\right)=\mathcal{P}\left(\square_{2}\right)$,
- the maximal triple
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}\right)$,
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{3}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{3}\right)$,
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{3}\right)=\mathcal{P}\left(\square_{2}\right)$.
- and the maximal triple
$\operatorname{conv}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{2}+\mathbf{e}_{3}\right)$,
$\operatorname{conv}\left(\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{3}\right)$,
$\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}+\mathbf{e}_{2}, \mathbf{e}_{3}\right)=\mathcal{P}\left(\square_{2}\right)$.
Proof. By Lemma 4.5 we may assume v_{1}, v_{2}, v_{3} to be $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ respectively, and that two primitive segments parallel to the directions \mathbf{e}_{2} and \mathbf{e}_{3} are contained in C_{1}. This restricts C_{1} to be, up to translation, one of the four infinite prisms of the form $\operatorname{conv}\left(\mathbf{0}, \pm \mathbf{e}_{2}, \pm \mathbf{e}_{3}\right)+\mathbb{R} \mathbf{e}_{1}$. In particular, up to translation, C_{1} is contained in the infinite $\operatorname{prism} \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{3}\right)+\mathbb{R} \mathbf{e}_{1}$. Similarly, $C_{2} \subset$ $\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{3}\right)+\mathbb{R} \mathbf{e}_{2}$ and $C_{3} \subset \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)+\mathbb{R} \mathbf{e}_{3}$. In particular all the P_{i} are, up to translations, subpolytopes of the unit cube $\square_{3}=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{3}\right)$, which leaves finitely many cases that we check computationally.

From the proof of Proposition 4.6 it is clear that all the maximal triples from Proposition 4.6 are actually contained inside the triple consisting of three copies of the unit cube \square_{3}. Note however that one has $\operatorname{md}\left(\square_{3}, \square_{3}, \square_{3}\right)>1$, as the Minkowski sum $\square_{3}+\square_{3}$ has an interior lattice point.

Proposition 4.7. There are, up to equivalence, infinitely many triples of 3-dimensional lattice polytopes $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ satisfying the hypothesis of Lemma 4.5 for projection directions $v_{1}, v_{2}, v_{3} \in \mathbb{Z}^{3}$ that linearly span $\mathbb{R}^{2} \times\{0\}$. All of them, up to equivalence, are contained in one of the following triples of mixed degree two given by the parallelepipeds $Q_{k}, R_{k}, \square_{3}$ for some $k \in \mathbb{Z}_{\geq 0}$, where

$$
\begin{aligned}
Q_{k} & :=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}-\mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, k \mathbf{e}_{2}+\mathbf{e}_{3}\right), \\
R_{k} & :=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}-\mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, k \mathbf{e}_{1}+\mathbf{e}_{3}\right), \\
\square_{3} & :=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{3}\right) .
\end{aligned}
$$

They can be covered by a finite number of 1-parameter families. In particular, if we denote by ψ_{1}^{k} the shearing $(x, y, z) \mapsto(x, y+k z, z)$ and by ψ_{2}^{k} the shearing $(x, y, z) \mapsto(x+k z, y, z)$, one may choose 1 parameter families of the form $\left\{\psi_{1}^{k}\left(P_{1}^{0}\right), \psi_{2}^{k}\left(P_{2}^{0}\right), P_{3}\right\}_{k \in \mathbb{Z}_{\geq 0}}$ for all subpolytopes $P_{1}^{0} \subset Q_{0}, P_{2}^{0} \subset R_{0}$ and $P_{3} \subset \square_{3}$ satisfying $\operatorname{md}\left(P_{1}^{0}, P_{2}^{0}, P_{3}\right)=1$.

Proof. By Lemma 4.5 we may assume v_{1}, v_{2}, v_{3} to be $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{1}-\mathbf{e}_{2}$. Here, the assumption $v_{3}=$ $\mathbf{e}_{1}-\mathbf{e}_{2}$ follows from the fact that both the pairs \mathbf{e}_{1}, v_{3} and \mathbf{e}_{2}, v_{3} need to be part of a lattice basis of \mathbb{Z}^{3}, and the projection directions v_{i} may be chosen with arbitrary sign. By Lemma 3.2 the polytope P_{3}, which projects onto Δ_{2} along the directions \mathbf{e}_{1} and \mathbf{e}_{2}, can be fixed to be in the unit cube \square_{3}. Consequently we can assume C_{1}, C_{2} to be in the infinite prisms $\square_{3}+\mathbb{R} \mathbf{e}_{1}$ and $\square_{3}+\mathbb{R} \mathbf{e}_{2}$, respectively. Finally, we assume P_{1} and P_{2} to be in the infinite prisms C_{2} and C_{1}, respectively. Now consider
the linear functional f defined by $(x, y, z) \mapsto x+y$. Consider a lattice point $v_{0} \in P_{1} \cap\left(\mathbb{R}^{2} \times\{0\}\right)$ minimizing f. Since P_{1} projects onto Δ_{2} along the direction $\mathbf{e}_{1}-\mathbf{e}_{2}$, one verifies that for any other point $u_{0} \in P_{1} \cap\left(\mathbb{R}^{2} \times\{0\}\right)$ one has $f\left(v_{0}\right) \leq f\left(u_{0}\right) \leq f\left(v_{0}\right)+1$. Analogously, if v_{1} is a lattice point in $P_{1} \cap\left(\mathbb{R}^{2} \times\{1\}\right)$ minimizing f, then $f\left(v_{1}\right) \leq f\left(u_{1}\right) \leq f\left(v_{1}\right)+1$ for all $u_{1} \in P_{1} \cap\left(\mathbb{R}^{2} \times\{1\}\right)$. Since we are free to translate P_{1} along \mathbf{e}_{2}, we can suppose $f\left(v_{0}\right)=0$ and we denote $k=f\left(v_{1}\right)$. As a consequence, $P_{1} \cap\left(\mathbb{R}^{2} \times\{0\}\right)$ is contained in the parallelogram $q_{0}:=\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}-\mathbf{e}_{2}\right)+\operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2}\right)$. Analogously $P_{1} \cap\left(\mathbb{R}^{2} \times\{1\}\right)$ is contained in the parallelogram $q_{1}:=q_{0}+k \mathbf{e}_{2}+\mathbf{e}_{3}$. In particular P_{1} is contained in the parallelepiped $\operatorname{conv}\left(q_{0} \cup q_{1}\right)=Q_{k}$. Therefore C_{3} is contained in the infinite prism $Q_{k}+\mathbb{R}\left(\mathbf{e}_{1}-\mathbf{e}_{2}\right)$. This completely determines the parallelepiped $R_{k}=C_{1} \cap C_{3}$, satisfying $R_{k} \supset P_{2}$. It is easy to verify that the triple $Q_{k}, R_{k}, \square_{3}$ is equivalent to the triple $Q_{-k}, R_{-k}, \square_{3}$, so one can always assume $k \in \mathbb{Z}_{\geq 0}$.

In order to see that the set of triples that are subtriples of $Q_{k}, R_{k}, \square_{3}$ for some $k \in \mathbb{Z}_{\geq 0}$ can be covered by 1-parameter families as claimed it suffices to notice that any subtriple of $Q_{k}, R_{k}, \square_{3}$ can be written as $\psi_{1}^{k}\left(P_{1}^{0}\right), \psi_{2}^{k}\left(P_{2}^{0}\right), \square_{3}$ for subpolytopes $P_{1}^{0} \subset Q_{0}, P_{2}^{0} \subset R_{0}$ and $P_{3} \subset \square_{3}$. The fact that any family $\left\{\psi_{1}^{k}\left(P_{1}^{0}\right), \psi_{2}^{k}\left(P_{2}^{0}\right), P_{3}\right\}_{k \in \mathbb{Z} \geq 0}$ for subpolytopes $P_{1}^{0} \subset Q_{0}, P_{2}^{0} \subset R_{0}$ and $P_{3} \subset \square_{3}$ actually contains infinitely many non-equivalent triples can be verified by picking edges $E_{i} \subset P_{i}$ for $1 \leq i \leq 3$ between vertices on height 0 and 1 , and noticing that the volume of the parallelepiped $E_{1}+E_{2}+E_{3}$ grows quadratically in k. An example of one of these inifinite 1-parameter families is given in Example 1.7.

A computer assisted search for mixed degree one triples in $Q_{k}, R_{k}, \square_{3}$ for small values of k shows that there are 51 non-equivalent triples when $k=0$, and 36 for larger values of k, where, for each k, the overlaps that occur for preceding values of k are excluded.

Let us finally mention that the 252 triples classified in Theorem 1.6 (i) -(iii) can all be found as subtriples of six special triples which are maximal with respect to inclusion. We have verified this computationally by enumerating subtriples of the six special ones.

Corollary 4.8. All triples $P_{1}, P_{2}, P_{3} \subset \mathbb{R}^{3}$ of 3 -dimensional lattice polytopes of mixed degree one of types (i) -(iii) from Theorem 1.6 are, up to equivalence, contained in one of the following 6 maximal triples:
(a) the maximal triple $\mathcal{P}\left(2 \Delta_{2}\right), \mathcal{P}\left(2 \Delta_{2}\right), \mathcal{P}\left(2 \Delta_{2}\right)$,
(b) the maximal triple $2 \Delta_{3}, \Delta_{3}, \Delta_{3}$,
(c) the maximal triple $\left\{\operatorname{conv}\left(\mathbf{0}, 2 \mathbf{e}_{i}, \mathbf{e}_{j}, \mathbf{e}_{k}\right): i, j, k \in[3]\right.$ pairwise different $\}$,
(d) the maximal triple

$$
\begin{aligned}
& \operatorname{conv}\left(\mathbf{e}_{1}, \mathbf{e}_{2},-\mathbf{e}_{2}\right) * \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right) \\
& \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1},-\mathbf{e}_{2}\right) *\left\{-\mathbf{e}_{2}\right\} \\
& \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}, \mathbf{e}_{2}\right) *\left\{\mathbf{e}_{2}\right\}
\end{aligned}
$$

(e) the maximal triple

$$
\begin{aligned}
& \operatorname{conv}\left(\mathbf{0}, 2 \mathbf{e}_{2}\right) * \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right) \\
& \operatorname{conv}\left(\mathbf{0},-\mathbf{e}_{1},-\mathbf{e}_{1}-\mathbf{e}_{2}\right) *\left\{-\mathbf{e}_{1}-2 \mathbf{e}_{2}\right\} \\
& \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{2},-\mathbf{e}_{1}\right) *\left\{\mathbf{e}_{1}\right\}
\end{aligned}
$$

(f) the maximal triple

$$
\begin{aligned}
& \operatorname{conv}\left(\mathbf{0}, 2 \mathbf{e}_{2}\right) * \operatorname{conv}\left(\mathbf{0}, \mathbf{e}_{1}\right) \\
& \operatorname{conv}\left(\mathbf{0},-\mathbf{e}_{1},-\mathbf{e}_{1}-\mathbf{e}_{2}\right) *\left\{-\mathbf{e}_{1}-2 \mathbf{e}_{2}\right\} \\
& \operatorname{conv}\left(\mathbf{0},-\mathbf{e}_{2},-\mathbf{e}_{1}\right) *\left\{\mathbf{e}_{1}-2 \mathbf{e}_{2}\right\}
\end{aligned}
$$

Note that the maximal triples (a) and (b) of Corollary 4.8 admit direct generalizations to an arbitrary dimension n that are of mixed degree one. Furthermore it follows from the proof of

Theorem 1.5 that there are no n-tuples of a type analogous to type (iv) of Theorem 1.6 for $n \geq 4$. A bold guess for an answer to Question 3.7 would be that for arbitrary $n \geq 4$ (or n large enough) all exceptions of n-tuples of mixed degree one are contained in one of these generalizations, that is either in $\mathcal{P}^{n-2}\left(2 \Delta_{2}\right), \ldots, \mathcal{P}^{n-2}\left(2 \Delta_{2}\right)$ or $2 \Delta_{n}, \Delta_{n}, \ldots, \Delta_{n}$ (as it can be easily verified that the straightforward generalization of the maximal family (c) to dimension $n \geq 4$ does not yield n-tuples of mixed degree one).

References

[AKW17] Gennadiy Averkov, Jan Krümpelmann, and Stefan Weltge. Notions of maximality for integral latticefree polyhedra: the case of dimension three. Math. Oper. Res., 42(4):1035-1062, 2017.
[AWW11] Gennadiy Averkov, Christian Wagner, and Robert Weismantel. Maximal lattice-free polyhedra: finiteness and an explicit description in dimension three. Math. Oper. Res., 36(4):721-742, 2011.
[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235-265, 1997. Computational algebra and number theory (London, 1993).
[Ber75] D. N. Bernstein. The number of roots of a system of equations. Funkcional. Anal. i Priložen., 9(3):1-4, 1975.
[BH18] Gabriele Balletti and Akihiro Higashitani. Universal inequalities in ehrhart theory. Israel Journal of Mathematics, 227(2):843-859, Aug 2018.
[BN08] Victor Batyrev and Benjamin Nill. Combinatorial aspects of mirror symmetry. In Integer points in polyhedra-geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemp. Math., pages 35-66. Amer. Math. Soc., Providence, RI, 2008.
[BN07] Victor Batyrev and Benjamin Nill. Multiples of lattice polytopes without interior lattice points. Mosc. Math. J., 7(2):195-207, 349, 2007.
$\left[\mathrm{BNR}^{+} 08\right]$ Matthias Beck, Benjamin Nill, Bruce Reznick, Carla Savage, Ivan Soprunov, and Zhiqiang Xu. Let me tell you my favorite lattice-point problem In Integer points in polyhedra-geometry, number theory, representation theory, algebra, optimization, statistics, volume 452 of Contemp. Math., pages 179-187. Amer. Math. Soc., Providence, RI, 2008.
[BR15] Matthias Beck and Sinai Robins. Computing the continuous discretely. Undergraduate Texts in Mathematics. Springer, New York, second edition, 2015. Integer-point enumeration in polyhedra, With illustrations by David Austin.
$\left[\mathrm{CCD}^{+} 13\right]$ Eduardo Cattani, María Angélica Cueto, Alicia Dickenstein, Sandra Di Rocco, and Bernd Sturmfels. Mixed discriminants. Math. Z., 274(3-4):761-778, 2013.
[DLRS10] Jesús A. De Loera, Jörg Rambau, and Francisco Santos. Triangulations, volume 25 of Algorithms and Computation in Mathematics. Springer-Verlag, Berlin, 2010. Structures for algorithms and applications.
[DRHNP11] Sandra Di Rocco, Christian Haase, Benjamin Nill, and Andreas Paffenholz. Polyhedral adjunction theory. Algebra and Number Theory, 7, 052011.
[DRP09] Alicia Dickenstein, Sandra Di Rocco, and Ragni Piene. Classifying smooth lattice polytopes via toric fibrations. Advances in Mathematics, 222(1):240-254, 2009.
[EG15] Alexander Esterov and Gleb Gusev. Systems of equations with a single solution. J. Symbolic Comput., 68(part 2):116-130, 2015.
[FI16] K. Furukawa and A. Ito. A combinatorial description of dual defects of toric varieties. ArXiv e-prints, May 2016.
[GKZ94] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, resultants, and multidimensional determinants. Mathematics: Theory \& Applications. Birkhäuser Boston, Inc., Boston, MA, 1994.
[HT19] Takayuki Hibi and Akiyoshi Tsuchiya. Algebraic and Geometric Combinatorics on Lattice Polytopes. WORLD SCIENTIFIC, 2019.
[Kho78] A. G. Khovanskii. Newton polyhedra and the Euler-Jacobi formula. Uspekhi Mat. Nauk, 33(6(204)):237-238, 1978.
[KS98] Maximilian Kreuzer and Harald Skarke. Classification of reflexive polyhedra in three dimensions. $A d v$. Theor. Math. Phys., 2(4):853-871, 1998.
[LZ91] Jeffrey C. Lagarias and Günter M. Ziegler. Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Canad. J. Math., 43(5):1022-1035, 1991.
[Nil17] Benjamin Nill. The mixed degree of families of lattice polytopes. http://arxiv.org/abs/1708.03250, 2017, to appear in Annals of Combinatorics.
[NZ11] Benjamin Nill and Günter M. Ziegler. Projecting lattice polytopes without interior lattice points. Math. Oper. Res., 36(3):462-467, 2011.
[Sch14] Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.
[Sop07] Ivan Soprunov. Global residues for sparse polynomial systems. J. Pure Appl. Algebra, 209(2):383-392, 2007.
(G. Balletti) Department of Mathematics, Stockholm University, SE-106 91 Stockholm, Sweden

E-mail address: gabriele.balletti@gmail.com
(C. Borger) Fakultät für Mathematik, Institut für Algebra und Geometrie, Otto-von-Guericke-Universität Magdeburg, Universitätsplatz 2, 39106 Magdeburg, Germany

E-mail address: christopher.borger@ovgu.de

[^0]: Key words and phrases. mixed degree, lattice polytopes, Minkowski sum, mixed volume.

